Introduction to Al

Chapter03 Solving Problems by
Informed Searching(3.5~3:6)

Pengju Ren@IAIR

Outline :

B Best-first search
> Greedy search
> A* search
> Optimality of A*
B Memory Bounded Search
> Iterative deepening A*
> Recursive best-first search
> Simplified memory-bounded A*
B Heuristic
» Performance
> Generating heuristics

Best first Search °

B Informed search, a,k,a. heuristic search.
B |Idea: use an evaluation function f(n) for each node estimate of
"desirability “
Expand the most desirable unexpanded -node
B Implementation: Order the nodes in the fringe in decreasing order
of desirability
B The evaluation function'is called heuristic, denoted as A(n)
It estimates_of cost from node n to the closest goal
B Special cases:
> Greedy search. f(n)=h(n)
> A* search f(n)=g(n)+h(n) g(n): path cost
A* ~ greedy + Uniform-cost = h(n) + g(n)

Greedy Search -

52 AT
' PRI
N~ -
SARRI]
3 .
AN "
. N\ s ® ®
ENEE LT 280 5
C

® b 3873

B hg p(n) = straight-line distance from nto DongSi
B Greedy search expands the node that appears to be closest to goal

Greedy Search

BAFE N ERIER:
-%M 0
-EABAI] 15
-skEHiE 20
-FiBEE 30
-EEE] 33
-KI50 35
-5kRE 35
-ZREA 45
-ERFH 47
-] 48
-RK&Z[1% 50
-Jt5L 58
-Bil] 62
-&M+5& 75
-ZREI] 75
-TRKIF-77

B hg p(n) = straight-line distance from nto DongSi
B Greedy search expands the node that appears to be closest to goal

Greedy Search

58

(a) The initial state

58

(b) After expanding Beijing Station T)

33 48

G

B hg p(n) = straight-line distance from nto DongSi
B Greedy search expands the node that appears to be closest to goal

Greedy Search s

(c) After expanding JianGuo Men

B hg p(n) = straight-line distance from nto DongSi
B Greedy search expands the node that appears to be closest to goal

Property of Greedy Search

B Completeness: No.
» TREE-SEARCH may get stuck.in loops and never reach any goal even

in finite state spaces.
GRAPH-SEARCH is complete in finite spaces, but not complete in
infinite ones.

m Optimality: No.

® Time camplexity: 0(b™) , but a good heuristic can give dramatic

improvement.
B Space complexity: 0(p™), since it keeps all nodes in memory.

A* Search

B |dea: Avoid expanding paths that are already expensive.
m Evaluation function: f(n) = g(n) + h(n)

> g(n): cost so far to reach n.

> h(n): estimated cost to_goal from-n.

> f(n): estimated total cost from the starting node to goal through n.
B A *search combines the-advantages of the uniform-cost search and

the greedy search.

A* Search

AR MAE e -
-5M.0
-EABHIT 15
-iKB BT 20
-FaE e 30
-3EE7 33
-#J50 35
-3k&E 35
-#REf 45
-ERFH 47
R 5
.l - - 2 v 2, 71 = | ra 50
1518 -BiI] 62
=i -5 75
ng -5REII] 75
-ERKHF-77

X% TF THA
()

B hg p(n) = straight-line distance from nto DongSi
B Greedy search expands the node that appears to be closest to goal

A* Search
(@) The initial state

62+20+15=97 45+20+15=80 48+20+20=88

A* Search

(d) After expanding JianGuo Men

58+40+40=138 15+40+30=85 62+20+15=9745+20+15=80 48+20+20=88
45+40+30=115 35+40+30=105
(e) After expanding Dongdan 58
33+40=73 48+20=68

<D
SO ICH

58+40+40=138 15+40+30=85 62+20+15=974 10+ N5 =8¢ 48+20+20 88
45+40+30=115 35+40+30=105
SIDICICD
47+20+15+10=93 33+30+15+20=98

35+10+15+20=80 48+20+15+15=98

XX
000
| X
o

A* Search

(f) After expanding DengShi Kou s
<.
33+40=73 48+20=68
<D
CEICHICONCICIIC
58+40+40=138 15+40+30=85 62+20+15-9745757 80 8+20+20 88

45+40+30=115 35+40+30=105

o @D G Qo>

47+20+15+10=93 33+30+15+20=98
48+20+15+15=98

0+20+15+10+35=80 45+20+15+15+15=110

Properties of A* Search

Completeness: Yes. Unless infinite nodes with f < f(goal).
Optimality: Depends on whether h is

Adissible

o Never overestimates the actual cost. o A.k.a. monotonicity.
o Vn, h(n) < h*(n), where h* is the __\[o~V successor n’ of any n
actual cost. \ generated by any action a,
h(n) < c(n,a,n") + h(n'),
* -
o eg., hsip(n) < h*(n). where c is the step cost.

F . N J 4

Time compléxity: 0(b?) for constant step costs, where

€ = (h* = h)/h*(relative error) and d'is the solution depth. Effective
branch factor is b*.

Space complexity: 0(b%), since it keeps all nodes in memory.

Optimality of A*

m A*is optimal on trees if Ais admissible.
m A* is optimal on graphs if Ais admissible and consistent.

Proof of A*'s optimality on trees.

Suppose some suboptimal goal G’ has been<generated and is in the queue.
Let n be an unexpanded node on a shertest path to an optimal goal G.

Start f(G,)

AVARR | |
0y O0x 03

'V
0q

|
oQ
e e e e

e

|

-

%
—

=
~—

)
@
I
-
-
St

Optimality of A* on Graphs -

B Lemma: If A(n) is consistent, the values of falong anypath-in A* are
nondecreasing.

B Gradually adds f-contours of nodes.

B Contour 7has all nodes with = f;, where fi, <\fi+1.

= T J ==rNY

®

(3 —- st

Optimality of A* on Graphs

Lemma: if h(n) is consistent, the values of f along any path are

nondecreasing.

Consistent heuristic: h{n) < c(n, a,n’) + h(n')

Therefore,

VAR | I

B Now we see that consistency is actually triangle inequality.

Iterative Deepening A* (IDA¥)

B Time complexity is not A*’s biggest drawback.
m A* usually runs out of memory before it reaches goals.
B |terative deepening A* (IDA*):

> Use f(g + h) as cutoff instead of the depth.

> Initial cutoff: £(s0) = A(s0)

> Perform DFS on nodes where f(n) < cutoff.

> Reset cutoff to smallestfof non-expanded nodes.

IDA*(problem)

1 currentCutoff =¢f(sp)

2 repeat

3 result =/f-LIMITED-SEARCH(problem, currentCutoff)

4 if result #+ cutoff

5 return result

6 currentCutoff = smallest f-value of non-expanded nodes.

IDA* Traversal on Beijing Subway

B 1stiteration: currentCutoff = 58 (At 5Tih)
=G — Z5/7 — 5=X17

B 2nditeration: currentCutoff = 68 (=3[7)
b5y —ZET-5=X]—501] — FF

m 3rditeration: currentCutoff= 73 (ZE])
bRk — &) T—FE—E Tk ZE -5 15

B 4thiteration: currentCutoff = 80 (Z:EH)
b5k — G T—-#E ATk ZE =X —FI T — FE—-EfH—XTE 0

58

(o)

33+40=73 48+20=68

<D
EHCO@HC D G Jm>

58+40+40=138 15+40+30=85 62+20+15=914 5=84 48+20+20 88
45+40+30=115 35+40+30=105

Gon> @D G G

47+20+15+10=93 33+30+15+20=98
48+20+15+15=98

0+20+15+10+35=80 45+20+15+15+15=110

Properties of IDA*

® Completeness and Optimality same as A*:

B Time complexity: 0(b*?)

B Space complexity: 0(bd)

B Practical for problems with-unit step costs.

B What happens if all #-values are different (real-values)?
The number of iterations can equal the number of nodes whose
f-value is less than the cost of an optimal path!

Recursive Best-First Search (RBFS) | °

m IDA* is problematic when g are real-valued.
B RBFS is a simple recursive algorithm that-mimics standard best-first
search using only linear space.

RECURSIVE-BEST-FIRST-SEARCH(problem)

return RBFS(problem, MAKE-NODE(problem.initial _state), co)

LA U

Recursive Best-First Search (RBFS)

® DFS where each node on the current path remembers the best
f-value of any alternative path from its ancestors.
» Maintains all nodes on current path.plus all their siblings (ancestor(n)).
B When expanding node n
> v & children(n), compute f(n’).
> if an ancestor n” hasa lower f-value than all r7's children, then
® Assign f-value of-the cheapest child to n.
@ Backtrack\te. n”.
» Otherwise, proceed as normal.

Recursive Best-First Search (RBFS)

RBFS(problem, node, f _limit)

1 if problem.GOAL-TEST(node.state) return SOLUTION(node)
2 successors = ¢

3 for each action in problem.ACTIONS(node. state) repeat

4 add CHILD-NODE(problem, node; action) into successors
5 if successors is empty return failure, oo

6 for each s in successors repeat

7 s.f = max(s.g +.swh, node.f)

8 repeat

9 best =.the lewest f-value node in successors
10 if best.f' > f_limit return failure, best.f
11 alternative = the second-lowest f-value among successors
12 result, best.f = RBFS(problem, best, min(f _limit, alternative))
13 if result # failure return result

RBFS on Beijing Subway

(a) After expanding EEIJ&=X|]

62+20+15=97 45+20+15=80 48+20+20=88

(b) After unwinding back to Jt5Ri4
and expanding ZE[]

58+40+40=138 15+40+30=85
45+40+30=115 35+40+30=105

alternative=the second-lowest f-value among successors

RBFS on Beijing Subway

58

" <D

33+46=73

D,
(c) After switching back to &=3Z|7J]
and expanding &
<D - Ctoms >

62+20+15=974 580 48+20+20 88
35+40+30=105

Goon (o> (o Comr>

47+20+15+10=93 33+30+15+20 98
35+10415+2(48+20+15+15=98

0+20+15+10+35= 80 - 45+20+15+15+15=110

alternative=the second-lowest f-value among successors

RBFS Traversal on Beijing Subway

B f /imit = oo, expanding JbRiik
t5tuh — ZE)T — =X1T
m £ /imit = 73 (EI7]), expanding =XI]
t5tuh — &7 —EiT — F8¥
B Cutoff occurs. Record 7 (%:ER) as 80. £ /imit = 80
(%E), expanding ZE|I]
b5 — =8 — KEZE — BHT
m Cutoff occurs. Record f(3EI]) as 85. £ imit = 85 (¥ABAI]), expanding £
XI7J (again)
ity < ZE&)J — BT — F&E
m £ /imit = 85 (8ABAI]), expanding &R
ERFH— SO —2E] - £X77
| ...

Properties of RBFS

B Completeness and optimality same as A*.

B Time complexity: Depends on accuracy.of A and on how often best
path changes.

B Space complexity: O(bd)
Each time RBFS changes itsymind corresponds to one iteration of
IDA*.

m RBFS may need tore-expand forgotten nodes to re-create best-path.

Memory-Bounded Search

B In a sense, both IDA* and RBFS use too little-memory.
> Between iterations, IDA* maintains,only oné number, the current
f-limit (currentCutoff).
> RBFS maintains more, but uses.only linear space: if more space were
available, it would not benefit from it.
B It seems reasonable to use all the memory available — the more, the
better.
B We' d like a memory-bounded version of A*.

Simplified Memory-Bounded A* (SMA?), ¢

B |dea: Run A* as normal until memory is full. Then replace something in
memory with newly generated nodes.
m SMA*:
» When memory is full, drop-the\worst leaf — node with highest -
value.
> Like RBFS, SMA* backs up f-value of this forgotten node to it’s
parent, so we know when to go back to it.
> If all. descends-of a node n are forgotten, we don’ t know which way
to go'from n, but we know if it ‘s worth re-exploring n.

Simplified Memory-Bounded A* (SMA¥), ¢

® Problem: What if many nodes have the same\f-value?
B Solution: delete the oldest and expand the newest.

m SMA* works as long as there.is enough memory for the complete
optimal path.

m If not, SMA* needs to switch continuously between candidate paths.

B Causes a similar problem to thrashing in disk paging systems.

Admissible Heuristics for 8-Puzzle .

B /1 = the number of misplaced tiles.
B /2 = the sum of Manhattan distances of the tiles from'their goal

positions.
6 || 7 3
1 || &
% \
5 L8 W2
Start State
hy(sg) =6

3

6

Goal State

hy(so) =2+3+0+2+2+3+3+0=15

Performance of Heuristic -

Definition

For two admissible heuristics h; and h», ho deminates hy iff
Vn, h2(n) = hl(n).

™IU T -

Theorem: A* using hy never expands more nodes than using h;.

@ Every node with_f(n), < C*is expanded.
e Every node with h(n) < C* — g(n) is expanded.

o [{n| hatyQ>A €™ = g(n)}] < [{n] h(n) < C* —g(n)}

B Given any admissible heuristics ha and Ab, h = max(ha, hb) is
also admissible and dominates Aa and hb.

Effective Branching Factor

B One way to characterize the quality of a heuristic is effective

branching factor b*

» Total number of nodes generated by A*: N

> Solution depth: d

N +1=1+b*+ (b*)2 + (b*)3.. \+(b*)?

B A well-designed heuristic would 'hayve a value of b*close to 1.

Depth Nodes generated Effective branching factor

d IDS A%(h1) | A*(ho) || IDS | A*(hy) | A*(h2)
2 10 6 6 2.45 | 1.79 1.79

4 112 13 12 2.87 | 1.48 1.45

6 680 20 18 2.73 | 1.34 1.30

8 6384 39 25 2.80 | 1.33 1.24
10 47127 93 39 2.79 | 1.38 1.22
12 || 3644035 | 227 73 2.78 | 1.42 1.24

Generating Heuristic from Relaxed Problems

B Admissible heuristics can be derived from exact solution cost to a
relaxed version of the problem.

B In 8-puzzle, A1 is derived from that-a tile can move to anywhere in
one step.

B In 8-puzzle, A2 is derived from that a tile can move to any adjacent
square in one step.

B Key: The optimal‘solution cost of a relaxed problem is no greater
than the optimalisolution cost of the original problem.

Generating Heuristic from Sub-problems

X1k || 3 11| 2

=1
* || * || 2 K | * |
Start State Goal State

® Admissible heuristic can also be derived from a subproblem.
B Pattern databases store exact solution costs for every possible
subproblem instances.

> For example, every possible position of 1-2-3-4 and the blank.
B Can we use the costs of 1-2-3-4 and 5-6-7-8?

> Simple addition breaks the admissibility.

» How about count only those moves involving 1-2-3-4?

» Then the addition is still admissible.

> This is the idea behind disjoint pattern databases.

Generating Heuristic from Experience

B Convert a state into the feature domain.

Feature f1(n): “number of misplaced tiles” .

B Feature 2(n): “number of pairs of adjacent tiles that are not
adjacent in the goal state” .

m Both Al1(goal) = 0 and 2(goal) ='0.

m A(n) = AA(n) + 2R(n) with.cl >0, 2 >0 (why?).

B We could take randomly generated 8-puzzle and gather statistics
to decide constants.

B No guarantee to be admissible or consistent.

Summary -

Heuristic functions estimate costs of shortest paths:
Good heuristics can dramatically reduce search cost:
Greedy best-first search expands lowest.4.

> In general not complete nor optimal,
A* search expands lowest g + A.

» Optimal when Ais admissible (and consistent).
Memory limitation is an important issue to heuristic search. Search
with forgetting and\re-expanding are the keys, but still suffers
from different conditions.
A more-efficient heuristic can be generated from several
admissible heuristics.
Admissible heuristics can be derived from relaxed problems,
subproblems, and experience.

