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Outline

B Exact inference by enumeration

B Exact inference by variable-elimination

B Approximate inference by stochastic simulation

B Approximate inference by Markov chain Monte Carlo



Basics

B Query variables : X

B Evidence variable : E

®m Hidden variable : Y (not evidence nor query)
B Posterior probability distribution : P(X]|e)




Inference tasks

B Simple queries: compute posterior marginal P(X;|E = e)
e.g. P(NoGas|Gauge = empty, Lights = on,Starts =false)
m Conjunctive queries: P(X;, X;|E =e) = P(X;|\E= e)P(X;|X; E = e)
®m Optimal decisions: decision networks.include utility information;
probabilistic inference required for P (outcome|action, evidence)
® Value of information: which‘evidence to seek next?
m Sensitivity analysis:; which probability values are most critical?
B Explanation: why do | need a new starter motor?



Inference by enumeration

m Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation.
m Simple query on the burglary network:

P(X|e) =aP(X,e) = aZP(X, e,y)
y

P(B|jm) = P(B,jm)|P(jm) =aP(B;jm) =« Z ZaP(B, e a,jm)

e
Rewrite full joint entriesiusing product of CPT entries: @
P(B|j m)= «a E Z P(B)P(e)P(a|B,e)P(jla)P(m|a) }ZA\I
a

- aP(B)Ze;(e)ZaP(aIB, e)P(jla)P(m|a) @ @

Recursive depth-first enumeration: 0(Mspace, 0(d™)time
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P(B|jm)=a Z‘ ZaP(B)P(e)P(aIB, e)P(jla)P(m|a)
_ aP(B)zeP(e)ZaP(am, e)P(j|a)P(m|a)

Enumeration is inefficient: repeated computation
e.g., computes P(jla)P(m|a) and P(j|~a)P(m|—~a) for each value of e



Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over %
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {XH U\E /U Y

Q(X) < a distribution over X, initially enpty
for each value x; of X do

extend e with value z; for X

Q(z;) «— ENUMERATE-ALL(VARS[b7], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, €) returns a real number
if EmMpPTY?(7075) then return 1.0
YV+—FIRST(vars)
if. Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return », P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with Y = y




Inference by variable elimination -

B Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)=a P(B) ZPe)ZP (a| Bee) (j|a)jf’(m|a)}

fl(B) ° fg(E) “ fa(A,. B E) f4(A) f_r:(;l)
[ P(la) \ [ 0.90 " ( P(m|a) \ [ 0.70
n = (gl ) = ()@= pon ) = (601 )

P(B|j, )_<)¢f1(11'5’)><2f2 ) x Y f3(A,B,E) x f4(A) x f5(A)

fo(B, E)\& qu A, B, E) x £1(A) x f5(A)

= (f;(a B, E) xfy(a) xf5(a)) + (f3(—a, B, E) x f1(—a) x f5(—a))

P(B|j,m)=af (B th} ) x fs(B, E)



Inference by variable elimination
P(B|j,m) = af(B) X ng ) x fs(B, E)
Sum out e from the product of f2 and f6:
ng x fe(ByE)
- fg( VISR, &) + £ (—e) x f5(B, —e)
Therefore: P(B|jim) = af(B) x f7(B)




Variable elimination: Basic operations

B Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Z f1 X . Xfr=F 1 x...xfizfol XewsX fro =f1 X.. X fx

X

Assume f; X...X f; do not depend on X
B Pointwise produceof factors f; and f2:

fl(xl!"'ij!ylv"!yk) XfZ(le"'JyszlJ"'le)
=f(X1,.. 0, X\, Y1 Vio Z1,- -, 2))

E.g.. fi(a,b)Xfz(b,c)=f(ab,c)
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Al B| f(AB) | B| Cc| £(B,C)| A| B |~€)\Js4, B,C)
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Figure 14.10 ~lllustrating pointwise multiplication: f; (A, B) x f5(B,C) = f3(A, B, C).

f(B,C)

Y £5(A,B,C) = f3(a, B,C) + f3(-a, B,C)
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Variable elimination algorithm

function ELIMINATION-ASK(X, €, bn) returns _a-distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying,joint distribution P( Xy, ..., X},

factors — []; vars«— REVERSE(VARS[bn])
for each var in vatrs do

factors — MAKE=FACTOR(var, e)|factors]

if yar is_a hidden variable then factors«— SumM-OuT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))




Irrelevant variable

B Consider the query P(JohnCalls|Burglary = true)

P(J|b) = aP(b)ZP(e)ZP(aw, e)PU|a)ZP(m|a)

e a m @
Sum over m is identically 1; M is irrelevantto the query

Thm 1: Yis irrelevant unless Y& Ancestors({X} U E) ﬁ
Here, X = JohnCalls, E={Burglary}, and @ @
Ancestors({X} U.E) ={Alarm, Earthquake}

so MaryGalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Every variable that is not an ancestor of a query variable or
evidence variable is irrelevant to the query



Inference by stochastic simulation

B Basic idea:
1) Draw N samples from a sampling distribution “§
2) Compute an approximate posterior‘probability P
3) Show this converges to the true probability p

® Outline:
— Direct sampling: Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior



Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event.sampled from bn
inputs: bn, a belief network specifying joint| distribution P( X1, ..., X,,)

x <— an event with n elements
fori = 1tondo
z; < a random sample from P(X; | parents(X;))
given the values of \Parents(X;) in x
return x
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Inference tasks
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Inference tasks
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Inference tasks
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Inference tasks
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Inference tasks
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Sampling from an empty network contd.

B Probability that PR/IORSAMPLE generates a particular event
n
Sps (X1,...,Xp) = 1—[ 1P(xi|parents(Xi)) = P(xq1,.75,x)
!:

i.e., the true prior probability

E.g.. Sps(t,f,t,t) =0.5%x0.9 x0.8x0.9=0.324=P(t,f,t1t)
B Let Npg(xy,...,x,) be the number of samples generated for
event Xi,...,X, Then we have

LimP(xq,.. 5xp)'= imNpg(x4,...,x,)/N

N—-oo N—-oo

= Sps(Xy, 00, xp) = P(xl,...,xn)

B That is, estimates derived from PR/IORSAMPLE are consistent
Shorthand: P(xy,...,x,) = P(xy,...,xy)



Rejection sampling :

estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an éstimate.of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X < PRIOR-SAMPLE(bn)
if x is consistent with e then
NJ[z] «— NJ[z]+1 where % is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true
Of these, 8 have Rain = frue and 19 have Rain = false.
P(Rain|Spinkler = true) = NORMALIZE((8,19)) = (0.296,0.704)
Similar to a basic real-world empirical estimation procedure



Analysis of rejection sampling

P(X|e) = aNpg(X,e) (algorithm defn.)
— Npg(X,e)/Nps (e) (normalized by Ngs(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
- P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if Ple)is small
P(e) drops_ off-exponentially with number of evidence variables



Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,

and weight each sample by the likelihood it accords the-evidence

function LIKELIHOOD-WEIGHTING( X, e, bn, N)teturns.an estimate of P(X|e)
local variables: W, a vector of weighted-counts over X, initially zero

for y=1to Ndo

X, w <« WEIGHTED-SAMPLE(DNR)

W|z| «— W]|z| + w where“sisthe value of X in x
return NORMAMZE(W [ X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

X'« an‘event with n elements; w+1
fory=1tondo
if X; has a value z; in e
then w— w x P(X;= z; | parents(X;))
else z; < a random sample from P(X; | parents(X;))
return x, w




Likelihood weighting example
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Likelihood weighting example

Sample 1
Evidence is Burglary=false and Earthquake=false. \We will.now query the
remaining nodes in the network to determine their state.
We now set the weight wis set to 1.0 and x to empty.
Burglary is an evidence variable with value false.”\I'herefore, we set

w = wp(Burglary=False) = (1.0)(0.999) = 0.999

x = (~b).
Earthquake is an evidence variable with'value false. Therefore, we set

w = wp(Earthquake=False),=/(0.999)(0.998) = 0.997

x = (~b,~e).
We sample from p(Alarm|Burglary=false, Earthquake=false) = <0.001, 0.999>;
suppose this returns, false.

X = (=by~e~a).
We sampledfrom p(JohnCalls|Alarm=false) = <0.05, 0.95>; suppose this
returns false.

X = (~b,~e,~a,~j).
We sample from p(MaryCalls|Alarm=false) = <0.01, 0.99>; suppose this
returns false.

x = (~b,~e,~a,~j,~m).




Likelihood weighting example

1 ~b,~e,~a,~j,~m

0.997
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Likelihood weighting example

Sample 2
Evidence is Alarm=false and JohnCalls=true. \We will now-query.the
remaining nodes in the network to determine their state.
We now set the weight wis set to 1.0 and x to empty.
Burglary is not an evidence variable so we sample.it;'suppose it return false.
x = (~b).
Earthquake is not an evidence variable so'we sample it; suppose it return false.
x = (~b,~e).
Alarm is an evidence variable with value false. Therefore, we set
w = wp(Alarm=false | Burglary=rfalse, Earthquake=false) = (1.0)(0.999) = 0.999
x = (~b,~e,~a).
JohnCalls is an evidence variable with value true. Therefore, we set
w = wp(JohnCalls=true | Alarm=false) = (0.999)(0.05) = 0.05
x = (~b;~e,~a,j).
MaryCalls is not an evidence variable so we sample it; suppose it return false.
x = (~b,~e,~a,j,~m).




Likelihood weighting example

A

~QL
1 ~b,~e,~a,~j,~m 0.997
2 ~b,~e,~a,j,~m 0.05




Likelihood weighting example

Sample 3
Evidence is JohnCalls=true and MaryCalls=true. \We will now query the
remaining nodes in the network to determine their state.
We now set the weight wis set to 1.0 and x to empty.
Burglary is not an evidence variable so we sample.it;'suppose it return false.
x = (~b).
Earthquake is not an evidence variable so'we sample it; suppose it return false.
x = (~b,~e).
Alarm is not an evidence variable se we sample it; suppose it return true.
x = (~b,~e,a).
JohnCalls is an evidence variable with value frue. Therefore, we set
w = wp(JohnCalls=true | Alarm=true) = (1.0)(0.90) = 0.90
X = (~by~ejajj).
MaryCalls is an“evidence variable with value true. Therefore, we set
w = wp(MaryCalls=true | Alarm=true) = (0.90)(0.70) = 0.63
x = (~b,~e,a,j,m).




Likelihood weighting example

* J\
~QL
1 ~b,~e,~a,~j,~m 0.997
2 ~b,~e,~a,j,~m 0.0%
3 ~b,~e,a,j,m 0.63




Likelihood weighting example

Sample 4
Evidence is Burglary=false, Earthquake=false, and JohnCalls=true. \We will
now query the remaining nodes in the network to determine their state.
We now set the weight wis set to 1.0 and x to empty.
Burglary is an evidence variable with value false.”\I'herefore, we set
w = wp(Burglary=False) = (1.0)(0.999) = 0.999
x = (~b).
Earthquake is an evidence variable with'value false. Therefore, we set
w = wp(Earthquake=False) = (0.999)(0.998) = 0.997
x = (~b,~e).
Alarm is not an evidence variable so we sample it; suppose it return false.
X = (~b,~e,~a):
JohnCalls.is\an-evidence variable with value frue. Therefore, we set
w = wp(dohnCalls=true | Alarm=false) = (0.997)(0.05) = 0.05
x = (~b,~e,~a,j).
MaryCalls is not an evidence variable so we sample it; suppose it return false.
x = (~b,~e,~a,j,~m).




Likelihood weighting example

1 ~b,~e,~a,~j,~m
~b,~e,~a,j,~m
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Likelihood weighting example

Sample 5
Evidence is Burglary=true and Earthquake=false. \We will.now query the
remaining nodes in the network to determine their state.
We now set the weight wis set to 1.0 and x to empty.
Burglary is an evidence variable with value true.. “Therefore, we set
w = wp(Burglary=True) = (1.0)(0.001) = 0.001
x = (b).
Earthquake is an evidence variable with'value false. Therefore, we set
w = wp(Earthquake=False) = (.001)(0.998) = 0.001
x = (b,~e).
Alarm is not an evidence variable so we sample it; suppose it return false.
x = (b,~e,~a).
JohnCalls.is\not*an evidence variable so we sample it; suppose it return false.
x = (b,~e;~a,~j,~m).
MaryCalls is not an evidence variable so we sample it; suppose it return false.
x = (b,~e,~a,~j,~m).




Likelihood weighting example

S R S

~b,~e,~a,~j,~m
~b,~e,~a,j,~m
~b,~e,a,j,m
b,~e,~a,~j,~m

( v
ht
0.997
0.1
0.63

0.001




Using Likelihood Weights

~n\)

1 ~b,~e,~a,~j,~m 0.997
2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63
4 b,~e,~a,~j,~m 0.001

In order to compute the probability of an event that is independent, such as
P(Burglary=true), we sum the weight for every sample where Burglary=true and
divide by the sum-of all of the weights. For example, in the above data, the only
sample where Burglary=true is sample 4, with weight 0.001. Therefore,

0.001 0.001

0.997 + 0.1+ 0.63 +0.001 1728 0008

P(Burglary = true) =



Using Likelihood Weights

~n\)

1 ~b,~e,~a,~j,~m 0.997
2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63
4 b,~e,~a,~j,~m 0.001

In order to compute the probability of:an event, X=true, that is dependent on another
event, Y=true, we sum the weights, of all samples where X=true and Y=true and
divide it by the sum of the weights of all samples where Y=true. For example, if we
want to compute p(a | j), we need to sum the weights of all samples where we have
both a and j(meaning Alarm=True and JohnCalls=True). We find that only sample 3
meets this criteria’with a weight of 0.63. We now sum the weights of all samples that
have j. Only samples 2 and 3 meet this criteria with weights 0.10 and 0.63,
respectively. Putting this all together, we have

063  0.63

014063 073 0863

P(alj) =



Using Likelihood Weights

~n\)

1 ~b,~e,~a,~j,~m 0.997
2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63
4 b,~e,~a,~j,~m 0.001

In the above data, the probability of an event that has never been observed is
zero. This is because\we have information about every node in the alarm
network in.every.sample. For example, if we want to compute p(b | a), we
need to sum the weights for all samples where we have both b and a. There
are no such samples. Therefore, the sum is zero and the probability is zero.



Likelihood weighting analysis
Sampling probability for WE/GHTSAMPLEls
Sws(z,e) = 1_[ P(z;|parents(Z;))

Note: pays attention to ewdence in ancestors.only
= somewhere “in between” prior and
posterior distribution

Weight for a given sample z,.e is

w(z,e)= ﬂm P(e;|parents(E;))
i=1
Weighted sampling probability is

Sy (z.em(Be) = H: P(z, | parents(Z, ))H P(e | parents(E.)) = P(z,e)
(by standard global semantics of network)

m




Likelihood weighting analysis

15(3: le) = « Z Nws(z,y,e)w(x,y,e) from LIKELIHOOD-WEIGHTING

Q

y
o/ Z Sws(z.y,e)w(z,y,e) for1arge, N
y

= o Z P(z.,y,e) by Equation (14.9)
y

o' P(x,e) = P(x|e)

it

Sys(z.w(z,e) N, Pz | parents(Z )] | P(e, | parents(E,)) = P(z,e)

i=1

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables

because a few samples have nearly all the total weight



Approximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov-blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns.dn.estimate of P(X|e)
local variables: N|X], a vector of counts over X, initially zero
7., the nonevideneewvariables in bn
X, the current.state/of the network, initially copied from e

initialize x with randém walues for the variables in Y
for j=1to Nde
for each Z,\in'Z do
sample the value of Z; in x from P(Z;|mb(Z;))
given the values of M B(Z;) in x
N[z] < N[z] 4+ 1 where z is the value of X in x
return NORMALIZE(IN[X])

Can also choose a variable to sample at random each time



The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see




MCMC example contd.

Estimate P(Rain|Sprinkler= true, WetGrass= true)
Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false-in the.samples.

E.g., visit 100 states
31 have Rain= true, 69 have Rain= false

P(Rain|Sprinkler=true, WetGrass = true)
— NORMAEIZE((31,60)) = (0.31,0. 69)

Theorem: chain‘approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability



Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rainis
Cloudy, Sprinkler, and WetGrass
Probability given the Markov blanket is calculated as follows:

7,

P(x;imb(X;)) = P(x}|parents(X))) P(z;|parents(Z;))
1 1z;echildren(X;)

Easily implemented. in message-passing parallel systems, brains
Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(x;lmb(X;)) won’t change much (law of large numbers)



Summary

B Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology
B Approximate inference by LW, MCNC:
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence-can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables



