Introduction to Al

Chapter05
Adversarial Search: Game Playing

Pengju Ren@IAIR

Outline

B Types of Games
» Formulation of games
B Perfect-Information Games
» Minimax and Negamax search
» o-f Pruning
» Pruning more
> Imperfect'decision
B Stochastic,.Gameés
> EXPECTIMINIMAX
» ‘Monte Carlo simulation
W Partially Observable Games
» Nash equilibrium

Types of Games

®m Adversarial search considers multi-agent and competitive

environments.

® Game theory consider both competitive and cooperative

environments.

B Most common games are deterministic;-turn-taking, two-player,
zero-sum games with perfect information.
> Let’s focus on this type of games for a while until told otherwise.

Deterministic Stochastic
Perfect_Information Chess, Checkers, | Backgammon,
Go, Othello Monopoly

Imperfect Information

Battleships, Bingo

Bridge, Poker

Types of Games

So: Initial state.
PLAYER(s). The player in state s.
ACTION(s). Returns the set of legal moves.instate s.
RESULT(s,a). The transition model, . which returns the resulting state
of a move ain state s.
TERMINAL-TEST(s). TRUE/FALSE. States where the game has
terminated are called terminal states.
UTILITY(s,p). A utility-function (also called objective or payoff).
> UTILITY(s) \for 2-player, zero-sum games.
> Reason:’UT/LITUs,p1) = -UTILITY (s,p2)

Game Tree

MAX (x)
X] X X
MIN (o)
oO(X X0 X X
MAX (x) o 0
X(X|0 X0 X|O X
MIN (o) X X
.. X X|Oo((Oo|X|O X
TERMINAL x|o| |[x[x[o][o]x
o X|0o|X X
Utility 5] 0 +1

E.g. Game Tree

7

] T

6,1

5,1,1

5,2

4,2,1

3,1,1,1,1

3,2,2

4,3

3,3,1

2,2,2,1

000
0000
X N
ooo
Optimal Decision :
MINIMAX(S) =
(UTILITY(S) if TERMINAL-TEST(s)

N\

MaX,e Actions(s) MINIMAX (RESULT(s, a)) \INDLAYER(S) = MAX
| Minae Actions(s) MINIMAX(RESUIR(33a))) if PLAYER(s) = MIN

MAX

MIN

MinMax Search

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the ¢ in ACTIONS(state) maximizing MINeVALUE(RESULT(q, state))

function MAX-VALUE(state) returns a(wutilityvalue
if TERMINAL-TEST(state) then return’UTILITY (state)
v — —00
for a, sin SUCCESSORS(state)'do v« MAX(v, MIN-VALUE(s))
return v

functionMWUN<VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V¢ 00
for a, sin SUCCESSORS(state) do v« MIN(v, MAX-VALUE(s))
return v

Negamax Search

B Such simplified implementation of M/INIMAX s called NEGAMAX.
B Copying the whole state (line 5) is memory consuming. Practical
implementation usually adopts s.= BACKTRACK(s’, a).

NEGAMAX(s)

1 if TERMINAL-TEST(S)

2 return UTILITY (S, p)

3 result = =

4 for each’a€ ACTION(s)

5 s’ = REsuLT(s, a)

6 result = max(result, —NEGAMAX(s"))
7 return result

Properties of Minimax(Negamax) Search

® Completeness: Yes, if tree is finite.
®m Optimality: Yes, against an optimal opponent. Otherwise?
> Risky moves that leads to complicated variations might be better to
revert unfavored situations.
B Time Complexity: O0(b™).
®m Space Complexity: 0(bm)(DFS); or O(m) if the algorithm generates
actions one at a time.

For chess, b =~ 35, m-~ 100 => optimal decision is practically intractable.
Do we need to explore every path?

a-f Pruning :

B Not every node needs to be evaluated.
3

MINIMAX(root) = min(max(min(3,10), min(2, x)), max(15, min(y, z)))

= min(max(3, min(2, x)), max(15, min(y, z)))
= min(3, max(15, min(y, z)))
= 3

Main Idea of -8 Pruning

m If mis better than nfor Player, nwill never be reachéd, in actual play.
B Once we have found enough about 7 to reach this conclusion, we can

prune it.

Player

Opponent

Player

Opponent

o-f Pruning

B Keeping a (maximum lower bound) for the maximum utility for player
MAL, initialized to -co .

B Keeping B (minimum upper bound) for.the minimum utility for player
MIN, initialized to o .

B Only the moves within the [oa; B] window are expanded; otherwise its
branches are pruned.

B The pruning does NOT compromise solution quality.

Implementation of a-8 Pruning

ALPHABETA(S, v, 3) ‘

1 if TERMINAL-TEST(s)

2 return UTILITY(S)

3 if PLAYER(s) == MAX

4 ==

5 for each a € ACTION(S)

6 v = max(v, ALPHABETA(RESULT(s, a), a, 5))
7 if v> (0 return'y

8 a = max(a,\v)

9 return v
10 else
11 V\=C0
12 for each a € ACTION(s)
13 v = min(v, ALPHABETA(RESULT(s, a), «, 3))
14 if « > v return v
15 5 = min(3, V)
16 return v

a-f Pruning -

[0, 0]

[—OO' 00]

\‘ a = —oo
=
‘ | -« >
A\ T
VAW p=3
[—c0ji00]
(b)
a =3
*—>
<€ >
R 3

a-f Pruning

a-f Pruning

[3, 0]
[~o0,3]
[3, 00 15,3] [3,00
2
(e) [—o0,3] 2][-03] X [3
(
X _ LS\ V2 x
3[(10] (2] \UBXC Y 2

(f)

Implementation of a-8 Pruning

B NEGAMAX + ALPHABATE = AB-NEGAMAX.

AB-NEGAMAX(s, a,)

1
2
3
4
5
6
7
8
9

if TERMINAL-TEST(s)
return UTILITY(Ss, p)
v = —00
for each a € ACTION(s)
s’ = REsSuLT(s;, a)
v = max(v,~AB-NEGAMAX(s', -3, —a))
if v>_ 5 return v
a =.max(a, v)
return v

Efficiency of a-B Pruning

® Highly depends on the order of moves.
» Good move ordering improves effectiveness of-pruning.
B Worst case: no pruning -> 0(b™)-
B Best case: Always check the best move first.
> Still need to check every move for the first player.
» Only need to check one:-movefor the second player.
> 0(bx1xbx1.)=0(b2
m Average case: 0(b3Tm
m Very simple ordering usually achieves O(b%l)
» Another good reason to adopt iterative deepening.
> Reduce the effective branch factor to /3 .

» Make the search twice as deep as before.

Imperfect Real-Time Decisions .

Use CUTOFF-TEST instead of TERMINAL-TEST

@ Can be as simple as depth limit.
@ Can adopt quiescence search to conquer the horizon effect.

@ Yet another good reason to adopt itérative deepening. Return the
current best move when time's_up.

o

r B . S 4

Use EVAL instead of UTILITY |

@ Usually maps state s\into feature space f;

o Typically use(linear 'combination of features: EVAL(s) = X;w;fi(s)

@ Need tofine tune weights for strong play.

MINIMAX(s) =
UTILITY(S) if TERMINAL-TEST(s)
MaXae Actions(s) MINIMAX(RESULT(s, a)) if PLAYER(s) = MAX

MiN e Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(s) = MIN

Cutting off search

MinimaxCutoffis identical to MinimaxValue except
Terminal?is replaced by Cutoff?
Utility is replaced by Eval
Does it work in practice?
bm =106 b=35 > m=4
4-ply lookahead is a hopeless chess player!
4-ply. £ human novice
8-ply = typical PC, human master
12-ply = Deep Blue, Kasparov

Evaluation Function °

Black to move White to move

White slightly better Black winning

EVAL(s) = Zwifi(s)

Heuristic Where Minimax May Go Wrong

MAX

MIN 60

29 300 300 300 60 62 65 62

B MINIMAX chooses the right branch.

B FVAL with an error with zero mean and standard deviation o.
B o= 3, the left branch is better 54.6% of the time.

B o= 5, the left branch is better 64.4% of the time.

Forward Pruning

B Forward pruning does compromise solution\quality (so is using £VAL)
> Some moves are pruned immediately.without further consideration.
® Beam search is one way to forward pruning. Dangerous since the best
move might be pruned.
B PROBCUT uses the scores from previous searches to estimate the
probability that a-node'is outside the [a,] window

Search vs. Table Lookup

B For many games, deep search usually helps little at the beginning.
B Instead, fast table looking up, huge databases, and statistical analysis
help more.
B Table lookup also helps a lot toward, the end of games.
» The KBNK (king, bishop, knight\vs. king) lookup:
462x62x61x2 = 3, 494, 568 ‘possibilities.
> Bourzutschky (2006).solved all pawn-less 6-piece endgames and some
7-piece endgames.
A KQNKRBN endgame requires 517 moves!
m Finally, early exchange favors computers than humans -> deeper
search and more probable falls in lookup.

Stochastic Games .

B Introduce CHANCE nodes into the minimax tree.
Instead of searching for maximum/minimum,values, we now search
for expected maximum/minimum values.

/
|
& \

EXPECTIMINIMAX 2

B EXPECTIMINIMAX gives perfect play. (in what sense?)
m Similar to MINIMAX, except we must also handle chance nodes.

EXPECTIMINIMAX(S) =
rUTILITY(s) if TERMINAL-TEST(S)
max, EXPECTIMINIMWX(RESULT(s,a)) if PLAYER(S) == MAX
< min, EXPECTIMINIMAX(RESULT(s, a)) if PLAYER(S) == MIN
| 2P (a) EXPECTIMINIMAX(RESULT(s, a)) if PLAYER(S) == CHANCE

v

\ 4

Sensitivity to Heuristic .

B As mentioned before, we rarely can actually use UT/LITYin
EXPECTMINIMAX.

B Instead, we use heuristic.
B However, unlike in M/INIMAX, actual values of heuristic matter now.
(In MINIMAX, only relative order matters.)

MAX

CHANCE

30 30 1 1 20 20 400 400

{1,2,3,4} — {1,20, 30,400}

Performance of EXPECTIMINIMAX

B a-f pruning now does not apply to MAX/MIN nodes (why?).
B a-f pruning now still applies to CHANCE nodes (why?).
® Time Complexity: 0(b™) - 0(b™n™) , where nis the number of

distinct dice rolls.
B Causes EXPECTIMINIMAX impractical in many cases.

B Solution: Instead of checking every MAX/MI/N node, adopts Monte

Carlo simulation at chance nodes.

m Using random dice rolls to check only a certain number (decided by

quality/time-limit) of paths.

argmax Zp(s)MINMAX (RESULT (s, a))
s

N
1
Monte Carlo simulation argmaxw ZMINIMAX(RESULT(S;'JG))
=1

Monte Carlo method

Approach:
e Simulate n random paths by applying the policies
e Average the utilities of the n paths

()23
AN
(0.33) (0.33) (0.33)
S Y Mg

(0 ()2 (5
/ X

(05). (0:5) (05) (0.5) (0.5) (0.5)

Fo\ F O\

250 50 1 3 5 15

Eval = 1/10*[(1) + (3) + (50) + (50) + (50) + (-50) + (=50) + (50) + (15) + (-5)] = 11.4

Monte Carlo method

argmax Zp(s)MINMAX(RESULT(s a))QfLQ

Monte Carlo simulation argmax—ZMI

npoints = 10000
circle_count =0

etwean 0 and 1
xcoordinate = randoml

ycoordinate = ran ‘

if (xcoordinat nate) inside circle

then ci % t '=¢circle count + 1
end do

PI = 4.0*circle_count/npoints

do j = 1,npoints
generate 2 random numbers

SULT (s;,a))

AS= (2r)2= 4r?
Ac; = 7mr?
n =4 x—

Monte Carlo methods rely on repeated random samplmg to obtain
numerical results.

Las Vegas Method e

Monte Carlo Method: More sampling, more closer to the optimal solution
Las Vegas Method: More sampling, higher opportunity to optimal solution.

Partially Observable Games

oz zice il Z
—_— — —
Tz zRlc iz ©

m Different from stochastic games, unobservable parts are usually
controlled by opponents, not probability.

B Examples: Cards held by other player in bridge, folded cards in poker,
fogs in star craft.

m Different strategies may be applied and may all considered optimum
against different opponents.

B If equilibrium exists, it s usually considered as optimum strategy.

SR B R
—_—
k] [ofaloelos

Nash Equilibrium

® By John Nash — check out “A Beautiful Mind (2001)" /if you want
an informal introduction to him.

Information Definition

A set of strategies is a Nash equilibrium if no player can do
better by unilaterally changing his or her strategy.

K

B Prisoners’ dilemma

B stays silent B confesses

A stayssilent | Each serves 1 yr | A: 5 yrs; B: free
A confesses | A: free; B: 5 yrs | Each serves 3 yrs

B Read Chapter 17 if you want to know more.

Summary

® MINIMAX search for zero-sum two-player games.

Pruning techniques enable to search deeper.

B Due to time limit, heuristics are used to-evaluate the “goodness” for
a player.

B For stochastic games, we need_ to introduce chance nodes and search
for expected maximum/minimum values.

B For stochastic games, a-f pruning is much less efficient, Monte
Carlo simulationsiare often adopted to speed up the search.

B With limited observation, optimality is usually not well defined. If
equilibrium; exists, strategies in equilibrium are often considered
optimum.

