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Abstract The existence of pullback attractors for the 2D non-autonomous g-Navier-
Stokes equations on some bounded domains is investigated under the general assumptions
of pullback asymptotic compactness. A new method to prove the existence of pullback
attractors for the 2D g-Navier-Stokes equations is given.
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1 Introduction

Navier-Stokes equations have received increasing attention over the last decades due to
their importance in the fluid motion and turbulencel 7). The understanding of the asymptotic
behaviour of dynamical systems is one of the most important problems of modern mathematical
physics. One way to treat this problem for a system with some dissipativity properties is to
analyze the existence and structure of the global attractor ®810, At the same time, the theory
of pullback attractors has been developed for both the non-autonomous systems and the random
dynamical systems!'' 19!, Tt is shown that the theory is very useful in the understanding of the
dynamics of non-autonomous dynamical systems. In this paper, we study the existence of the
pullback attractor of the g-Navier-Stokes (g-N-S) equations on the bounded domain Q C R?
which have the following form:

0

6—1;—VAu+(u~V)u+Vp:f(:1:,t) in Q x (0,00),

V- (gu) =0 in Q x (0, 00), (1)
u(z,t) =0 on 01,

u(z,0) = up(x) in Q,
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where u(z,t) € R? and p(z,t) € R denote the velocity and the pressure, respectively, v > 0,
= f(z,t) € (L3(Q))? is the time-dependent external force, and 0 < mg < g = g(z1,22) < M.
Here, g = g(z1,2) is a suitable real-valued smooth function. When g = 1, the equations (1)
become the usual 2D Navier-Stokes equations.

Now, some results have been obtained for the research on the global attractor of the au-
tonomous 2D g-N-S equations?* 22, In [20], Roh studied the existence of the 2D g-N-S equa-
tions on some bounded domain using the semiflow theory. In [21], Kwak et al. researched the
Hausdorff and Fractal dimension of the global attractor about the 2D g-N-S equations for the
periodic and Dirichlet boundary conditions. Moreover, the authors mainly studied the global
attractor of the 2D g-N-S equations with linear dampness on R? and the fractal dimension in
[22]. From the research, we can see that the autonomous 2D g-N-S equations are studied, and
the related research about the non-autonomous 2D g-N-S equations is still rare. We would
like to use the theory of pullback attractors to study the non-autonomous dynamical system.
Therefore, the present research is necessary and has a theoretical basis.

Recently, Caraballo et al. in [12] introduced the notion of pullback D-attractors for non-
autonomous dynamical systems and proved the existence of pullback ®-attractors by using the
energy equation method. Obviously, it is hard to prove that a cocycle satisfies the above con-
ditions. Motivated by the ideas in [17-19,23], we present a new equivalent condition (pullback
condition) for the pullback ®-asymptotical compact by using the measure of non-compactness.
It is easy to be verified for general non-autonomous dynamical systems. As the application of
this method, we prove the existence of pullback attractors for the 2D g-N-S equations on some
bounded domains.

This paper is organized as follows. In Section 2, we recall some basic notations and results for
2D g-N-S equations and the concept about the pullback asymptotic compactness. In Section 3,
using the measure of non-compactness, we prove the existence of the pullback attractor for the
2D g-N-S equations on some bounded domain.

2 Preliminaries

Now, we assume that the Poincaré inequality holds on 2, i.e., there exists A\; > 0 such that
1
| Fode< 5 [ 19oPads, voe H@). )
0 At Ja

The mathematical frameworks of (1) are as follows. Let L%(g) = (L2(2))? with the inner
products

(u,v) = / u - vgdx

Q

and the norms
1= () wwe ().

Let H}(g) = (H}(9))?, which is endowed with the inner products

2

((u,v)) = / ZVuj - Vv,gdz
Q-
=1

and the norms

1 0=(Co)E, w=(ur,u2), v =(v1,02) € H(g).
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From (2), the norm || - || is equivalent to the usual one in Hg(Q). Let D(2) be the space of C>
functions with the compact support contained in €2, and let

R={ve(D()*:V-gv=0 in Q},
H, = closure of X in L*(g),
V, = closure of R in Hg(g).

With H, and V, endowed with the inner product and norm of L?(g) and H{ (g), respectively,
it follows from (2) that

1
uf* < = lulf?, Vue V. 3)
)\1 )
Now, we define a g-Laplacian operator as follows:
1 1
—Agu = —Q(V -gV)u = —Au — QVg - Vu.

Using the g-Laplacian operator, we rewrite the first equation of (1) as follows:

%—VAgu—i-V%'Vu—i-(uvv)u‘i'vp:f- (4)

We define a g-orthogonal projection
Py - L*(g) — H,

and a g-Stokes operator
1

Agu= =P, (£ (V+ (gVw)).
which satisfies the following proposition.
Proposition 12°  For the linear operator Ay, the following results hold:
(i) Ay s a positive self-adjoint operator with compact inverse, where the domain of A, is
D(A,) =V, N H%(Q).
(ii) There exist countable eigenvalues of Ay satisfying 0 < Ag < Ap < Ay < Az < -+, where

472 mo

Ag o and A1 1is the smallest eigenvalue of Ay. In addition, there exists the corresponding
collectwn of eigenfunctions {e1, e, e3,- -}, which forms an orthonormal basis for Hy.

When we apply the projection Py, into (4), we can obtain the following weak formulation of
(1). Let f € V; and up € H,. Then, we find that

u € L®(0,T; Hy) N L*(0,T;V,), T>0 (5)
such that
d
E(u,v) +v((u,v)) 4+ bg(u, u,v) + v(Ru,v) = (f,v), YveV, Vt>0, (6)
u(0) = wo, (7)

where by : V, x Vg x V; — R is given by

(u, v, w) Z /uZ o wjgdx (8)
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and
1
Ru = Pg(g(Vg : V)u), Yu € V.

Then, the weak formulation of (6) and (7) is equivalent to the functional equations

% +vAgu+ Bu+vRu = f, (9)
u(0) = uo, (10)

where A, : V, — V] is the g-Stokes operator defined by
(Agu,v) = ((u,v)), Vu,v eV, (11)
B(u) = B(u,u) = Py(u- V)u is a bilinear operator, and B : V; x V; — V is defined by
(B(u,v), w) = bg(u,v,w), VYu,v,w e V,.

Now, we recall some well-known inequalities!®¥! that we will be using in what follows.
For every u,v € D(A),

|B(u,v)| < Clul2[Agul?[v]]. (12)

Here, C' denotes the positive constant, which may be different from line to line and even in the
same line.

A 21
a2 < Cllgll (14 log 2 7455) , wp € D(A,) (13)

from which we can deduce

u, V)| & [(u- V)V & UL VY.
[B(,0)| < (- V)ol < ful~()| Vol (1)
Using (13), we obtain
[Agul® \ 2
B <C 1+1 - . 15
1B, )] < Clhulloll(1+ log {0 ) (15)

The g-Stokes operator A, is an isomorphism from Vj into Vg' , while B and R satisfy the

following inequalities!20-25]:
Voo
IB@Ilv < clulllull, 1Rullvr < Y20, vuev. (16)
mo)\f

We have the following concept and result26-6],
Proposition 2 Given f € L*(g) and uo(x) € H,, there exists a unique solution

u(z,t) € L®(RT; Hy) N L*(0,T;V,) NC(RT; Hy), VYT >0

such that (6) and (7) hold.
Let T" be a nonempty set. We define a family {6;}:cr of mappings 6, : I' — T satisfying
(i) Bgy = v for all vy € T
(ii) 0,(0+7) = O,y for all y e T, ¢, 7 € R.

Here, the operators 6; are called the shift operators.
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Let X be a metric space with distance d(-,-), and ¢ be a 6-cocycle on X, i.e., a mapping
¢: Ry xI'x X — X satisfying
(i) ¢(0,v,z) = z for all (y,z) € T x X;
(ii) ¢(t + 7,7, x) = ¢(t, 0.7, ¢(1,7,x)) for all t,7 € Ry and (y,z) € ' x X.
The 6-cocycle ¢ is said to be continuous if for all (¢,7) € Ry xT', the mapping ¢(¢,, ) :
X — X is continuous. Let P(x) be the family of all nonempty subsets of X, and ¢ the class of
all families D = {D(7) : v € I’} € P(X). Let a nonempty subclass D C .
Definition 1 The 0-cocycle ¢ is said to be pullback D-asymptotically compact if for any v €
T, any D € D, and any sequences t, — +0o and x, € D(0_.,7), the sequence ¢(ty, 04,7, Tn)
possesses a convergent subsequence.
Definition 2 A family B = {B(7);y € I'} € ¢ is said to be pullback D-absorbing if for
each v € T and D € D, there exists to(y, D) = 0 such that

(t,0_1v,D(0-17)) C B(y) for all t > to(y,D).

We define the Hausdorfl semi-distance between C7 and Cs as

dist(Cy, Cy) = sup inf d(z,y) for Cy,Cy C X.
zeCy YEC2

Definition 3 A family A = {A(7);y € T} € ¢ is said to be a pullback D-attractor if it
satisfies the following conditions:

(i) A(y) is compact for any v € T.

(ii) A is pullback D-attracting, i.e.,

lim dist(¢(t,0_y, D(0_47)),A(Y)) =0 for all D e D, ~el.

t——+o0

(iii) A is invariant, i.e.,

o(t, 7, A(v)) = A(6y) for any (t,7) € Ry x T

3 Existence of pullback attractor for 2D g-N-S equations on some bounded
domains

In this section, we present the measure of non-compactness to prove the existence of pullback
attractors of 2D g-N-S equations on bounded domains. First, we recall some basic notions about
the measure of non-compactnessm].

Let B(X) be the set of all bounded subsets of X and B € B(X). Its Kuratowski measure
of non-compactness «(B) is defined by

a(B) = inf{§|B admits a finite cover by the set of diameter < d6}.

It has the following properties25:27),

Lemma 1 Let B, By, By € B(X). Then,

(i) a(B) =0 & a(N(B,¢)) < 2¢ & B is compact.
(i) a(B1 + B2) < a(By) + a(Bs3).

(ili) a(B1) < a(Ba) whenever By C Bs.

(iv) a(B1 U Bg) < max{«a(B1),a(B2)}.

(v) &(B) = a(B).

(vi) If B is a ball of radius €, then a(B) < 2e.



702 Jin-ping JTANG and Yan-ren HOU

Lemma 2 Let--- D F, D F,11 D --- be a sequence of non-empty closed subsets of X

oo
such that a(F,) — 0 as n — oo. Then, F = (| F, is nonempty and compact.
n=1
We have some results!*7],
Definition 4 Let ¢ be a 0-cocycle on X. A set By C X is said to be a uniformly absorbing

set for ¢ if for any B € B(X), there exists To = To(B) € RY such that
o(t,y,B) C By for all t>Ty, ~eT.

Definition 5 Let ¢ be a 0-cocycle on X. ¢ is said to be pullback w-limit compact if for
any B € B(X) and vy €T,

Jim_a(Jo(t0-:(). B)) =o.

Definition 6 Let ¢ be a 0-cocycle on X . Define the pullback w-limit set A (B) of B by the
following form:

A (B) = (U ¢(t,6-:(7), B).

s=20t>s

Theorem 1 Let ¢ be a 0-cocycle on X. If ¢ is continuous and possesses a uniformly
absorbing set By. Then, ¢ possesses a pullback attractor A = {A,} er satisfying

A, =AM (By), VyerT

if and only if it is pullback w-limit compact.

Definition 7 Let ¢ be a 0-cocycle on X. A cocycle ¢ is said to satisfy the pullback condition
(PC) if for any v € T',B € B(X), and € > 0, there exist tg = to(7y,B,e) > 0 and a finite
dimensional subspace X1 of X such that

(i)P( U ¢(t,9_t(7),B)) is bounded.

t>to

(ii) H(I - P)( U ¢(t,9_t(7),x))H <e, Vo e B.

t>to
Here, P : X — X; is a bounded projector.

Theorem 2 Let X be a Banach space and ¢ be a 0-cocycle on X. If ¢ satisfies the PC,

then ¢ is pullback w-limit compact. Moreover, let X be a uniformly convexr Banach space. Then,
¢ is pullback w-limit compact if and only if the PC holds.
Denote by L2 (R, X) the metrizable space of function f(s) € X with s € R, where X is
locally two-power integrable in the Bochner sense. It is equipped with the local two-power
mean convergence topology. Now, we apply the new method to prove the existence of pullback
attractors for 2D g-N-S equations.

Lemma 3 Suppose f € L (R, H,) such that

loc

t+1
2 = sup / 1 (s)|2ds < oo,
teR Jt

and ug(x) € Hy. Let u(z,t) € LR, Hy) N LE (0,T,Vy) NC(RT, Hy) (V¢ > 0) be a weak

solution of (1). lThen, for allt > 7 and 0 = vy, the following estimates hold:

Ju(t)* < Juol e~ 4 RE, (17)

where R = o= (1 —e™ )7 |2 and o =1 — 2v Wilf/‘; for sufficiently small |Vg|oo-
mo 1
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Proof Let u(z,t) be a solution of (1). Since u € L?(0,T;V,) and «’ € L?(0,T;V}), we
obtain

1d

Slul? = (u )

= (f —vAyu — Bu—vRu,u)
1
= () =l = by w) = (£ V9 - 9 ).
Taking into account that by(u, u,u) = 0, we have

%W + 2l = 2(f,u) — QV((% V).

Applying the Poincaré inequality, we obtain

d |f| IVl
Elul%r?VIIUII2 +V>\| ?+2v 1/2|| ull?
mo
|f|2 2 |Vg|oo 2
< P+ 2
Then,
d o 2 |f| |V9|oo 2
el < Y
gl AP < G 2 Sl
We have
d, o _ IfP
el <
Sl vl < 2
where v =1 — 2v Wi lf/"z for sufficiently small |Vg|co.
mo 1
d, o o _ |fP?
dt|u| +V}\1’}/0|'U/| =N VAl

Let 0 = vA;. Using Gronwall’s lemma, we have
1 t
O < e 2 et ) 2ds
g T

1 t
<fuofe T ([ eI Pas +
t7

t—2

t—1

e*U’Yo(t*S)|f(S)|2dS 4. )

1 t+1
< Jug)?e™ 00T L Z(1 4770 47297 4.1 sup/ |f(s)|?ds
o teR Jt
< JuofPeo =" 4 B2
where R} = o~ 1(1 —e™70) 71| f|2.
For any f € I and |f|? = |fo|2, using (17), we obtain that

By = {u € Hyllu| <2R} £ pj}

is the uniformly absorbing set in H,.



704 Jin-ping JTANG and Yan-ren HOU

Lemma 4  Suppose f € L (R, Hy) such that

t+1
s=swp [ If(o)ds < o
t

teR

and uo(x) € Hy. Let
u(w,t) € LR, Vy) N L, (0, T, D(Ay)) NC(RT, Vy),  o/(x,t) € Lio(Rys Hy),
be a strong solution of (1). Then, for all t > 7, the following estimates hold:
lu@®)I1? < [Ju(n)|Pe™ =7 + (1 =) 71 fI7,

where = A(2v —1— 2/\01% — M) for sufficiently small |Vg|oo-
0

mo )\(1)/2

Proof We multiply (9) by —Awu(t) and obtain

Sl + VAP = (7, ~u) — (Bu, ~Aw) — v(Ru, —Au).

Using Young’s inequality,

d

E||u||2 + 2v|Aul? = 2(f, —Au) — 2(Bu, —Au) — 2v(Ru, —Au)

|fI? + [Auf® + 2|(Bu, —Au)| + 2v|(Ru, —Au)|
|f|? + |Au|? 4 2|Bul|Au| + 2v|Ru|| Aul

NN

2C . 1
<P+ |Aul? + )\—%|u|2 |Aul? +
0

2C 2v|Vg|
U+ 18up + 29 g 4 AV
AQ 2

0 mMoAg

2vIVglso
21VGle0 11 A
mo

|Aul?,

we have

d 2C 2v|Vg|so
gl + (21— 20 200 e <
0

’I”I’L())\O2
Using the Poincaré inequality, we obtain

d 2C 2 o
Gl +3(20 = 1= 2500 2V e <,
/\3 mo/\g

Let

5:A<2u—1— 20p0 _ 2”|V9|°°).

1 1

bl bl
AS Mo
Then, we have

d
Tl + Bllul* < |£P2.

vVt >0
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Applying Gronwall’s lemma, we obtain

t
ul? < [Ju(r)|[2eP¢=) + / P9 £ 2ds

T

t t—1
||u||2 < ||u(7_)||267[3(t77') +/ efﬁ(tfs)|f|2d8 +/ efﬁ(tfs)|f|2d8 4o
t t—2

t+1
lalP < lu(r)lPe 207 4 (1 € 72 4 sup / [fds
t

[lu(7)][2e™ 77 4 (1 — )1 £

Let
BIZ U U ¢(t0+17f7BO)

FeT t>to+1

Using (18), we know that Bj is bound, ||u|[?> < p? for all u € By, and B is the uniformly
absorbing set in V.

Lemma 5 Suppose that H, is a Hilbert space, and {w;}ien is orthonormal in Hy. Let
f(z,t) € L} (R;H,), and suppose that there exists a o > 0 such that for any t € R,

loc

fioo e”*[|f(x, s)|[3,ds < co. Then,

t

lim e*||(I = P)f(x,5)|[3,ds =0, VteR, (19)
where Py, : Hy — span{ws, - -+, wy} is an orthogonal projector.

Proof Let &(t) = (f(x,t),w;)u,. Then,

flt) = ;_Zsi(t)wi.

For any t € R,e > 0, since

t 0o t
/ e”s||f(x,8)||%1gds:Z/ e”s||§i(s)||%{gds<oo.
- i=1"7"°

we have , o
[ el s ds = Y [ ool s <
—o0 i=Ngy Y —©
for any n > Ny with the sufficiently large Nj.
Theorem 3 If f(z,t) € L . (R;Hy), then the cocycle {¢(t,v,x)} corresponding to (1)

loc
possesses a compact pullback attractor

A= {A»y}»yel“ = {A’y(Bl)}’YGF’

where By s the uniformly (w.r.t. v € T') absorbing set in V.

Proof From Theorem 2, we only need to verify that the family of cocycles {¢(t,~v,z)}
satisfies the PC in V.

Since (—A)~! is a continuous compact operator in H,, by the classical spectral theorem,
there exists a sequence {\;}52,, where

0SS A <A< <A <o <A —o0as j— oo, (20)
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and a family of elements {w;}52, of D(—A) that are orthonormal in H, such that

—ALUJ' = /\jwj, Vj S N.

Let Vp, = span{wi,ws, - -, wm } in Vy and P, : V; — V;,, be an orthogonal projector.
For any u € D(—A), we write

u=Ppu+ (I — Pp)u=uj + us.
Taking the inner product of (9) with —Aus in H,, we have

1d
2dt
Using Young’s inequality, together with (12) and (15), we have

[(B(u), —Aug)| < [(B(u1, ur + uz), —Auz)| + [(B(uz, u1 + uz), —Aus)|

Dl + | Al + (B(w), —Aug) + v(Ru, —Aug) = (f, —Aua).

1 1 3
< cLz fu||| Aug|(ffur]| + [Juzll) + clua|2|Aug|2 (Jfur|| + ||uzl])

v
Z|AU2|2+ —piL + 3P0917 t=10+1,

where [Aui]? < Ay fur]]?, and L = 1 + log 2t

|(Ru, —Aug)| < [Rul - [Aug|

Vgl
< Ve
0
oo (|Ausgl?
<|Vg| (| u2| +2||u||2)
mo 2
oo (|Augl?
< [Vl (I us| +2p§)7
mo 2
and
[fI? | v]Augf?
—Aug) < — + ———,
(f7 ’U,Q) v + 4
d 2 2
—||u2|| + 2v|Aug|
< 2(f, —Aug) — 2(B(u), —Aug) — 2v(Ru, —Aug)
2| f|? A 2c 2 2 s Ausl?>  2p?
< =, v us|? +5|Au2|2 _p1L+_03p411+ Vgl (VI us| +ﬁ)
v 2 2 v
2| f[2 Vgoo 2% 2 4V gl
< 20+ PO e 2t 2y VOl
We obtain
d Vglso 2 2c 41V gl
bl (1= = e Iy 2y ) 2t ) A0l

IVgloo

d 1 1
gillual? (1= S ) A |2<2c(;|<I—Pm>f|2+ ~piL+ —phpt +

Let o = (1 — %). Then, we have

1 2|V9|oo
D sl 4 v scrallual P < 26( 11— P2+ Lptr o Lot 4 V00

cvmy

cvmg

2|Vgleo o

2).

2)

1
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Applying Gronwall’s lemma, we deduce

t

1
sl gt + Dottty [ omhnasnlt=0) (oo (1 = P )
to+1 cv
1 1 2IV g
+—piL+ 0Pt + ipf))ds
cvmg

2|Vg|eo
= [Jug(to + 1)||Pe ¥ m+ratt= (t0+1))+2c( 4L+— pRpt + Vg p%)
crm

t t

2
. / o Amsrai—n gg 4 2 / e v Amelt=|( — P,,) f[2ds
to+1 to+1

—-v a(t— 2c 2|V 9|oo
= [Jua(to + 1)||2e™ m+1 (t—(to+1)) +27( 4L 4 LoPL PoP1 + Vg pf)
V2 A1 cmg

9 t
+= / e Amnrel=2) (1 — P, f[2ds.
to+1

By (17) and Lemma 4, for any € > 0, we can take m + 1 large enough such that

2 t

_/ e VAmt1a(t— 5)|(I P )f|2ds Ej
to+1 3
2c 4 PP 21Vl o) _ €

_ ¢ (a4 PoPL ) <<

V2)\m+1a( L v? + cmyo “emo 1 3

Let to =tg+14+ ——————. Then, t > t,. We have

3
VAmt1aln pl

llua(to + 1)]|2e  Am+1alt=(to+1))  2e=rAmiralt=(to+1)) < %

Hence, we have

lluz(®)])* <&, Vit =t

which indicates that the family {¢(¢,v, )} in V, satisfies the PC in V. Applying Theorem 2,
the proof is completed.
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