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A fully discrete postprocessing mixed finite element scheme is considered for solving the time-dependent Navier—
Stokes equations. In the PP method, we only consider a non-linear equation in the coarse-level subspace and a linear
problem in the fine-level subspace. The analysis shows that the PP scheme can reach the same accuracy as the
standard Galerkin method with a very fine mesh size & by an appropriate choice of H. Numerical examples are
provided that confirm both the theoretical analysis and the corresponding improvement in computational efficiency.
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1. Introduction

This article is to study a fully discrete postprocessing
(PP) scheme for the time-dependent Navier—Stokes
equations.

u—vAu+ (u-Viu+Vp=f V(x,t)eQx]0,T],

V-u=0 V(x,1) € Q x [0, 7],
u=20 Vi € [0,T],Vx € 0Q,
u(x,0) =up Vx € Q.

(1.1)

Here Q is a bounded domain in R*> with a Lipschitz
continuous boundary, u is the velocity field, u, is
the initial velocity satisfying V -uy, = 0, p denotes the
pressure, f'is the density of body forces and v > 0 is the
kinetic viscosity.

For given positive constants # and H with
0 < h < H, we construct two finite element couples
(Xy.My) and (X,,M,). Based on the usual L>
orthogonal projection, Ait Ou Ammi and Marion
(1994), Marion and Xu (1995) introduced the space
splitting as follows

Xy = Xu+ X/

Note that X and X}’ are orthogonal with respect to
the scalar product (-,-). On the basis of this space
splitting, the final approximation u;, € X, can be
naturally decomposed into the large eddy component
v € Xy and the small eddy component wj, € X7,
According to the theory of the approximate inertial

manifold (AIM) for dissipative system initialised by
Foias et al. (1988), there exists a smooth mapping ¢
from Xy onto X} reflecting the approximate inter-
active relation between the large and small eddy
components such that

wip ~ d(ve),

which is frequently expressed via a steady Stokes
problem. Thus, a class of two-level schemes called non-
linear Galerkin method (NLG) was widely studied by
Marion and Temam (1989, 1990), Ait Ou Ammi and
Marion (1994), Marion and Xu (1995), in either the
finite element or spectral case. The finite element non-
linear Galerkin method addressed in Ait Ou Ammi and
Marion (1994) is described as: for a finite time 7" > 0,
find vy € Xy, w;, € X} and p, € M, such that for all
t € (0,7T]

Ve, v) +va(vy +wi, v) + b(vey + wi, vir, v)
+ b(VH7 W, V) - d(V,ph) = (fv V)a Vv e XH7
a(vig +wi,w) + b(vi, v, w) —dw,pin) = (f, w),
Vw € X1,
dvyg +wp,q) =0, Vg€ M,.
(1.2)

The detailed definitions of the bilinear forms af(,-),
d(-,-) and the trilinear form b(-,-,-) will be discussed in
section 2.

One of the main advantages of NLG and its variants
is that they can present higher convergence rate than the
classical Galerkin method as the analysis in Foias et al.
(1988), Marion and Temam (1989, 1990), Ait Ou Ammi

*Corresponding author. Email: yrhou@mail.xjtu.edu.cn

ISSN 1061-8562 print/ISSN 1029-0257 online
© 2009 Taylor & Francis

DOI: 10.1080/10618560903061329
http://www.informaworld.com



[Xi'an Jiaotong University] At: 04:07 8 September 2009

Downloaded By:

462 Q. Liu and Y. Hou

and Marion (1994), Marion and Xu (1995). Under the
assumptions that the initial data are given by satisfying
uy € (HAQ))* and f, f, € L™ (0,T:(L*(Q))%), then the
convergent results of Equation (1.2) are

[lu(t) = (var(6) +wi(0)|| g = O(h + H?),
Ip(0) = pu(D)l2 = O(h + H?), Vi e (0,1],

where (u, p) is the exact solution of the Navier—Stokes
equations.

However, recalling the construction of Equation
(1.2), it is easy to find that when computing vz, we have
to use the information of w;, and vice versa. This may
inspire doubt whether the better accuracy of NLG is
worth its computational cost. Therefore, a class of PP
techniques was developed to increase the accuracy and
computational efficiency of Galerkin methods for dis-
sipative partial differential equations in a series of work
by Titi et al. (1998, 1999, 2000, 2003). The PP method in
Titi and coworkers (1998, 1999), both its analysis and
understanding seemed to depend on the approach of
AIM, which was only applicable to the near attractor
case. Lately, Novo and coworkers (2005) developed the
PP mixed finite element for the Navier—Stokes equations.
They first compute a standard Galerkin approximation
(up, pr) € (Xg, My), then by solving a steady Stokes
problem to obtain a final approximation (uy;, pj) €
(X),,M,,). Specifically, find vy € Xy, u, € X), and p), €
M, for all t € (0,7] such that

(upe,v) +va(ump,v) + b((up,um,v) — dv,pu) = (f,v),

Vv € Xy,
va(up, v) — d(v, pn) = (f;v) = (1), v) = b(vu(T),
v(T),v), Vve X, (1.3)

The PP scheme (1.3) is cheaper to be implemented than
the finite element NLG (1.2) because the first equation
in (1.3) is actually the standard finite element Galerkin
method (SGM), which does not use the information on
the fine mesh at all. Only at the end of the integration,
we have to use the solution vy in order to refine the
solution. Hence, we think the finite element PP method
(1.3) is weakly coupled, which can be seen as a very
efficient scheme to some extent. Moreover, the PP
scheme (1.3) can obtain a similar high convergence rate
as the finite element NLG. Novo et al. (2005) has
shown that for all ¢ € (0,7]

[lu(t) = un(Dl2 = O + Li i),
lu(t) = un(0)] s = O(h + LLH?),
() = pa(Dll2 = O(h + Li 1),

where L, ~ [log(h)|">.

However, both in the NLG scheme (1.2) and PP
scheme (1.3), the interaction of the large and small
eddies components are reflected by a steady generalised
Stokes equations, such schemes are only accepted only
for t > t, when the time derivative of the solution
possesses enough regularity. People realised that, in
general, such relation should be time-dependent to
better describe the interaction. Hence, Titi ez al. (2003)
presented a more general PP scheme called the
dynamical postprocessing (DPP) scheme

(uHh V) + va(uHa V) + b((uHa Um, V) - d(vapH) = (fa V)7
Vv e Xy,

(e, v) + va(up, v) — d(v, pn) = (f,v) = b(vu(1),
vu(0),v), Vve X

(1.4)

The omission of all the small eddy components both in
PP and DPP leads to a weakly decoupled system. In
fact, such approximation can be seen as a first-order
linearisation of the non-linear term. This is only valid for
the large viscosity cases and our later numerical results
also agree with our presumption. To make the algorithms
applicable for the small viscosity cases, a second-order
linearisation of the non-linear term should be considered.
In thisarticle, we are dedicated to construct a fully discrete
PP scheme for the time-dependent Navier—Stokes equa-
tions, which is weakly coupled like that of Equation (1.3)
and can improve the L* and H' convergence rate about
one order compared with the scheme (1.3). In fact, we
have obtained the following results

[u(ty) — u}l]|,2 = O(k + h* + L,H*),
lu(t) — wjlljp = O(k + h+ LyH),
(1) = Pyl 2 = Ok + h + Ly i),

1 <n<N,

where (1}, p}) is given by our PP scheme, k is the time
step length, ¢, = nk and N = [T/k].

The remainder of this article is arranged as follows:
section 2 gives some mathematical preliminaries. The
detailed presentation of the PP scheme and its stability
are presented in section 3. The convergent results are
investigated in section 4. Finally, section 5 presents
some numerical examples to complement our theore-
tical analysis in previous sections.

2. Mathematical preliminaries
Let us denote
X = (HyQ)*, M=Lj(Q)

- {q c Lz(Q);/qux = 0}7
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H={ve (L*Q)*divv=0,v-n|, = 0},

V= {v e X;divv = 0}.

The spaces H and V are equipped with the following
scalar products and norms

(u,v) = / w-vdx, |u] = (u, u)%, Yu,v € H,
Q
() = (Vu, V), ull = (), Vu,v € V.

The Stokes operator 4 = — PA with domain D(4) =
(H*(Q))> N V and the bilinear operator

B(u,v) = (u- V)v—i—%(divu)v7 Yu,v € X,

where P is the Leray orthogonal projection of (L*(Q))*
onto H.

Furthermore we introduce the bilinear forms a(-,-)
d(-,-) and trilinear form b(-,-,-)

a(u,v) = (Au,v) = ((u,v)), Yu,v€X,
d(v,q) = —(v,Vq) = (q,divv), Yve X, Vge M,
b(u,v,w) = (B(u,v),w) .
= ((u-V)v,w) +5((divu)v,w)
=2((u-V)v,w) =5((u-V)w,v), Vu,v,weX.

The finite element subspace (X, M) is characterised
by a partition 7, assumed to be uniformly regular as /
tending to 0. We define the subspace V), by

Vi =A{vn € Xi;d(vi, qn) = 0,Yq), € My}

Let P, (L*(Q))*> — V), be the L* orthogonal projection
defined by

(v—P,v) =0,  Wve (L2(Q)?*, Vv €V

Also, we define p,: M — M), by

(9= pug,qn) =0, Vge M, Yq, € M,.

Here and after, we will use | - |;* and | - |, to denote
the (L*(Q))? and (H*(Q))*> norms, respectively, for all
o € R. Furthermore, we always use ¢ to denote a
generic positive constant depending only on the data
(v, Q, f) and use k to denote a constant which may
depend additionally on uy and on time ¢, assumed to be
continuous with respect to .
We assume that the couple (X),, M) satisfies the

following approximate properties

(Al) For each v € (HA(Q))> N X and ¢ € H'(Q)

N M, there exists approximations /,v € X}, and J,

q € M), such that

d(V - I/1V7 (1/1) =0 V(]h S Mh7
[v — Iyv| + Ay — L|| < ch?||v]] e,
g = Juq| < chllql];

(A2) Inverse inequality in the finite element
subspace

HUhH < Ch71|U/1‘7 Vv, € Xy,

(A3) The so-called inf-sup condition: for each
qn € My, there exists v, € X, and v, # 0 such that

d(v, qn) > Blanlgt||vall,

where f is a constant independent of /.

The following properties are classical consequences of
above assumptions (A1)—(A3) (see Girault and Raviart
1986).

[1Pwv]] < efvl],  WveX,

[v — Ppy| + h|lv — Pypv|| < ch*|Av], Vv € D(A),
[v— Pyv| < chllv— Ppy||, VYveX. (2.1)

The semi-discrete Galerkin approximation of (1.1)
based on (X, M,) reads: find (U,, p,) € (X}, M), such
that for V¢ € (0,7]

(Upne,v) +va(Up,v) + b(Up, Uy, v) — d(v, pi) + d(Up, q)
= (f,v),Y(v,q) € (Xy, M) Uy(0) = Pjup. (2.2)

Above semi-discrete Galerkin approximation based on
V), reads: find U, € V), such that for V¢ € (0,7]

(U/zn V) + V(J(U/,, V) + b(Uh7 Uha V) = (f7 V)7 Vv € Vh,
U/,(O) = Phuo. (2.3)

In Heywood and Rannacher (1982), it has shown the
following theorem.

Theorem 2.1: Under the assumptions (Al)—(A3), let
uy € D(A) and f, f, € L*(0,T:(L*(Q))*) N L*0,T:X) be
given, then the solution of Equation (2.2) satisfies the

following estimates

|u() = Un(0)] + hl[u(t) = Up(0)[| + Al
p(t) = (D) < COF?, 0<1<T,

where C(t) is a continuous function with respect to t.

We define a discrete analogue A4, € L(X),X;) of
Stokes operator A defined by A, = — P,A;, through
the condition that (—Ajuy,v,) = ((up,vy)), Yuy, v, € X,
Thanks to Heywood and Rannacher (1990), we know
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the restriction of A4, to V), is invertible, with inverse
denoted by 4. Since 4, ! is self-adjoint and positive
definite, we define discrete Sobolev norms on V), that
o], = |A};/2vh|,Vr € R,Yv;, € V). These discrete norms
will be assumed to have various properties similar to
their continuous counterparts.

Furthermore, some regularity results hold for the
semi-discrete solution U, proven in Heywood and
Rannacher (1982).

Theorem 2.2: Under the assumptions of Theorem 2.1,
there exists a time to > 0 such that the semi-discrete
solution Uy, satisfies the following estimates

U0 <, UV <w, 0<j<3, 1> 1,

where U,Y (1) represents the j-th partial derivative with
respect to t.

To end this section, we recall some useful inequal-
ities. The trilinear form satisfies the following proper-
ties used in Heywood and Rannacher (1990),
Olshanskii (1999), He (2003).

b(up, v, wi) = —b(up, Wi, vy), (2.4)

|bCuns vy wi)| < e(luanl o [[val |+ lunl| |[val g ) lwal,
(2.5)

1bCuns vis wi) | < elun|([[vall W]z + [val < l[wall), (2.6)
|6Cns iy wi)| < e(lunl [[vall + [fanl[ vaD)wal g, (2.7)

|bCuans v, wi)| < e(luanl o |[val |+ [unl| Lo | val L) [l
(2.8)

bty vy wi) | < clunly g [vall [wal,
cllunll [valy4slwal, (2.9)
clun|[valyllwall, Vs € (0,1],

Doty vis wi)| < e(lunl pallvll 2o+ Hunll 2o [val o) wal,
(2.10)

|6, v, wi)| < | Apun||Apval[wal_y, (2.11)
for Vuh, Oy Wy € X
We have the Brezis-Gallouet inequality and

Galiardo-Nireberg estimates provided in Brezis and
Gallout (1980), Hill and Suli (2000)

1
|V/I|L°“ < CLh|A71V/1|, VV;, S V/,, (212)

1 1 1 1
il e < clvallvalls 1Vl < vl 4nva?, Yvu € Vi
(2.13)

3. Fully discrete postprocessing scheme and its
stability

We consider the fully discrete approximation of
Equation (1.1) by defining the two sequences

(l/th,an) S (XH, MH) and
(MZ,[?Z) S (thMh)a 0 <n<N\.

They are given by ug = Py, u9 = Py, pj, = pppo
P = puPo and

(u’},+1 V) + kva(u’};rl V) + kb(u’},+l , u}’;“l ,V)
— kd(v,pi ") + kd(ujt q) = k(" v)
+(un1~17v)> v(vvq) € (XHa MH)? (3])

(g, v) +vaGiy™ v) + b ™ v)
—dv,py™) + dw ™, q) = (fr,v)
b ), Y(vq) € (X My) (3.2)

Similarly, considering above schemes (3.1)—-(3.2) in the
subspaces V' and V), respectively implies the following
PP scheme

it v) + kva(u ™t v) + kb (i ul ! v)

= k(") 4 (uly,v), Wve Vg,  (3.3)

(dady™ ) +va(uv) + blug !t v)
+ b(uzﬂ, u;l;’l’ V) _ (fn+17 V)

+ bl ), e v, (3.4)

We decompose /™! and u]"" as

n+1 _  n+l ~n+1 n+l _ n+l ~n+1
uy  =uy o T, Py =Py TP,

Here, uff' = Pl ™, it = Quul ™', Qy=1— Py. Fur-
thermore, the first Equation (3.1) is to get the large
eddy component (4", p’f1) which is nothing but the
SGM equation. Regarding (u', pi) € (X, My) as
an initial guess, the second equation is to obtain the
final approximation (uZ“, pZ“) € (Xu, Mp) which is a
one-step Newton iteration in fact. Thus, we call our PP
scheme (3.1)+3.2) the DPP scheme of Newton type
(DPPN).
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We recall two Gronwall lemmas provided in
Heywood and Rannacher 1990, He 2003.

Lemma 3.1: Let k, B and a,, b, c,, d, for integer ky > 0
be non-negative number such that

m m—1 m—1

am+ kY by kY dyay+kY cy+ B, Ym>1.

n=1 n=0 n=0
Then,
m m—1 m—
. +k2b,, < exp (kZd) ( Z B>7
Vm > 1.

Lemma 3.2: Let k, B and a,, b, ¢,, d, for integer n > 1
be non-negative number such that

m

am—i—kZb <kZd,,an+ch,,+B Ym > 1.

n=1

Suppose that kd, < 1, for all n, and set 7y, = (1—
kd,)~", then,

am+k§:b <exp <kan ) (kicnnLB),
n=1

Vm > 1.

Lemma 3.3: Suppose that the assumptions (Al)—(A3)
are valid and the time step length k < tr, where T is a
constant which can take different values at its different
occurrences. Then there exists a positive constant i such
that

n
H”’;J”z —|—ka |AHMiq| <k, 1<n<N.
i=1

Proof The proof will be similar to the procedure of
Theorem 3.3 provided in He and Liu (2006). Here we
omit it. O

Lemma 3.4: Under the assumptions of Lemma 3.3, there
exists a positive constant k¢ such that

n
WGP+l > |l P <5, 1<n <N
i=1

Proof First, we rewrite the scheme (3.4) as

(dad™",v) +va(u ™ v) + bl v)
b(ﬁ;j—}—l AH—I,V) _ (fH_l,V), Yy e Vh-

Taking v—2ku’+' in above equation and using
Equation (2.4), there holds

P ™ = P — P 2kl |
_2kb(n+l ’\lJrl’ l+l) 2k(f1+17 ;1+1) (35)

Using Equation (2.9), we have

26| (£ ] < 2k £y o] < H Alle
ck 2 N N
+7|f|7172k|b(u}1+1 iy g )|
< cklﬁi“l IIL?ZHII | Ay

|| P+ = \AHM’“I '

where | /|1 = ||f|L‘x(O,T;X’)'
Summing Equation (3.5) from i =0 to i =n—1
and noticing above estimates implies

luj? +kVZHu’HI| < luo|?
o (3.6)
c 2 i 120,02
= 2 (12 + [ Ay lg]).
i=1

Finally, applying Gronwall Lemma 3.2 to Equation
(3.6) and noticing Lemma 3.3 yields the prescribed

result of this lemma. O

Lemma 3.5: Under the assumptions of Lemma 3.3, there
exists a positive constant i\ such that

n
I + kv > [ < i, 1<n<N,

i1
provided that ckL3x* < <3
Proof First, the scheme (3.4) can be rewritten as

(ddy™,v) + va(u,™ v) + b(uff ™ v)

+o(@, gt ) = (T ), Y e Vi
Taking v = 2Ahu§1+1 in the above equation leads to

TP+ g = P = | + 2kv] Ay
+2kb(ujf,“1,u}1+1 A/,ujfrl)
+ 2kb (0l iy Apudh)
= 2k(f™, Apul).



04:07 8 September 2009

[Xi'an Jiaotong University] At:

Downloaded By:

466 Q. Liu and Y. Hou

With the help of Equation (2.5), (2.8) and (2.12), we
have

2K, )|
< K11 w5 A P

+%\j‘\2,2k|b(ui+l uz+1 Ahu’“)|
+ 2k|b (" g, Ay

< ckluy | el — || | Ant |
ka1 i = o] | A
+ ckfugg | o o] | Aneg |
+CkH“lH||L4|”/7\L4|Ah”h |

< CkLHKIHH - ”h” |Ah“l+l| + CkLh’ClH”/ “};H
X | At |+ el )| | Aped P
+ kel ody | Fl || | AP

LkLHKl H i+1 CkLhKl || i+1 i||2

hH E— U,

2
7 \u’“\ [udh [* + 3|| l“II i 1+ IA |

Hence, summing Equation (3.7) fromi = 0toi =n—1
and noticing above estimates, we have

n n—1
l1? +dev > [P < ool l” + K Y il ug]
i=1 i=0

o ' 711 (3.7)

where d; = ev= (Pl |12 + 1Pl |12) for 0 < i
<n-—1.

Finally, applying Gronwall Lemma 3.1 to (3.7) and
taking into account Lemma 3.3, Lemma 3.4, we obtain
the prescribed result of this lemma. O

Lemma 3.6: Under the assumptions of Lemma 3.5, there
exist constants . > 0 such that

n
|dtuZ\f+ka|dtu2|f+lSK:., r=0,1, 1<n<N.

i~
Proof From the PP scheme (3.4), we derive
(dt,u;'f ;) + Va(dtuprly v) + b(dt”l+1 u;:rl’ V)

+ b(ul, dui™ vy — b(dilt ait )
— b(i, di ™" v) = (d fT ), Wy E Vi

Taking v = 2kA}d,u}"" in Equation (3.8) yields

|dr“'+l| +|drul+] dr“h|, |dtuh\ +Zk"|drul+l|,+1
—I—Zkb(dtuH—l i+1 Ardt 1+1)
+2kb(uh,d,u’“ Y TARS
2kb(d,1jll+] ~i+l AhdtulJr]) 2kb(14h, AI+1 Ahdtuerl
= 2k(d,f !, A,,d,u}“) (3.8)

With the help of Equation (2.5), (2.6), (2.9) and (2.12),
we find

2k\b(d,u’+l +1 Alld;ul+l)|
+2k|b(d,a’+' att AL dad ™)
< ckLh|d,u’+1 el ||u’+1| | |a’,uH'1 — a’lumr

+ ck|dad|, | Apud,™ | |dtuh|l+1

k .
<—|dtu’“\r+1 + ”II i Pl = duad];

‘Ah +1| |dfuh|r

2kl|b(udl,, dil,™ Aydad, ™| + 2k|b(i, ditiT ALdad)|
< ckL/,\d[u, d,uh| | |uh|| |d,u’+l 1
+ ck| Apud| |df”;+l| 1|df”h|r

ckl? . ; -
<—Mwwﬂ+ﬁ%wm%ww—¢@ﬁ

P20 i
+7|Ahuh| |dfuh‘r’
2k|(df ", Apdag ™| < 2k|drfi+l|r—1 |dd, ™, 1

2 ck .o
|dr A +7|ft|r—1’

where /il = /il 07220007
Hence, summing Equation (3.8) from i=0 to

i = n—1 and using above estimates, we have

n—1

|ty + kv Z (a7 < \daa? + kY dildui |}
i=1 i=0

Lo TR, (3.9)

where d; = v (| dpul | + | A |*) for 0 < i < n—1.

Finally, using Gronwall Lemma 3.1 to Equation
(3.9) together with Lemma 3.5 suggests the results of
this lemma. O

Lemma 3.7: Under the assumptions of Lemma 3.5, there
exists a positive constant i, such that

|Apu)] <K, 1 <n<N.
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Proof We rewrite (3.2) as

vP Ay = —du, — PpB(ujy,uf) — PpB(il), uf;) + Prf".

As pointed in Heywood and Rannacher (1982), we
have

|Ath| S C|P/,A;,u2|.

Therefore, the following estimate holds
vAp| < eldag| + ¢l B(ugy, up)| + c| B(iy, )| + ¢| /]
(3.10)

By using Equations (2.10) and (2.13), we have

|B(MH,M/1)|
el | Pl Apad) 2

SZIAWZH;IIM’LII ZARIZALR
IB(L?ZMH)I

1 1 PO . 1 1
< iy P 1 i AP+ el 5] Pl Py Pl Aoy

<Z|Ahu2|+;||u”Hll ZARIZALR

Finally, combining above estimates with Equation
(3.10) and noticing Lemma 3.5, we obtain the result of
this lemma. O

We derive from Equation (3.2) that for Vv € X,

d(v7pZ) = (dz”Z’ V) + Va(”% v) + b(u}}{’ u’l;’ V)
+ b(iy, uyy,v) — (f",v), 0<n<N.

Due to the inf-sup condition (A3) and (2.9), there
holds

~1
Pl < B (lduy] -y + vl[uyl| + el || [yl + 1/ 20)-

The combination of Lemma 3.4, Lemma 3.5 and
Lemma 3.6, Lemma 3.7 permits us to conclude the
following theorem. O

Theorem 3.8: Under the assumptions of Theorem 2.1 and
Lemma 3.3, furthermore, if k satisfies the following
stability condition

kL2 <2 (3.11)

=2

then there exist positive constants x,, K., k, and i for
all 1 < n < N such that

n
Wl + kv 21 <52, r=0,1,

i=1

2
|d,uZ|r+ka|d,uh|l+l_ K, r=0,1,
i=1

il < Kpy [Apidy] < ko

Remark 3.1. The stability condition (3.11) implies that
the restriction on the time step of DPPN is similar to
the fully implicit one-level method or the cheaper semi-
implicit one-level method. However, the fully implicit
one-level method is a time-consuming procedure. The
linearized nonlinear term in the semi-implicit scheme is
similar to the first »—term from Equation (3.2). It is the
first-order linearisation of the non-linear term, which is
only valid for the large viscosity case. In spite of the
easy implementation of the semi-implicit one-level
method, it will lose effectiveness for solving the
Navier—Stokes equations with large Reynolds number.
Some detailed comparisons of these algorithms will be
provided in section 5.

4. Error estimates

Now, we begin to establish the convergence theorem of
DPPN, which gives us the mathematical guidance on
the configuration of H and h. For simplicity of
analysis, from now on, we always assume that the
results in Theorem 2.2 are valid for 75 = 0.

Lemma 4.1: Under the assumptions of Theorem 3.8,
there holds

n
i + kv Y [laG|P < kH, 1<n<N.
i=1

Proof First, from Equation (3.4), we derive
(", v) + va(uy™ v) + b v)

— b A vy = (), Wve QuVi. (4.1)

Taking u:2k12§]+1 in Equation (4.1) and noticing
Equation (2.4) leads to

" P — gl — |+ 2kl
+ 2kb(uy Wt Aty = 2k (A, (4.2)
With the help of Equation (2.11), we obtain
2k|b( i+1 l+17ﬁ;l+1)|
< ckl Ay W |

kv N i i A~
<0 g P+ g 20 )
<2kW“II \A‘“\ i
IIA’“II += Hf’“llzl‘l4
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Summing Equation (4.2) from i =0 to i =n—1 and
considering above inequalities, we arrive at

~ 2 2
Ak +kVZII || < 1q°]

DS (a1 7P ).
=1

Finally, noticing Theorem 3.8 implies the prescribed
result of this lemma. O

For given time step length k£ >0 and space
discretisation scales i, H with 0 < h < H, we denote

ty =nk, U, =Ult,),

n__rm n
& =Uy—wp 0<n<N,

Lemma 4.2: Under the assumptions of Theorem 3.8,
there holds

erl? +kVZ |€h|;+1 (L H Y+ &),

r=0,1, 1<n<N.

Proof Subtracting Equation (3.4) from Equation (2.3)
at t = t;,4, for Yo € V), we have

(dtehLl7 )+va(e;l+1 v)+b(e}+1 Ut+1 )
+ b e vy bt At vy = (K ) (43)

where A1 = %f;"” (Uni(s) = Un(tiv1))ds.
First, taking v = 2ke,’ ™' in Equation (4.3) and
noticing Equation (2.4), we obtain

i 1P+ lef ! — el” — leyl® + 2kv]le) |
—I—Zkb( i+1 Uz+1’ 1+1)+2kb(w+1 ﬁ;fl e;l+l)
= 2k(h™ ey, (4.4)

By virtue of Equations (2.5), (2.9) and (2.12), there
holds

2klb(d,“ U, E}fl)l < ckllej || [4n U ey
YUy

< 3 H z+1|| + |AhUI+1|2 I+1|2 2k‘b( At 1 Az+l e;l+l)|

< ckLyla;| IIﬁZHII llei™ < <& || Al

ckL? . » .
i |Iu},+1||272kl(h’“a e )l

<2klhl“l llle’“ll< e P+ W“L

Summing Equation (4.4) from i = 0 to i = n—1 along
with above estimates gives

n
2 e
G S [
i1

ck 1 P20 P2 i
S72(|A11U2| e+ Lalay *l1aj | + 1H12,)-

=1
(4.5)
Then, applying Gronwall Lemma 3.2 to Equation (4.5)
along with Lemma 4.1 and Theorem 2.2 yields the
inequality of this lemma with r = 0.
Next, taking v = 2kA,e, "' in Equation (4.3), we
have

llei 12 + llei" = el = [leh I + 2kv] e
+2kb(€l+l UH—] Ah [+1)+b( i+1 8;:_1 A/,EZH)
+b(@™" T Apelt

= 2k(h't, Apelt™). (4.6)

The usage of Equations (2.5), (2.9) and (2.12)
suggests

2k‘b(€l+l U;;rl A €I+])‘

2
<Ck||€’+‘|||AhU5f1||Ah i <L |Az Ak
IAhU’“I llei 117, 2klb (a7 Anel )|
< Ck|Ah +1| Hel+l|| ‘Ah€I+1| < |A i+1)2
C N ~
+*|Ahu§f1| et 117, 2k1b( MZ“ i Ane |
< ckLlla P Ane} | <—|Az€’2,“|2
k h ~i+1 i+1 i+1
+—2 g |I* ,Zk\(h s Aney )|
< 2k|hz+l||Ahe;+l| < |Ah ;+l| + |/1+1|

Summing Equation (4.6) from i=0 to i=n—1
together with above inequalities yields

n n
n|2 i|2 ck
511" + kv D 1 Anes| STZ(th
i=1 j
i2 i2
[ Andy el * + il + (1) (47)

Hence, using Gronwall Lemma 3.2 to Equation (4.7),
noticing Lemma 4.1 and Theorem 2.2, we obtain the
inequality of this lemma with r = 1. O
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Lemma 4.3: Under the assumptions of Lemma 4.2, we

obtain

n
>y + kv " |die)* < k(LIHS + k%), 1<n<N.

i=1
Proof First, we deduce from Equation (4.3) that

dueitt ) +va(del ™ v) + b(del™t, Uy
( ) 4 va( h
+ b(el, d, U v) + b(dads™ el v) + b(ul, diel ) v)
+ b(dii @it vy + b(d, dil ™ v)
= (dh*y), YveV,. (4.8)

Taking v = 2kA, ' de,”" in Equation (4.8) leads to

|dt€;+1| + |a’t€l+1 d,ef,\zl _|dt€51|21
+ 2kv|diei P 4 2kb(deltt UL A dyel
+ 2kb(el, d, U™, 4, delth)
+ 2kb(daut, e;jl A el
+ 2kb(ud}, dieit, 4, d,el)
+ 2kb(dl ™ i Ay el
+ 2kb(i, dii™ Ay el ™) = (dih A5 dgel ).

The application of Equations (2.4) and (2.9) gives
2k|b(de, ™t U 4, el ™)
<ck\d,e“||AhU’+1Hd,e’“|1 —|d,e’+1|
Ky Prae pzk\b(eh,dzvzﬂ y )]
<CkHeh\Hdze’“lldrUﬁfll< e}
IdzU}fll el 2k\b(dru’“ et Ay diey )]
<Ck\drui“|| el I 1drej, | < Idrei“l
Id, WPl 1P Zklb(u;,,a’ze’+1 A5 diei)]
<ck\Ahuth,e’“| el < < |d, 1+]|
|A/1uh| |diej | 172klb(dzﬁ§f1 w4y diey )|
<ck\drﬁ5f1|||u’h“llldz 1“|< Id ¢
IIL?LHII i P Zk\b( dii, " Ay die )|
< cllity |l ey || oty | < <& Id, Al
+ S a Plaia ' ,zk|<dfh'+‘ A,j'd,e’“)|

< 2kldye ™| < ldr P += Idzh’“l 2

Therefore, summing Equation (4.9) from i=0 to
i = n—1 and using above estimates, we obtain

\diej)* ]+kVZ|df€h| < |diey” 1+kzd|dteh‘ 1
i=1 i=1

Ck n— i i i
+— Z(H 121 U + [lej ]|ty )
ck & dw’ 201100 112 ~n—1112 dhiz
+TZ(| vy (1™ + [|a " |17) + [dih'|Z5),  (4.9)
i=1

where d; = ev= ' (|4, U, |* + | Al |*.

Finally, applying Gronwall Lemma 3.2 to Equa-
tion (4.9) together with Lemma 4.1, Lemma 4.2,
Theorem 3.8 and Theorem 2.2 suggests the results of
this lemma. O

We subtract Equation (3.2) from (2.2) at ¢t = ¢, for
0 < n < N, obtaining

d(v, pu(ta) = pj) = (di€j, v) + va(e), v)
+b(e U v) + b e v) b il )
— (M), VveE X

Also, thanks to the inf-sup condition (A3) and (2.7),
one finds

-1
Pu(tn) = Phl < B~ (ldiey] _y + vIlegl| + clleql[([U3l]
+ [luyll) + eLnlay| [Jagll + "] ).

Therefore, applying Lemma 4.2, Lemma 4.3 in above
inequality together with Theorem 2.1 allows us to
conclude the following estimates.

Theorem 4.4: Under the assumptions of Theorem 3.8, we
have

lu(t,) —uj| < K(LyH* + k) + C(t,)l?, 1<n<N,
l(tn) = 1dy]| + 1p(ta) — phi| < (LuH + k)
+ C(ty)h, 1<n<N.

Remark 4.1. The results of Theorem 4.4 implies that, to
make the DPPN reach the same accuracy as the SGM
with a fine mesh size /&, we should choose

LyH* ~ DWW, L,H ~ D(v)h,

where D(v) = C(z,)/k can be seen as the functions of v.
A careful observation will allow us to find that x has an
exponential factor with respect to 1/v owing to the
applications of Gronwall Lemma in above error
estimates. Therefore, D(v) will increase rapidly when
v decreases, we should choose a smaller H to keep
above configurations for a fixed 4.
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5. Numerical examples

This section gives some numerical examples to confirm
the theoretical analysis in previous sections. All the
numerical experiments are carried out by using the
Taylor-Hood element. That is, the Lagrange quadratic
elements are used to approximate the velocity and line
elements to approximate the pressure. For all the
implicit time stepping, we use Newton iterative method
with tolerance 10~ °. And we use GMRES iterative
method to solve the linear algebraic equations arising
at every time step with tolerance 10~°.

Example 1. The first example to be considered here is
to confirm the error estimates, given in previous
sections, are also obtained numerically. In this
example, we choose domain Q = [0, 1]° and a time
interval [0, 7] with 7' = 1. In the following calcula-
tions, we divide the domain into triangles, which are
induced by the set of nodes (i/M, j/M), 0 < i, j< M,
where M = |Q|/h is a positive integer. For convenience
of computing the error, we give an exact solution, then
obtain the forcing term f. We choose the exact solution
as follows

ur(x,y,1) = 10(1 — x)*x2(1 — 2y)(1 — y)y tanh(r),
ur(x,p,1) = —10(1 — 2x)(1 — x)x(1 — y)*y* tanh(s),
p(x,y) = 10(1 = 2x)(1 - 2y).

A simple calculation can verify that V-u =0 and
P € Lo* (Q).

Table 1 shows the relative errors, convergence rates
and CPU time of SGM (the fully implicit one-level
method) with different space discretisation scale /.

Table 1. Convergent rates of standard Galerkin method (SGM).

Table 2 presents the performances of DPPN with
various 7 and H. The numerical results presented in
these two tables are obtained when v = 0.01. More-
over, we are careful to choose the time step length
k = 10~* which ensures the dominant error in the
computations is the spatial discretisation error and
satisfy the stability condition (3.11). DPPN first solves
a non-linear equation on a coarse-level subspace, then
to get the final approximate solution by solving a linear
equation in the fine-level subspace which will involve
much less work compared with SGM with the fine
mesh scale 4.

In Figures 1-3, we compare the errors of the fully
implicit one-level method, semi-implicit one-level
method, PP, DPP and DPPN with a larger time step
length k& = 0.05 when v = 1072, 1073, 10~ * at the
final time instant z = 1. For fully implicit one-level
method and semi-implicit one-level method, we alter
the mesh size h = 1/M, M = 2,4,8, 16, 24, 32. For PP,
DPP and DPPN, we fix the finest scale # = 1/32, then
to vary the coarse mesh size H = /M, M = 2,4, 8, 16,
24, 32. We find that the fully implicit one-level method
presents very good approximations whereas the semi-
implicit one-level method can’t reach so good approx-
imations compared with other schemes. On the other
hand, PP, DPP and DPPN can reach the same
accuracy as the fully implicit one-level method with a
fine mesh size / for an appropriate coarse mesh scale H
for large viscosity cases. However, for further small
viscosity cases, for example v < 10, the PP and DPP
can’t get the optimal accuracy except H = h. These
results verify our presumption in the introduction that
PP, DPP are only efficient for the large viscosity cases.
On the contrary, the DPPN can keep the good

h L? error rate H' error rate L? pressure rate CPU time
1/4 0.038172 0.164771 0.048414 378.2s
1/8 0.004840 2.979 0.044217 1.898 0.012103 2.000 1403.8s
1/16 0.000603 3.005 0.011316 1.966 0.003026 2.000 6062.3s
1/32 7.6332¢-05 2.982 0.002849 1.990 0.000756 2.001 32347.7s
Table 2. Convergent rates of the dynamical postprocessing method of Newton type (DPPN).

H h L? error rate H' error rate L? pressure rate CPU time
12 1/4 0.038207 0.164771 0.0484136 327.9s
1/4 1/8 0.004841 2.981 0.044217 1.898 0.0121031 2.000 1041.3s
1/8 1/16 0.000604 3.003 0.011316 1.966 0.003026 2.000 4312.4s
1/16 1/32 7.6319¢-05 2.984 0.002848 1.990 0.000756442 2.000 17211.4s
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Figure 1. (a) L* error of velocity, (b) H' of velocity, (c) L* error of pressure v = 102
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Figure 2. (a) L? error of velocity, (b) H! of velocity, (c) L? error of pressure v = 107>,
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Figure 3. (a) L* error of velocity, (b) H' of velocity, (c) L* error of pressure v = 10 %,

accuracy for the small viscosity cases. Moreover, we
choose a finer H to reach the prescribed accuracy with
the decrease of viscosity coefficient v, which is in good
agreement with the analysis in Remark 4.1.

Example 2. The second example to be considered here
is the flow around a circular cylinder. The flow around
a cylinder has been widely studied from the theoretical,
experimental and numerical point of view, e.g., see Van
Dyke (1982) for the experimental results, Franca and
Nesliturk (2001) employed the finite-dimensional
spaces consisting of piecewise polynomials enriched
with residual-free bubble function, Ding (2003) for a
dynamic mesh method, Wang et al. (2007) for the
computation of leading eigenvalues and eigenvectors.

At upper and lower computational boundaries and at
the inflow section, a uniform free-stream velocity
boundary condition is imposed. The traction-free
condition is imposed at the outflow boundary. The
geometry and the boundary conditions are shown in
Figure 4. Figure 5 states the coarse and fine meshes
distributions employed in the simulations. We choose
the time step length & = 0.05 in this example.

The cylinder problem can be characterised by the
Reynolds number which is based on the free-stream
velocity and the cylinder diameter d, i.e. Re = (u,.d)/v.
For Reynolds numbers less than or equal to 40, the
flow is steady, causing a wake behind the cylinder to
develop. For Re = 0.01 shown in Figure 6(a), the flow
is symmetrical upstream and downstream, the right
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The coarse and fine meshes tested.

hand of Figure 6(a) is the mirror image of the left
hand. As Reynolds number increases, the upstream—
downstream symmetry disappears. When Reynolds
number exceeds about 4, two attached eddies appear
behind the cylinder which will become bigger with
increasing Reynolds number. Figure 6 shows these
features and Figure 7 presents the pressure contours
when flow reaches its final steady state at Re = 0.01,
10, 20, 40. Moreover, some comparisons of the wake
length L which is from the rearmost point of the
cylinder to the end of the wake and the separation
angle 0 with some previous simulations are listed in
Table 3.

X

RN

KSR
573.'47‘ 41“"‘".[“-"#

(b) 3408 Elements

(d)

Streamlines. (a) Re = 0.01, (b) Re = 10, (¢) Re = 20, (d) Re = 40.
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(a)

(c)

—

(b)

(d)

Figure 7. Pressure contours. (a) Re = 0.01, (b) Re = 10, (c) Re = 20, (d) Re = 40.

Table 3. Recirculation length and detachment angle.

Re Method Llr 0
Present work 0.52 25.8
Dennis and Chang (1970) 0.53 29.6
Nieuwstadt and Keller (1973) 0.434 27.96
Coutanceau and Bouard (1977) 0.68 32.5
He and Doolen (1997) 0.474 26.89
10 Rome et al. (2007) 0.549 25.47
Present work 1.945 43.63
Dennis and Chang (1970) 1.88 43.7
Nieuwstadt and Keller (1973) 1.786 43.37
Coutanceau and Bouard (1977) 1.86 44.8
He and Doolen (1997) 1.842 42.96
20 Rome et al. (2007) 2.16 41.98
Present work 4.55 53.13
Dennis and Chang (1970) 4.69 53.8
Nieuwstadt and Keller (1973) 4.357 53.34
Coutanceau and Bouard (1977) 4.26 53.5
He and Doolen (1997) 4.49 52.84
40 Rome et al. (2007) 4.94 50.99

We also consider another frame so that the flow is
unsteady for 40 < Re <190, leading to periodic vortex
shedding, known as the Karman vortex street. The
eddy on one side is being shed while on the other side it
is reforming. Figure 8 shows the temporal development

Drag coefficient ——
Lift coefficient ——

Drag and Lift coefficients

0 50 100 150 200 250 300
Time

Figure 8. Drag and lift coefficients at Re = 160.

of the drag and lift coefficients. Figure 9 shows the
streamlines around the cylinder during a period for
Re = 160. From Figure 8, we get the shedding
period T, = 20.5 and obtain the Strouhal number
St = d/(u,T,). Table 4 states the Strouhal number
comparisons obtained by DPPN with some other
results.
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(a)
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Figure 9. Streamline of the flow around a cylinder during a period at Re = 160.

Table 4. Some Strouhal number comparisons at Re = 160.

Method St
Present work 0.195
Williamson and Brown (1998) 0.188
Rome et al. (2007) 0.192
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