
Introduction to AI
Chapter13 

Uncertainty

Pengju Ren@IAIR

Pe
ng
ju
 R
en
@X
JT
U 
20
20



Outline

 Uncertainty
 Probability
 Syntax and Semantics
 Inference
 Independence and Bayes’ Rule
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机器人搬运实验
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Example: Car diagnosis
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Wumpus World

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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E.g. Wumpus World

iff [i,j] contains a pit
iff [i,j] is breezy

Include only                      in the probability model
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Why your girlfriend is angry ?

1. Because she uncovered a leftover profile Weibo picture of you 
and your ex.

2. Because you didn't respond to her complaint the way 
she wanted you to.

3. Because she made something up in her head that she wanted 
you to do, and you didn't do it.

4. You peek other girls when you are hanging out.
5. She had a new hair style, but you didn’t notice that.
6. …. 
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Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., p(       |no reported accidents) = 0.06

These are not claims of a“probabilistic tendency”in the current situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:
e.g., p(       |no reported accidents, 5 a.m.) = 0.15Pe
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Making decisions under uncertainty

Suppose I believe the following:
p(        gets me there on time| . . .) = 0.04
p(        gets me there on time| . . .) = 0.70
p(        gets me there on time| . . .) = 0.95
p(        gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theoryPe
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Propositions
Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B :
event a = set of sample points where A(ω)= true
event ¬a = set of sample points where A(ω)= false
event a ∧ b = points where A(ω)= true and B(ω)= true

Often in AI applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
e.g., A= true, B = false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)

p(a ∨ b) = p(¬a ∧ b) + p(a ∧ ¬b) + p(a ∧ b)
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Prior probability
Prior or unconditional probabilities of propositions

e.g., p(Cavity = true) = 0.1 and p(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
p(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of 
every atomic event on those r.v.s (i.e., every sample point)

p(Weather, Cavity) = a 4 × 2 matrix of values:

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample point
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Probability basics

Begin with a set Ω—the sample space
e.g., 6 possible rolls of a die.
ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment p(ω) for every ω ∈ Ω s.t.

0 ≤ p (ω) ≤ 1
Σωp(ω) = 1

e.g., p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6.

An event A is any subset of Ω

E.g., p (die roll < 4) = p(1) + p(2) + p(3) = 1/6 + 1/6 + 1/6 = 1/2
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Probability basics

Marginalization:

Chain rule:

Bayes rule:Pe
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Quiz 1

Suppose there are only two weather: Sunny and Rainy
And weather is only depended on pervious day’s condition.

p(D1=Sunny) = 0.9
p(D2=Sunny|D1=Sunny) = 0.8
p(D2=Rainy|D1=Sunny) = ?
p(D2=Sunny|D1=Rainy)= 0.6
p(D2=Rainy|D1=Rainy)= ?

p(D2=Sunny)=?        p(D3=Sunny)= ?Pe
ng
ju
 R
en
@X
JT
U 
20
20



Quiz 2

C: Coronavirus； + or -: Test

p(C)=0.01, p(+|C)=0.9, p(+|¬C)=0.2

Question

p(C|+)= ?

p(¬C |-)= ?p(¬C)=0.99, p(-|C)=0.1, p(-|¬C)=0.8

Joint Probabilities
p(+,C)=0.009
p(-,C)=0.001
p(+,¬C)=p(+|¬C)*p(¬C)=0.198
p(-,¬C)=p(-|¬C)*p(¬C)=0.792Pe
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Inference by enumeration
With the joint distribution:

For any proposition   , sum the atomic events where it is true:
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Inference by enumeration
With the joint distribution:

For any proposition   , sum the atomic events where it is true:
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Inference by enumeration
With the joint distribution:

Can also compute conditional probabilities:   
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Normalization

Denominator can be viewed as a normalization constant α

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing out the
hidden variables:

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity             where d is the largest arity
2) Space complexity            to store the joint distribution
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Independence
A and B are independent iff

32 entries reduced to 8 and 4; for n independent biased coins, 2^n → n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?

Weather = {Sunny, Rainy, Cloudy, Snow} 
Cavity, Toothache, Catch = {True, False}
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Conditional independence

has                  independent entries
If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

The same independence holds if I haven’t got a cavity:

Catch is conditionally independent of Toothache given Cavity:

Equivalent statements:Pe
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Conditional independence

has                  independent entries
If I have a high GPA, the probability that I got MIT offer it doesn’t depend
on whether I already have a Stanford offer:

The same independence holds if I haven’t got a high GPA:

MIT is conditionally independent of Stanford given GPA:

Equivalent statements:Pe
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Conditional independence contd.
Write out full joint distribution using chain rule:

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of 
the representation of the joint distribution from exponential in n to 
linear in n.

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.
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Conditional independence contd.
Write out full joint distribution using chain rule:

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of 
the representation of the joint distribution from exponential in n to 
linear in n.

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.
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Bayes’ Rule
Product rule 

Or in distribution form

Useful for assessing diagnostic probability from causal probability:

E.g., let M be Cancer, S be (+/-) test results:

Note: posterior probability of cancer still very small!
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Bayes’ Rule and conditional independence

This is an example of a naive Bayes model:

Total number of parameters is linear in n

GPA

MIT Stanford

CMU Berkerly
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Quiz 3

To detect Coronavirus, we run two conditional dependent Test: T1 and T2

p(c)=0.01, P(+|c)=0.9, p(-|¬c)=0.8 (+,- for T1 and T2 are the same)

p(T2=+|T1=+) = ?

C

T1 T2
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Answer Quiz 3

( | )* ( ) ( | )* ( ) 0.01*0.9
( | ) 0.043

( ) ( | )* ( ) ( | )* ( ) 0.01*0.9 0.2*0.99

p C p C p C p C
p C

p p C p C p C p C

 
    

      

( | )* ( ) ( | )* ( ) 0.2*0.99
( | ) 0.957

( ) ( | )* ( ) ( | )* ( ) 0.01*0.9 0.2*0.99

p C p C p C p C
p C

p p C p C p C p C

     
     

      

( | ) ( ) 0.9*0.01
( ) 0.2069

( | ) 0.435

p C p C
p

p C


   



So， 0.9*0.043+0.2*0.957=0.0387+0.1914=0.23;

0.23/0.2069=1.112，Increase 11.2%
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Answer Quiz 3
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Homework (12am before next Class)：

To detect Coronavirus, we run two conditional dependent Test: T1 and T2

p(c)=0.01, P(+|c)=0.9, p(+|¬c)=0.2 (+,- for T1 and T2 are the same)

1) How many ‘+’ results in a row, can determine P(c) > 0.9 ?

2) If P(+|c)=0.9, P(+|¬c)=0.1, How many ‘+’ results in a row,  can determine P(c)>0.9?

3) If P(+|c)=0.95, P(+|¬c)=0.2, How many ‘+’ results in a row,  can determine P(c)>0.9?
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Quiz 4：Different type

H

S R

S: The weather is Sunny;
R: I get promoted/Rise;
H: Happy 

p(S)=0.7       p(H|S,R) = 1
p(R)=0.01     p(H|¬S, R) = 0.9

p(H|S,¬R) = 0.7
p(H|¬S, ¬R)=0.1

Question 1:  p(R|S) = ? 
Question 2:  p(R|H,S) = ? 
Question 3:  p(R|H) = ?
Question 4:  p(R|H, ¬S) = ?
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Answers: Different type

1*0.01
0.0142

1*0.01 0.7*0.99
 



Q2：

Q3：
( , )

( | )
( )

p R H
p R H

p H
 ( , , ) ( , , )

( )

p R H S p R H S

p H

 


,

,

( | , ) ( , ) ( | , ) ( , )

( ) ( | , )i S S

j R R

p H R S p R S p H R S p R S

p H p H i j 
 

  



0.9*0.01*0.3 1*0.01*0.7 0.0027 0.007

0.0185
1*0.7*0.01 0.9*0.3*0.01 0.7*0.7*0.99 0.1*0.3*0.99 0.5245

 
  

  

( | , ) ( )

( | , ) ( ) ( | , ) / ( )

p H R S p R

p H S R p R p H S R p R


  
( | , ) ( , ) / ( )

( , , ) ( , , ) / (S

p H R S p R S p S

p H S R p H S R p


  ）

( | , )p R H S
( , , )

( , )

p H R S

p H S


( | , ) ( , )

( , , ) ( , , )

p H R S p R S

p H S R p H S R
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Answers: Different type

Q4：

( | , )p R H S ( , , )

( , )

p R H S

p H S





( | , ) ( , )

( , )

p H R S p R S

p H S

 




( | , ) ( , )

( , , ) ( , , )

p H R S p R S

p H S R P H S R

 


   

0.9*0.01*0.3

0.9*0.01*0.3 ( | , ) ( , )p H R S p R S


    

0.0027
0.08333

0.0027 0.0297
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Second Thoughts about Conditional Dependence

H

S R

p(R|S) = P(R)=0.01
p(R|H,S) = 0.0142
p(R|H) = 0.0185
p(R|H,¬S) = 0.00833

Independence does not imply conditional independence.
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Four Relationship “D-separation”

Z

X YZ

X Y
Z

Y

X

Z

X

Y

Common Parent

cascade

V-Structure
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Back to the Wumpus World

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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E.g. Wumpus World

iff [i,j] contains a pit
iff [i,j] is breezy

Include only                      in the probability model

Position 1,2 and 2,1 both feel breezy. Which is the better next move ?
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Specifying the probability model

The full joint distribution is 

Apply product rule: 

(Do it this way to get                                 ) 

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
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Observations and query
We know the following facts:

Query is

Define                           other than          and

For inference by enumeration, we have

Grows exponentially with number of squares!
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Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

Manipulate query into a form where we can use this!

Define
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Using conditional independence contd.
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Using conditional independence contd.
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Summary

 Probability is a rigorous formalism for uncertain knowledge

 Joint probability distribution specifies probability of every atomic event

 Queries can be answered by summing over atomic events

 For nontrivial domains, we must find a way to reduce the joint size

 Independence and conditional independence provide the tools
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