
Introduction to AI
Chapter04

Beyond Classical Search

Pengju Ren@IAIR

Pe
ng
ju
@X
JT
U
20
20

Outline

 Steepest Descent (Hill-climbing)
 Simulated Annealing
 Evolutionary Computation
 Non-deterministic Actions
 And-OR search

 Partial Observations
 Sensor-less
 With Sensors
 Unknown EnvironmentsPe
ng
ju
@X
JT
U
20
20

Steepest Descent (Ascent)

 A.k.a. Gradient descent.
 “Like climbing Everest in thick fog with

amnesia.”
 Allowing sideway moves is usually good, but

need to put a limit to prevent infinite loop.

Pe
ng
ju
@X
JT
U
20
20

Example： TSP

 Empirically, swap-2 and swap-3 makes a good TSP searcher.

 Begin with any complete tour (random).
 Check if any pairwise exchange (swap-2) shorten the tour.
 We can check swap-k of course, but it takes time.

Pe
ng
ju
@X
JT
U
20
20

Example：n-queens
 Put n queens on an n × n board with no two queens on the same

row, column, or diagonal.
 Move a queen to reduce number of conflicts.
 Almost always solve n-queen puzzle immediately even for .

Pe
ng
ju
@X
JT
U
20
20

Example：n-queens

h = 17

 h is the number of conflicts

h =1

Pe
ng
ju
@X
JT
U
20
20

Hill-climbing contd.

 Useful to consider state space landscape.
 Random-restart hill climbing overcomes local maxima—trivially complete
 Random sideways moves

escape from shoulders loop on flat maxima

Local v.s Global optima

Pe
ng
ju
@X
JT
U
20
20

Performance of Steepest Descent

 Find only the nearest local optimum.
 May suffer from slow convergence due

to the zig-zagging behavior.
 Ridges and plateau are difficult too.

 Random restart helps
 Prob. p to succeed.
 1/p restarts needed.
 Cost = cost-of-success + (1-p)/p x cost-of-failure.

Pe
ng
ju
@X
JT
U
20
20

Pe
ng
ju
@X
JT
U
20
20

Gradient and momentum

Nesterov momentum

momentum

Pe
ng
ju
@X
JT
U
20
20

Simulated Annealing (SA)

 Steepest descent gets stuck at local optimum.
 Some random walk behavior is desired.
 Simulated annealing introduces a temperature parameter T, which

cools down as time goes by.
 If the new state has a lower energy (better,), SA accepts the

new state.
 Otherwise, SA accepts the new state with a probability .

 It has been proven that with T decreases slowly enough, SA always
finds the global optimum (not practically useful, why?).Pe

ng
ju
@X
JT
U
20
20

Simulated Annealing (SA)

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency.

Pe
ng
ju
@X
JT
U
20
20

Local Beam Search

 Keep best k states instead of just one. Choose top k of all their successors
 What’s different from simply running steepest descent k times with

different initializations?
(Not the same as k searches run in parallel, Searches that find good states
recruit other searches to join them)
 What if all k states become the same after awhile?
 Stochastic beam search randomly chooses k successors with a

probability proportional to their goodness.Pe
ng
ju
@X
JT
U
20
20

Genetic algorithms (GA)

 = stochastic local beam search + generate successors from pairs of states

24/(24+23+20+11) = 31%；23/(24+23+20+11)=29%. etc

Pe
ng
ju
@X
JT
U
20
20

Genetic algorithms (GA)

32752411 24748552 32748552

Pe
ng
ju
@X
JT
U
20
20

Genetic algorithms (GA)

Fitness for ONEMAX :

Pe
ng
ju
@X
JT
U
20
20

Evolutionary Computation & Machine Learning

 Large-Scale Evolution of Image Classifiers
https://arxiv.org/abs/1703.01041

 Evolution Strategies as a Scalable Alternative to Reinforcement
Learning https://arxiv.org/abs/1703.03864

Pe
ng
ju
@X
JT
U
20
20

Is Random Recombination Good Enough ?

 What if f (x) = trap3(x1x10x22) + trap3(x2x7x29) + · · ·
 Crossing 111 with 000 always disrupts 111 (sub-solution).
 Modern recombination involves problem decomposition via machine

learning.

 An adversary function

Pe
ng
ju
@X
JT
U
20
20

Non-deterministic Actions

SUCK in the erratic vacuum world:
 When applied to a dirty square,

the action clean the square and
sometimes clean the dirt in an
adjacent square as well.

 When applied to a clean square,
the action sometimes deposits
dirt on the square.

Pe
ng
ju
@X
JT
U
20
20

AND-OR Search

 AND nodes: actions (circles).
 OR nodes: states (squares).
 Need to reach the goal state

at EVERY leaf.

Pe
ng
ju
@X
JT
U
20
20

AND-OR Search

Pe
ng
ju
@X
JT
U
20
20

Keep Trying Or Not

 The slippery vacuum world:
identical to the ordinary vacuum
world except movement actions
sometimes fails.

 Results in a cyclic search graph
and a cyclic solution.

 Cause of failure: stochastic =>
keep trying.

 Cause of failure: unobservable
property => Stop trying after a
certain number of trials.

Pe
ng
ju
@X
JT
U
20
20

Partial Observations

 Key idea: belief states.
 Represents the agent’s current belief about the possible states it

might be in.
 Searching with no observation (sensor-less) in the vacuum world.

Actually pretty easy.
 Initial belief states are {1, 2, 3, 4, 5, 6, 7, 8}.
 After [right], belief states are {2, 4, 6, 8}.
 After [right,suck], belief states are {4, 8}.
 After [right,suck,left], belief states are {3, 7}.
 After [right,suck,left,suck], belief states are {7}, which is goal.Pe

ng
ju
@X
JT
U
20
20

Belief States Transitions in Sensor-less
Vacuum World

{1,2,3,4,5,6,7,8} {2,4,6,8}

{4,8}

{3,7}{7}

Pe
ng
ju
@X
JT
U
20
20

Transition of Belief States

 Transition with a deterministic
action RIGHT.

 Transition with a non-deterministic
action RIGHT.

 The number belief states usually
increases after a non-deterministic
action.

Pe
ng
ju
@X
JT
U
20
20

Searching with no observation

Belief States: The entire belief-state space contains every possible set
of physical states.
Initial State: Typically the set of all states in P, although in some cases
the agent will have more knowledge than this.
Actions: identify the illegal actions.
Transition model: Determinism v.s Non-determinism
Goal test: A belief state satisfies the goal only if all the physical states
in it satisfy GOAL-TEST.
Path test: Whether the cost of taking an action in a given belief state is
the same or have different costs in different states.

The preceding definitions enable the automatic construction of the belief-
state problem formulation from the definition of the underlying physical
problems.

Pe
ng
ju
@X
JT
U
20
20

Searching with Observations

 Transition of belief states consists of three stages:
Prediction Stage (same as sensor-less)

b ˆ = PREDICT(b, a)
Observation Prediction Stage determines the set of observations in the

predicted belief states.
POSSIBLE-PERCEPTS(b ˆ) = {o| o = PERCEPT(s), s ∈ b ˆ}

Update Stage determines bo, a subset of b ˆ which produces observation o.
bo = UPDATE(b ˆ, o) = {s| PERCEPT(s) = o, s ∈ b ˆ}

Pe
ng
ju
@X
JT
U
20
20

Vacuum World with Sensing

 Sensor senses location and dirt.
 RIGHT causes in two sets of

belief states in the ordinary
vacuum world.

 RIGHT causes in three sets
of belief states in the
slippery vacuum world.

determinism

Non-determinism

Pe
ng
ju
@X
JT
U
20
20

Agents for Partially Observable Environment

 Keep estimating the belief states and AND-OR searching for solutions
to reach goal states..

 Kindergarten vacuum world:

Pe
ng
ju
@X
JT
U
20
20

Localization in a Maze
 Map is known, and 4 sonar sensors work perfectly.
 MOVE moves the robot randomly to one of the adjacent squares.

Pe
ng
ju
@X
JT
U
20
20

Review：vacuum world

Deterministic with Sensors Non-Deterministic with Sensors

Sensor-less (belief states) Partially Observable

Pe
ng
ju
@X
JT
U
20
20

Online Search with Unknown Environments

 Competitive ratio = . We’d like to minimize this.
 If all actions are reversible, online-DFS visits every states exactly

twice in the worst case with enough memory.
 If some actions are irreversible, a small (or even finite!) competitive

ration can be difficult to achieve.

Pe
ng
ju
@X
JT
U
20
20

Search with Limited Memory

 Only one or a few states are stored.
 Single-point hill-climbing gets stuck at a local optimum, causing the

competitive ratio to be infinite.
 We may add some random walk (like simulated annealing), but still

can be inefficient (exponential in the below example).
 Random walk is complete for finite state spaces.

Pe
ng
ju
@X
JT
U
20
20

Learning Real-Time A*(LRTA*)

 H[s]: a table of cost estimates indexed by state, initially empty.
 result[s, a]: a table indexed by state and action, initially empty.

Pe
ng
ju
@X
JT
U
20
20

Learning Real-Time A*(LRTA*)

 LRTA* keeps updating H[s].
 LRTA* always chooses the apparently best action.
 Optimism under uncertainty: If an action has never tried in a state,

LRTA* assumes the least possible cost — h(s). This encourages
exploration.

Pe
ng
ju
@X
JT
U
20
20

Learning Real-Time A*(LRTA*)
 Unlike A*, LRTA* is NOT complete for infinite state spaces.
 With n states, LRTA⇤ guarantees to find optimum within O(n^2)

steps, but usually much faster.
 Shaded: agent’s location, circle: H[s] updated.

Pe
ng
ju
@X
JT
U
20
20

Summary

 Steepest descent is extremely fast for simple problems.
 To avoid being trapped at local optima, SA adopts random walk

behaviors. Still quite fast for simple problems.
 Instead of one single state, GA adopts a population of states.

Difficult to analyze though.
 AND-OR search for non-deterministic actions.
 Sensor-less agents performs very well on many real-world problems.

They are robust since they don’t rely on the accuracy of sensors.
 Sensors reduce the size of the set of belief states, and may help

agents create a shorter plan.
 On-line search with limited memory can easily fail (adversary

argument), but are most popular nowadays.
 LRTA* works well if memory are enough.

Pe
ng
ju
@X
JT
U
20
20

