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Steepest Descent (Ascent)

m A.k.a. Gradient descent.
B “Like climbing Everest in thick fog with @

amnesia.”
®m Allowing sideway moves is usually good, but
need to put a limit to prevent infinite loop.

HiLL- CLIMBING( problem)

1
2
5

S C1 B

current = MAKE-NODE(problem.initial _state)
repeat
neighbor = a highest-valued successor of current
if neighbor.value < current.value
return current.state
current = neighbor




Example: TSP -

B Begin with any complete tour (random).
B Check if any pairwise exchange (swap-2) shorten the tour.
B We can check swap-k of course, but it'takes 0(n*)time.

B Empirically, swap-2 and swap-3 makes a good TSP searcher.



Example: n-queens -

B Put n queens on an n x n board with no two queens on the same
row, column, or diagonal.

B Move a queen to reduce number of conflicts.

B Almost always solve n-queen puzzle immediately even for 1t = 10°




Example: n-queens
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B h is the number of conflicts

h =1



Hill-climbing contd. -

objectixe function lobal maximum

Local v.s Global optima Wotrsn Gt Probien
shoulder

local maximum

C'flat” [dcal maximun

»state space
current

state
m Useful to consider state space landscape.

® Random-restart hill climbing overcomes local maxima—trivially complete
B Random sideways moves

(<) escape from shoulders loop on flat maxima
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Performance of Steepest Descent °

B Find only the nearest local optimum.

m May suffer from slow convergence due | //

to the zig-zagging behavior. _ «g‘ : ///
B Ridges and plateau are difficult too. S
’ i (oo P

B Random restart helps
> Prob. p to succeed.
> 1/prestartsineeded.
> Cost'=(cost-of-success + (1-p)/p x cost-of-failure.
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Gradient and momentum
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Simulated Annealing (SA)

Steepest descent gets stuck at local optimum.

Some random walk behavior is desired.

Simulated annealing introduces a temperature parameter 7, which
cools down as time goes by.

If the new state has a lower-energy. (better, AE > 0), SA accepts the
new state.

Otherwise, SA accepts the new state with a probabilitye4f/T .

It has been proven that with 7decreases slowly enough, SA always
finds the global optimum (not practically useful, why?).



Simulated Annealing (SA)

SIMULATED-ANNEALING(problem, schedule)

1 current = MAKE-NODE(problem.initial _state)
2 fort=1to
3 T = schedule(t)
if T ==
return current
next = a randomly selected successor of current
AE = next.value — current.value
if AE >0
current next
else
current = next only with probability e
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Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency.




Local Beam Search °

B Keep best k states instead of just one. Choose top-k of all their successors
B What' s different from simply running steepest descent k times with
different initializations?
(Not the same as k searches run(in parallel, Searches that find good states
recruit other searches to join them)
B What if all kA states become the same after awhile?
m Stochastic beam search randomly chooses k successors with a
probability proportional to their goodness.



Genetic algorithms (GA) :

B = stochastic local beam search + generate successors.from'pairs of states
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Fithess™ Selection Pairs Cross—Over

24/(24+23+20+11) = 31%; 23/(24+23+20+11)=29%. etc



Genetic algorithms (GA) :
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Genetic algorithms (GA)

Initialization

After selection
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Fithess for ONEMAX : f(x) = Z_xi
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Evolutionary Computation & Machine Learning

e Large-Scale Evolution of Image Classifiers
https://arxiv.org/abs/1703.01041

e Evolution Strategies as a Scalable Alternative to Reinforcement
Learning https://arxiv.org/abs/1703.03864
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Is Random Recombination Good Enough ?
B An adversary function I M\ ) P
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B What if f(x) =\trap3(xX1x10x22) + trap3(x2x7x29) + « » -

m Crossing 111 with 000 always disrupts 111 (sub-solution).

B Modern recombination involves problem decomposition via machine
learning.



Non-deterministic Actions

SUCK in the erratic vacuum world:

B When applied to a dirty square,
the action clean the square and
sometimes clean the dirt in"an
adjacent square as well.

B When applied to a clean square,
the action sométimes deposits
dirt onthe square.
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AND-OR Search

Suck Right
/8\ |
7 ﬂ : ﬁ o 2 gl ‘r'/_)
B AND nodes: actions (circles). “** Sy Right Left Suck

at EVERY leaf.

B ORnodes: states (squares). O
B Need to reach the goal state v
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AND-OR Search

OR-SEARCH(state, problem, path)

1 if problem.GOAL-TEST(state)

2 return the empty plan

3 if state is on path return failure

4 for each action in problem.ACTIONS(state)

5 plan = AND-SEARCH(RESULTS(state, action), problem, [state|path])
6 if plan # failure

7 return [action|plan]

8 return failure

AND-SEARCH (state, problem, path)

1 for each'S; in states

2 plan; = OR-SEARCH(S;, problem, path)

3 if plan; == failure

4 return failure

5 return [if s; then plan; elseif... elseif s,_; then plan,_; else plan,]

o) TEATITY




Keep Trying Or Not

ﬁ

The slippery vacuum world: '
identical to the ordinary vacuum Suck Right
world except movement actions ?

sometimes fails.

Results in a cyclic search graph NS>

and a cyclic solution.

Cause of failure: stochastic-=>
keep trying.

Cause of failure: unobservable v
property ‘=> Stop trying aftera | |&
certain number of trials.

Right




Partial Observations

B Key idea: belief states.

B Represents the agent’ s current belief about the possible states it
might be in.

B Searching with no observation (sensor-less) in the vacuum world.
Actually pretty easy.

> Initial belief statesare 1, 2,’3,4,5,6,7, 8.

> After [right], belief states are {2, 4, 6, 8/.

> After [right;suck], belief states are #4, 8/.

> After[right,suck,left], belief states are 3, 7.

> After [right,suck,left,suck], belief states are {7}, which is goal.



Belief States Transitions in Sensor-less

Vacuum World
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Transition of Belief States

(2) (b)

B Transition with/a deterministic B Transition with a non-deterministic

action RIGHT. action R/GHT.
B The number belief states usually

increases after a non-deterministic
action.



Searching with no observation

Belief States: The entire belief-state space contains every possible set
of physical states.

Initial State: Typically the set of all states inP, although in some cases
the agent will have more knowledge than this.

Actions: identify the illegal actions.

Transition model: Determinism v:s Non-determinism

Goal test: A belief state satisfies the 'goal only if all the physical states
in it satisfy GOAL-TEST.

Path test: Whether the cost of taking an action in a given belief state is
the same or have different costs in different states.

The preceding definitions enable the automatic construction of the belief-
state problem formulation from the definition of the underlying physical
problems.



Searching with Observations

B Transition of belief states consists of three stages:

Prediction Stage (same as sensor-less)
b~ = PREDICT( b, a)

Observation Prediction Stage determines the set of observations in the
predicted belief states.
POSSIBLE-PERCEPTS(b") = \{of/ 0 = PERCEPT(s), s = b"}

Update Stage determines bo, a subset of b~ which produces observation o.
bo = UPDATEb<, 0) = {s/| PERCEPT(s) =o0,s € b’}

RESuULTS(b,a) = {b,| bo = UPDATE(PREDICT(b, a), 0),
o € PosSIBLE-PERCEPTS(PREDICT(b, a))}




Vacuum World with Sensing

B Sensor senses location and dirt.

B R/GHT causes in two sets of
belief states in the ordinary
vacuum world.

B R/GHT causes in three sets
of belief states in the
slippery.vacuum world.

€Y

[B Clean)

determinism

[BDirty]

Right o 4‘}

. /) @ . —{J s [A,Dirty]

(b) )

[B,Clean)

Non-determinism




Agents for Partially Observable Environment

B Keep estimating the belief states and AND-OR searching for solutions
to reach goal states..

Recursive State Estimator

b’ = UPDATE(PREDICT(b, a), 0)

B Kindergarten vacuum world:

Suck

[ 4 « N

[A4,Clean]




Localization in a Maze

B Map is known, and 4 sonar sensors work perfectly.
B MOVE moves the robot randomly to one of the adjacent squares.
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(a) Possible locations efirobot after E1 = NSW
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(b) Possible locations of robot after E1 = NSW, E2 = NS

UpPDATE(PREDICT(UPDATE(b, NSW), MOVE), NS)



Review: vacuum world &+ —=
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Sensor-less (belief states)

GOAL

Non-Deterministic with Sensors

Partially Observable



Online Search with Unknown Environments

actual — cost
m Competitive ratio = &+ cost - We'd like to minimize this.

m If all actions are reversible, online-DFS visits every,states exactly
twice in the worst case with enough memory.

m If some actions are irreversible, a small(or even finite!) competitive
ration can be difficult to achieve.




Search with Limited Memory

B Only one or a few states are stored.

B Single-point hill-climbing gets stuck at a local optimum; causing the
competitive ratio to be infinite.

B We may add some random walk (like'simulated annealing), but still
can be inefficient (exponential in the below example).

B Random walk is complete for finite'state spaces.

SHee



B H[s]: a table of cost estimates indexed by state, initially empty.
B resulf[s, a]: a table indexed by state and action initially empty.

Learning Real-Time A*(LRTA%)

LRTA*-AGENT(s')

[

O O0O~NOO1L B WN -

if GOAL-TEST(s')

return stop
if s’ is a new state (n6t in H)

H[s']| = h(s')
if s £ NULL

restift[sqa] '="s’

H[s] = "min,cacmions(s) LRTA*-C0ST(s, b, result[s, b], H)
a = argmin,e scrions(s) LRTA*-COST(s', b, result[s’, b, H)
s=¢
return a




Learning Real-Time A*(LRTA%)

B LRTA *keeps updating H[s].

B LRTA *always chooses the apparently best action.

B Optimism under uncertainty: If an action has never tried in a state,
LRTA *assumes the least possible cost — h(s). This encourages
exploration.

LRTA*-CosT(s, a,s’, H)

1 _if\s"\is-undefined return h(s)
2! Yelse return c(s, a,s’) + H[s']

. v




Learning Real-Time A*(LRTA%)

B Unlike A* LRTA *is NOT complete for infinite state spaces.

B With n states, LRTA~ guarantees to find optimum within_O(n12)
steps, but usually much faster.

B Shaded: agent’ s location, circle: Hls].updated.
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Summary -

m Steepest descent is extremely fast for simple problems.

B To avoid being trapped at local optima, SA adopts random walk
behaviors. Still quite fast for simple problems.

B Instead of one single state, GA adopts a.population of states.
Difficult to analyze though.

® AND-OR search for non-deterministic actions.

®m Sensor-less agents performs very well on many real-world problems.
They are robust since they don’ t rely on the accuracy of sensors.

m Sensors reduce the'size of the set of belief states, and may help
agents create a shorter plan.

® On-line search with limited memory can easily fail (adversary
argument), but are most popular nowadays.

®m LRTA* works well if memory are enough.



