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Vibration and acoustic radiation of an
orthotropic composite cylindrical shell
in a hygroscopic environment

Xin Zhao, Bo Zhang and Yueming Li

Abstract

An analytical study is presented for vibration and acoustic radiation of a finite thin orthotropic composite cylindrical shell

excited by a harmonic concentrated force in a hygroscopic environment. The modal analysis method is used to solve the

governing equations. Theoretical results are presented in natural vibration, radial quadratic velocity, sound power and

radiation efficiency, with uniform incremental moisture content. Furthermore, different stiffness, length and thickness are

set respectively to research the effects of the material and structure parameters variation of the orthotropic cylindrical

shell on the vibration and acoustic radiation characteristics. It is found that the natural frequencies decrease with an

increase of moisture content. The modal indices associated with the lowest frequency mode reaches the modal indices

corresponding to the lowest buckling mode near the critical buckling moisture content with moisture content. The radial

quadratic velocity and sound radiation power decrease with the incremental moisture content in the lower frequency

band. The vibration and acoustic response decrease with the enhanced stiffness. The increasing length has little impact on

the sound radiation and the thickened cylindrical shell weakens the sound radiation response.
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1. Introduction

The thin orthotropic composite shells have many appli-
cations in the aerospace industry such as aircraft, mis-
siles and launchers. The composite structures are
typically exposed to moist environment in the aero-
space industry, especially in the long-term storage
period. The matrix in an orthotropic composite cylin-
drical shell is more susceptible to the hygroscopic con-
dition than the fiber, and the hygroscopic strains and
stresses are not equal in the longitudinal and circum-
ferential axes due to the different moisture expansion
coefficients. Hygroscopic stresses due to the moisture
absorbed during the long-term storage period may
induce buckling and dynamic instability in structures,
and the pre-stress effect of hygroscopic load will affect
the dynamic behavior of the structure, and then cause
the changes of acoustic radiation characteristics.

Some researchers have studied buckling and free
vibration behavior of composite cylindrical shells/
shell panels due to hygroscopic load. Shen (2001)

investigated the effect of hygroscopic conditions on
the buckling and post-buckling of shear deformable
laminated cylindrical shells subjected to combined
loading of axial compression and external pressure.
The results showed that the hygroscopic environment
had a significant effect on the interactive buckling load
as well as post-buckling response of the shell. Parhi
et al. (2001) investigated the free vibration and transient
response analysis of multiple delaminated doubly
curved composite shells subjected to a hygroscopic
environment by a quadratic isoparametric finite
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element formulation based on the first order shear
deformation theory. The results showed that the deg-
radation in the natural frequencies and the increase in
the amplitude of dynamic displacements and stresses
are influenced by the degree of moisture concentration.
Naidu and Sinha (2007) analyzed nonlinear free vibra-
tion behavior of laminated composite shells subjected
to hygroscopic environments using the finite element
method. They found that the fundamental frequencies
reduce with the increase of moisture concentration
levels. The effect in a thin shell panel is significant
when it is subjected to uniform moisture concentration,
and the panel becomes unstable at higher moisture
concentration.

A lot of models have been developed by many
researchers to study the acoustic radiation of the plate
and cylindrical shell. Stepanishen (1982) presented an
approach to evaluate the pressure field and vibratory
response of a finite fluid-loaded cylindrical shell with
infinite rigid extension which were connected to the
shell. As a result of the importance of the acoustic self
radiation and interaction impedances, the characteristics
of impedances were investigated. They found that the
acoustic self-impedances provide a resistive and inertial
loading on the shell which will in general lower the
natural frequency and the quality factor of each
mode. Burroughs (1984) derived analytical expressions
for the far field acoustic radiation from a point-driven
circular cylindrical shell reinforced by doubly periodic
rings. The results show two mechanisms of radiation:
radiation from low wave numbers in the structural near
field of the source; and scattering by the rings of struc-
tural energy from high-to-low wave numbers.
Laulagnet and Guyader (1989) presented a modal ana-
lysis study of acoustic radiation by a finite cylindrical
shell immersed in air or water. Theoretical results for
shell power radiation, radial quadratic velocity and
radiation efficiency had been given and analyzed by
using the concept of evenly damped modes. Lyrintzis
and Bofilios (1990) presented an analytical study to
predict dynamic response and noise transmission of dis-
cretely stiffened multi-layered composite panels, and
examined the effects of the temperature and high
humidity. The results indicate that thermal and mois-
ture effects are very important in predicting deflections
and transmitted noise. Xie and Luo (1995) studied
acoustic radiation properties of ring-stiffened cylin-
drical shell in fluids by means of Hamilton’s principle
and the Green function. The effects of hydrostatic pres-
sure and rings on the acoustic radiation of the shells
were discussed. Wang and Lai (2000) investigated a
detailed acoustical analysis of the sound power pro-
duced by finite length acoustically thick circular cylin-
drical shells under mechanical excitation. Analysis of
acoustically thick shells showed that unlike flat plates,

for frequencies below the critical frequency, both super-
sonic and subsonic modes can exist. Consequently, the
radiation efficiency is dependent on the geometries and
boundary conditions and could reach unity at a fre-
quency much lower than the critical frequency. Wang
and Lai (2001) investigated the end effects of the length
and the boundary conditions on the acoustic behavior
of a circular cylindrical shell. They inferred that the
boundary conditions affect the modal radiation efficien-
cies very much in the subsonic region. However, it has
been shown that there exists a condition under which
the end effects could be neglected for modal radiation
efficiencies so that the infinite model could be used with
fair accuracy. Daneshjou et al. (2009) explored the
sound transmission through an infinite orthotropic
composite cylindrical shell in the context of air-borne
sound into the aircraft interior. They found that the
decreasing of incident angle tends to enhance the trans-
mission losses of cylinder in the stiffness-controlled
region (below the ring frequency) and the coincidence
frequency is shifted downwards. In higher altitude,
acoustic impedance mismatch increases. Therefore,
transmission losses in all broadband frequencies are
enhanced. The discrete singular convolution (DSC)
method is adopted by Civalek (2013) and Civalek and
Gürses (2009) to analyze the free vibration of rotating
cylindrical shells and laminated composite conical
shells, which proves a controllable numerical accuracy
by using the suitable bandwidth. Being a non-iterative
method, the DSC method is relatively less computa-
tionally intensive. Also the DSC method gives reason-
ably accurate values for frequencies and mode shapes.
Liao et al. (2011) developed an approximate analytic
method to study sound radiation characteristics of a
finite submerged axial periodically stiffened cylindrical
shell excited by radial harmonic forces. They found that
the axial stiffener number has just a slight influence on
radiated sound power, whereas structural damping has
a great influence on radiated power and radial quad-
ratic velocity on the surface of the shell. Jeyaraj et al.
(2008, 2011) adopted commercial finite element soft-
ware to study the vibration and acoustic response char-
acteristics of the isotropic plate and cylindrical shell
under a thermal environment, respectively. They
found that there is a significant change in the vibration
mode shapes and ring frequency towards the lowest
natural frequency with an increase with temperature
in the study of the cylindrical shell, and then there is
a sudden increase in overall sound power level near the
critical buckling temperature, and significant changes in
mode shapes with temperature do not affect the overall
sound power level. Cao et al. (2012) studied the sound
radiation from shear deformable stiffened laminated
cylindrical shells in terms of sound pressure and the
helical wave spectra. The far field sound pressure was
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derived by using the Fourier wave number transform
and stationary phase method. It is shown that the
dynamic stiffness of a ring taking into account the
shear deformation is much lower than that of a ring
modeled by the classical beam theory in the large cir-
cumferential wave numbers. Zhao et al. (2013) made a
theoretical investigation of the vibration and acoustic
response characteristics of an orthotropic laminated
composite plate in a hygroscopic environment. The
initial hygroscopic stress and mass addition caused by
material moisture absorption are considered in the gov-
erning equations of the orthotropic plate. They found
the dynamic response and sound radiation float to
lower frequencies with elevated moisture content and
the coincidence frequency decreases with the enhanced
stiffness. The sound radiation efficiency of a vibrating,
thin, elastically supported annular plate embedded
into a flat rigid baffle was investigated by Rdzanek
et al. (2014). The free axisymmetric time harmonic
vibrations had been considered for a single mode. The
presented formulations of sound radiation efficiency
of an elastically supported annular plate are useful
for numerical calculations within the low frequency
range.

Solving the problem analytically is limited to certain
conditions; it may be solved using numerical approaches
such as the popular element-free methods that can
provide a solution which cannot be obtained by the
analytical method. Zhang and Liew (2014b)
propose an improved moving least-squares–Ritz
(IMLS–Ritz) method with its element-free framework
developed for studying two-dimensional elasticity pro-
blems. Using the IMLS approximation for the field vari-
ables, the discretized governing equations of the
problem are derived via the Ritz procedure. Zhang and
Liew (2014a) also proposed an improved complex vari-
able moving least-squares–Ritz (ICVMLS–Ritz)
method for predicting a numerical solution of the two-
dimensional nonlinear Schrödinger equation. In this
element-free solution procedure, the ICVMLS approxi-
mation is employed to reduce the number of unknown
coefficients in the trial function. Zhang et al. (2014)
present a numerical study of the two-dimensional
Schrödinger equation that is carried out using the
improved complex variable element-free Galerkin
(ICVEFG) method. The ICVEFG method involves
employment of the improved complex variable moving
least-squares (ICVMLS) in the element-free Galerkin
(EFG) procedure for numerical approximation.

Although there is abundant literature for the analyt-
ical study of vibro-acoustic behavior of isotropic or
stiffened cylindrical shells, very few studies have
looked at vibration and sound radiation characteristics
for the orthotropic cylindrical shell under hygroscopic
environment. The uniform elevated moisture content

may not occur in practice for the moisture content
may vary according to the nature of surrounding, but
the approximate uniform moisture content may occur
after a long-term storage period. In the current study,
vibration and acoustic response of a thin orthotropic
circular composite cylindrical shell under uniform
hygroscopic environment subjected to steady state exci-
tations is investigated. A theoretical solution consider-
ing the effects of hygroscopic stress and mass addition
caused by moisture absorption is obtained based on the
improved Donnell type shell equation, with simply sup-
ported boundary conditions at the two ends of the shell
which were terminated by infinite rigid cylindrical
baffles. To examine the validity of the present solution,
comparisons are made against the radial quadratic
velocity and radiated power with the previous work
for a finite long isotropic cylindrical shell. The natural
frequency characteristic, radial quadratic velocity,
radiated power and radiation efficiency of the ortho-
tropic cylindrical shell with incremental moisture
content are analysed. The influences of the stiffness,
length and thickness of the orthotropic cylindrical
shell on the vibration and acoustic responses are also
discussed.

2. Formulation

Consider a finite thin orthotropic cylindrical shell in a
hygroscopic environment, as shown in Figure 1, termi-
nated by infinite rigid cylindrical baffles. The radius,
thickness and length of the cylindrical shell is R, h
and L respectively. The mass density of air is �0, and
the speed of sound in air is c0. The shell is excited by
harmonic point force F x, �, tð Þ. The variables x, �, z
refer to the axial, circumferential and radial directions.
The variables u, v, w refer to displacement components
in x, �, z directions respectively. The cylindrical shell is
composed of N layer laminas, and all laminas are
orthotropic and the material principal directions are
coincident with the coordinate system, so the composite
cylindrical shell bonding together with the lamina
having the same principal coordinate system can be
assumed to be an orthotropic composite cylindrical
shell. In the present study, based on the Kirchhoff–
Love hypothesis, classical thin shell theory will be
adopted in the analysis.

2.1. In-plane force induced by hygroscopic stress

Taking no account of the change of the moisture con-
tent, the internal force and moment of the shell element
can be written as (Brush and Almroth, 1975):

N,Mf g ¼ Nx,N�,Nx�½ �
T, Mx,M�,Mx�½ �

T
� �
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¼

Z h=2

�h=2

�x, ��, �x�½ �
T, �xz, ��z, �x�z½ �

T
� �

dz ð1Þ

where Nx, N�, Nx�, Mx, M� and Mx� are the forces and
moments per unit length of shell element in normal and
shear directions; �x, �� and �x� are the normal and
shear stresses respectively. The state of plane stress of
the orthotropic shell can be expressed as:

�x

��

�x�

8><
>:

9>=
>; ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75

"x

"�

�x�

8><
>:

9>=
>; ð2Þ

where Q11, Q22, Q12 and Q66 are the transformed
reduced stiffness which are related to the usual engin-
eering parameters in the following way:

Q11 ¼
E1

1� �12�21ð Þ
ð3aÞ

Q22 ¼
E2

1� �12�21ð Þ
ð3bÞ

Q12 ¼
�12E2

1� �12�21ð Þ
ð3cÞ

Q66 ¼ G12 ð3dÞ

where E1 and E2 are the longitudinal and tangential
Young’s modulus, respectively, G12 is the shear modu-
lus, �12 and �21 are Poisson’s ratios.

The normal and shear strains at a point with dis-
tance z from the middle surface of the shell according
to the Kirchhoff–Love assumptions are (Brush and
Almroth, 1975):

"x ¼ "xm þ zkx ð4aÞ

"� ¼ "�m þ zk� ð4bÞ

�x� ¼ �x�m þ zkx� ð4cÞ

where the subscript m refers to the strains on the middle
surface of the shell; kx and k� are the bending strains in
the axial direction x and circumferential direction �,
respectively; and kx� is the twist strain in the x� plane.
The general linear strain–displacement relations can
be given in the following terms for the strains on the
middle surface and the curvatures in terms of the
displacement component u, v and w in the axial, circum-
ferential, and normal to the middle plane directions:

"xm ¼
@u

@x
ð5aÞ

"�m ¼
1

R

@v

@�
þ

w

R
ð5bÞ

�x�m ¼
1

R

@u

@�
þ
@v

@x
ð5cÞ

kx ¼ �
@2w

@x2
ð5dÞ

k� ¼
1

R2

@v

@�
�
@2w

@�2

� �
ð5eÞ

kx� ¼
1

2R

@v

@x
� 2

@2w

@x@�

� �
ð5fÞ

Considering that based on the thin shell theory, the
internal force and moment of the shell element with the
linear strain–displacement relations can be obtained:

N ¼

Nx

N�

Nx�

8><
>:

9>=
>; ¼

Z h=2

�h=2

�x

��

�x�

8><
>:

9>=
>;dz

Figure 1. Cylindrical shell and co-ordinate system.

676 Journal of Vibration and Control 23(4)



¼
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where Kij i, j ¼ 1, 2, 6ð Þ and Dij i, j ¼ 1, 2, 6ð Þ are mem-
brane stiffness and bending stiffness are written as
below:

K11 ¼
E1h

1� �12�21ð Þ
ð7aÞ

K22 ¼
E2h

1� �12�21ð Þ
ð7bÞ

K12 ¼
�12E2h

1� �12�21ð Þ
ð7cÞ

K66 ¼ G12h ð7dÞ

D11 ¼
E1h

3

12 1� �12�21ð Þ
ð7eÞ

D22 ¼
E2h

3

12 1� �12�21ð Þ
ð7fÞ

D12 ¼
�12E2h

3

12 1� �12�21ð Þ
ð7gÞ

D66 ¼
G12h

3

12
ð7hÞ

There will be in-plane force induced by hygroscopic
stress in orthotropic shell when the hygroscopic envir-
onment changes from initial uniform moisture content
to a final value. In this condition, there is no in-plane
and radial displacement. The hygroscopic stress–strain
relation (Kaw, 2006; Whitney and Ashton, 1971) can be
written as:
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where the subscript C refers to the hygroscopic stress
induced by the moisture content difference. Note that

no shearing strains are induced in the material axes.
The moisture change induced strains "Cx , "

C
� are given

by:

"Cx
"C�
0

8<
:

9=
; ¼ �C

�1
�2
0

8<
:

9=
; ð9Þ

where �1 and �2 are the axial and circumferential coef-
ficients of hygroscopic expansion in the principal
material directions, respectively. �C %ð Þ ¼ Cf � Ci is
denoted as the moisture content change, and Ci %ð Þ
and Cf %ð Þ is the initial and final uniform moisture con-
tent in the orthotropic shell. The hygroscopic force and
moment could be written as below:

NC ¼
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x
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�
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x�
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The ends of the cylindrical shell terminated by infin-
ite rigid cylindrical baffles are simply supported, and
the boundary condition is given as:

v ¼ w ¼
@u

@x
¼
@2w

@x2
¼ 0 x ¼ 0,Lð Þ ð11Þ

If the shell is simply supported and the axial dis-
placement is prevented, the moisture content can be
uniformly raised to a final value Cf such that the shell
buckles. To find the critical �C ¼ Cf � Ci, the prebuck-
ling hygroscopic stresses are (Eslami and Javaheri,
1999; Eslami et al., 1996):

Nx0 ¼ NC
x ¼ � K11�1 þ K12�2ð Þ�C ð12aÞ

N�0 ¼ Nx�0 ¼ 0 ð12bÞ

Nx0, N�0 and Nx�0 refer to the pre-stresses in longitu-
dinal, tangential and shearing directions.
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Thus the resultant force and moment of the shell
element can be obtained as:

�N, �M
� �T

¼ N,M½ �
T
� NC,MC
� �Tn o

ð13Þ

2.2. Vibration and acoustic response of the
orthotropic cylindrical shell in a
hygroscopic environment

According to the improved Donnell’s shell theory
(Brush and Almroth, 1975; Leissa, 1973), considering
the additional mass by absorbing moisture (Lyrintzis
and Bofilios, 1990; Zhao et al., 2013), a new motion
equilibrium equation of the thin orthotropic cylindrical
shell including the pre-stresses effect can be established
as follows:

@Nx

@x
þ
@Nx�

R@�
¼ 1þ�Cð Þ�h

@2u

@x2
ð14aÞ

@Nx�
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þ
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@x2
ð14bÞ
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R
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@2w
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þNx�0

2

R

@2w

@x@�
�
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R

@v

@x

� �

þN�0
1

R2

@2w

@�2
�

1

R2

@v

@�

� �
¼ 1þ�Cð Þ

� �h
@2w

@x2
� F x, �, tð Þ þ p x, �, tð Þ ð14cÞ

where � is the density of the material, �h is the shell
mass per unit area, and 1þ�Cð Þ accounts for the
absorbed moisture. F x, �, tð Þ is the driving force;
p x, �, tð Þ is the shell boundary pressure.

For a simply supported cylindrical shell, the middle
surface displacement can be expanded in a series of the
shell modes (Junger and Feit, 1986) (for simplicity,
time- dependent factor e�j!t will be suppressed through-
out for a harmonic vibration):

u ¼
X1
l¼0

X1
n¼0

X1
m¼1

Ul
mn sin n� þ

l�
2

� �
cos kmxð Þ ð15aÞ

v ¼
X1
l¼0

X1
n¼0

X1
m¼1

Vl
mn cos n� þ

l�
2

� �
sin kmxð Þ ð15bÞ

w ¼
X1
l¼0

X1
n¼0

X1
m¼1

Wl
mn sin n� þ

l�
2

� �
sin kmxð Þ ð15cÞ

here l ¼ 0 (resp. 1) denotes antisymmetric (resp. sym-
metric) modes, Ul

mn, V
l
mn and Wl

mn refer to the displace-
ment amplitudes in axial, circumferential and radial
directions, km ¼ m�=L, n is circumferential order, m is
the longitudinal order. Both the force and shell bound-
ary pressure can be expanded in the displacement form
respectively as:

F x, �ð Þ ¼
X1
l¼0

X1
n¼0

X1
m¼1

Fl
mn sin n� þ

l�
2

� �
sin kmxð Þ ð16Þ

p x, �ð Þ ¼
X1
l¼0

X1
n¼0

X1
m¼1

Pl
mn sin n� þ

l�
2

� �
sin kmxð Þ ð17Þ

and the modal expansion coefficient Fl
mn and Pl

mn can be
written as:

Fl
mn ¼

"n
�L

Z 2�

0

Z L

0

F x, �ð Þ sin n� þ
l�
2

� �
sin kmxð Þdxd�

ð18Þ

Pl
mn ¼

"n
�L

Z 2�

0

Z L

0

p x, �ð Þ sin n� þ
l�
2

� �
sin kmxð Þdxd�

ð19Þ

where "n is the Neumann factor. To a radial point
driving,

Fl
mn ¼

"nF0

�LR
sin n�0 þ

l�
2

� �
sin kmx0ð Þ ð20Þ

where F0 is the amplitude of the driving force, x0 and �0
are the axial and circumferential coordinate for the
driving force. Substituting equations (5a) to (5f) into
equations (6a) and (6b), respectively, then substituting
the result expressions and equations (12) and (15) to
(17) into the motion equations (14), the modal equation
can be obtained as below:

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 Ul

mn

Vl
mn

Wl
mn

2
4

3
5 ¼ R2

�c2mh

0
0

Fl
mn � Pl

mn

0
@

1
A
ð21Þ

in which

a11 ¼ �m2 þ
G12 1� �12�21ð Þ

E1
n2 ��2 ð22aÞ
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a12 ¼ a21 ¼
�12E2 þ G12 1� �12�21ð Þ

E1
�mn ð22bÞ

a13 ¼ a31 ¼ �
�12E2

E1
�m ð22cÞ

a22 ¼ 1þ
h2

24R2

� �
G12 1� �12�21ð Þ

E1
�m

þ 1þ
h2

24R2

� �
E2

E1
n2 ��2 ð22dÞ

a23 ¼ a32 ¼ �
h2

12R2

�12E2 þ G12 1� �12�21ð Þ

E1
�m2n

�

þ
E2

E1
n3
	
þ
E2

E1
n ð22eÞ

and

a33 ¼
h2

12R2
�m4 þ 2

�12E2 þ G12

� 1� �12�21ð Þ

E1
�m2n2 þ

E2

E1
n4

2
66664

3
77775

þ
E2

E1
� �1 þ

�12E2

E1
�2

� �
�m2�C��2

ð22fÞ

where �m ¼ m�R=L, �2 ¼ !2R2=c2m, cm ¼ E1= 1�ð½

�12�21Þ 1þ�Cð Þ��1=2. The coefficients aij i, j ¼ 1, 2, 3ð Þ

contain the coefficients of hygroscopic expansion and
moisture content variation since the hygroscopic effect
is introduced in the present paper, and the effect could
be solved from equation (21) corresponding to each
pair �m, nð Þ.

Setting Pl
mn equal to zero in equation (21), the modal

vibration velocity in vacuum can be derived as
(Stepanishen, 1982):

_Wl
mn ¼

Fl
mn

ZM
mn

¼
Fl
mn �j!ð Þ

1þ�Cð Þ�h !2
mn 1� i	ð Þ � !2

� � ð23Þ

where ZM
mn is the mechanical impedance of the thin

orthotropic shell and is equal to:

ZM
mn ¼

aij


 



�j!ð Þ R2

1þ�Cð Þ�hc2m
a11a22 � a212
� � ð24Þ

!mn is the natural frequency in vacuum, and j ¼
ffiffiffiffiffiffiffi
�1
p

,
aij


 

 is determinant of coefficient.

According to the transformation relation between
the sound pressure and vibration velocity in wave

number domain K, Pl
mn denotes modal sound pressure

coefficient widely known as:

Pl
mn ¼

X
q

_Wl
qnZ

A
qmn ð25Þ

where ZA
qmn is the radiation impedance in wave number

domain can be written as (Stepanishen, 1982;
Laulagnet, 1989):

ZA
qmn ¼

jqm�0!R
2�2

"nL2

Z þ1
�1

1� �1ð Þqe�jKL
� 


k2q � K2

�
1� �1ð ÞmejKL
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k2m � K2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � K2

q
R

�
H 1ð Þ

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � K2

q
R

� �
H

1ð Þ
n 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � K2

q
R

� �dK ð26Þ

where k0 ¼ !=c0 is the acoustic wave number, q ¼ m is
the self-impedance and q 6¼ m is the interaction imped-
ance. H 1ð Þ

n zð Þ is the nth-order Hankel function of the
first kind. Laulagnet and Guyader (1989) pointed out
that in the case of air the cross-modal coupling intro-
duced by the fluid is very weak and does not signifi-
cantly affect the results with regard to the radiated
power and the shell quadratic velocity, while it shows
that the cross-modal coupling can be neglected as a first
approximation. Ignoring the interaction impedance
effects on the vibration velocity, the radial vibration
velocity in air can be written as (Stepanishen, 1982):

_Wl
mn ¼

Fl
mn

ZM
mn þ ZA

mmn

ð27Þ

The sound radiation power can be derived as:

Y
!ð Þ ¼

1

2

Z
s

Re p R, �, xð Þ _w� �, xð Þ½ �ds

¼
1

2
Re

X1
l¼0

X1
n¼0

X1
m¼1

X1
q¼1

_Wl
mnZ

A
qmn

_Wl
qn

� ��" #
ð28Þ

where the asterisk denotes complex conjugate. The
radial quadratic velocity is

_w �, xð Þ _w� �, xð Þ
� �

¼
1

4"n

X1
n¼0

X1
m¼1

_Wl
mn

_Wl
mn

� 
�
ð29Þ

and then the sound radiation efficiency is obtained as:

� !ð Þ ¼

Q
!ð Þ

�0c0S _w �, xð Þ _w� �, xð Þ
� � ð30Þ
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where S ¼ 2�RL refer to the surface area of the cylin-
drical shell. In the following, radiated power and radial
quadratic velocity are in dB respectively, referenced to
10�12 watt and 5� 10�8 m/s in air.

2.3. Natural vibration of the orthotropic
cylindrical shell in hygroscopic environment

In natural vibration, the shell is assumed to oscillate
with a natural circular frequency !. Setting the deter-
minant of the coefficient of the modal equation (21)
equal to zero, and expanding the determinant in
terms of �2 leads to a cubic equation for �2:

�6 þ C1�
4 þ C2�

2 þ C3 ¼ 0 ð31Þ

with

C1 ¼ � a11 þ a22 þ a33ð Þ

C2 ¼ a11a22 þ a22a33 þ a11a33 � a212 þ a223 þ a213
� 


and

C3 ¼ a11a
2
23 þ a22a

2
13 þ a33a

2
12 � a11a22a33 � 2a12a13a23

ð32Þ

The solution of equation (31) is similar to (Soedel,
2004):

�2
imn ¼ �

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 � 3C2 cos 
þ
2�

3
i� 1ð Þ

� 	s
�
C1

3

i ¼ 1, 2, 3ð Þ ð33Þ

in which


 ¼
1

3
cos�1

C3
1 � 4:5C1C2 þ 13:5C3

C2
1 � 3C2

� 
3
2

2
4

3
5 ð34Þ

For every m, n combination, there are thus three
frequencies. The lowest is associated with the mode
where the radial component dominates, while the
other two are usually higher by an order of magnitude
and are associated with the mode where the displace-
ments in the tangent plane dominate.

2.4. Calculation for critical buckling moisture
content

Under simply supported conditions and where the axial
displacement is prevented, moisture content can be uni-
formly raised from initial moisture content Ci %ð Þ to
final value Cf %ð Þ such that shell buckles. The entire
hygroscopic load cases in the present study are designed

below the critical buckling moisture content. The
improved Donnell stability equations in terms of dis-
placement components can be written as (Eslami and
Javaheri, 1999):
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For the hygroscopic loading, the pre-buckling hygro-
scopic stresses are as in equations (12a) and (12b).
Substituting equations (12) and (15) into equations
(35a) to (35c), then setting the determinant of the coef-
ficient equal to zero, moisture content can be deduced as
below:
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ð36Þ
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As the variables m and n take a proper value respect-
ively, the minimum value obtained from equation (36)
is the critical buckling moisture content.

3. Validation studies

A simply supported finite isotropic cylindrical shell
with dimensions 1:2m� 0:4m� 0:003m ðL� R� hÞ
analyzed by Laulagnet and Guyader (1989) is con-
sidered for the validation of radial quadratic velocity
and radiated power calculation. The shell is made of
steel with Young’s modulus E ¼ 200GPa, density
� ¼ 7800 kg=m3 and Poisson’s ratio � ¼ 0:3. The shell
is assumed to be vibrating in air whose density is
1:21 kg=m3 with a speed of sound 343m=s. A harmonic
excitation of 1N is applied at 2L=5 of the shell and a
structure damping ratio of 0.01 is assumed of harmonic
response analysis. The comparison of radial quadratic
velocity and sound power level respectively with the
results reported by Laulagnet and Guyader (1989) are
shown in Figure 2 and Figure 3. It can be seen that the
present results are in good agreement with those of
Laulagnet and Guyader (1989) for radial quadratic vel-
ocity and sound power level, and then it could be said
that the vibration and acoustic radiation model of the
orthotropic cylindrical shell presented in the current
paper is reliable and reasonable.

4. Results and discussion

In the present work, the vibration and acoustic response
of an orthotropic cylindrical shell has been analyzed by

assuming that the structure is subjected to a uniform
moisture content rise above the ambient moisture con-
tent. The effects of different stiffness, length and thick-
ness of the orthotropic cylindrical shell on the vibration
and acoustic response are also studied.

An orthotropic composite cylindrical shell with the
dimensions 0:6m� 0:7m� 0:0012m L� R� hð Þ which
is excited at x0 ¼ L=2, �0 ¼ 0:0ð Þ by harmonic excita-
tion with amplitude of 1N in normal direction is now
considered for a detailed investigation. The mechanical
properties for the carbon-epoxy composites are
assumed to be as follows:

E1 ¼ 172:5GPa, E2 ¼ 34:5GPa,

G12 ¼ E2=2, �12 ¼ 0:25, � ¼ 1600 kg=m3,

�1 ¼ 0:0, �2 ¼ 0:44

The density of the air (acoustic medium) is
�0 ¼ 1:21 kg=m3 and the velocity of the sound is
c0 ¼ 343m=s. The structure damping is equal to 0 with-
out special explanation.

In order to obtain reasonable values of longitudinal
and circumferential orders for convergence, the conver-
gent check for the numerical solution in terms of the
shell dimensions and material properties motioned
above to sound power level is shown in Figure 4. It
can be seen that sound power level is convergent until
m ¼ 50 and n ¼ 50 in 0–1500Hz frequency range, and
in the higher frequency range, m and n should be
chosen as a larger integer in order to obtain the con-
vergent results.

Figure 2. Comparison of radial quadratic velocity with Laulagnet and Guyader (1989).
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4.1. Free vibration characteristics with
incremental moisture contents

Initially, critical buckling moisture content is obtained
and all the hygroscopic load cases are designed below
the critical buckling moisture content. The moisture

content rise applied on the shell is varied from 0:0%
to Ccr %ð Þ and corresponding variation in natural fre-
quencies, mode shapes, vibration and acoustic response
has been analyzed. According to Section 2.4 and sub-
stituting the parameters in equation (36), the critical
buckling moisture content Ccr ¼ 1:30% can be
obtained as m ¼ 4, n ¼ 22.

Figure 4. Convergence check of the numerical solution to sound power level.

Figure 3. Comparison of sound power level with Laulagnet and Guyader (1989).
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Firstly, the pre-stressed modal analysis is carried out
for incremental uniform moisture contents �C in the
orthotropic cylindrical shell from 0Ccr, 0:5Ccr, 0:75Ccr,
0:9Ccr, 0:95Ccr, 0:975Ccr to 0:99Ccr to find the influence
of hygroscopic environment on natural frequencies and
corresponding mode shapes. The results obtained from
the pre-stressed modal analysis are given in Table 1
which shows the lowest eight natural frequencies for
various values of moisture content rise and the modal
indices are stated in parentheses. It could be found that
the natural frequencies generally reduce with an
increase in uniform moisture content in the fraction
of the critical moisture content and that the first natural
frequency approaches zero as the uniform moisture
content rise applied on the structure. In Table 1 it can
be observed that the modal indices are changing with

moisture content rise. The modal indices associated
with the lowest frequency mode are (1, 14) at ambient
moisture content and (4, 22) near the critical buckling
moisture content. It can be seen from Table 1 that the
axial and circumferential wave numbers associated with
the lowest frequency mode reaches the modal indices
corresponding to the lowest buckling mode due to uni-
form moisture content rise. This is because the stiffness
of structure reduces with an increase in moisture con-
tent due to the compressive hygroscopic stresses.

As the natural frequencies associated with the thin
cylindrical shell analyzed in the present work are close
to each other, the natural frequencies in the excitation
frequency range 0–1500Hz are represented in terms of
modal density (modes/Hz) in 200Hz constant fre-
quency bands. Modal density variation in 200Hz

Figure 5. Modal density variation with moisture content in constant frequency band.

Table 1. Natural frequencies (Hz) variation of first eight lowest frequency modes with moisture content.

Sl No. 0Ccr 0:5Ccr 0:75Ccr 0:9Ccr 0:95Ccr 0:975Ccr 0:99Ccr

1 165.3 (1,14) 128.2 (1,14) 105.1 (1,14) 88.5 (1,14) 81.7 (1,14) 78.6 (1,14) 62.5 (4,22)

2 166.6 (1,15) 129.9 (1,15) 107.1 (1,15) 90.8 (1,15) 84.2 (1,15) 81.2 (1,15) 71.6 (4,23)

3 168.9 (1,13) 132.8 (1,13) 110.6 (1,13) 94.9 (1,13) 88.7 (1,13) 85.8 (1,13) 76.5 (1,14)

4 172.2 (1,16) 136.9 (1,16) 115.5 (1,16) 100.5 (1,16) 94.6 (1,16) 91.9 (1,16) 78.4 (4,21)

5 177.8 (1,12) 143.9 (1,12) 123.7 (1,12) 109.9 (1,12) 104.6 (1,12) 95.7 (4,22) 79.2 (1,15)

6 181.5 (1,17) 148.3 (1,17) 128.8 (1,17) 115.5 (1,17) 110.4 (1,17) 100.3 (3,21) 83.9 (1,13)

7 192.5 (1,11) 161.6 (1,11) 143.9 (1,11) 132.2 (1,11) 116.4 (2,18) 101.9 (4,23) 84.3 (3,21)

8 193.9 (1,18) 163.1 (1,18) 145.5 (1,18) 133.9 (1,18) 117.2 (2,19) 102.2 (1,12) 90.2 (1,16)
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frequency band is shown in Figure 5. Shifting of natural
frequencies towards lower frequency band can be
clearly seen in the 0–200Hz band; this is the reason
that the natural frequencies decrease with the moisture
content which results in the number of modal increases
in the lower frequency band.

4.2. Vibration and sound radiation characteristics
with incremental moisture contents

In order to compare the vibration response and sound
characteristics, a frequency range of 0–1500Hz is
chosen for different moisture content.

Figure 7. Radial quadratic velocity in constant frequency band.

Figure 6. Radial quadratic velocity variation with moisture content.
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Figure 6 shows the radial quadratic velocity of the
orthotropic shell with 0Ccr, 0:5Ccr and 0:975Ccr mois-
ture contents. The plot describes the radial quadratic
velocity, which appears to shift to low frequencies with
the moisture content, and that the shifting of the first
peak associated with the fundamental frequency
towards lower frequency direction can be clearly

observed. It is the reason that the natural frequency
decreases with the increase of moisture content, then
the resonance peaks in each natural frequency will
float to low frequency direction.

The radial quadratic velocity in constant fre-
quency bands (300 Hz) (300Hz has been chosen to
have five constant frequency bands in 0–1500Hz) for

Figure 9. Sound power level variation with moisture content in constant frequency band.

Figure 8. Sound power level variation with moisture content.

Zhao et al. 685



various moisture content rises has been obtained and
shown in Figure 7. An increase in radial quadratic
velocity in the lower frequency bands can be
observed.

Figure 8 and Figure 9 show the sound power level of
the orthotropic shell with 0Ccr, 0:5Ccr and 0:975Ccr

moisture content. As well as the trend in Figure 6 and
Figure 7, the first peak of sound power level floats to

Figure 11. Radial quadratic velocity variation with the stiffness.

Figure 10. Radiation efficiency variation with moisture content.
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the lower frequency direction and increases in the lower
frequency bands due to the decrease of natural fre-
quency with moisture content. It indicates that the
sound power radiated depends on the radial velocity
of the vibrating cylindrical shell.

The sound radiation efficiency of the orthotropic
shell as a function of frequency is plotted in Figure
10. It is quite clear that radiation efficiency generally
decreases with moisture content (no significant vari-
ation in lower frequencies).

Figure 13. Modal density variation with stiffness in constant frequency band.

Figure 12. Radial quadratic velocity variation with the stiffness in constant frequency band.
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4.3. Vibration and sound radiation characteristics
with different stiffness

In this section, to research the effects of different stiffness
on the vibration and acoustic responses of the ortho-
tropic shell, the Young’s modulus E1 is kept unchanged

in 172.5GPa while assigning Young’s modulus E2 arti-
ficially increases from 6.9, 34.5 to 172.5GPa, and then
the general stiffness of the orthotropic shell increases
gradually as the ratio of E1 to E2 reduces from 25, 5 to
1. When the ratio reduces to one, the orthotropic shell is
equivalent to an isotropic shell approximately.

Figure 15. Sound power level variation with the stiffness in constant frequency band.

Figure 14. Sound power level variation with the stiffness.
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The effects of the different stiffness on the radial
quadratic velocity of ation and acoustic responses The
effects of the different stiffness on the radial quadratic
velocity of the orthotropic shell are shown in Figure 11
and Figure 12. It can be seen from Figure 11 that the
shifting of the first peak associated with the

fundamental frequency towards higher frequency direc-
tion, which indicates that the fundamental frequency
increases with the increase of the stiffness, and the amp-
litude of the velocity increasing with the stiffness are
also observed clearly. The plot in Figure 12 indicates
that the radial quadratic velocity decreases with the

Figure 17. Sound power level variation with the length in constant frequency band.

Figure 16. Sound power level variation with the length.
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decreasing ratio in the whole frequency band (significant
variation in lower frequencies). It can be observed in
Figure 11 that the peaks in resonance modes reduce in
the 1–1500Hz range with the enhancement of the stiff-
ness due to the decreasing ratio of E1=E2, and the modal
density variation with stiffness in constant frequency
band can be clearly seen in Figure 13. The modal density
reduces with the incremental stiffness which results in
that the radial quadratic velocity decreases with the
decreasing ratio of elasticity modulus.

Sound power level and sound power level in con-
stant frequency band of the different ratio of the elastic
modulus illustrated in Figure 14 and Figure 15 show
trends similar to radial quadratic velocity.

4.4. Sound radiation characteristics with different
length and thickness

The sound power level of the orthotropic cylindrical
shell with different length and thickness is presented
to research the effects of different length and thickness
on the acoustic response. The initial dimensions of the
cylindrical shell are 0:6m� 0:7m� 0:0012m L�ð
R� hÞ. Firstly, the length increases from 0:6m, 0:9m
to 1:2m and the radial and thickness are kept
unchanged to research the influence of the variation
of the length on the acoustic response. Secondly, the
thickness increases from 0:0012m, 0:0016m to 0:002m
but the radial and length are kept unchanged to
research the influence of the thickness variation on
the acoustic radiation.

The sound power level and that in constant frequency
band of different length for the orthotropic cylindrical
shell are shown in Figure 16 and Figure 17. The shifting
of the first peak to the lower frequency can be observed
in Figure 16, which indicates that the fundamental fre-
quency of the orthotropic cylindrical shell decreases with
the length. It can also be observed in Figure 17 that the
change of length has little impact on the sound radiation
for the orthotropic cylindrical shell, especially in the
higher frequency band.

The sound power level and that in constant frequency
band of orthotropic cylindrical shell for different thick-
ness are shown in Figure 18 and Figure 19. The shifting
of the first peak to the higher frequency can be observed
in Figure 18, which indicates that the fundamental fre-
quency of the orthotropic cylindrical shell increases with
the thickness as a result of the increasing stiffness. It can
also be observed in Figure 19 that the sound radiation
decreases with the thickness in the whole frequency
band.

5. Conclusions

The current paper carried out an analytical study con-
sidering the hygroscopic effect on the vibration
response and acoustic radiation of a finite thin ortho-
tropic composite shell excited by a harmonic concen-
trated force. A theoretical solution considering the
effects of hygroscopic stress and mass addition caused
by moisture absorption is obtained. First, to verify the
theoretical model, radial quadratic velocity and sound

Figure 18. Sound power level variation with the thickness.
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power level are validated by the results available in the
literature for the isotropic cylindrical shell. Second,
with the critical buckling moisture content as a param-
eter, the natural frequencies, radial quadratic velocity,
sound power and radiation efficiency with incremental
moisture content are computed respectively. Third, the
decreasing ratios of longitudinal Young’s modulus to
the tangential are set artificially to study the vibration
and acoustic radiation characteristics with the different
stiffness of the orthotropic shell. Finally, the sound
power level is studied with the different length and
thickness of the orthotropic cylindrical shell.

From the natural vibration analysis, it could be
found that the natural frequencies decrease with the
increase of the moisture content. The modal indices
associated with the lowest frequency mode reaches the
modal indices corresponding to the lowest buckling
mode near the critical buckling moisture content due
to uniform moisture content rise. The radial quadratic
velocity and sound power increase, but radiation effi-
ciency generally decreases with the incremental mois-
ture content. In the analysis for the effect of different
stiffness on vibration and acoustic responses of the
orthotropic cylindrical shell, the radial quadratic velo-
cities, sound power and radiation efficiency decrease
with the decreasing ratio of longitudinal Young’s
modulus to the tangential modulus, while the fluctu-
ation of the responses’ amplitude increases with the
decreasing ratio. The variation of the length has little
impact on the sound radiation of the orthotropic

cylindrical shell. The acoustic response attenuates
with the increasing thickness.
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