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Outline
 Types of Games

 Formulation of games
 Perfect-Information Games

 Minimax and Negamax search
 α-β Pruning
 Pruning more
 Imperfect decision
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Types of Games

 Adversarial search considers multi-agent and competitive
environments.

 Game theory consider both competitive and cooperative
environments.

 Most common games are deterministic, turn-taking, two-player,
zero-sum games with perfect information.
 Let’s focus on this type of games for a while until told otherwise.
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Types of Games

 : Initial state.
 PLAYER(s): The player in state s.
 ACTION(s): Returns the set of legal moves in state s.
 RESULT(s,a): The transition model, which returns the resulting state

of a move a in state s.
 TERMINAL-TEST(s): TRUE/FALSE. States where the game has

terminated are called terminal states.
 UTILITY(s,p): A utility function (also called objective or payoff).

 UTILITY(s) for 2-player, zero-sum games.
 Reason: UTILITY(s,p1) = -UTILITY (s,p2)Pe
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Game Tree
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E.g. Game Tree
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Optimal Decision
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MinMax Search
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Negamax Search



 Such simplified implementation of MINIMAX is called NEGAMAX.
 Copying the whole state (line 5) is memory consuming. Practical

implementation usually adopts s = BACKTRACK(s’, a).
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Properties of Minimax(Negamax) Search

 Completeness: Yes, if tree is finite.
 Optimality: Yes, against an optimal opponent. Otherwise?

 Risky moves that leads to complicated variations might be better to
revert unfavored situations.

 Time Complexity: .
 Space Complexity: (DFS); or O(m) if the algorithm generates

actions one at a time.

For chess, b ≈ 35, m ≈ 100 => optimal decision is practically intractable.
Do we need to explore every path?Pe
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α-β Pruning

 Not every node needs to be evaluated.
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Main Idea of α-β Pruning 

 If m is better than n for Player, n will never be reached in actual play.
 Once we have found enough about n to reach this conclusion, we can

prune it.
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α-β Pruning

 Keeping α (maximum lower bound) for the maximum utility for player
MAX, initialized to -∞ .

 Keeping β (minimum upper bound) for the minimum utility for player
MIN, initialized to ∞ .

 Only the moves within the [α, β] window are expanded; otherwise its
branches are pruned.

 The pruning does NOT compromise solution quality.
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Implementation of α-β Pruning 
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α-β Pruning
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α-β Pruning
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α-β Pruning
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Implementation of α-β Pruning 

 NEGAMAX + ALPHABATE  = AB-NEGAMAX.
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Efficiency of α-β Pruning 

 Highly depends on the order of moves.
 Good move ordering improves effectiveness of pruning.

 Worst case: no pruning ->           .
 Best case: Always check the best move first.

 Still need to check every move for the first player.
 Only need to check one move for the second player.
 .

 Average case: 
 Very simple ordering usually achieves 

 Another good reason to adopt iterative deepening.
 Reduce the effective branch factor to .
 Make the search twice as deep as before.
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Imperfect Real-Time Decisions
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Cutting off search

MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35  m=4

4-ply lookahead is a hopeless chess player!

 4-ply ≈ human novice

 8-ply ≈ typical PC, human master

 12-ply ≈ Deep Blue, KasparovPe
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Evaluation Function
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Heuristic Where Minimax May Go Wrong

 MINIMAX chooses the right branch.
 EVAL with an error with zero mean and standard deviation σ .
 σ = 3, the left branch is better 54.6% of the time.
 σ = 5, the left branch is better 64.4% of the time.
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Forward Pruning

 Forward pruning does compromise solution quality (so is using EVAL)
 Some moves are pruned immediately without further consideration.

 Beam search is one way to forward pruning. Dangerous since the best
move might be pruned.

 PROBCUT uses the scores from previous searches to estimate the
probability that a node is outside the [α, β ] window
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Search vs. Table Lookup

 For many games, deep search usually helps little at the beginning.
 Instead, fast table looking up, huge databases, and statistical analysis

help more.
 Table lookup also helps a lot toward the end of games.

 The KBNK (king, bishop, knight vs. king) lookup:
462x62x61x2 = 3, 494, 568 possibilities.

 Bourzutschky (2006) solved all pawn-less 6-piece endgames and some
7-piece endgames.
A KQNKRBN endgame requires 517 moves!

 Finally, early exchange favors computers than humans -> deeper
search and more probable falls in lookup.Pe
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Stochastic Games

 Introduce CHANCE nodes into the minimax tree.
 Instead of searching for maximum/minimum values, we now search

for expected maximum/minimum values.

Pe
ng
ju
 R
en
@X
JT
U 
20
20



EXPECTIMINIMAX

 EXPECTIMINIMAX gives perfect play. (in what sense?)
 Similar to MINIMAX, except we must also handle chance nodes.
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Sensitivity to Heuristic

 As mentioned before, we rarely can actually use UTILITY in
EXPECTMINIMAX.

 Instead, we use heuristic.
 However, unlike in MINIMAX, actual values of heuristic matter now.

(In MINIMAX, only relative order matters.)
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Performance of EXPECTIMINIMAX

 α-β pruning now does not apply to MAX/MIN nodes (why?).
 α-β pruning now still applies to CHANCE nodes (why?).
 Time Complexity:                                , where n is the number of

distinct dice rolls.
 Causes EXPECTIMINIMAX impractical in many cases.
 Solution: Instead of checking every MAX/MIN node, adopts Monte

Carlo simulation at chance nodes.
 Using random dice rolls to check only a certain number (decided by

quality/time limit) of paths.

Monte Carlo simulation
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Monte Carlo method

Approach: 
 Simulate n random paths by applying the policies
 Average the utilities of the n paths 

Eval = 1/10*[(1) + (3) + (50) + (50) + (50) + (−50) + (−50) + (50) + (15) + (−5)] = 11.4
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Monte Carlo method

Monte Carlo simulation

Monte Carlo methods rely on repeated random sampling to obtain 
numerical results.
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Las Vegas Method

Monte Carlo Method：More sampling, more closer to the optimal solution
Las Vegas Method：More sampling, higher opportunity to optimal solution.
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Partially Observable Games

 Different from stochastic games, unobservable parts are usually
controlled by opponents, not probability.

 Examples: Cards held by other player in bridge, folded cards in poker,
fogs in star craft.

 Different strategies may be applied and may all considered optimum
against different opponents.

 If equilibrium exists, it’s usually considered as optimum strategy.
Pe
ng
ju
 R
en
@X
JT
U 
20
20



Nash Equilibrium

 By John Nash — check out “A Beautiful Mind (2001)” if you want
an informal introduction to him.

 Prisoners’ dilemma

 Read Chapter 17 if you want to know more.
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Summary

 MINIMAX search for zero-sum two-player games.
 Pruning techniques enable to search deeper.
 Due to time limit, heuristics are used to evaluate the “goodness” for

a player.
 For stochastic games, we need to introduce chance nodes and search

for expected maximum/minimum values.
 For stochastic games, α-β pruning is much less efficient, Monte

Carlo simulations are often adopted to speed up the search.
 With limited observation, optimality is usually not well defined. If

equilibrium exists, strategies in equilibrium are often considered
optimum.Pe
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