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Bayesian Networks

Pengju Ren@IAIR

How to build models to reason under uncertainty according to the laws of probability theory
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Outline

 Syntax
 Semantics
 Parameterized distributions
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Bayesian Networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈“directly influences”)
a conditional distribution for each node given its parents:

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over      for each combination of parent valuesPe
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Simple Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given CavityPe
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn’t call. Sometimes it’s set off by minor 
earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm ON
– An earthquake can set the alarm ON
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness

 A CPT for Boolean Xi with k Boolean parents has

2k rows for the combinations of parent values

 Each row requires one number p for Xi = true

(the number for Xi = false is just 1 − p)

 If each variable has no more than k parents,

the complete network requires                  numbers

 I.e., grows linearly with n, vs.             for the full joint distribution

 For burglary net,                                        numbers (vs.                      )

P(B,E,A,J,M)=P(B)P(E)P(A|B,E)P(J|A)P(M|A)Pe
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Global semantics

 Global semantics defines the full joint distribution
as the product of the local conditional distributions:

Chain Rule
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Constructing Bayesian networks

 Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables 
2. For            to 

add     to the network
select parents from                    such that

This choice of parents guarantees the global semantics:
(chain rule)

(by construction)
3. Give the CPT(conditional probability table）
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Example

Suppose we choose the ordering M, J, A, B, E
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Example contd.

 Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for 
humans!)

 Assessing conditional probabilities is hard in noncausal directions
 Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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GPA

MIT Stanford

Intelligent Hard working

Another Example
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Suppose we choose the ordering M, J, A, B, E

Suppose we choose the ordering M, S, G, I, H

MIT
Stanford

Intelligent

Hard working

GPA

Another Example
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Example: Car diagnosis
Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
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Example: Car insurance
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Local semantics

 Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics global semantics
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Markov blanket

 Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

Z

X Y
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Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:

E.g., Boolean functions

E.g., numerical relationships among continuous variables

for some function f
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . . Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

Number of parameters linear in number of parents
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Hybrid (discrete+continuous) networks

 Discrete (Subsidy ? and Buys ? ); continuous (Harvest and Cost )

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families
1) Continuous variable, discrete+continuous parents (e.g., Cost )
2) Discrete variable, continuous parents (e.g., Buys ? )
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Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents
Most common is the linear Gaussian model, e.g.,:

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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Continuous child variables

All-continuous network with LG distributions
full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian (CG) network 
i.e., a multivariate Gaussian over all continuous variables for each 
combination of discrete variable values
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Discrete variable w/ continuous parents

 Discrete variable w/ continuous parents

 Probit distribution uses integral of Gaussian
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Why the probit ?

1. It’s sort of the right shape
2. Can view as hard threshold whose location is subject to noise
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Discerte variable contd.
 Sigmoid (or logit) distribution also used in neural networks:

 Sigmoid has similar shape to probit but much longer tails:
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Summary

 Bayes nets provide a natural representation for (causally induced)

 Conditional independence

 Topology + CPTs = compact representation of joint distribution

 Generally easy for (non)experts to construct

 Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

 Continuous variables parameterized distributions (e.g., linear Gaussian)
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