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Outline
 Types of Games

 Formulation of games
 Perfect-Information Games

 Minimax and Negamax search
 α-β Pruning
 Pruning more
 Imperfect decision

 Stochastic Games
 EXPECTIMINIMAX
 Monte Carlo simulation

 Partially Observable Games
 Nash equilibriumPe
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Types of Games

 Adversarial search considers multi-agent and competitive
environments.

 Game theory consider both competitive and cooperative
environments.

 Most common games are deterministic, turn-taking, two-player,
zero-sum games with perfect information.
 Let’s focus on this type of games for a while until told otherwise.
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Types of Games

 : Initial state.
 PLAYER(s): The player in state s.
 ACTION(s): Returns the set of legal moves in state s.
 RESULT(s,a): The transition model, which returns the resulting state

of a move a in state s.
 TERMINAL-TEST(s): TRUE/FALSE. States where the game has

terminated are called terminal states.
 UTILITY(s,p): A utility function (also called objective or payoff).

 UTILITY(s) for 2-player, zero-sum games.
 Reason: UTILITY(s,p1) = -UTILITY (s,p2)Pe
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Game Tree
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E.g. Game Tree
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Optimal Decision
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MinMax Search
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Negamax Search



 Such simplified implementation of MINIMAX is called NEGAMAX.
 Copying the whole state (line 5) is memory consuming. Practical

implementation usually adopts s = BACKTRACK(s’, a).
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Properties of Minimax(Negamax) Search

 Completeness: Yes, if tree is finite.
 Optimality: Yes, against an optimal opponent. Otherwise?

 Risky moves that leads to complicated variations might be better to
revert unfavored situations.

 Time Complexity: .
 Space Complexity: (DFS); or O(m) if the algorithm generates

actions one at a time.

For chess, b ≈ 35, m ≈ 100 => optimal decision is practically intractable.
Do we need to explore every path?Pe
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α-β Pruning

 Not every node needs to be evaluated.
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Main Idea of α-β Pruning 

 If m is better than n for Player, n will never be reached in actual play.
 Once we have found enough about n to reach this conclusion, we can

prune it.
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α-β Pruning

 Keeping α (maximum lower bound) for the maximum utility for player
MAX, initialized to -∞ .

 Keeping β (minimum upper bound) for the minimum utility for player
MIN, initialized to ∞ .

 Only the moves within the [α, β] window are expanded; otherwise its
branches are pruned.

 The pruning does NOT compromise solution quality.
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Implementation of α-β Pruning 
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α-β Pruning
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α-β Pruning
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α-β Pruning
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Implementation of α-β Pruning 

 NEGAMAX + ALPHABATE  = AB-NEGAMAX.
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Efficiency of α-β Pruning 

 Highly depends on the order of moves.
 Good move ordering improves effectiveness of pruning.

 Worst case: no pruning ->           .
 Best case: Always check the best move first.

 Still need to check every move for the first player.
 Only need to check one move for the second player.
 .

 Average case: 
 Very simple ordering usually achieves 

 Another good reason to adopt iterative deepening.
 Reduce the effective branch factor to .
 Make the search twice as deep as before.
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Imperfect Real-Time Decisions
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Cutting off search

MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35  m=4

4-ply lookahead is a hopeless chess player!

 4-ply ≈ human novice

 8-ply ≈ typical PC, human master

 12-ply ≈ Deep Blue, KasparovPe
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Evaluation Function
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Heuristic Where Minimax May Go Wrong

 MINIMAX chooses the right branch.
 EVAL with an error with zero mean and standard deviation σ .
 σ = 3, the left branch is better 54.6% of the time.
 σ = 5, the left branch is better 64.4% of the time.
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Forward Pruning

 Forward pruning does compromise solution quality (so is using EVAL)
 Some moves are pruned immediately without further consideration.

 Beam search is one way to forward pruning. Dangerous since the best
move might be pruned.

 PROBCUT uses the scores from previous searches to estimate the
probability that a node is outside the [α, β ] window
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Search vs. Table Lookup

 For many games, deep search usually helps little at the beginning.
 Instead, fast table looking up, huge databases, and statistical analysis

help more.
 Table lookup also helps a lot toward the end of games.

 The KBNK (king, bishop, knight vs. king) lookup:
462x62x61x2 = 3, 494, 568 possibilities.

 Bourzutschky (2006) solved all pawn-less 6-piece endgames and some
7-piece endgames.
A KQNKRBN endgame requires 517 moves!

 Finally, early exchange favors computers than humans -> deeper
search and more probable falls in lookup.Pe
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Stochastic Games

 Introduce CHANCE nodes into the minimax tree.
 Instead of searching for maximum/minimum values, we now search

for expected maximum/minimum values.
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EXPECTIMINIMAX

 EXPECTIMINIMAX gives perfect play. (in what sense?)
 Similar to MINIMAX, except we must also handle chance nodes.
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Sensitivity to Heuristic

 As mentioned before, we rarely can actually use UTILITY in
EXPECTMINIMAX.

 Instead, we use heuristic.
 However, unlike in MINIMAX, actual values of heuristic matter now.

(In MINIMAX, only relative order matters.)
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Performance of EXPECTIMINIMAX

 α-β pruning now does not apply to MAX/MIN nodes (why?).
 α-β pruning now still applies to CHANCE nodes (why?).
 Time Complexity:                                , where n is the number of

distinct dice rolls.
 Causes EXPECTIMINIMAX impractical in many cases.
 Solution: Instead of checking every MAX/MIN node, adopts Monte

Carlo simulation at chance nodes.
 Using random dice rolls to check only a certain number (decided by

quality/time limit) of paths.

Monte Carlo simulation
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Monte Carlo method

Approach: 
 Simulate n random paths by applying the policies
 Average the utilities of the n paths 

Eval = 1/10*[(1) + (3) + (50) + (50) + (50) + (−50) + (−50) + (50) + (15) + (−5)] = 11.4
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Monte Carlo method

Monte Carlo simulation

Monte Carlo methods rely on repeated random sampling to obtain 
numerical results.
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Las Vegas Method

Monte Carlo Method：More sampling, more closer to the optimal solution
Las Vegas Method：More sampling, higher opportunity to optimal solution.
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Partially Observable Games

 Different from stochastic games, unobservable parts are usually
controlled by opponents, not probability.

 Examples: Cards held by other player in bridge, folded cards in poker,
fogs in star craft.

 Different strategies may be applied and may all considered optimum
against different opponents.

 If equilibrium exists, it’s usually considered as optimum strategy.
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Nash Equilibrium

 By John Nash — check out “A Beautiful Mind (2001)” if you want
an informal introduction to him.

 Prisoners’ dilemma

 Read Chapter 17 if you want to know more.
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Summary

 MINIMAX search for zero-sum two-player games.
 Pruning techniques enable to search deeper.
 Due to time limit, heuristics are used to evaluate the “goodness” for

a player.
 For stochastic games, we need to introduce chance nodes and search

for expected maximum/minimum values.
 For stochastic games, α-β pruning is much less efficient, Monte

Carlo simulations are often adopted to speed up the search.
 With limited observation, optimality is usually not well defined. If

equilibrium exists, strategies in equilibrium are often considered
optimum.Pe
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