i

T £ fmind
—E g 5uﬁwarnﬂ‘§§ - knowledge
it S e,gg.mgm:i;’::,:.::.ﬂh_g technology
I nt I'Od u Ct ion tO AI g mf;;h ﬂﬂ!,!,ﬂ?lé §m_tg|!g g!:emnnnhe
“EE 5 1 Siovherspace g FEaTs S = B Fulures
Chapter06 : Constraint Satisfaction "hgig"g%gpmﬁ;ggf"’eg =0

Problems(CSP) *"’

Pengju Ren
Institute of Artificial Intelligence and Robotic:
pengjuren@xjtu.edu.cn

1

Outline

® Constraint Satisfaction Problems (CSP)
® Backtracking search for CSPs
® Forward checking

® Local search for CSPs

CSP .

Standard search problem:
state is a "black box“ — any data structure that supports successor
function, heuristic function, and goal test
CSP:
state is defined by variables X; with\values from domain D;
goal test is a set of constraints specifying allowable combinations of
values for subsets of variables
Simple example of-a formal representation language
Allows useful general-purpose algorithms with more power than

standard search algorithms

000
o000
| X XN
00
o0
o
\
é !
S
L=
Northern
Territory
Weastarn Queansland
Australia
South b o)
Australia

New South Wales

Tasmania

e Variables: WA, NT, Q, NSW, V, SA, T
Domains: D; = {red, green, blue}

e Constraints: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green), (red,blue), (green,red),
(green,blue), (blue,red), (blue,green)}

Example: Map-Coloring .

8d

LI = ‘. '

Solutions are complete and consistent assignments,
e.g., WA =red, NT = green, Q =red, NSW = green,
V =red, SA =blue, T = green

Real-world CSPs

evlent € time 5'1°t ! m Have E events and T time slots
:>.< B Each-évent e must be putin
2 2 exactly one time slot
3e—— *3 B Each time slot t can have at most
\ g one event

Assignment problems
e.g., who teaches what class
Timetabling problems
e.g.;which class is offered when and where?
Transportation scheduling
Factory scheduling
Notice that many real-world problems involve real-valued variables

Varieties of CSPs

e Discrete variables

finite domains:
n variables, domain size d 2 O(d") complete assignments
e.g., Boolean CSPs, incl. ~Boolean satisfiability (NP-complete)
infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job
need a constraint language, e.g., StartJob, + 5 < StartJob,

e Continuousvariables

e.g-, start/end times for Hubble Space Telescope
observations

linear constraints solvable in polynomial time by linear
programming

Constraint graph

e Binary CSP: each constraint relates two variables
e Constraint graph: nodes are variables, arcs are constraints

o 1T

o
O,

Varieties of constraints .

e Unary constraints involve a single variable,
e e.g., SA #green

e Binary constraints involve pairs of variables,
o e.g., SA#WA

e Higher-order constraints involve 3 or more variables,
e e.d., cryptarithmetic column constraints

Example: Cryptarithmetic

T WO FY (TJ (U F
+ T WO
F O UR

e Variables: FTUW RO X, X, X;
e Demains: {0,1,2,3,4,5,6,7,8,9}
e, Constraints: Alldiff (F,T,U,W,R,0)
e O+0=R+10-X,
o X, +W+W=U+10-"X,
o X,+T+T=0+10"X,
o X;=F, T#0,F#0

Standard search formulation (incremental)

Let's start with the straight forward approach, then fix it
States are defined by the values assigned.so far
e Initial state: the empty assignment {}
e Successor function: assign a value to an unassigned variable

that does not conflict with current assignment

- fail if no legal assignments
e Goal test: the current assignment is complete
This is the same'for all CSPs

Every solution appears at depth n with n variables
- use depth-first search

Path is'irrelevant, so can also use complete-state formulation

Backtracking search .

e Variable assignments are commutative, i.e.,
[WA =red then NT = green] same as [NT ='green then WA =red]
e Only need to consider assignments to-a single variable at each

node
- b =d and there are $d*n$.leaves

e Depth-first search for CSPs with single-variable assignments is
called backtrackingsearch

e Backtracking'search is the basic uninformed algorithm for CSPs

e Can solve n-queens for n= 25

Backtracking search .

function BACKTRACKING-SEARCH(csp) returns a solution, or\failfire
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assigfiment, esp) returns a solution, or
failure
if assignment is complete then retdrn assignment
var + SELECT- UNASSIGNED- VARIABLE(Variables/csp], assignment, csp)
for each|value In ORDER-DOMAIN-VALUES(var, assignment, csp) do
" if valueis consistént with assignment according to Constraints[csp|[then
add { var< value | to assignment
résult€> RECURSIVE- BACKTRACKING(assignment, csp)
if result +# failue then return result
remove { var = value } from assignment
return failure

ol

Backtracking example

R
4‘1(i

Backtracking example

. ﬂ]— N

//'T\

 AOR SO &4

Backtracking example T
,/T\’
o o €5
/\

= e

Backtracking example oo
/T\’
o g g
/\
o

AN

18

Improving backtracking efficiency

e General-purpose methods can give huge gains)in speed:
e Which variable should be assigned next?
e In what order should its values be tried?
o Can we detect inevitable failure early?

Most constrained variable :

e Most constrained variable:
choose the variable with the fewest legal values

f\
) hh...f
o T
4

e a.k.a. minimum_remaining values (MRV) heuristic

Which variable should be assigned next?

Least constraining value

e Given a variable, choose the least constraining value:

o the one that rules out the fewest values in the remaining
variables

Allows 1 value for SA

O e

e Combining these heuristics makes 1000 queens feasible

Which variable should be assigned next?

Most constraining variable

e Tie-breaker among most constrained variables
e Most constraining variable (Degree heuristic):

e choose the variable with the most constraints on remaining
variables

L LT

In what order should its values be tried?

Forward checking

e ldea:

Keep track of remaining legal values for unassigned variables

Filtering: cross off bad options (violate constrains)
Terminate search when any, variable has no legal values

O

WA

NT

Q

NSW

ENE

ED N

Forward checking

e ldea:
o Keep track of remaining legal values for unassigned variables
o Filtering: cross off bad options (violate constrains)
o Terminate search when any_ variable has no legal values

SSR S

WA NT. Q NSW v SA T
ENE|EYEENE|NVE|ENE|/ENEIESE
Pp. sy EEFfEENEETE HETE

Forward checking

e ldea:
o Keep track of remaining legal values for unassigned variables
o Filtering: cross off bad options (violate constrains)
o Terminate search when any_ variable has no legal values

e e

WA NT Q NSW v SA T
BN/ Em o E[meEm o E[E O E[EE N
E| PEErE/EEE[EEN E[E0E
P H[ae E[EEE (RN

Forward checking

e ldea:
o Keep track of remaining legal values for unassigned variables
o Filtering: cross off bad options (violate constrains)
o Terminate search when any_ variable has no legal values

ST U S-S

WA NT Q NSW v SA

ENEjE” eV E/ENEEYEENE
= HEEFEENEENE _ I BN |
= M| 1 B il 1L
= i3 an ____ I

Constraint propagation

e Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all

O A

WA

NT

Q

NSW

v

ENEENFE|ENEENE|ENE|ENEENE
[\EFEfFEEfFEENE EETE
AN\] N EIETE I Bl

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

Arc consistency

e Simplest form of propagation makes each arc consistent
e X ->Yis consistent iff
for every value x of X there is some allowed y

T g

WA Q NSW v SA T
=== HaaN il EErE HETH

~¢—

Arc consistency

e Simplest form of propagation makes each arc consistent

e X —->Yis consistent iff

for every value x of X there is some allowed y

 SSR o

S
WA NT

Q

NSW v SA

.

l

B (I

\%_/

Arc consistency

e Simplest form of propagation makes each arc consistent
e X ->Yis consistent iff

for every value x of X there is some allowed y

e

WA Q NSW v SA T
=1 B E mpx0 . E[ELE

=&

o If Xloses-a value, neighbors of X need to be rechecked

Arc consistency

e Simplest form of propagation makes each arc consistent
e X ->Yis consistent iff
for every value x of X there is some allowed y

S SRR

WA Q NSW SA T
=1 l ‘il)i[!(l) (LIl
— ______.-ll'"
<

o If Xloses-a value, neighbors of X need to be rechecked
e Arc consistency detects failure earlier than forward checking
e Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3 :

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in.esp

while gueue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REVISE(csp, X;, X;) then
if size of D; = 0 then return false
for each X, in X; NEIGHBORS | X/} do
add (X, X;) to quewe
return frue

function REVISE(csp, X< X ;) returns true iff we revise the domain of X;
revised «— false
foreach.x in D;do
ifno value y in D; allows (z,y) to satisfy the constraint between X; and X ; then
delete x from D;
revised < true
return revised

e Time complexity: O(n?d3), nis number of variables;
d is number of domains;

Example

3 4 5 6 7Z,8.9

3 4 5 6 7 8 9 1 2

2

1

N ™ M[(O©O 0 BT O N
v N O M ¥ |~ ©O ©
© 00 (OO «~~ N/ M O
= B O N < 00O M M~
N MMM O OO0 O
o M 0| v™ U MNO N
M M >0 O ON N O
00 O© WIT N MO ™~ O
<t O N (WO N (™M 0 ©
< o VU OWuw o ITH
- (e0) (o))
(o] < | O N (O ™
n O N 0[O ™
N -
™M |« N[O N
™ «~— | 0O © | N e
(o)) N~ o0
< o OV O wWww QO T H

9}
9}

8
8

8, 9}
8, 9}

9}

8

7

6

5

4

3

2

Most constrained variable:

choose the variable with the

fewest legal values

Local search for CSPs

o H|II-cI|mb|ng, simulated annealing typically work with
"complete" states, i.e., all variables assigned

e To apply to CSPs:
allow states with unsatisfied-constraints
operators reassign variable values
e Variable selection: randomly select any conflicted variable
e Value selection by min-conflicts heuristic:
choose value'that violates the fewest constraints
i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Actions: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

i
B b

h= a5

e GivenTrandom initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

Structure and decomposition

The structure of problem, represented as constraint
graph, can be used to find solution‘quickly, and the
only way to deal with real world problem is to
decompose it in to.many subproblems.

36

Tree-structured CSPs .

Theorem: if the constraint graph has no loops, the CSP can be solved

in time 0 (nd?)
AHEHOHENE

B Choose a-variable as root, order variables from root to leaves such
that every.node’s parent precedes it in the ordering

B Forjfrom n down to 2, apply ARC-CONSISTENT(Parent(Xj),Xj)

B Forifrom 1 to n, assign Xj consistently with Parent(Xi)

37

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
SO 9@
ol L€
())

Cutset-conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c => runtime 0(d‘:- (n— c)dz)very fast for small c

38

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints.on variable values

Backtracking = depth-first search with one variable assigned per
node

Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint-propagation (e.g., arc consistency) does additional work
to constrain'values and detect inconsistencies (AC-3)

Iterative min-conflicts is usually effective in practice
Tree-structured CSPs can be solved in linear time

