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Outline

 Exact inference by enumeration
 Exact inference by variable elimination
 Approximate inference by stochastic simulation
 Approximate inference by Markov chain Monte Carlo
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Basics

 Query variables : X
 Evidence variable : E
 Hidden variable : Y (not evidence nor query)
 Posterior probability distribution : P(X|e)
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Inference tasks

 Simple queries: compute posterior marginal 
e.g. 

 Conjunctive queries:
 Optimal decisions: decision networks include utility information;

probabilistic inference required for
 Value of information: which evidence to seek next?
 Sensitivity analysis: which probability values are most critical?
 Explanation: why do I need a new starter motor?
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Inference by enumeration
 Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation.
 Simple query on the burglary network:

Rewrite full joint entries using product of CPT entries:

Recursive depth-first enumeration:          space,           time
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Enumeration tree

Enumeration is inefficient: repeated computation

e.g., computes P(j|a)P(m|a) and P(j|¬a)P(m|¬a) for each value of e
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Enumeration algorithm
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Inference by variable elimination
 Variable elimination: carry out summations right-to-left,

storing intermediate results (factors) to avoid recomputation
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Inference by variable elimination

Sum out e from the product of f2 and f6:

Therefore:
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Variable elimination: Basic operations
 Summing out a variable from a product of factors:

move any constant factors outside the summation

add up submatrices in pointwise product of remaining factors

Assume                    do not depend on X
 Pointwise produce of factors       and      :

E.g.,
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pointwise multiplication
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Variable elimination algorithm
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Irrelevant variable

 Consider the query P(JohnCalls|Burglary = true)

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈ Ancestors({X} ∪ E)

Here, X = JohnCalls, E= {Burglary}, and

Ancestors({X} ∪ E) = {Alarm, Earthquake}

so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Every variable that is not an ancestor of a query variable or 
evidence variable is irrelevant to the query
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Inference by stochastic simulation

 Basic idea:
1) Draw N samples from a sampling distribution 
2) Compute an approximate posterior probability 
3) Show this converges to the true probability 

 Outline:
– Direct sampling: Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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Sampling from an empty network
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Example
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Inference tasks
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Inference tasks
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Inference tasks
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Inference tasks
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Inference tasks
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Inference tasks
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Sampling from an empty network contd.

 Probability that PRIORSAMPLE generates a particular event

i.e., the true prior probability
E.g., 

 Let                         be the number of samples generated for 
event Then we have

 That is, estimates derived from PRIORSAMPLE are consistent

Shorthand:

Pe
ng
ju
 R
en
@X
JT
U 
20
20



Rejection sampling

estimated from samples agreeing with e

E.g., estimate P(Rain|Sprinkler = true) using 100 samples

27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small
P(e) drops off exponentially with number of evidence variables

(algorithm defn.)
(normalized by            )
(property of PRIORSAMPLE)
(defn. of conditional probability)
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,

and weight each sample by the likelihood it accords the evidence
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Likelihood weighting example
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Likelihood weighting example
Sample 1
Evidence is Burglary=false and Earthquake=false. We will now query the 
remaining nodes in the network to determine their state.
We now set the weight w is set to 1.0 and x to empty.
Burglary is an evidence variable with value false. Therefore, we set

w = wp(Burglary=False) = (1.0)(0.999) = 0.999
x = (~b).

Earthquake is an evidence variable with value false. Therefore, we set
w = wp(Earthquake=False) = (0.999)(0.998) = 0.997
x = (~b,~e).

We sample from p(Alarm|Burglary=false, Earthquake=false) = <0.001, 0.999>; 
suppose this returns false.

x = (~b,~e,~a).
We sample from p(JohnCalls|Alarm=false) = <0.05, 0.95>; suppose this 
returns false.

x = (~b,~e,~a,~j).
We sample from p(MaryCalls|Alarm=false) = <0.01, 0.99>; suppose this 
returns false.

x = (~b,~e,~a,~j,~m).
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Likelihood weighting example

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997
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Likelihood weighting example
Sample 2
Evidence is Alarm=false and JohnCalls=true. We will now query the 
remaining nodes in the network to determine their state.
We now set the weight w is set to 1.0 and x to empty.
Burglary is not an evidence variable so we sample it; suppose it return false.

x = (~b).
Earthquake is not an evidence variable so we sample it; suppose it return false.

x = (~b,~e).
Alarm is an evidence variable with value false. Therefore, we set
w = wp(Alarm=false | Burglary=false, Earthquake=false) = (1.0)(0.999) = 0.999

x = (~b,~e,~a).
JohnCalls is an evidence variable with value true. Therefore, we set

w = wp(JohnCalls=true | Alarm=false) = (0.999)(0.05) = 0.05
x = (~b,~e,~a,j).

MaryCalls is not an evidence variable so we sample it; suppose it return false.
x = (~b,~e,~a,j,~m).
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Likelihood weighting example

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.05
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Likelihood weighting example
Sample 3
Evidence is JohnCalls=true and MaryCalls=true. We will now query the 
remaining nodes in the network to determine their state.
We now set the weight w is set to 1.0 and x to empty.
Burglary is not an evidence variable so we sample it; suppose it return false.

x = (~b).
Earthquake is not an evidence variable so we sample it; suppose it return false.

x = (~b,~e).
Alarm is not an evidence variable so we sample it; suppose it return true.

x = (~b,~e,a).
JohnCalls is an evidence variable with value true. Therefore, we set

w = wp(JohnCalls=true | Alarm=true) = (1.0)(0.90) = 0.90
x = (~b,~e,a,j).

MaryCalls is an evidence variable with value true. Therefore, we set
w = wp(MaryCalls=true | Alarm=true) = (0.90)(0.70) = 0.63
x = (~b,~e,a,j,m).   
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Likelihood weighting example

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.05

3 ~b,~e,a,j,m 0.63
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Likelihood weighting example
Sample 4
Evidence is Burglary=false, Earthquake=false, and JohnCalls=true. We will 
now query the remaining nodes in the network to determine their state.
We now set the weight w is set to 1.0 and x to empty.
Burglary is an evidence variable with value false. Therefore, we set

w = wp(Burglary=False) = (1.0)(0.999) = 0.999
x = (~b).

Earthquake is an evidence variable with value false. Therefore, we set
w = wp(Earthquake=False) = (0.999)(0.998) = 0.997
x = (~b,~e).

Alarm is not an evidence variable so we sample it; suppose it return false.
x = (~b,~e,~a).

JohnCalls is an evidence variable with value true. Therefore, we set
w = wp(JohnCalls=true | Alarm=false) = (0.997)(0.05) = 0.05
x = (~b,~e,~a,j).

MaryCalls is not an evidence variable so we sample it; suppose it return false.
x = (~b,~e,~a,j,~m).
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Likelihood weighting example

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.05

3 ~b,~e,a,j,m 0.63

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.05+0.05=0.1

3 ~b,~e,a,j,m 0.63Pe
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Likelihood weighting example
Sample 5
Evidence is Burglary=true and Earthquake=false. We will now query the 
remaining nodes in the network to determine their state.
We now set the weight w is set to 1.0 and x to empty.
Burglary is an evidence variable with value true. Therefore, we set

w = wp(Burglary=True) = (1.0)(0.001) = 0.001
x = (b).

Earthquake is an evidence variable with value false. Therefore, we set
w = wp(Earthquake=False) = (.001)(0.998) = 0.001
x = (b,~e).

Alarm is not an evidence variable so we sample it; suppose it return false.
x = (b,~e,~a).

JohnCalls is not an evidence variable so we sample it; suppose it return false.
x = (b,~e,~a,~j,~m).

MaryCalls is not an evidence variable so we sample it; suppose it return false.
x = (b,~e,~a,~j,~m).
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Likelihood weighting example

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63

4 b,~e,~a,~j,~m 0.001

Pe
ng
ju
 R
en
@X
JT
U 
20
20



Using Likelihood Weights

In order to compute the probability of an event that is independent, such as 
P(Burglary=true), we sum the weight for every sample where Burglary=true and 
divide by the sum of all of the weights. For example, in the above data, the only 
sample where Burglary=true is sample 4, with weight 0.001. Therefore,     

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63

4 b,~e,~a,~j,~m 0.001
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Using Likelihood Weights

In order to compute the probability of an event, X=true, that is dependent on another 
event, Y=true, we sum the weights of all samples where X=true and Y=true and 
divide it by the sum of the weights of all samples where Y=true. For example, if we 
want to compute p(a | j), we need to sum the weights of all samples where we have 
both a and j (meaning Alarm=True and JohnCalls=True). We find that only sample 3 
meets this criteria with a weight of 0.63. We now sum the weights of all samples that 
have j. Only samples 2 and 3 meet this criteria with weights 0.10 and 0.63, 
respectively. Putting this all together, we have

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63

4 b,~e,~a,~j,~m 0.001
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Using Likelihood Weights

In the above data, the probability of an event that has never been observed is 
zero. This is because we have information about every node in the alarm 
network in every sample. For example, if we want to compute p(b | a), we 
need to sum the weights for all samples where we have both b and a. There 
are no such samples. Therefore, the sum is zero and the probability is zero.

Sample Key Weight

1 ~b,~e,~a,~j,~m 0.997

2 ~b,~e,~a,j,~m 0.1

3 ~b,~e,a,j,m 0.63

4 b,~e,~a,~j,~m 0.001
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Likelihood weighting analysis
Sampling probability for WEIGHTSAMPLE is

Note: pays attention to evidence in ancestors only
somewhere “in between” prior and

posterior distribution

Weight for a given sample z, e is

Weighted sampling probability is

(by standard global semantics of network)Pe
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Likelihood weighting analysis

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

Can also choose a variable to sample at random each time
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The Markov chain
With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see
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MCMC example contd.

Estimate P(Rain|Sprinkler= true, WetGrass= true)

Sample Cloudy or Rain given its Markov blanket, repeat.

Count number of times Rain is true and false in the samples.

E.g., visit 100 states

31 have Rain= true, 69 have Rain= false

Theorem: chain approaches stationary distribution:

long-run fraction of time spent in each state is exactly

proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

won’t change much (law of large numbers)
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Summary

 Exact inference by variable elimination:

– polytime on polytrees, NP-hard on general graphs

– space = time, very sensitive to topology

 Approximate inference by LW, MCMC:

– LW does poorly when there is lots of (downstream) evidence

– LW, MCMC generally insensitive to topology

– Convergence can be very slow with probabilities close to 1 or 0

– Can handle arbitrary combinations of discrete and continuous variables
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