
Introduction to AI
Chapter06 ：Constraint Satisfaction

Problems(CSP)

Pengju Ren
Institute of Artificial Intelligence and Robotics

pengjuren@xjtu.edu.cnPe
ng
ju
 R
en
@X
JT
U
20
20

Outline

 Constraint Satisfaction Problems (CSP)

 Backtracking search for CSPs

 Forward checking

 Local search for CSPs

Pe
ng
ju
 R
en
@X
JT
U
20
20

CSP

Standard search problem:
state is a "black box“ – any data structure that supports successor

function, heuristic function, and goal test
CSP:

state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than
standard search algorithms

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example: Map-Coloring

 Variables: WA, NT, Q, NSW, V, SA, T
 Domains: Di = {red, green, blue}
 Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), (green,red),
(green,blue), (blue,red), (blue,green)}

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example: Map-Coloring

Solutions are complete and consistent assignments,
e.g., WA = red, NT = green, Q = red, NSW = green,

V = red, SA = blue, T = green

Pe
ng
ju
 R
en
@X
JT
U
20
20

Real-world CSPs

 Assignment problems
 e.g., who teaches what class

 Timetabling problems
 e.g., which class is offered when and where?

 Transportation scheduling
 Factory scheduling
 Notice that many real-world problems involve real-valued variables

 Have E events and T time slots
 Each event e must be put in

exactly one time slot
 Each time slot t can have at most

one event

Pe
ng
ju
 R
en
@X
JT
U
20
20

Varieties of CSPs

 Discrete variables
 finite domains:

 n variables, domain size d  O(dn) complete assignments
 e.g., Boolean CSPs, incl. ~Boolean satisfiability (NP-complete)

 infinite domains:
 integers, strings, etc.
 e.g., job scheduling, variables are start/end days for each job
 need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

 Continuous variables
 e.g., start/end times for Hubble Space Telescope

observations
 linear constraints solvable in polynomial time by linear

programming

Pe
ng
ju
 R
en
@X
JT
U
20
20

Constraint graph

 Binary CSP: each constraint relates two variables

 Constraint graph: nodes are variables, arcs are constraints

Pe
ng
ju
 R
en
@X
JT
U
20
20

Varieties of constraints

 Unary constraints involve a single variable,

 e.g., SA ≠ green

 Binary constraints involve pairs of variables,

 e.g., SA ≠ WA

 Higher-order constraints involve 3 or more variables,

 e.g., cryptarithmetic column constraints

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example: Cryptarithmetic

 Variables: F T U W R O X1 X2 X3

 Domains: {0,1,2,3,4,5,6,7,8,9}
 Constraints: Alldiff (F,T,U,W,R,O)

 O + O = R + 10 · X1

 X1 + W + W = U + 10 · X2

 X2 + T + T = O + 10 · X3

 X3 = F, T ≠ 0, F ≠ 0

Pe
ng
ju
 R
en
@X
JT
U
20
20

Standard search formulation (incremental)

Let's start with the straight forward approach, then fix it
States are defined by the values assigned so far
 Initial state: the empty assignment { }
 Successor function: assign a value to an unassigned variable

that does not conflict with current assignment
 fail if no legal assignments

 Goal test: the current assignment is complete
1. This is the same for all CSPs
2. Every solution appears at depth n with n variables

 use depth-first search
3. Path is irrelevant, so can also use complete-state formulationPe

ng
ju
 R
en
@X
JT
U
20
20

Backtracking search

 Variable assignments are commutative, i.e.,

[WA = red then NT = green] same as [NT = green then WA = red]

 Only need to consider assignments to a single variable at each

node
 b = d and there are d^n leaves

 Depth-first search for CSPs with single-variable assignments is

called backtracking search

 Backtracking search is the basic uninformed algorithm for CSPs

 Can solve n-queens for n ≈ 25Pe
ng
ju
 R
en
@X
JT
U
20
20

Backtracking search

Pe
ng
ju
 R
en
@X
JT
U
20
20

Backtracking example

Pe
ng
ju
 R
en
@X
JT
U
20
20

Backtracking example

Pe
ng
ju
 R
en
@X
JT
U
20
20

Backtracking example

Pe
ng
ju
 R
en
@X
JT
U
20
20

Backtracking example

Pe
ng
ju
 R
en
@X
JT
U
20
20

18

Pe
ng
ju
 R
en
@X
JT
U
20
20

Improving backtracking efficiency

 General-purpose methods can give huge gains in speed:

 Which variable should be assigned next?

 In what order should its values be tried?

 Can we detect inevitable failure early?

Pe
ng
ju
 R
en
@X
JT
U
20
20

Most constrained variable

 Most constrained variable:

choose the variable with the fewest legal values

 a.k.a. minimum remaining values (MRV) heuristic

Which variable should be assigned next?Pe
ng
ju
 R
en
@X
JT
U
20
20

Least constraining value

 Given a variable, choose the least constraining value:

 the one that rules out the fewest values in the remaining
variables

 Combining these heuristics makes 1000 queens feasible

Which variable should be assigned next?

Pe
ng
ju
 R
en
@X
JT
U
20
20

Most constraining variable

 Tie-breaker among most constrained variables

 Most constraining variable (Degree heuristic):

 choose the variable with the most constraints on remaining
variables

In what order should its values be tried?Pe
ng
ju
 R
en
@X
JT
U
20
20

Forward checking

 Idea:
 Keep track of remaining legal values for unassigned variables

 Filtering：cross off bad options (violate constrains)

 Terminate search when any variable has no legal values

Pe
ng
ju
 R
en
@X
JT
U
20
20

Forward checking

 Idea:
 Keep track of remaining legal values for unassigned variables

 Filtering：cross off bad options (violate constrains)

 Terminate search when any variable has no legal values

Pe
ng
ju
 R
en
@X
JT
U
20
20

Forward checking

 Idea:
 Keep track of remaining legal values for unassigned variables

 Filtering：cross off bad options (violate constrains)

 Terminate search when any variable has no legal values

Pe
ng
ju
 R
en
@X
JT
U
20
20

Forward checking

 Idea:
 Keep track of remaining legal values for unassigned variables

 Filtering：cross off bad options (violate constrains)

 Terminate search when any variable has no legal values

Pe
ng
ju
 R
en
@X
JT
U
20
20

Constraint propagation

 Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all
failures:

 NT and SA cannot both be blue!

 Constraint propagation repeatedly enforces constraints locally
Pe
ng
ju
 R
en
@X
JT
U
20
20

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

Pe
ng
ju
 R
en
@X
JT
U
20
20

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

Pe
ng
ju
 R
en
@X
JT
U
20
20

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be recheckedPe
ng
ju
 R
en
@X
JT
U
20
20

Arc consistency

 Simplest form of propagation makes each arc consistent

 X Y is consistent iff

for every value x of X there is some allowed y

 If X loses a value, neighbors of X need to be rechecked

 Arc consistency detects failure earlier than forward checking

 Can be run as a preprocessor or after each assignment

Pe
ng
ju
 R
en
@X
JT
U
20
20

Arc consistency algorithm AC-3

 Time complexity: O(n2d3)，n is number of variables;
d is number of domains;

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example

33

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

I

A4={1, 2, 3, 4, 5, 6, 7, 8, 9}
A6={1, 2, 3, 4, 5, 6, 7, 8, 9}
E3={1, 2, 3, 4, 5, 6, 7, 8, 9}
E6={1, 2, 3, 4, 5, 6, 7, 8, 9}
I6 ={1, 2, 3, 4, 5, 6, 7, 8, 9}

4 8 3 9 2 1 6 5 7

9 6 7 3 4 5 8 2 1

2 5 1 8 7 6 4 9 3

5 4 8 1 3 2 9 7 6

7 2 9 5 6 4 1 3 8

1 3 6 7 9 8 2 4 5

3 7 2 6 8 9 5 1 4

8 1 4 2 5 3 7 6 9

6 9 5 4 1 7 3 8 2

A

B

C

D

E

F

G

H

I

Most constrained variable:
choose the variable with the
fewest legal values

1 2 3 4 5 6 7 8 9

Pe
ng
ju
 R
en
@X
JT
U
20
20

Local search for CSPs

 Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned

 To apply to CSPs:
 allow states with unsatisfied constraints
 operators reassign variable values

 Variable selection: randomly select any conflicted variable
 Value selection by min-conflicts heuristic:

 choose value that violates the fewest constraints
 i.e., hill-climb with h(n) = total number of violated constraints

Pe
ng
ju
 R
en
@X
JT
U
20
20

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Actions: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

 Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

Pe
ng
ju
 R
en
@X
JT
U
20
20

Structure and decomposition

36

The structure of problem, represented as constraint
graph, can be used to find solution quickly, and the
only way to deal with real world problem is to
decompose it in to many subproblems.

Pe
ng
ju
 R
en
@X
JT
U
20
20

Tree-structured CSPs

 Choose a variable as root, order variables from root to leaves such
that every node’s parent precedes it in the ordering

37

 For j from n down to 2, apply ARC-CONSISTENT(Parent(Xj),Xj)
 For i from 1 to n, assign Xj consistently with Parent(Xi)

Theorem: if the constraint graph has no loops, the CSP can be solved
in time 𝟐

Pe
ng
ju
 R
en
@X
JT
U
20
20

Nearly tree-structured CSPs

38

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size => runtime very fast for small𝒄 𝟐
Pe
ng
ju
 R
en
@X
JT
U
20
20

Summary

 CSPs are a special kind of problem:

 states defined by values of a fixed set of variables

 goal test defined by constraints on variable values

 Backtracking = depth-first search with one variable assigned per
node

 Variable ordering and value selection heuristics help significantly

 Forward checking prevents assignments that guarantee later failure

 Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies (AC-3)

 Iterative min-conflicts is usually effective in practice

 Tree-structured CSPs can be solved in linear time

Pe
ng
ju
 R
en
@X
JT
U
20
20

