
Introduction to AI
Chapter03 Solving Problems by
Uninformed Searching(3.1~3.4)

Pengju Ren@IAIR

How an agent can find a sequence of actions that
achieves its goals when no single action will do.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Search on Trees and Graphs
 Uninformed algorithms
 Breadth-First
 Uniform-Cost
 Depth-First
 Depth-Limited
 Iterative Deepening
 Bidirectional

Pe
ng
ju
 R
en
@X
JT
U
20
20

Question: Famer, wolf, cabbage,
and goat ?

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example: Map Navigation

 Currently in East Door of Peking
Univ.(EDPU)

 Every 2mins a subway train leaves
from

 Formulate goal
Be in Beijing Station.

 Formulate problem
States: various Subway stations
Actions: train between Subway

stations
 Find solution

Sequence of actions (trains taken
between Subway stations,
e.g., EDPU, National Library,
Xuanwu, Qianmen, Beijing Station)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example: Map Navigation

Pe
ng
ju
 R
en
@X
JT
U
20
20

Problem formulation: Navigation

 A problem is defined by five components
① Initial state: In(EDPU)
② Actions:

ACTION(In(EDPU))={Go(Zhongguan Cun); Go(WuDao Kou)}
③ Transition model RESULT(s; a):

RESULT(In(EDPU); Go(ZGC))=In(ZGC).
Successor S(s): states reachable by a single action.

④ Goal test: {In(Beijing Station)}
⑤ Path cost (additive)

Sum of distances, number of actions executed, etc.
is the step cost of taking action a in state s

to reach state s’, assumed to be ≥0
 A solution is a sequence of actions leading from the initial state

to the goal state.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Problem-Solving Agents

A simple problem-solving agent formulates a goal and a problem,
searches for a sequence of actions that solves the problem, and then
execute the actions one by one.

Note: this is offline problem solving (is uninformed or with complete knowledge) ;
Online problem solving involves acting without complete knowledge.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Problem types

Deterministic, fully observable => single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable => conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable => contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space => exploration problem (“online")Pe
ng
ju
 R
en
@X
JT
U
20
20

Abstraction

 Real world is absurdly complex
State space must be abstracted for problem solving.

 (Abstract) state = subset of real states
 (Abstract) action = complex combination of real actions

Go(ZGC) represents a complex set of possible routes, detours,
rest, stops, interrupt, etc.

 For guaranteed realizability, any real state “in EDBU" must get
to some real state “in ZGC"

 (Abstract) solution = set of real paths that are solutions in the
real world

 Each abstract action should be “easier" than the original problem!

Pe
ng
ju
 R
en
@X
JT
U
20
20

E.g. Vacuum World State Space Graph

 Initial state: Any one of the above states. (ignore dirt amounts etc.)
 Actions: Left, Right, Suck, NoOp
 Transition model: The above figure.
 Goal test: no dirt
 Path cost: 1 per action (0 for NoOp)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Eg. The eight-puzzle

 Initial state: The left figure
 states: integer locations of tiles (ignore intermediate positions)
 actions: move blank left, right, up, down (ignore unjamming etc.)
 goal test: goal state, the right figure
 path cost: 1 per move

Note: optimal solution of Sliding-block Puzzle is NP-hard

Pe
ng
ju
 R
en
@X
JT
U
20
20

Eg. Robotic assembly

 Initial state: real-valued coordinates of robot joint angles
parts of the object to be assembled

 Actions: continuous motions of robot joints
 Transition model: Intermedia coordinates of robot joint angles
 Goal test: complete assembly
 Path cost: time to execute

Pe
ng
ju
 R
en
@X
JT
U
20
20

E.g. Eight-Queen Puzzle

Initial state: No queen on the board.
Actions: Add a queen on the board where the square is empty.
Transition model: Returns the board with a queen added to the

specified square.
Goal test: 8 queens are on the board, none attacked.
Path cost: Number of trials.

Pe
ng
ju
 R
en
@X
JT
U
20
20

E.g. Eight-Queen Puzzle

 States: Any 0~8 queens on the board.
State space:
Solution space:

 States: One queen per column.
State space:
Solution space:

 States: All possible arrangements of n (0 n 8) queens at leftmost
n columns with on queen attacked.

Actions: Add a queen to the next column with no queen attacked,
or backtrack.

State space: 2057.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Tree Search Algorithms
Basic idea:

Offine, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Repeated States in Graph Search

 Failure to detect repeated states can turn a linear problem into
an exponential one!

 Use a queue to record explored states.
 For fast detection of repeated states, hashing techniques are

usually adopted.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Graph Search, Tree Search and Frontier Separation

The frontier separates the state space into explored and unexplored
regions (loop invariant proof).

Pe
ng
ju
 R
en
@X
JT
U
20
20

Graph Search Algorithm

Pe
ng
ju
 R
en
@X
JT
U
20
20

Graph Search Algorithm

朝阳门北京站 永安里东单

北京站

崇文门建国门

北京站前门 东单

朝阳门 永安里东单

北京站

崇文门建国门

前门 东单

Tree Search

Graph Search

Pe
ng
ju
 R
en
@X
JT
U
20
20

Implementation: States vs. Nodes

 A state is a (representation of) a physical configuration
 A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
 States do not have parents, children, depth, or path cost!

The EXPEND function creates new nodes, filling in the various
fields and using the SUCCESSOR function of the problem to
create the corresponding states.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Implementation: General Tree Search

Pe
ng
ju
 R
en
@X
JT
U
20
20

Tree Search Algorithms

 A strategy is defined by picking the order of node expansion

 Strategies are evaluated along the following dimensions:
Completeness - does it always find a solution if one exists?
Optimality - does it always find a least-cost solution?
Time complexity - number of nodes generated/expanded
Space complexity - maximum number of nodes in memory

 Time and space complexity are measured in terms of
b - maximum branching factor of the search tree
d - depth of the least-cost solution
m - maximum depth of the state space (may be ∞)Pe

ng
ju
 R
en
@X
JT
U
20
20

Uninformed search strategies

Uninformed strategies use only the information available in the

problem definition.

 Breadth-first search (BFS)

 Uniform-cost search

 Depth-first search (DFS)

 Depth-limited search (DLS)

 Iterative deepening search(IDS)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Breadth-First Search (BFS)

Expand the shallowest unexpanded node.

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Pe
ng
ju
 R
en
@X
JT
U
20
20

BFS-Map Navigation

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of BFS

 Completeness: Yes (if b is finite)
 Optimality: No, Yes only if the path cost is a non-decreasing

function of the depth of the node; not optimal in general
 Time complexity: or if goal test

is applied after expansion.
 Space complexity: (keeps every node in memory)

Space is the big problem; can easily generate nodes at 100MB/sec so
24hrs = 8640GB.Pe

ng
ju
 R
en
@X
JT
U
20
20

Uniform-cost search

 Expand least-cost unexpanded node
 Implementation:

fringe = queue ordered by path cost, lowest first
 Equivalent to breadth-first if step costs all equal

Properties of Uniform-cost search:
 Completeness: Yes, if step .
 Optimality: Yes - nodes expanded in increasing order of .
 Time complexity: # of nodes with of optimal solution.

Maximum depth is given by , where is the cost of the
optimal solution.

 Space complexity: # of nodes with g cost of optimal solution,Pe
ng
ju
 R
en
@X
JT
U
20
20

Depth-First Search (DFS)
Expand the deepest unexpanded node.

Implementation:

fringe is a LIFO queue, i.e., new successors go at front

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of DFS

 Completeness: No, fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path -> complete in finite spaces.

 Optimality: No
 Time complexity : terrible if m is much greater than d.

But if solutions are dense, may be much faster than breadth-first
 Space complexity: linear space!

Backtracking technique only generate one successor instead of all
successors -> .

Pe
ng
ju
 R
en
@X
JT
U
20
20

Breadth-first Uniform-cost search
（Cheapest First) Depth-first

Search Comparson

Pe
ng
ju
 R
en
@X
JT
U
20
20

Depth-Limited Search (DLS)
 DFS never terminates if m -> ∞.
 DLS = DFS with depth limit l ,
 Nodes at depth l have no successors
 Recursive implementation:

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of DLS

 Completeness: Not complete if l < d; complete otherwise.
 Optimality: Not optimal in general (even if l > d).
 Time complexity :
 Space complexity: linear space
 Two termination conditions:

failure: no solution.
cutoff : no solution within the depth limit.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Iterative-Deepening Search (IDS)

 Call DLS iteratively with increasing depth limit.

 Seems to be wasteful, but actually not.

 Combine the benefits of BFS and DFS.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Iterative-Deepening Search (IDS)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Iterative-Deepening Search (IDS)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of IDS

 Completeness:
 Optimality:
 Time complexity :
 Space complexity:

 Completeness: Not complete if l < d; complete otherwise.
 Optimality: Not optimal in general (even if l > d).
 Time complexity :
 Space complexity: Properties of DLS

Yes

Yes

Pe
ng
ju
 R
en
@X
JT
U
20
20

Bidirectional Search

 Reduce the time complexity from to .
 Though the reduction is attractive, how to search backward?
 Need PREDECESSORS and known GOAL.
 Also, the space complexity increases to as well, can be

problematic.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Summary of Algorithms

Pe
ng
ju
 R
en
@X
JT
U
20
20

Summary

 Problem formulation usually requires abstracting away real-world
details to dene a state space that can feasibly be explored.
 Initial state.
 Actions.
 Transition model.
 Goal test.
 Path cost.

 Graph search can be exponentially more efficient than tree search.
 Variety of uninformed search strategies judged on the basis of

 completeness
 optimality
 time and space complexity.

 Iterative deepening search uses only linear space and not much
more time than other uninformed algorithms.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Question to FCGW

Pe
ng
ju
 R
en
@X
JT
U
20
20

(a) Propose a state representation for the problem ?

Disc 1: (peg, pos) … disc N: (peg,pos)

(b) What is the size of this state space?

3x3x3… = 3^N

(c) What is the start state ?

Disc 1：A, disc N: A

(d) From a given state, what actions are legal ?

-find top disc on each peg

-can only move top disc to another peg if disc is smaller

(e) What is the goal test ?

Quiz：Towers of Hanoi

Pe
ng
ju
 R
en
@X
JT
U
20
20

