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1 Introduction

Navier-Stokes equations have received increasing attention over the last decades due to
their importance in the fluid motion and turbulence[1–7]. The understanding of the asymptotic
behaviour of dynamical systems is one of the most important problems of modern mathematical
physics. One way to treat this problem for a system with some dissipativity properties is to
analyze the existence and structure of the global attractor[1–5,8–10]. At the same time, the theory
of pullback attractors has been developed for both the non-autonomous systems and the random
dynamical systems[11–19]. It is shown that the theory is very useful in the understanding of the
dynamics of non-autonomous dynamical systems. In this paper, we study the existence of the
pullback attractor of the g-Navier-Stokes (g-N-S) equations on the bounded domain Ω ⊂ R

2,
which have the following form:





∂u

∂t
− ν∆u + (u · ∇)u + ∇p = f(x, t) in Ω × (0,∞),

∇ · (gu) = 0 in Ω × (0,∞),

u(x, t) = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω,

(1)
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where u(x, t) ∈ R
2 and p(x, t) ∈ R denote the velocity and the pressure, respectively, ν > 0,

f = f(x, t) ∈ (L2(Ω))2 is the time-dependent external force, and 0 < m0 6 g = g(x1, x2) 6 M0.
Here, g = g(x1, x2) is a suitable real-valued smooth function. When g = 1, the equations (1)
become the usual 2D Navier-Stokes equations.

Now, some results have been obtained for the research on the global attractor of the au-
tonomous 2D g-N-S equations[20–22]. In [20], Roh studied the existence of the 2D g-N-S equa-
tions on some bounded domain using the semiflow theory. In [21], Kwak et al. researched the
Hausdorff and Fractal dimension of the global attractor about the 2D g-N-S equations for the
periodic and Dirichlet boundary conditions. Moreover, the authors mainly studied the global
attractor of the 2D g-N-S equations with linear dampness on R

2 and the fractal dimension in
[22]. From the research, we can see that the autonomous 2D g-N-S equations are studied, and
the related research about the non-autonomous 2D g-N-S equations is still rare. We would
like to use the theory of pullback attractors to study the non-autonomous dynamical system.
Therefore, the present research is necessary and has a theoretical basis.

Recently, Caraballo et al. in [12] introduced the notion of pullback D-attractors for non-
autonomous dynamical systems and proved the existence of pullback D-attractors by using the
energy equation method. Obviously, it is hard to prove that a cocycle satisfies the above con-
ditions. Motivated by the ideas in [17–19,23], we present a new equivalent condition (pullback
condition) for the pullback D-asymptotical compact by using the measure of non-compactness.
It is easy to be verified for general non-autonomous dynamical systems. As the application of
this method, we prove the existence of pullback attractors for the 2D g-N-S equations on some
bounded domains.

This paper is organized as follows. In Section 2, we recall some basic notations and results for
2D g-N-S equations and the concept about the pullback asymptotic compactness. In Section 3,
using the measure of non-compactness, we prove the existence of the pullback attractor for the
2D g-N-S equations on some bounded domain.

2 Preliminaries

Now, we assume that the Poincaré inequality holds on Ω, i.e., there exists λ1 > 0 such that

∫

Ω

φ2gdx 6
1

λ1

∫

Ω

|∇φ|2gdx, ∀φ ∈ H1
0 (Ω). (2)

The mathematical frameworks of (1) are as follows. Let L2(g) = (L2(Ω))2 with the inner
products

(u, v) =

∫

Ω

u · νgdx

and the norms

| · | = (·, ·)
1
2 , u, v ∈ L2(g).

Let H1
0 (g) = (H1

0 (Ω))2, which is endowed with the inner products

((u, v)) =

∫

Ω

2∑

j=1

∇uj · ∇vjgdx

and the norms

|| · || = ((·, ·))
1
2 , u = (u1, u2), v = (v1, v2) ∈ H1

0 (g).
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From (2), the norm || · || is equivalent to the usual one in H1
0 (Ω). Let D(Ω) be the space of C∞

functions with the compact support contained in Ω, and let

ℵ = {v ∈ (D(Ω))2 : ∇ · gv = 0 in Ω},

Hg = closure of ℵ in L2(g),

Vg = closure of ℵ in H1
0 (g).

With Hg and Vg endowed with the inner product and norm of L2(g) and H1
0 (g), respectively,

it follows from (2) that

|u|2 6
1

λ1
||u||2, ∀u ∈ Vg. (3)

Now, we define a g-Laplacian operator as follows:

−∆gu = −
1

g
(∇ · g∇)u = −∆u −

1

g
∇g · ∇u.

Using the g-Laplacian operator, we rewrite the first equation of (1) as follows:

∂u

∂t
− ν∆gu + ν

∇g

g
· ∇u + (u,∇)u + ∇p = f. (4)

We define a g-orthogonal projection

Pg : L2(g) → Hg

and a g-Stokes operator

Agu = −Pg

(1

g
(∇ · (g∇u))

)
,

which satisfies the following proposition.
Proposition 1[20] For the linear operator Ag, the following results hold:
(i) Ag is a positive self-adjoint operator with compact inverse, where the domain of Ag is

D(Ag) = Vg ∩ H2(Ω).
(ii) There exist countable eigenvalues of Ag satisfying 0 < λg 6 λ1 6 λ2 6 λ3 6 · · · , where

λg = 4π2m0

M0
, and λ1 is the smallest eigenvalue of Ag. In addition, there exists the corresponding

collection of eigenfunctions {e1, e2, e3, · · · }, which forms an orthonormal basis for Hg.

When we apply the projection Pg into (4), we can obtain the following weak formulation of
(1). Let f ∈ Vg and u0 ∈ Hg. Then, we find that

u ∈ L∞(0, T ; Hg) ∩ L2(0, T ; Vg), T > 0 (5)

such that

d

dt
(u, v) + ν((u, v)) + bg(u, u, v) + ν(Ru, v) = 〈f, v〉, ∀v ∈ Vg, ∀t > 0, (6)

u(0) = u0, (7)

where bg : Vg × Vg × Vg → R is given by

bg(u, v, w) =

2∑

i,j=1

∫
ui

∂vj

∂x
wjgdx (8)
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and

Ru = Pg

(1

g
(∇g · ∇)u

)
, ∀u ∈ Vg.

Then, the weak formulation of (6) and (7) is equivalent to the functional equations

du

dt
+ νAgu + Bu + νRu = f, (9)

u(0) = u0, (10)

where Ag : Vg → V ′
g is the g-Stokes operator defined by

〈Agu, v〉 = ((u, v)), ∀u, v ∈ Vg, (11)

B(u) = B(u, u) = Pg(u · ∇)u is a bilinear operator, and B : Vg × Vg → V ′
g is defined by

〈B(u, v), w〉 = bg(u, v, w), ∀u, v, w ∈ Vg.

Now, we recall some well-known inequalities[24] that we will be using in what follows.
For every u, v ∈ D(Ag),

|B(u, v)| 6 C|u|
1
2 |Agu|

1
2 ||v||. (12)

Here, C denotes the positive constant, which may be different from line to line and even in the
same line.

|ϕ|L∞(Ω)2 6 C||ϕ||
(
1 + log

|Agϕ|
2

λ1||ϕ||2

) 1
2

, ∀ϕ ∈ D(Ag), (13)

from which we can deduce

|B(u, v)| 6 |(u · ∇)v| 6 |u|L∞(Ω)|∇v|. (14)

Using (13), we obtain

|B(u, v)| 6 C||u||||v||
(
1 + log

|Agu|
2

λ1||u||2

) 1
2

. (15)

The g-Stokes operator Ag is an isomorphism from Vg into V ′
g , while B and R satisfy the

following inequalities[20,25]:

||B(u)||V ′ 6 c|u|||u||, ||Ru||V ′ 6
|∇g|∞

m0λ
1
2

1

||u||, ∀u ∈ V. (16)

We have the following concept and result[26,6].
Proposition 2 Given f ∈ L2(g) and u0(x) ∈ Hg, there exists a unique solution

u(x, t) ∈ L∞(R+; Hg) ∩ L2(0, T ; Vg) ∩ C(R+; Hg), ∀T > 0

such that (6) and (7) hold.
Let Γ be a nonempty set. We define a family {θt}t∈R of mappings θt : Γ → Γ satisfying
(i) θ0γ = γ for all γ ∈ Γ;
(ii) θt(θτγ) = θt+τγ for all γ ∈ Γ, t, τ ∈ R.

Here, the operators θt are called the shift operators.
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Let X be a metric space with distance d(·, ·), and φ be a θ-cocycle on X , i.e., a mapping
φ : R+ × Γ × X → X satisfying

(i) φ(0, γ, x) = x for all (γ, x) ∈ Γ × X ;
(ii) φ(t + τ, γ, x) = φ(t, θτ γ, φ(τ, γ, x)) for all t, τ ∈ R+ and (γ, x) ∈ Γ × X .
The θ-cocycle φ is said to be continuous if for all (t, γ) ∈ R+×Γ, the mapping φ(t, γ, ·) :

X → X is continuous. Let P(x) be the family of all nonempty subsets of X , and ϕ the class of

all families D̃ = {D(γ) : γ ∈ Γ} ⊂ P(X). Let a nonempty subclass D ⊂ ϕ.
Definition 1 The θ-cocycle φ is said to be pullback D-asymptotically compact if for any γ ∈

Γ, any D̃ ∈ D, and any sequences tn → +∞ and xn ∈ D(θ−tnγ), the sequence φ(tn, θ−tnγ, xn)
possesses a convergent subsequence.

Definition 2 A family B̃ = {B(γ); γ ∈ Γ} ∈ ϕ is said to be pullback D-absorbing if for

each γ ∈ Γ and D̃ ∈ D, there exists t0(γ, D̃) > 0 such that

φ(t, θ−tγ, D(θ−tγ)) ⊂ B(γ) for all t > t0(γ, D̃).

We define the Hausdorff semi-distance between C1 and C2 as

dist(C1, C2) = sup
x∈C1

inf
y∈C2

d(x, y) for C1, C2 ⊂ X.

Definition 3 A family Ã = {A(γ); γ ∈ Γ} ∈ ϕ is said to be a pullback D-attractor if it

satisfies the following conditions :
(i)A(γ) is compact for any γ ∈ Γ.

(ii) Ã is pullback D-attracting, i.e.,

lim
t→+∞

dist(φ(t, θ−tγ, D(θ−tγ)), A(γ)) = 0 for all D̃ ∈ D, γ ∈ Γ.

(iii) Ã is invariant, i.e.,

φ(t, γ, A(γ)) = A(θtγ) for any (t, γ) ∈ R+× Γ.

3 Existence of pullback attractor for 2D g-N-S equations on some bounded

domains

In this section, we present the measure of non-compactness to prove the existence of pullback
attractors of 2D g-N-S equations on bounded domains. First, we recall some basic notions about
the measure of non-compactness[23].

Let B(X) be the set of all bounded subsets of X and B ∈ B(X). Its Kuratowski measure
of non-compactness α(B) is defined by

α(B) = inf{δ|B admits a finite cover by the set of diameter 6 δ}.

It has the following properties[25,27].
Lemma 1 Let B, B1, B2 ∈ B(X). Then,
(i) α(B) = 0 ⇔ α(N(B, ε)) 6 2ε ⇔ B is compact.
(ii) α(B1 + B2) 6 α(B1) + α(B2).
(iii) α(B1) 6 α(B2) whenever B1 ⊂ B2.
(iv) α(B1 ∪ B2) 6 max{α(B1), α(B2)}.
(v) α(B) = α(B).
(vi) If B is a ball of radius ε, then α(B) 6 2ε.
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Lemma 2 Let · · · ⊃ Fn ⊃ Fn+1 ⊃ · · · be a sequence of non-empty closed subsets of X

such that α(Fn) → 0 as n → ∞. Then, F =
∞⋂

n=1
Fn is nonempty and compact.

We have some results[17].
Definition 4 Let φ be a θ-cocycle on X. A set B0 ⊂ X is said to be a uniformly absorbing

set for φ if for any B ∈ B(X), there exists T0 = T0(B) ∈ R
+ such that

φ(t, γ, B) ⊂ B0 for all t > T0, γ ∈ Γ.

Definition 5 Let φ be a θ-cocycle on X . φ is said to be pullback ω-limit compact if for

any B ∈ B(X) and γ ∈ Γ,

lim
t→+∞

α
( ⋃

φ(t, θ−t(γ), B)
)

= 0.

Definition 6 Let φ be a θ-cocycle on X. Define the pullback ω-limit set Λγ(B) of B by the

following form:

Λγ(B) =
⋂

s>0

⋃

t>s

φ(t, θ−t(γ), B).

Theorem 1 Let φ be a θ-cocycle on X . If φ is continuous and possesses a uniformly

absorbing set B0. Then, φ possesses a pullback attractor A = {Aγ}γ∈Γ satisfying

Aγ = Λγ(B0), ∀γ ∈ Γ

if and only if it is pullback ω-limit compact.
Definition 7 Let φ be a θ-cocycle on X . A cocycle φ is said to satisfy the pullback condition

(PC) if for any γ ∈ Γ, B ∈ B(X), and ε > 0, there exist t0 = t0(γ, B, ε) > 0 and a finite

dimensional subspace X1 of X such that

(i) P
( ⋃

t>t0

φ(t, θ−t(γ), B)
)

is bounded.

(ii)
∣∣∣
∣∣∣(I − P )

( ⋃
t>t0

φ(t, θ−t(γ), x)
)∣∣∣

∣∣∣ 6 ε, ∀x ∈ B.

Here, P : X → X1 is a bounded projector.
Theorem 2 Let X be a Banach space and φ be a θ-cocycle on X . If φ satisfies the PC,

then φ is pullback ω-limit compact. Moreover, let X be a uniformly convex Banach space. Then,
φ is pullback ω-limit compact if and only if the PC holds.

Denote by L2
loc(R, X) the metrizable space of function f(s) ∈ X with s ∈ R, where X is

locally two-power integrable in the Bochner sense. It is equipped with the local two-power
mean convergence topology. Now, we apply the new method to prove the existence of pullback
attractors for 2D g-N-S equations.

Lemma 3 Suppose f ∈ L2
loc(R, Hg) such that

|f |2b = sup
t∈R

∫ t+1

t

|f(s)|2ds < ∞,

and u0(x) ∈ Hg. Let u(x, t) ∈ L∞(R+, Hg) ∩ L2
loc(0, T, Vg) ∩ C(R+, Hg) (∀t > 0) be a weak

solution of (1). Then, for all t > τ and σ = νλ1, the following estimates hold:

|u(t)|2 6 |u0|
2e−σγ0(t−τ) + R2

1, (17)

where R2
1 = σ−1(1 − e−σγ0)−1|f |2b and γ0 = 1 − 2ν

|∇g|∞

m0λ
1/2

1

for sufficiently small |∇g|∞.
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Proof Let u(x, t) be a solution of (1). Since u ∈ L2(0, T ; Vg) and u′ ∈ L2(0, T ; V ′
g), we

obtain

1

2

d

dt
|u|2 = 〈u′, u〉

= 〈f − νAgu − Bu − νRu, u〉

= 〈f, u〉 − ν||u||2 − bg(u, u, u)− ν
((1

g
∇g · ∇

)
u, u

)
.

Taking into account that bg(u, u, u) = 0, we have

d

dt
|u|2 + 2ν||u||2 = 2〈f, u〉 − 2ν

((∇g

g
· ∇

)
u, u

)
.

Applying the Poincaré inequality, we obtain

d

dt
|u|2 + 2ν||u||2 6

|f |2

νλ1
+ νλ1|u|

2 + 2ν
|∇g|∞

m0λ
1/2
1

||u||2

6
|f |2

νλ1
+ ν||u||2 + 2ν

|∇g|∞

m0λ
1/2
1

||u||2.

Then,
d

dt
|u|2 + ν||u||2 6

|f |2

νλ1
+ 2ν

|∇g|∞

m0λ
1/2
1

||u||2.

We have

d

dt
|u|2 + νγ0||u||

2 6
|f |2

νλ1
,

where γ0 = 1 − 2ν
|∇g|∞

m0λ
1/2

1

for sufficiently small |∇g|∞.

d

dt
|u|2 + νλ1γ0|u|

2 6
|f |2

νλ1
.

Let σ = νλ1. Using Gronwall’s lemma, we have

|u(t)|2 6 |u0|
2e−σγ0(t−τ) +

1

σ

∫ t

τ

e−σγ0(t−s)|f(s)|2ds

6 |u0|
2e−σγ0(t−τ) +

1

σ

(∫ t

t−1

e−σγ0(t−s)|f(s)|2ds +

∫ t−1

t−2

e−σγ0(t−s)|f(s)|2ds + · · ·
)

6 |u0|
2e−σγ0(t−τ) +

1

σ
(1 + e−σγ0 + e−2σγ0 + · · · ) sup

t∈R

∫ t+1

t

|f(s)|2ds

6 |u0|
2e−σγ0(t−τ) + R2

1,

where R2
1 = σ−1(1 − e−σγ0)−1|f |2b .

For any f ∈ Γ and |f |2b = |f0|
2
b , using (17), we obtain that

B0 = {u ∈ Hg||u| 6 2R2
1 , ρ2

0}

is the uniformly absorbing set in Hg.
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Lemma 4 Suppose f ∈ L2
loc(R, Hg) such that

|f |2b = sup
t∈R

∫ t+1

t

|f(s)|2ds < ∞,

and u0(x) ∈ Hg. Let

u(x, t) ∈ L∞(R+, Vg) ∩ L2
loc(0, T, D(Ag)) ∩ C(R+, Vg), u′(x, t) ∈ L2

loc(Rτ ; Hg), ∀t > 0

be a strong solution of (1). Then, for all t > τ , the following estimates hold:

||u(t)||2 6 ||u(τ)||2e−β(t−τ) + (1 − e−β)−1|f |2b , (18)

where β = λ
(
2ν − 1 − 2Cρ0

λ
1/2

0

− 2ν|∇g|∞

m0λ
1/2

0

)
for sufficiently small |∇g|∞.

Proof We multiply (9) by −∆u(t) and obtain

1

2

d

dt
||u||2 + ν|∆u|2 = (f,−∆u) − (Bu,−∆u) − ν(Ru,−∆u).

Using Young’s inequality,

d

dt
||u||2 + 2ν|∆u|2 = 2(f,−∆u) − 2(Bu,−∆u)− 2ν(Ru,−∆u)

6 |f |2 + |∆u|2 + 2|(Bu,−∆u)| + 2ν|(Ru,−∆u)|

6 |f |2 + |∆u|2 + 2|Bu||∆u| + 2ν|Ru||∆u|

6 |f |2 + |∆u|2 +
2C

λ
1
2

0

|u|
1
2 |∆u|2 +

2ν|∇g|∞
m0

||u|||∆u|

6 |f |2 + |∆u|2 +
2Cρ0

λ
1
2

0

|∆u|2 +
2ν|∇g|∞

m0λ
1
2

0

|∆u|2,

we have

d

dt
||u||2 +

(
2ν − 1 −

2Cρ0

λ
1
2

0

−
2ν|∇g|∞

m0λ
1
2

0

)
|∆u|2 6 |f |2.

Using the Poincaré inequality, we obtain

d

dt
||u||2 + λ

(
2ν − 1 −

2Cρ0

λ
1
2

0

−
2ν|∇g|∞

m0λ
1
2

0

)
||u||2 6 |f |2.

Let

β = λ

(
2ν − 1 −

2Cρ0

λ
1
2

0

−
2ν|∇g|∞

m0λ
1
2

0

)
.

Then, we have

d

dt
||u||2 + β||u||2 6 |f |2.
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Applying Gronwall’s lemma, we obtain

||u||2 6 ||u(τ)||2e−β(t−τ) +

∫ t

τ

e−β(t−s)|f |2ds

||u||2 6 ||u(τ)||2e−β(t−τ) +

∫ t

t−1

e−β(t−s)|f |2ds +

∫ t−1

t−2

e−β(t−s)|f |2ds + · · ·

||u||2 6 ||u(τ)||2e−β(t−τ) + (1 + e−β + e−2β + · · · ) sup
t∈R

∫ t+1

t

|f |2ds

||u(τ)||2e−β(t−τ) + (1 − e−β)−1|f |2b .

Let
B1 =

⋃

f∈Γ

⋃

t>t0+1

φ(t0 + 1, f, B0).

Using (18), we know that B1 is bound, ||u||2 6 ρ2
1 for all u ∈ B1, and B1 is the uniformly

absorbing set in Vg.
Lemma 5 Suppose that Hg is a Hilbert space, and {ωi}i∈N is orthonormal in Hg. Let

f(x, t) ∈ L2
loc(R; Hg), and suppose that there exists a σ > 0 such that for any t ∈ R,∫ t

−∞ eσs||f(x, s)||2Hg
ds < ∞. Then,

lim
n→∞

∫ t

−∞

eσs||(I − Pm)f(x, s)||2Hg
ds = 0, ∀t ∈ R, (19)

where Pm : Hg → span{ω1, · · ·, ωn} is an orthogonal projector.
Proof Let ξi(t) = (f(x, t), ωi)Hg . Then,

f(x, t) =
1

g

∞∑

i=1

ξi(t)ωi.

For any t ∈ R, ε > 0, since

∫ t

−∞

eσs||f(x, s)||2Hg
ds =

∞∑

i=1

∫ t

−∞

eσs||ξi(s)||
2
Hg

ds < ∞.

we have ∫ t

−∞

eσs||(I − Pm)f(x, s)||2Hg
ds =

∞∑

i=N0

∫ t

−∞

eσs||ξi(s)||
2
Hg

ds < ε

for any n > N0 with the sufficiently large N0.
Theorem 3 If f(x, t) ∈ L2

loc(R; Hg), then the cocycle {φ(t, γ, x)} corresponding to (1)
possesses a compact pullback attractor

A = {Aγ}γ∈Γ = {Λγ(B1)}γ∈Γ,

where B1 is the uniformly (w.r.t. γ ∈ Γ) absorbing set in Vg.
Proof From Theorem 2, we only need to verify that the family of cocycles {φ(t, γ, x)}

satisfies the PC in Vg.
Since (−∆)−1 is a continuous compact operator in Hg, by the classical spectral theorem,

there exists a sequence {λj}
∞
j=1, where

0 6 λ1 6 λ2 6 · · · 6 λi 6 · · · 6 λj → ∞ as j → ∞, (20)
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and a family of elements {ωj}
∞
j=1 of D(−∆) that are orthonormal in Hg such that

−∆ωj = λjωj, ∀j ∈ N.

Let Vm = span{ω1, ω2, · · ·, ωm} in Vg and Pm : Vg → Vm be an orthogonal projector.
For any u ∈ D(−∆), we write

u = Pmu + (I − Pm)u = u1 + u2.

Taking the inner product of (9) with −∆u2 in Hg, we have

1

2

d

dt
||u2||

2 + ν|∆u2|
2 + (B(u),−∆u2) + ν(Ru,−∆u2) = (f,−∆u2).

Using Young’s inequality, together with (12) and (15), we have

|(B(u),−∆u2)| 6 |(B(u1, u1 + u2),−∆u2)| + |(B(u2, u1 + u2),−∆u2)|

6 cL
1
2 ||u1|||∆u2|(||u1|| + ||u2||) + c|u2|

1
2 |∆u2|

3
2 (||u1|| + ||u2||)

6
ν

4
|∆u2|

2 +
c

ν
ρ4
1L +

c

ν3
ρ2
0ρ

4
1, t > t0 + 1,

where |∆u1|
2 6 λm||u1||

2, and L = 1 + log λm+1

λ1
.

|(Ru,−∆u2)| 6 |Ru| · |∆u2|

6
|∇g|∞

m0
||u|| · |∆u2|

6
|∇g|∞

m0

( |∆u2|
2

2
+ 2||u||2

)

6
|∇g|∞

m0

( |∆u2|
2

2
+ 2ρ2

1

)
,

and

(f,−∆u2) 6
|f |2

ν
+

ν|∆u2|
2

4
,

d

dt
||u2||

2 + 2ν|∆u2|
2

6 2(f,−∆u2) − 2(B(u),−∆u2) − 2ν(Ru,−∆u2)

6
2|f |2

ν
+

ν|∆u2|
2

2
+

ν

2
|∆u2|

2 +
2c

ν
ρ4
1L +

2c

ν3
ρ2
0ρ

4
1 +

2|∇g|∞
m0

(ν|∆u2|
2

2
+

2ρ2
1

ν

)

6
2|f |2

ν
+ ν|∆u2|

2 +
ν|∇g|∞

m0
|∆u2|

2 +
2c

ν
ρ4
1L +

2c

ν3
ρ2
0ρ

4
1 +

4|∇g|∞
νm0

ρ2
1.

We obtain

d

dt
||u2||

2 + ν
(
1 −

|∇g|∞
m0

)
|∆u2|

2 6
2|f |2

ν
+

2c

ν
ρ4
1L +

2c

ν3
ρ2
0ρ

4
1 +

4|∇g|∞
νm0

ρ2
1,

d

dt
||u2||

2 + ν
(
1 −

|∇g|∞
m0

)
|∆u2|

2 6 2c
( 1

cν
|(I − Pm)f |2 +

1

ν
ρ4
1L +

1

ν3
ρ2
0ρ

4
1 +

2|∇g|∞
cνm0

ρ2
1

)
.

Let α = (1 − |∇g|∞
m0

). Then, we have

d

dt
||u2||

2 + νλm+1α||u2||
2 6 2c

( 1

cν
|(I − Pm)f |2 +

1

ν
ρ4
1L +

1

ν3
ρ2
0ρ

4
1 +

2|∇g|∞
cνm0

ρ2
1

)
.
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Applying Gronwall’s lemma, we deduce

||u2||
2 6 ||u2(t0 + 1)||2e−νλm+1α(t−(t0+1)) +

∫ t

t0+1

e−νλm+1α(t−s)
(
2c

( 1

cν
|(I − Pm)f |2

+
1

ν
ρ4
1L +

1

ν3
ρ2
0ρ

4
1 +

2|∇g|∞
cνm0

ρ2
1

))
ds

= ||u2(t0 + 1)||2e−νλm+1α(t−(t0+1)) + 2c
(1

ν
ρ4
1L +

1

ν3
ρ2
0ρ

4
1 +

2|∇g|∞
cνm0

ρ2
1

)

·

∫ t

t0+1

e−νλm+1α(t−s)ds +
2

ν

∫ t

t0+1

e−νλm+1α(t−s)|(I − Pm)f |2ds

= ||u2(t0 + 1)||2e−νλm+1α(t−(t0+1)) +
2c

ν2λm+1α

(
ρ4
1L +

ρ2
0ρ

4
1

ν2
+

2|∇g|∞
cm0

ρ2
1

)

+
2

ν

∫ t

t0+1

e−νλm+1α(t−s)|(I − Pm)f |2ds.

By (17) and Lemma 4, for any ε > 0, we can take m + 1 large enough such that

2

ν

∫ t

t0+1

e−νλm+1α(t−s)|(I − Pm)f |2ds 6
ε

3
,

2c

ν2λm+1α

(
ρ4
1L +

ρ2
0ρ

4
1

ν2
+

2|∇g|∞
cm0

ρ2
1

)
6

ε

3
.

Let t2 = t0 + 1 + 1

νλm+1α ln
3ρ2

1
ε

. Then, t > t2. We have

||u2(t0 + 1)||2e−νλm+1α(t−(t0+1)) 6 ρ2
1e

−νλm+1α(t−(t0+1)) 6
ε

3
.

Hence, we have
||u2(t)||

2 6 ε, ∀t > t2,

which indicates that the family {φ(t, γ, x)} in Vg satisfies the PC in Vg. Applying Theorem 2,
the proof is completed.
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