
Introduction to AI
Chapter03 Solving Problems by

Informed Searching(3.5~3.6)

Pengju Ren@IAIR

Pe
ng
ju
 R
en
@X
JT
U
20
20

Outline
 Best-first search
 Greedy search
 A* search
 Optimality of A*

 Memory Bounded Search
 Iterative deepening A*
 Recursive best-first search
 Simplified memory-bounded A*

 Heuristic
 Performance
 Generating heuristicsPe
ng
ju
 R
en
@X
JT
U
20
20

Best first Search

 Informed search, a,k,a. heuristic search.
 Idea: use an evaluation function f(n) for each node estimate of

"desirability“
Expand the most desirable unexpanded node

 Implementation: Order the nodes in the fringe in decreasing order
of desirability

 The evaluation function is called heuristic, denoted as h(n)
It estimates of cost from node n to the closest goal

 Special cases:
 Greedy search. f(n)=h(n)
 A* search f(n)=g(n)+h(n) g(n): path cost

A* ≈ greedy + Uniform-cost = h(n) + g(n)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Greedy Search

 hSLD(n) = straight-line distance from n to DongSi
 Greedy search expands the node that appears to be closest to goal

Pe
ng
ju
 R
en
@X
JT
U
20
20

Greedy Search

 hSLD(n) = straight-line distance from n to DongSi
 Greedy search expands the node that appears to be closest to goal

Pe
ng
ju
 R
en
@X
JT
U
20
20

Greedy Search

 hSLD(n) = straight-line distance from n to DongSi
 Greedy search expands the node that appears to be closest to goal

北京站

58

(a) The initial state

(b) After expanding Beijing Station

(c) After expanding JianGuo men

北京站

崇文门建国门

58

33 48

北京站

崇文门建国门

58

33 48

朝阳门北京站 东单永安里

58 35 15 45Pe
ng
ju
 R
en
@X
JT
U
20
20

Greedy Search

 hSLD(n) = straight-line distance from n to DongSi
 Greedy search expands the node that appears to be closest to goal

(c) After expanding JianGuo Men

北京站

崇文门建国门

58

33 48

朝阳门北京站 东单永安里

58 35 15 45

(d) After expanding ChaoYang Men

北京站

崇文门建国门

58

33 48

朝阳门北京站 东单永安里

58 35 15 45

东大桥建国门 东四十条东四

33 0 77 75Pe
ng
ju
 R
en
@X
JT
U
20
20

Property of Greedy Search

 Completeness: No.
 TREE-SEARCH may get stuck in loops and never reach any goal even

in finite state spaces.
GRAPH-SEARCH is complete in finite spaces, but not complete in
infinite ones.

 Optimality: No.
 Time complexity: , but a good heuristic can give dramatic

improvement.
 Space complexity: , since it keeps all nodes in memory.

Pe
ng
ju
 R
en
@X
JT
U
20
20

A* Search

 Idea: Avoid expanding paths that are already expensive.

 Evaluation function: f (n) = g(n) + h(n)

 g(n): cost so far to reach n.

 h(n): estimated cost to goal from n.

 f (n): estimated total cost from the starting node to goal through n.

 A* search combines the advantages of the uniform-cost search and

the greedy search.

Pe
ng
ju
 R
en
@X
JT
U
20
20

A* Search

 hSLD(n) = straight-line distance from n to DongSi
 Greedy search expands the node that appears to be closest to goal

Pe
ng
ju
 R
en
@X
JT
U
20
20

A* Search
北京站

58

(a) The initial state

北京站

崇文门建国门

58

33+40=73 48+20=68

北京站

崇文门建国门

58

33+40=73 48+20=68

北京站前门 东单

62+20+15=97 45+20+15=80 48+20+20=88

(b)After expanding Beijing Station

(c)After expanding Chongwen Men

Pe
ng
ju
 R
en
@X
JT
U
20
20

A* Search

朝阳门北京站 永安里东单

北京站

崇文门建国门

58

33+40=73 48+20=68

北京站前门 东单

62+20+15=9745+20+15=80 48+20+20=8858+40+40=138
45+40+30=115

15+40+30=85
35+40+30=105

58+40+40=138

朝阳门北京站 永安里东单

北京站

崇文门建国门

58

33+40=73 48+20=68

北京站前门 东单

62+20+15=9745+20+15=80 48+20+20=88

建国门王府井 崇文门灯市口

47+20+15+10=93

15 45

35+10+15+20=80
33+30+15+20=98

48+20+15+15=98

45+40+30=115
15+40+30=85

35+40+30=105

(d) After expanding JianGuo Men

(e) After expanding Dongdan

Pe
ng
ju
 R
en
@X
JT
U
20
20

A* Search

58+40+40=138

朝阳门北京站 永安里东单

北京站

崇文门建国门

58

33+40=73 48+20=68

北京站前门 东单

62+20+15=9745+20+15=80 48+20+20=88

建国门王府井 崇文门灯市口

47+20+15+10=93

15 45

35+10+15+20=80
33+30+15+20=98

48+20+15+15=98

45+40+30=115
15+40+30=85

35+40+30=105

东单东四0+20+15+10+35=80 45+20+15+15+15=110

(f) After expanding DengShi Kou

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of A* Search
Completeness: Yes. Unless infinite nodes with f ≤ f (goal).
Optimality: Depends on whether h is

Time complexity: for constant step costs, where
(relative error) and d is the solution depth. Effective

branch factor is .
Space complexity: , since it keeps all nodes in memory.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Optimality of A*
 A* is optimal on trees if h is admissible.
 A* is optimal on graphs if h is admissible and consistent.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Optimality of A* on Graphs

 Lemma: If h(n) is consistent, the values of f along any path in A* are
nondecreasing.

 Gradually adds f -contours of nodes.
 Contour i has all nodes with f = fi, where fi < fi+1.

5868

85

80

80

73

Pe
ng
ju
 R
en
@X
JT
U
20
20

Optimality of A* on Graphs

 Now we see that consistency is actually triangle inequality.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Iterative Deepening A* (IDA*)

 Time complexity is not A*’s biggest drawback.
 A* usually runs out of memory before it reaches goals.
 Iterative deepening A* (IDA*):

 Use f (g + h) as cutoff instead of the depth.
 Initial cutoff: f (s0) = h(s0)
 Perform DFS on nodes where f (n) < cutoff.
 Reset cutoff to smallest f of non-expanded nodes.

Pe
ng
ju
 R
en
@X
JT
U
20
20

IDA* Traversal on Beijing Subway
 1st iteration: currentCutoff = 58 (北京站)

北京站 → 建国门 → 崇文门
 2nd iteration: currentCutoff = 68 (崇文门)

北京站 →建国门→崇文门→前门 → 东单
 3rd iteration: currentCutoff = 73 (建国门)

北京站 →建国门→东单→朝阳门→永安里→崇文门→前门
 4th iteration: currentCutoff = 80 (东单)

北京站 →建国门→东单→朝阳门→永安里→崇文门→前门 → 东单→王府井→灯市口

58+40+40=138

朝阳门北京站 永安里东单

北京站

崇文门建国门

58

33+40=73 48+20=68

北京站前门 东单

62+20+15=9745+20+15=80 48+20+20=88

建国门王府井 崇文门灯市口

47+20+15+10=93

15 45

35+10+15+20=80
33+30+15+20=98

48+20+15+15=98

45+40+30=115
15+40+30=85

35+40+30=105

东单东四0+20+15+10+35=80 45+20+15+15+15=110

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of IDA*

 Completeness and Optimality same as A*.
 Time complexity:
 Space complexity:
 Practical for problems with unit step costs.
 What happens if all f -values are different (real-values)?

The number of iterations can equal the number of nodes whose
f -value is less than the cost of an optimal path!

Pe
ng
ju
 R
en
@X
JT
U
20
20

Recursive Best-First Search (RBFS)

 IDA* is problematic when g are real-valued.
 RBFS is a simple recursive algorithm that mimics standard best-first

search using only linear space.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Recursive Best-First Search (RBFS)

 DFS where each node on the current path remembers the best
f -value of any alternative path from its ancestors.
 Maintains all nodes on current path plus all their siblings (ancestor(n)).

 When expanding node n
 n’∈ children(n), compute f (n’).
 if an ancestor n’’ has a lower f -value than all n’s children, then

 Assign f -value of the cheapest child to n.
 Backtrack to n’’.

 Otherwise, proceed as normal.Pe
ng
ju
 R
en
@X
JT
U
20
20

Recursive Best-First Search (RBFS)

Pe
ng
ju
 R
en
@X
JT
U
20
20

RBFS on Beijing Subway

alternative=the second-lowest f-value among successors

(a) After expanding 建国门&崇文门

(b) After unwinding back to 北京站
and expanding 建国门

Pe
ng
ju
 R
en
@X
JT
U
20
20

RBFS on Beijing Subway

alternative=the second-lowest f-value among successors

(c) After switching back to 崇文门
and expanding 东单

Pe
ng
ju
 R
en
@X
JT
U
20
20

RBFS Traversal on Beijing Subway

 f_limit = ∞, expanding 北京站
北京站 → 建国门 → 崇文门

 f_limit = 73 (建国门), expanding 崇文门
北京站 → 建国门 →前门 → 东单

 Cutoff occurs. Record f (东单) as 80. f_limit = 80
(东单), expanding 建国门
北京站 → 东单 → 永安里 → 朝阳门

 Cutoff occurs. Record f (建国门) as 85. f_imit = 85 (朝阳门), expanding 崇
文门 (again)
北京站 → 建国门 → 前门 → 东单

 f_limit = 85 (朝阳门), expanding 东单
王府井→ 灯市口 → 建国门 → 崇文门

 . . .

Pe
ng
ju
 R
en
@X
JT
U
20
20

Properties of RBFS

 Completeness and optimality same as A*.
 Time complexity: Depends on accuracy of h and on how often best

path changes.
 Space complexity: O(bd)

Each time RBFS changes its mind corresponds to one iteration of
IDA*.

 RBFS may need to re-expand forgotten nodes to re-create best-path.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Memory-Bounded Search

 In a sense, both IDA* and RBFS use too little memory.
 Between iterations, IDA* maintains only one number, the current

f -limit (currentCutoff).
 RBFS maintains more, but uses only linear space: if more space were

available, it would not benefit from it.
 It seems reasonable to use all the memory available — the more, the

better.
 We’d like a memory-bounded version of A*.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Simplified Memory-Bounded A* (SMA*)

 Idea: Run A* as normal until memory is full. Then replace something in
memory with newly generated nodes.

 SMA*：
 When memory is full, drop the worst leaf — node with highest f -

value.
 Like RBFS, SMA* backs up f -value of this forgotten node to it’s

parent, so we know when to go back to it.
 If all descends of a node n are forgotten, we don’t know which way

to go from n, but we know if it‘s worth re-exploring n.Pe
ng
ju
 R
en
@X
JT
U
20
20

Simplified Memory-Bounded A* (SMA*)

 Problem: What if many nodes have the same f -value?
 Solution: delete the oldest and expand the newest.

 SMA* works as long as there is enough memory for the complete
optimal path.

 If not, SMA* needs to switch continuously between candidate paths.
 Causes a similar problem to thrashing in disk paging systems.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Admissible Heuristics for 8-Puzzle

 h1 = the number of misplaced tiles.
 h2 = the sum of Manhattan distances of the tiles from their goal

positions.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Performance of Heuristic

 Given any admissible heuristics ha and hb, h = max(ha, hb) is
also admissible and dominates ha and hb.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Effective Branching Factor
 One way to characterize the quality of a heuristic is effective

branching factor b*.
 Total number of nodes generated by A*: N
 Solution depth: d

 A well-designed heuristic would have a value of b* close to 1.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Generating Heuristic from Relaxed Problems

 Admissible heuristics can be derived from exact solution cost to a
relaxed version of the problem.

 In 8-puzzle, h1 is derived from that a tile can move to anywhere in
one step.

 In 8-puzzle, h2 is derived from that a tile can move to any adjacent
square in one step.

 Key: The optimal solution cost of a relaxed problem is no greater
than the optimal solution cost of the original problem.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Generating Heuristic from Sub-problems

 Admissible heuristic can also be derived from a subproblem.
 Pattern databases store exact solution costs for every possible

subproblem instances.
 For example, every possible position of 1-2-3-4 and the blank.

 Can we use the costs of 1-2-3-4 and 5-6-7-8?
 Simple addition breaks the admissibility.
 How about count only those moves involving 1-2-3-4?
 Then the addition is still admissible.
 This is the idea behind disjoint pattern databases.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Generating Heuristic from Experience

 Convert a state into the feature domain.
 Feature f1(n): “number of misplaced tiles”.
 Feature f2(n): “number of pairs of adjacent tiles that are not

adjacent in the goal state”.
 Both f1(goal) = 0 and f2(goal) = 0.
 h(n) = c1f1(n) + c2f2(n) with c1 > 0, c2 > 0 (why?).
 We could take randomly generated 8-puzzle and gather statistics

to decide constants.
 No guarantee to be admissible or consistent.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Summary

 Heuristic functions estimate costs of shortest paths.
 Good heuristics can dramatically reduce search cost.
 Greedy best-first search expands lowest h.

 In general not complete nor optimal。
 A* search expands lowest g + h.

 Optimal when h is admissible (and consistent).
 Memory limitation is an important issue to heuristic search. Search

with forgetting and re-expanding are the keys, but still suffers
from different conditions.

 A more efficient heuristic can be generated from several
admissible heuristics.

 Admissible heuristics can be derived from relaxed problems,
subproblems, and experience.

Pe
ng
ju
 R
en
@X
JT
U
20
20

