
Introduction to AI
Chapter04

Beyond Classical Search

Pengju Ren@IAIR

Pe
ng
ju
@X
JT
U
20
20

Outline

 Steepest Descent (Hill-climbing)
 Simulated Annealing
 Evolutionary Computation
 Non-deterministic Actions
 And-OR search

 Partial Observations
 Sensor-less
 With Sensors
 Unknown EnvironmentsPe
ng
ju
@X
JT
U
20
20

Steepest Descent (Ascent)

 A.k.a. Gradient descent.
 “Like climbing Everest in thick fog with

amnesia.”
 Allowing sideway moves is usually good, but

need to put a limit to prevent infinite loop.

Pe
ng
ju
@X
JT
U
20
20

Example： TSP

 Empirically, swap-2 and swap-3 makes a good TSP searcher.

 Begin with any complete tour (random).
 Check if any pairwise exchange (swap-2) shorten the tour.
 We can check swap-k of course, but it takes time.

Pe
ng
ju
@X
JT
U
20
20

Example：n-queens
 Put n queens on an n × n board with no two queens on the same

row, column, or diagonal.
 Move a queen to reduce number of conflicts.
 Almost always solve n-queen puzzle immediately even for .

Pe
ng
ju
@X
JT
U
20
20

Example：n-queens

h = 17

 h is the number of conflicts

h =1

Pe
ng
ju
@X
JT
U
20
20

Hill-climbing contd.

 Useful to consider state space landscape.
 Random-restart hill climbing overcomes local maxima—trivially complete
 Random sideways moves

escape from shoulders loop on flat maxima

Local v.s Global optima

Pe
ng
ju
@X
JT
U
20
20

Performance of Steepest Descent

 Find only the nearest local optimum.
 May suffer from slow convergence due

to the zig-zagging behavior.
 Ridges and plateau are difficult too.

 Random restart helps
 Prob. p to succeed.
 1/p restarts needed.
 Cost = cost-of-success + (1-p)/p x cost-of-failure.

Pe
ng
ju
@X
JT
U
20
20

Pe
ng
ju
@X
JT
U
20
20

Gradient and momentum

Nesterov momentum

momentum

Pe
ng
ju
@X
JT
U
20
20

Simulated Annealing (SA)

 Steepest descent gets stuck at local optimum.
 Some random walk behavior is desired.
 Simulated annealing introduces a temperature parameter T, which

cools down as time goes by.
 If the new state has a lower energy (better,), SA accepts the

new state.
 Otherwise, SA accepts the new state with a probability .

 It has been proven that with T decreases slowly enough, SA always
finds the global optimum (not practically useful, why?).Pe

ng
ju
@X
JT
U
20
20

Simulated Annealing (SA)

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency.

Pe
ng
ju
@X
JT
U
20
20

Local Beam Search

 Keep best k states instead of just one. Choose top k of all their successors
 What’s different from simply running steepest descent k times with

different initializations?
(Not the same as k searches run in parallel, Searches that find good states
recruit other searches to join them)
 What if all k states become the same after awhile?
 Stochastic beam search randomly chooses k successors with a

probability proportional to their goodness.Pe
ng
ju
@X
JT
U
20
20

Genetic algorithms (GA)

 = stochastic local beam search + generate successors from pairs of states

24/(24+23+20+11) = 31%；23/(24+23+20+11)=29%. etc

Pe
ng
ju
@X
JT
U
20
20

Genetic algorithms (GA)

32752411 24748552 32748552

Pe
ng
ju
@X
JT
U
20
20

Genetic algorithms (GA)

Fitness for ONEMAX :

Pe
ng
ju
@X
JT
U
20
20

Evolutionary Computation & Machine Learning

 Large-Scale Evolution of Image Classifiers
https://arxiv.org/abs/1703.01041

 Evolution Strategies as a Scalable Alternative to Reinforcement
Learning https://arxiv.org/abs/1703.03864

Pe
ng
ju
@X
JT
U
20
20

Is Random Recombination Good Enough ?

 What if f (x) = trap3(x1x10x22) + trap3(x2x7x29) + · · ·
 Crossing 111 with 000 always disrupts 111 (sub-solution).
 Modern recombination involves problem decomposition via machine

learning.

 An adversary function

Pe
ng
ju
@X
JT
U
20
20

Non-deterministic Actions

SUCK in the erratic vacuum world:
 When applied to a dirty square,

the action clean the square and
sometimes clean the dirt in an
adjacent square as well.

 When applied to a clean square,
the action sometimes deposits
dirt on the square.

Pe
ng
ju
@X
JT
U
20
20

AND-OR Search

 AND nodes: actions (circles).
 OR nodes: states (squares).
 Need to reach the goal state

at EVERY leaf.

Pe
ng
ju
@X
JT
U
20
20

AND-OR Search

Pe
ng
ju
@X
JT
U
20
20

Keep Trying Or Not

 The slippery vacuum world:
identical to the ordinary vacuum
world except movement actions
sometimes fails.

 Results in a cyclic search graph
and a cyclic solution.

 Cause of failure: stochastic =>
keep trying.

 Cause of failure: unobservable
property => Stop trying after a
certain number of trials.

Pe
ng
ju
@X
JT
U
20
20

Partial Observations

 Key idea: belief states.
 Represents the agent’s current belief about the possible states it

might be in.
 Searching with no observation (sensor-less) in the vacuum world.

Actually pretty easy.
 Initial belief states are {1, 2, 3, 4, 5, 6, 7, 8}.
 After [right], belief states are {2, 4, 6, 8}.
 After [right,suck], belief states are {4, 8}.
 After [right,suck,left], belief states are {3, 7}.
 After [right,suck,left,suck], belief states are {7}, which is goal.Pe

ng
ju
@X
JT
U
20
20

Belief States Transitions in Sensor-less
Vacuum World

{1,2,3,4,5,6,7,8} {2,4,6,8}

{4,8}

{3,7}{7}

Pe
ng
ju
@X
JT
U
20
20

Transition of Belief States

 Transition with a deterministic
action RIGHT.

 Transition with a non-deterministic
action RIGHT.

 The number belief states usually
increases after a non-deterministic
action.

Pe
ng
ju
@X
JT
U
20
20

Searching with no observation

Belief States: The entire belief-state space contains every possible set
of physical states.
Initial State: Typically the set of all states in P, although in some cases
the agent will have more knowledge than this.
Actions: identify the illegal actions.
Transition model: Determinism v.s Non-determinism
Goal test: A belief state satisfies the goal only if all the physical states
in it satisfy GOAL-TEST.
Path test: Whether the cost of taking an action in a given belief state is
the same or have different costs in different states.

The preceding definitions enable the automatic construction of the belief-
state problem formulation from the definition of the underlying physical
problems.

Pe
ng
ju
@X
JT
U
20
20

Searching with Observations

 Transition of belief states consists of three stages:
Prediction Stage (same as sensor-less)

b ˆ = PREDICT(b, a)
Observation Prediction Stage determines the set of observations in the

predicted belief states.
POSSIBLE-PERCEPTS(b ˆ) = {o| o = PERCEPT(s), s ∈ b ˆ}

Update Stage determines bo, a subset of b ˆ which produces observation o.
bo = UPDATE(b ˆ, o) = {s| PERCEPT(s) = o, s ∈ b ˆ}

Pe
ng
ju
@X
JT
U
20
20

Vacuum World with Sensing

 Sensor senses location and dirt.
 RIGHT causes in two sets of

belief states in the ordinary
vacuum world.

 RIGHT causes in three sets
of belief states in the
slippery vacuum world.

determinism

Non-determinism

Pe
ng
ju
@X
JT
U
20
20

Agents for Partially Observable Environment

 Keep estimating the belief states and AND-OR searching for solutions
to reach goal states..

 Kindergarten vacuum world:

Pe
ng
ju
@X
JT
U
20
20

Localization in a Maze
 Map is known, and 4 sonar sensors work perfectly.
 MOVE moves the robot randomly to one of the adjacent squares.

Pe
ng
ju
@X
JT
U
20
20

Review：vacuum world

Deterministic with Sensors Non-Deterministic with Sensors

Sensor-less (belief states) Partially Observable

Pe
ng
ju
@X
JT
U
20
20

Online Search with Unknown Environments

 Competitive ratio = . We’d like to minimize this.
 If all actions are reversible, online-DFS visits every states exactly

twice in the worst case with enough memory.
 If some actions are irreversible, a small (or even finite!) competitive

ration can be difficult to achieve.

Pe
ng
ju
@X
JT
U
20
20

Search with Limited Memory

 Only one or a few states are stored.
 Single-point hill-climbing gets stuck at a local optimum, causing the

competitive ratio to be infinite.
 We may add some random walk (like simulated annealing), but still

can be inefficient (exponential in the below example).
 Random walk is complete for finite state spaces.

Pe
ng
ju
@X
JT
U
20
20

Learning Real-Time A*(LRTA*)

 H[s]: a table of cost estimates indexed by state, initially empty.
 result[s, a]: a table indexed by state and action, initially empty.

Pe
ng
ju
@X
JT
U
20
20

Learning Real-Time A*(LRTA*)

 LRTA* keeps updating H[s].
 LRTA* always chooses the apparently best action.
 Optimism under uncertainty: If an action has never tried in a state,

LRTA* assumes the least possible cost — h(s). This encourages
exploration.

Pe
ng
ju
@X
JT
U
20
20

Learning Real-Time A*(LRTA*)
 Unlike A*, LRTA* is NOT complete for infinite state spaces.
 With n states, LRTA⇤ guarantees to find optimum within O(n^2)

steps, but usually much faster.
 Shaded: agent’s location, circle: H[s] updated.

Pe
ng
ju
@X
JT
U
20
20

Summary

 Steepest descent is extremely fast for simple problems.
 To avoid being trapped at local optima, SA adopts random walk

behaviors. Still quite fast for simple problems.
 Instead of one single state, GA adopts a population of states.

Difficult to analyze though.
 AND-OR search for non-deterministic actions.
 Sensor-less agents performs very well on many real-world problems.

They are robust since they don’t rely on the accuracy of sensors.
 Sensors reduce the size of the set of belief states, and may help

agents create a shorter plan.
 On-line search with limited memory can easily fail (adversary

argument), but are most popular nowadays.
 LRTA* works well if memory are enough.

Pe
ng
ju
@X
JT
U
20
20

