Introduction to Al

Chapter04
Beyond Classical Search

Pengju Ren@IAIR

Outline

B Steepest Descent (Hill-climbing)
B Simulated Annealing
B Evolutionary Computation
B Non-deterministictActions
> And-OR search
B Partial Observations
> Sensor-less
> With Sensors
> Unknown Environments

Steepest Descent (Ascent)

m A.k.a. Gradient descent.
B “Like climbing Everest in thick fog with @

amnesia.”
®m Allowing sideway moves is usually good, but
need to put a limit to prevent infinite loop.

HiLL- CLIMBING(problem)

1
2
5

S C1 B

current = MAKE-NODE(problem.initial _state)
repeat
neighbor = a highest-valued successor of current
if neighbor.value < current.value
return current.state
current = neighbor

Example: TSP -

B Begin with any complete tour (random).
B Check if any pairwise exchange (swap-2) shorten the tour.
B We can check swap-k of course, but it'takes 0(n*)time.

B Empirically, swap-2 and swap-3 makes a good TSP searcher.

Example: n-queens -

B Put n queens on an n x n board with no two queens on the same
row, column, or diagonal.

B Move a queen to reduce number of conflicts.

B Almost always solve n-queen puzzle immediately even for 1t = 10°

Example: n-queens

s i8] 14

16

14 |§8| 18
ﬂ’ 17
W

14

15

W

17

13

14

15

W

1

14

16

14

14

16

w]

W
2

h =

17

\
N
.I
f w

o

'E

"
W

al)

B h is the number of conflicts

h =1

Hill-climbing contd. -

objectixe function lobal maximum

Local v.s Global optima Wotrsn Gt Probien
shoulder

local maximum

C'flat” [dcal maximun

»state space
current

state
m Useful to consider state space landscape.

® Random-restart hill climbing overcomes local maxima—trivially complete
B Random sideways moves

(<) escape from shoulders loop on flat maxima

0o
o000
00060
3

Performance of Steepest Descent °

B Find only the nearest local optimum.

m May suffer from slow convergence due | //

to the zig-zagging behavior. _ «g‘ : ///
B Ridges and plateau are difficult too. S
’ i (oo P

B Random restart helps
> Prob. p to succeed.
> 1/prestartsineeded.
> Cost'=(cost-of-success + (1-p)/p x cost-of-failure.

A th
.
=

_ \)
Global
minimu

) | s)
il
Stochastic %

. gradient

"escent
AAl | -

\

Gradient and momentum

5t+ 7 =udy — /WL(wt) — AV L{wy }

Wipg =W+ 6 s AVEw) 4 <
t+1 ‘ t+] 1! i = AV L{w3)
'y T fhy

momentum

Ty iy 1164 . “u"]

& = —AV L{wg)
8 ¢4 7=U8 — ANL(W; + ué,)
Wt+1 —_ Wt + 5t+]

=
I ™

Nesterov momentum

Simulated Annealing (SA)

Steepest descent gets stuck at local optimum.

Some random walk behavior is desired.

Simulated annealing introduces a temperature parameter 7, which
cools down as time goes by.

If the new state has a lower-energy. (better, AE > 0), SA accepts the
new state.

Otherwise, SA accepts the new state with a probabilitye4f/T .

It has been proven that with 7decreases slowly enough, SA always
finds the global optimum (not practically useful, why?).

Simulated Annealing (SA)

SIMULATED-ANNEALING(problem, schedule)

1 current = MAKE-NODE(problem.initial _state)
2 fort=1to
3 T = schedule(t)
if T ==
return current
next = a randomly selected successor of current
AE = next.value — current.value
if AE >0
current next
else
current = next only with probability e

=
= O W o0 ~NO 01 &

AE/T

—

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency.

Local Beam Search °

B Keep best k states instead of just one. Choose top-k of all their successors
B What' s different from simply running steepest descent k times with
different initializations?
(Not the same as k searches run(in parallel, Searches that find good states
recruit other searches to join them)
B What if all kA states become the same after awhile?
m Stochastic beam search randomly chooses k successors with a
probability proportional to their goodness.

Genetic algorithms (GA) :

B = stochastic local beam search + generate successors.from'pairs of states

24748552$
32752411 |23
\
24415124 | _20
\
32543213 | 11

Fithess™ Selection Pairs Cross—Over

24/(24+23+20+11) = 31%; 23/(24+23+20+11)=29%. etc

Genetic algorithms (GA) :

W
N W H

32752411 24748552 32748552

Genetic algorithms (GA)

Initialization

After selection

-

o

>

2|0/1/1]|0/0]J0
\ Jgu/

Average fitness: 3

After crossover

A

Fithess for ONEMAX : f(x) = Z_xi

/i

1(0(1

7

>

i

After-mutation

1! |12

/

Average fitness: 3.5

Evolutionary Computation & Machine Learning

e Large-Scale Evolution of Image Classifiers
https://arxiv.org/abs/1703.01041

e Evolution Strategies as a Scalable Alternative to Reinforcement
Learning https://arxiv.org/abs/1703.03864

000
0000
o000
00
[) [J :.
Is Random Recombination Good Enough ?
B An adversary function I M\) P
[l F =111 g 08\ N i o]
0 = 110,101,011, "\ Y
trap3(z) =) z Oa O 70) (I RN . "W S SR - J—
(0.9, z=000 |
0

0 0.5 1 1.5 2 2.5 3
Unitary, u

B What if f(x) =\trap3(xX1x10x22) + trap3(x2x7x29) + « » -

m Crossing 111 with 000 always disrupts 111 (sub-solution).

B Modern recombination involves problem decomposition via machine
learning.

Non-deterministic Actions

SUCK in the erratic vacuum world:

B When applied to a dirty square,
the action clean the square and
sometimes clean the dirt in"an
adjacent square as well.

B When applied to a clean square,
the action sométimes deposits
dirt onthe square.

2%
Q¢

Y

D

AND-OR Search

Suck Right
/8\ |
7 ﬂ : ﬁ o 2 gl ‘r'/_)
B AND nodes: actions (circles). “** Sy Right Left Suck

at EVERY leaf.

B ORnodes: states (squares). O
B Need to reach the goal state v

LOOP LOOP ¢, . o LOOP =
8 Ve s LA

AND-OR Search

OR-SEARCH(state, problem, path)

1 if problem.GOAL-TEST(state)

2 return the empty plan

3 if state is on path return failure

4 for each action in problem.ACTIONS(state)

5 plan = AND-SEARCH(RESULTS(state, action), problem, [state|path])
6 if plan # failure

7 return [action|plan]

8 return failure

AND-SEARCH (state, problem, path)

1 for each'S; in states

2 plan; = OR-SEARCH(S;, problem, path)

3 if plan; == failure

4 return failure

5 return [if s; then plan; elseif... elseif s,_; then plan,_; else plan,]

o) TEATITY

Keep Trying Or Not

ﬁ

The slippery vacuum world: '
identical to the ordinary vacuum Suck Right
world except movement actions ?

sometimes fails.

Results in a cyclic search graph NS>

and a cyclic solution.

Cause of failure: stochastic-=>
keep trying.

Cause of failure: unobservable v
property ‘=> Stop trying aftera | |&
certain number of trials.

Right

Partial Observations

B Key idea: belief states.

B Represents the agent’ s current belief about the possible states it
might be in.

B Searching with no observation (sensor-less) in the vacuum world.
Actually pretty easy.

> Initial belief statesare 1, 2,’3,4,5,6,7, 8.

> After [right], belief states are {2, 4, 6, 8/.

> After [right;suck], belief states are #4, 8/.

> After[right,suck,left], belief states are 3, 7.

> After [right,suck,left,suck], belief states are {7}, which is goal.

Belief States Transitions in Sensor-less

Vacuum World

5,
=~
09

wu
D

~
N
A

S

D

A

Y
=]

{7}

4 o J L5
S
7 ﬁ 8 /(uj
L ¥) 4 i \7{4’8}
L
ol 8| |4 2
R F N
L R
A A
L S Ve
Ve ", LA <
W A
R

Transition of Belief States

(2) (b)

B Transition with/a deterministic B Transition with a non-deterministic

action RIGHT. action R/GHT.
B The number belief states usually

increases after a non-deterministic
action.

Searching with no observation

Belief States: The entire belief-state space contains every possible set
of physical states.

Initial State: Typically the set of all states inP, although in some cases
the agent will have more knowledge than this.

Actions: identify the illegal actions.

Transition model: Determinism v:s Non-determinism

Goal test: A belief state satisfies the 'goal only if all the physical states
in it satisfy GOAL-TEST.

Path test: Whether the cost of taking an action in a given belief state is
the same or have different costs in different states.

The preceding definitions enable the automatic construction of the belief-
state problem formulation from the definition of the underlying physical
problems.

Searching with Observations

B Transition of belief states consists of three stages:

Prediction Stage (same as sensor-less)
b~ = PREDICT(b, a)

Observation Prediction Stage determines the set of observations in the
predicted belief states.
POSSIBLE-PERCEPTS(b") = \{of/ 0 = PERCEPT(s), s = b"}

Update Stage determines bo, a subset of b~ which produces observation o.
bo = UPDATEb<, 0) = {s/| PERCEPT(s) =o0,s € b’}

RESuULTS(b,a) = {b,| bo = UPDATE(PREDICT(b, a), 0),
o € PosSIBLE-PERCEPTS(PREDICT(b, a))}

Vacuum World with Sensing

B Sensor senses location and dirt.

B R/GHT causes in two sets of
belief states in the ordinary
vacuum world.

B R/GHT causes in three sets
of belief states in the
slippery.vacuum world.

€Y

[B Clean)

determinism

[BDirty]

Right o 4‘}

. /) @ . —{J s [A,Dirty]

(b))

[B,Clean)

Non-determinism

Agents for Partially Observable Environment

B Keep estimating the belief states and AND-OR searching for solutions
to reach goal states..

Recursive State Estimator

b’ = UPDATE(PREDICT(b, a), 0)

B Kindergarten vacuum world:

Suck

[4 « N

[A4,Clean]

Localization in a Maze

B Map is known, and 4 sonar sensors work perfectly.
B MOVE moves the robot randomly to one of the adjacent squares.

@ o o} o o} @ o e} o}

o o o} o] (o} (o] O Q o]

o o 6] o (o] o o (o] o] [o] o

@ o] o o o @ o] o] o] o] (o] o o)

(a) Possible locations efirobot after E1 = NSW

o @ (o] [e] (o] o [e] (o] (o]
(e} o] o o o} [0} o (o]]

o o (o] o o o o o] o [o] (o]

o] o] o o o o o o (o] (o] o o o

(b) Possible locations of robot after E1 = NSW, E2 = NS

UpPDATE(PREDICT(UPDATE(b, NSW), MOVE), NS)

Review: vacuum world &+ —=

" \'/ = =] IR
N L L P L L N
/"/,--,Vg/ -S‘-xr--“" ~
R - R —

L "/_\ ‘£ A /_\: R L "/ A A N
\A "_f T = N Ll |2 —
) T 5 -

s Py
e 4»"’/ R T 2%
L =] = \r
o T >/

-

] |

‘ o L |/ i ‘ ZL‘_L‘:/J - *4“ ‘ R * L {/“‘ 4‘-::' ‘/r““
A1 [N N\ <) [12
A ap %

El

R

Sensor-less (belief states)

GOAL

Non-Deterministic with Sensors

Partially Observable

Online Search with Unknown Environments

actual — cost
m Competitive ratio = &+ cost - We'd like to minimize this.

m If all actions are reversible, online-DFS visits every,states exactly
twice in the worst case with enough memory.

m If some actions are irreversible, a small(or even finite!) competitive
ration can be difficult to achieve.

Search with Limited Memory

B Only one or a few states are stored.

B Single-point hill-climbing gets stuck at a local optimum; causing the
competitive ratio to be infinite.

B We may add some random walk (like'simulated annealing), but still
can be inefficient (exponential in the below example).

B Random walk is complete for finite'state spaces.

SHee

B H[s]: a table of cost estimates indexed by state, initially empty.
B resulf[s, a]: a table indexed by state and action initially empty.

Learning Real-Time A*(LRTA%)

LRTA*-AGENT(s')

[

O O0O~NOO1L B WN -

if GOAL-TEST(s')

return stop
if s’ is a new state (n6t in H)

H[s']| = h(s')
if s £ NULL

restift[sqa] '="s’

H[s] = "min,cacmions(s) LRTA*-C0ST(s, b, result[s, b], H)
a = argmin,e scrions(s) LRTA*-COST(s', b, result[s’, b, H)
s=¢
return a

Learning Real-Time A*(LRTA%)

B LRTA *keeps updating H[s].

B LRTA *always chooses the apparently best action.

B Optimism under uncertainty: If an action has never tried in a state,
LRTA *assumes the least possible cost — h(s). This encourages
exploration.

LRTA*-CosT(s, a,s’, H)

1 _if\s"\is-undefined return h(s)
2! Yelse return c(s, a,s’) + H[s']

. v

Learning Real-Time A*(LRTA%)

B Unlike A* LRTA *is NOT complete for infinite state spaces.

B With n states, LRTA~ guarantees to find optimum within_O(n12)
steps, but usually much faster.

B Shaded: agent’ s location, circle: Hls].updated.

/

(b)

ee
A

) O
OO
OOOOG
ejololole

(c)

(d)

(=Y
e
-
p—
. °
[y
=
f—
—

(e)

[ay
e
[y
°
5%
°
[ury
°
[y
[u—y
e

Summary -

m Steepest descent is extremely fast for simple problems.

B To avoid being trapped at local optima, SA adopts random walk
behaviors. Still quite fast for simple problems.

B Instead of one single state, GA adopts a.population of states.
Difficult to analyze though.

® AND-OR search for non-deterministic actions.

®m Sensor-less agents performs very well on many real-world problems.
They are robust since they don’ t rely on the accuracy of sensors.

m Sensors reduce the'size of the set of belief states, and may help
agents create a shorter plan.

® On-line search with limited memory can easily fail (adversary
argument), but are most popular nowadays.

®m LRTA* works well if memory are enough.

