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1. Introduction

Let Q ¢ R? be a bounded and connected polygonal domain, with a Lipschitz continuous boundary I". We consider the sta-
tionary conduction-convection problems whose coupled equations governing viscous incompressible flow and heat transfer
for the incompressible fluid are Boussinesq approximations to the stationary Navier-Stokes equations.

Find u = (uy,uy), p and T such that

—VAu+ (u-Viu+Vp = 4T, x€Q,

div u=0, xeQ, )
—AT + Au - VT =0, XeQ,
u=0, T=T, xel,

where u = (uq,uy) represents the velocity vector, p the pressure, T the temperature, 4> 0 the Groshoff number, j=(0,1) the
unit vector and v > 0 the viscosity.

Finding the numerical solution of conduction convection problems (1) is a difficult task. The reason is that the problem (1)
not only contains the velocity vector field and the pressure field but also contains the temperature field. There are some
works devoted to the development of efficient numerical schemes for these equations [1-5]. The non-stationary problem
is considered, too [6-9].

Within the framework of finite element methods, generating optimal or near optimal meshes is a useful technique for
increasing accuracy at a lower computational cost. A posteriori error estimates have been used with much success as a guid-
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ing tool in adaptively generating optimal or near optimal meshes and in adaptively computing solutions to problems with
boundary layers (regions of rapid transition of the solution; see [10-13]). There are numerous works devoted to the devel-
opment of the a posteriori analysis [14-19], for instance. R.Verfiirth [14,17] has developed a general framework for a pos-
teriori error estimates for nonlinear equations. In [18], Using the general framework, V.J. Ervin et al. derive the a
posteriori error estimates for finite element approximations of viscoelastic fluid flows governed by differential constitutive
laws of Giesekus and Oldroyd-B type. We also can find that the general framework has been used to derive a posteriori error
analysis in [13,18,19]. In this paper, we will use the general framework of R.Verfiirth [14,17] and derive a posteriori error
estimates for finite element approximations of stationary conduction convection problems.

The present paper is organized as follows. In Section 2, we introduce some function spaces and recall some preliminary
results. The general framework of R.Verfiirth [14,17] is presented in Section 3. In Section 4, we cast the stationary conduction
convection problems into the framework, that is, residual type a posteriori error estimates are derived for this problem. In
Section 5, the effectiveness of the adaptive method is further demonstrated through two numerical examples. The first
example is a known solution problem and the second example is a physical model of square cavity stationary flow. Conclu-
sion is given in Section 6.

2. Functional setting and finite element approximation tools

In this section, we aim to describe some notations and results which will be frequently used in this paper. The Sobolev
spaces and norms used in this context are standard [20]. We introduce the following Hilbert spaces.

Velocity Space: M = H'(Q)* = {v eH'(Q)’:v=0o0n 69},

Pressure Space : Q = L3(Q) = {p € 1*(Q),(p, 1), = 0}7
Temperature Space : W =H'(Q), W, = Hy(Q).
For ease of notation, we drop the domain from the norm and seminorm notations when the domain is obvious. We use

the same notation for the corresponding norms of vector valued functions.
For problem (1), the following assumptions are recalled (see [6,20-22]).

(A;) There exists a constant Co, which only depends on €2, such that

(1) ullp < CollVullg, l[ulloq < CoHVUHo, Vi € Hy(Q)* (or Ho(Q)),

(i) |\U||o4<Co\|UH1,VU€H (Q), ) :

(iii) [ulloq < 22 Vulls|jully, Vu € Hy(@)*(or H, Q).

(A,) Assuming 92 € C**(k > 0,a > 0), then, for To € C**(9Q), there exists an extension T, € C’”(Rz) such that

[Tollg <& k=0, 1<g<oo,

where ¢ is an arbitrary small positive constant number.
(A3) b(+,-,-) and b(-,-,-) have the following properties:
(i) ForallueM,v,we M(or T,p e Hy(Q)), there holds

b(u,v,v) =0, b(u,v,w) = —b(u,w, v),
b(u,T,T) =0, bu,T,¢)=-b(u,T,y),
where

1 2.9
b(u,v,w)_z{/ Z”l 7,

ik= ik=

2
awk
E d M,
”‘ax vdx Yu,v,we

2 2
bu,T,y) = [/ZU,aTlf/dX Zu, de VueM, T, eW,.

(ii) Forallue M, ve M(or T e W), Yw € M(or ¢ € Wp), there holds
Ib(u, v, w)| < N||Vullo[Vollo[[VWlo,
b(u, T, @)| < N[[Vullo[[VT[o[Vello,
where

N = sup [b(u, v, w)|/([Vullo[IV 2l VW],),

u,v.w

N= sup b, T, )|/ (IVullo [ VTllo IV ¢llo)-
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(A4) Letting A = 2v-12(3Co + 1)||Toll;, B =2[VTollo + (2C22)'vA, then, there exist two positive constant d;, d,, such that
VINACK1 =6, 0<do,<1, 6;'v'CBBN<1-06,, 0<d<1.
Theorem 2.1 [6]. Under the assumption of (A;) ~ (A4), then problem (1) has a unique solution (u,p, T) € X x M x W, and

IVullp <A, [[VT]lo < B.

Let 2, C Q be the polygon region, such that mes (2 — Q) = 0. Let 3,,;(Q), j = 1, be a the uniformly regular family of triangulations
of Q, indexed by a parameter h = Maxges, o) {hk; hk = diam(K)}, which satisfies the following conditions:

(1) Any two triangles in J3,;(Q) are either disjoint or share a complete smooth submanifold of their boundaries.
(2) The ratio hg/ok < ¢ is bounded from above independently of K € J,;() and h > 0.

Here, gk and hg denote the diameter of the largest ball inscribed into K and the diameter of an edge E of K, respectively. We
note that condition (2) allows the use of locally refined meshes and it implies the ratio hg/hg, for all K € 3;,;(Q) and all edges E
of K, is bounded from above and from below by constants which are independent of h, K and E.

Forany K € 3,,;(©2), we denote by £(K) the set of its edges and by &, = Uxes, ;) €(K) the set of all edges of the triangulation.
The set &, may be decomposed as &, = Eno U Enr, Eng N Enr = ¢, Where &, ;- denotes the set of all edges lying on I'. For any
E € &pand any piecewise continuous function ¢, we denote by [¢@]g the jump of ¢ across E in a fixed direction. Here, ¢ is
continued by 0 outside Q and the direction is given by the exterior normal of I' if E € &, ;. Similarly, we define 3, and 9%,
as the collection of all the triangles and vertices, respectively, in the partition J;(Q).

For each triangle K € J,;(Q) and for each side E € &;, we define:

Wk = U K, @x= U x,

{K:E@)neK) ¢} {K":0KnoK' =4 }
o= |J K, = |J K.
{K"Ecek) } {K EnoK'~¢}

Let W"(cok) and W"I(co) be suitable Sobolev spaces defined on the extended neighborhoods of K and E, respectively. For
k € N, we define

STT={0: Q= R: 0| eP, VKe3(Q)}, S°=S""nCQ),
where P, is the space of polynomials of degree < k.

Let S : L'(Q) — 5,11‘0 denote the interpolation operator of Clément [23]. Then, the following lemma holds.

Lemma 2.2 ([14,17]). There exist two constants ¢; and c,, depending only on the ratio h/o, such that for K € 3,;(Q), E € &, and
1 < q < o, the following error estimates are valid:

Hq) - Sh(p”k,q;l( < C1h;€’(‘|(p||l,q;(Z)K7 0 < k < ! < 27 (VS Wliq(d)l(L
19— Sh@llgr < C2hp " @llige,, 1<I<2, @ € W)

Let Vi c L*°(K) and Vg c L>(E) denote fixed polynomial spaces defined on K and E respectively. For a simplex K with face E, let
P:L*(E) — L*(K) be the continuation operator defined in [17], and let p and q be two real numbers such that (1/p) +(1/q) =1,
then the following lemma holds.

Lemma 2.3 ([14,17]). There are constants c;, . ..,c7, which only depend on the spaces V~ and V~, the functions lﬁ; and w;, the
number p, and the ratio hy/gx, such that the following inequalities hold for all K € Ry, Ec EnueViand T e Vg:

L{ Lll//KU

c1llulg i < SUp <lully,.
g < 50p 5 <
UeT
ol < sup E2VE° <y
SUP s

C3’71;1 [Wktllopx < IVt logr < C4hl;lHl//Ku||0,p;K?
Cshi 1IWePT o poe < IV(WEPT)llo g < Cshic' [WEPTlo pics

1
[WePTllgpse < €7l I Tl e
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In next section, we will present the abstract framework of R.Verfiirth [14,17] for constructing a posteriori error estimates for non-
linear differential equations. We follow the notations used in R.Verfiirth [14,17].

3. Abstract a posteriori error estimates

Let X and Y be two Banach spaces with the norms ||-||x and ||-||y, respectively. For any element u € X and any real number
R >0, define

B(u,R) = {veX |u-v|y <R}

Let Q(X,Y) denote the Banach space of continuous linear maps from X to Y equipped with the operator norm || - ||« y,-- De-
note by Isom(X,Y) c 9(X,Y) the open subset of linear homeomorphisms of X onto Y. The dual space of Y, Y* = Q(Y,R) and
(-,-) represents the duality pairing between Y and Y. Let F € C'(X,Y«) be a continuously differentiable function. We denote
the linearization of F about u, by DF(u.), Z = ||DF(1.) oy, and Z = |DF(u.)”! oy xo)-

Theorem 3.1 ([14,17]). Let ux € X satisfy Flux) =0 and assume there exists (non-trivial) subspaces Xp C X, Y, C Y* such that
DF(u,) € Isom(Xp, Yp). In addition, assume that DF is Lipschitz continuous at ux, i.e., there is an Rx > 0 such that

DF(u) — DF(u, .
b= sup |IDF (u) (W) llgpy)
ueB(u. R.) llu—u.lx

)

and let R be given by
R= min{R*,y*f*l,Zy”Z}.
Then for any u € B(ux,R) N Xp, we have the estimates

1
57 IF@W) = Fu)lly- < flu —w.lx, (2)
and

= w.lly < 2Z|[F(u) = F(u.)y-. 3)

Remark 3.2. From Remark 2.2 of [17], estimate (2) can be modified to obtain local estimates. Specifically, let S=
span{y;} C Y, where support ({/;) C A C Q. Then,

[F(u) = F(u)lls- < 2Z[[(u — w.)l,llx- (4)

Let Fy € C(Xn, Y;) be an approximation of the function F. Denote the identity operator from Y to Y as Idy. Then, we have the
following result.

Theorem 3.3 ([14,17]). Let uy € X;, be an approximate solution of the equation Fn(up) =0, with HFh(u,,)HY;I “small”. Assume that
there is a restriction operator Ry, € Q(Y,Y4), a finite dimensional subspace Y, = span{y;} C Y, where support (em ;) C A C ©,
and an approximation Fy, : X, — Y} of F at uy. Then,

Pl < 10dy = Ra)FaCun)ly- + [y — o) [Flun) — Falan)] -+ [Ralor , |FCtn) = FuCw)ly
+ HRh”Q(Y.Yh)||F11(uh)”y;a (5)
and

Enml;, < IFQly, + IF) ~ Fu(wnll (6)

I 1

Remark 3.4. From Theorems 3.1 and 3.3, we get the basis for obtaining a residual based a posteriori error estimate.

Remark 3.5. In Theorem 3.3, operator R, may be chosen as Clément [23] type interpolation operator. The space Y, is the
space spanned by a set of bubble functions constructed such that (6) holds. F(uy) is a projection of Fy(u,) elementwise onto
a suitable finite dimensional space.

Remark 3.6. Same as in[13,18,19], to apply the above framework to our problem, one relevant issue is how the various con-
stants 9, Z, Z, and R depend on v and /.. We note that obtaining a very precise dependence in general is very difficult. Some
crude estimates can be obtained, for example, we can bound Z = |DF(w.)||gxy:, by v+4Nv4(3Co + 1)||Toll; + 2V2+
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2C3 4+ 2Nv12(3Co + 1)||To |l + 2}N\|VT0\|ONC 22(3Co + 1)[|[Toll;(see Remark 4.2). Similarly, one can estimate the Lipschitz
constant y(see Eq. (13)). For Z= |DF(u,)™" oy xp)» since Z is a common multiplier of the right-hand side of (3), it is not
for mesh redistribution, only for the computatlon of a rellable upperbound in order to check if a final stopping criterion
is satisfied. Thus, we can approximate the multiplier |[DF(u,) ' oy Xo) ) by [|DF(up)~ HQ Yi Xu) ,» given an approximation solution
[up, PR, T, where X, € Xp € X and Y, C Y C Yp are appropriate finite element spaces. These estimates, however, are not sharp
in general, and future studies are obviously needed to examine such dependence more carefully.

4. A Posteriori error estimation for conduction-convection problems

In order to cast problem (1) into the framework of §3, we set
X=MxQxW, Y=MxQ x W,,

A N (N A
We also define

(F([u,p,T)), [v,q,8]) = /Q(vVuVM— (u-Vyuv—pV-v+qV-u— AT -v)+ /Q(VTVg—HLu -VTg), V[v,q,8]

€ [M,Q, Wo. )

We introduce finite element subspace M, c M, Q, c Q, W, c W as follows

M, = {vh € M C(Q)%; vhly € Pu(K)?, VK € shj(g)},

Qn= {qh € QN C(Q): qyly € Pu(K), VK € Fy;(Q

{gh e W C Q)8 € Po(K), VK € Ty, Q)},

where P/K) is the space of piecewise polynomials of degree ¢/ on K, /> 1, k > 1, s > 1 are three integers. We set
Won = Wy N Hy(2) and assume (M, Q) satisfies the inf-sup (or LBB) condition. We set

Xn=Mp x Qp x Wy, Yy =My x Qp x Wop,
and define
(Fn([un, P> Tr]); [Vh, Qn, 8hl) = (F([Un, Pr, Thl), [Vh, Gn> &n))- (8)

In order to cast this discretization into the framework of §3, we define F,, in the same way as F. We define the restriction
operator Ry : Y — Yy as

Ru[u,p,T| = [Shls, ..., Spln, 0,S,T].
Let the polynomial degrees of the approximating spaces for u, p and Tbe k, ¢, and s, respectively, then, the space Y}, is defined as
Yn= Span{[l//KMQ 0, [0, ¥« 0], [0, 0, yxgl, [YPw, 0,01, [0,0,yPr] : v € [P, (K)*,q € [Pi 1 (K)],& € [P, (K)], W
€ [Py (E)', € [P, (E)]},
where P is the continuation operator defined in [14,17], 0 is the zero vector and
my =max{k,¢—1,s}, my=max{k,¢—1,s}, my=max{k-1,¢,s—1}, my=max{k-1,¢,s—1}.
For all K € 3,,;(Q), we define local a posteriori error indicator by
Mie = ill = VAR + (un - V)t + VP — ATl 20 + hicll = AT + At - VT3 o + 1|V - Unllg e + e [[VOntn
— Punlgllz.c + el 10Tl 026 9)

Theorem 4.1. Let [u.,p,,T.] be a weak solution of problem (1) which is regular in the sense of Theorem 3.1, and let
[Un, Pr Thl € [Mn, Qu, Wi] be a solution of

<Fh([uh’ph7T/1])v [vh7qh’gh]> = OaV[Vhﬂmgh] € [Mh,QmWhL (10)

where Fy, is given in Eq. (8), which is sufficiently close to [u,,p,,T.] in the sense of Theorem 3.1 and satisfies the assumptions of the
Theorem 3.3. Then, for some constants cg, ¢y the following a posteriori error estimates hold:

KeSp (@)

1/2
1/2 B
{Ilu. =l +1Ip. = pulsz +IT. = TulFo} < csllDF(u.,p,, T. |WD{ > nK} : (11)
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and

1
M < ColDF(e, P T)llggery {1t = . + 1P, = Pl 2 + 1T = Thl} 0 (12)

where 1y is defined by (9) and the constants cg, cg only depend on the polynomial degrees of the spaces M, Qp, W}, domain 2
and on the ratio hy/gk.

Proof. First, we establish the existence of the derivative of F and show that it is Lipschitz continuous in a neighborhood of

[t s Tl
Let DF. € Q(X,Y") be defined by

(DF.([u,p, T)),[v,q,8]) = /(vVqu+ (u, -Vyuv+ u-Viu.v —pV-v+qV-u—}T-v) +/(VTVg+/1u* -VTg
+Qiu -VT.g), Vv,qg8 €Y. ’
Now, using the continuous imbedding of H' in L% we have
(F(lu,p,T)) - F(u.,p,,T.]) - DF.([u —u.,p - p,, T - T.]), [v,4.8])
= [(w—w)- D -ujo+ [ u-u)- V)T -Tg
SN[V —w)[5IVolly + ANV (U = u)llo V(T = T Vell < cllfu, p, T) - ., p., T.]IX 2., 8]lly-
We denote
G(F,DF) = F([u,p,T]) - F([u..p,,T.]) = DF.(u —u.,p - p..T = T.]),

therefore
IGF, DF)llopyy — _
wpT—u.p.T.] ||, p, T] = [w., p., T.]|x

It is said that F is differentiable about [u,,p,,T.].
Next, we check that the derivative DF is Lipschitz continuity. We let DF;(-) denote the derivative at [uq,p1,T;]. Then, for
[v.q,.2] €Y, [u,p,T] € B([u.,p,, T.],Rx), we get

(DF:([u, p, T]) — DE.([u, p, T)), [v, 4, 8]) = /Q [ —w) - Vuv + (u- V) —u.)v]

+ [ B —w) - V)Tg i V)T - Tg
Q
< 2NV (w1 = u) ol Vull |Vl + ANV (ur = )| VTl Vg o
+ N[ Vullo|[V Ty = T.) ol Vel
< 2max{N, 2N }|fus, py, Ta) = [, . T. ]l 2, Tl 2 0 ]y

that is

IDF1([u,p, T]) — DF.([u,p, Tl gpx v+
H[u17p17T1] - [uﬂpr*]HX

We now construct the necessary bounds to the terms in (5) and (6). According to the definition of F, and F, we can get

| Ea(utn, P Ti) = F(ltn, Py T |- =0 (14)

Yi

L < 2max{N,iN }|u,p, Tllly < 2max{N, iN}(J[ut., .. T.]l + R.) = 7. (13)

and

|ty = Ra)Eu(lun, P Tal) = Fltn, Py Tul) | = 0. (15)

v
Based on the definition of Fy, for all [#,q,g] € Y, we have

(Futnpn T 00,8y = 5= { [ vom D+ Vpy-iiTio+ [avemf+ 3

Ke3p(Q) Ke3yi(Q)

« /K{fATh+iuh-VTh}g+z/E[vanuhfp,,n]51}+z/E[OnTh]Eg. (16)

Ee&y Ee&y
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For simple, we denote

Ri = =vaup + (up - Vup + Vpy, — ATy,
Ry = — ATy + Juy, - VT,

R; =V Up,
Ry = [VOnup — pynlg,
Rs = [04T4];-

From Lemmas 2.2 and 2.3, we have

|1y = Ra)Fu(lun.py Tal)|| . = sup [ R0~ 8,0) + Ro(g — Sig) + aRa)

Y [v.q.8)eY

Ke3,:(Q
liwag-1 <@

/{R4 V—Spv)+Rs(g — Sp8)}| <

EGEh

By definition, we observe that

|1y = R F({un, P Til) = Fi(lun pas T |, =

F([un, by, Tn]) — Fu([tn, Pps Thl)s [0h, G, &4l) =
[F([un, P> Tal) = Fu([tin, P> Ta])lly; = 0.

Combining (17)-(19) with (5) and (3), we can derive (11).

12
2
Z Nk .
KESn ()

In order to prove inequality (6), we consider an arbitrary simplex K € Jp,;(©2) and an arbitrary face E € &, of K and define

thw- € {K,wg, wg}, as in §2. The definition of space Y, and Lemma 2.3 then yield the estimates

R e Fh([uhyph7ThD7[[//Ke?O:O]
¢1¢; i Rillo 2 < SUP M = sup < >

ee[Pm 0}]2 HV('ﬁKe)”ON( ee[pm1 (K)\{o}]z Hv(lpl(e)HO.ZK

= sup_ (Fullun, Py Ta)) (2, 95 5],

[Vp.ap.8bl€Y nlg

I[wp.qp-gpllly=1
C]C—lhK”Rz” < sup fK RZ‘//l(f _ sup <Fh([uh7ph7Th])7 [0707 l'//Kf}>
! 02K b w0y IV WP llozk — fepm, w03 IV W02k

= SUp~ <Fh([uhaph7Th])7[vbaqbagb]>7

(V5.9 -8b)€ Y nlk
l[@p.ap-&bllly=1

Rallosx < SV - wnew _ (Fal(un. 1. Ti)). [0, vrew, 0]
cl 3”0,2,1( < sup e sup
welpa vy [Wloak welPy_y (K)\{0)] [WkWllo 2k

= sup_ <ﬁh([uh7phaThD: [Ub,vagb]>7

[Vp,qp-8plEY i
I2b.95-8pllly=1

113,172 1 ,-1p1/2 f RleEP(7
C2Cg €7 " |[Rallof < sup  CaCg €7 hg 71‘7”
o€ [Py (EN\{0}] 02F

= sup chglc;‘hé/2||a||aéf~{<Fh<[uh,ph,m>,[o,o,wgpab— / <leEPo->}
o]

<[Py (EN\{0}]

< sup_ (Fullun P T (26, G5.85)) + €5 hielRi gz
[-b-8b]€ Y nlg

2595 .85]lly=1

<c sup_ (Fullun, Py Tal): (05,0, 85)).

[Vb.qb-8b€ Y nl
I[vp.q5.8]lly=1
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Rsyy P
czcg%;lhé/ZHRsHO‘z‘E < sup Czcg1c71hl/zw
pelPm, (EN{0}] 1 llo.2.¢

— sup ' Y sk {<Fh<[uh7p,,, Ti)[0.0.0P) — [ <Rzl//EPu>}
UE[Pmy (E)\{0}] WE
< Sup~ <Fh([uh7ph’Th])7 [Ubaqbvgb]> +Cg]hEHR2||O,2:(UE
[Vy,9p.8b1€Y hlk
[wp.qp-8bllly=1
<c sup_ (Fullun P Tol), [0, 6,85 )
[Vh.qp.8p1€Y Ik

@ -9b.8p]1y=1

Combining all above inequalities with (9), we obtain

me<c sup_ (Fullun Py Tol): [04: 1. 8] ) (20)

[Vp.Gp.8blEY nlk
llvp.ap &b]lly=1

From the definition of F,, we get

| F(@tn, P To) = FiCltn, Py T = 0. 1)

h

Combining (20) and (21) with (4) and (6), we yield (12). O

Remark 4.2. The above theoretical analysis is used to guide us in the design of effective adaptive algorithms based on
the a posteriori error estimator(9). A few comments are in order: as mentioned earlier, notice that the constants
cs||DF(u.,p,, T.) Hg(y Xg) and c||DF(u.,p.,T.)|loxy-) depend on v and Z, since the constants Z = |DF(u.,p.,T.)llgxy")
and Z = |DF(u.,p.,, T) llov: x,) have such a dependence. Some of these constants rely on a priori information and
may not be easily cornputal:D)le we thus cannot completely assure the reliability and efficiency of the a posteriori error
bounds theoretically. Nevertheless, our numerical experiments demonstrate that a very effective adaptive algorithm can
be implemented for conduction convection problems based on the a posteriori error estimator {3, (17,)°}'"/* as defined
by (9). As mentioned earlier, we now present the crude estimate of ||DF(u.,p,,T.)[gxy+- In fact, by the definition of
DKFu,,p.,T.), we can get

<DF*([u’p7T])7[U7q7g]> 2 NI T
DF(u,,p,,T. "= su < V4 2N|| Vi, || +2v2 + iC2 + IN|Vu, | + /N||VT.
DG P T oy = o SUP y Tp. T2 4.1 Vil ot ANV ANV

< V42NA+2V2 + JC2 + INA+ INB < v +4Nv14(3Co + 1)||Toll; +2V2 + iC}
+2/Nv13(3Co + 1)||To|ly + 22N||VTollg + NCy?4(3Co + 1)|| To|;.

5. Numerical experiments

Our objectives here are mainly to illustrate the effectiveness of the adaptive methods. We present two numerical exam-
ples. The first example is a known solution problem and the second example deals with a benchmark problem [7]. The exper-
iments are all implemented in the two-dimensional framework using public domain finite element software FreeFem++ [24].
To approximate the velocity and pressure, we use the Taylor-Hood approximation pair. The lagrange quadratic elements is
used to approximate the temperature.

The adaptive strategy is carried out as follows.

First, set a tolerance #x; then we start from an initial triangulation J,0(f) and compute #.

e Step 1: If # < n7%, stop. We obtain the final finite element solution. Otherwise, go to Step 2.

e Step 2: Compute 7 and 7, generate a new mesh size h by the strategy presented in [24], and recompute 7 based on this
new triangulation. Then go back to Step 1. For convenience of presentation, we introduce the following notation:

o N :=number of elements for triangulation J,;(Q);

o Iy := £ the effective index, i.e., the ratio between the related estimator and the true error. Here, 5? = =3 cme)?,
Ey = (Ex(u)? + Eolp)? + E(TRY2, Ey(u) = [t} 12, Eolp) = [p—Phllozs Ex(T) = [ T—Til12.

Example 5.1. Known solution As in [18], Q2 =[0,1] x [0,1], and chosen functions are added to the right-hand side of (1) such
that the exact solution of the problem is given by
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T(x,y)=u(x,y) + 2(x,y),u(x,y) = (U1 (x,y), U2(x,¥)),

B 2m(en* — 1) ) 27r(er25’ -1\ r, ¥
u1(x,y)_<1—cos< o 1 >>sm< n 1 o eT2—1)
U (x,y) = —sin 2n(e =) (4 _ s (2R = 1) e

2%Y) = en —1 “en-1 ))2n(en 1)

(%,5) = F17zsin 2m(en* —1) sin 2n(eY — 1) e”"erzy
P&y =nt e — 1 en—1 )(en —1)(ez—1)

where r; and r, are two strictly positive real parameters. The velocity field of this solution is similar to a counter clockwise
vortex in a unit-box (see Fig. 1). Playing with the parameters r; and r,, we can move the center of this vortex that has coor-
dinates xo = %log(e”T“) and y, = %log(“T”). Increasing rq, the center goes rapidly towards the right-hand vertical side,
whereas increasing r, it approaches the top edge. For the description of the above (u;(x,y),ux(x,y),p(x,y)), the readers also
can see [16].

The numerical results for Example 5.1 are presented in Tables 1-4. Tables 1 and 2 present each grid used the total
triangles N, approximate errors, the error indicator # and the effective index I for Example 5.1 by using uniform procedures
and by adaptive procedures, respectively. We notice from Table 1 that the effective index I.; remain always in a
neighborhood of 10.5, which confirms the reliability and efficiency of posteriori error indicator #. Comparing Tables 1 and 2,
we observe that the errors of the adaptive procedures decrease much faster than those obtained by the quasi-uniform ones.
For example, when the error around 0.0130001, we need 15842 Triangles by uniform procedures, while we only need 4423
Triangles by adaptive ones. This means we can save lots of work by the adaptive procedures than that by uniform
procedures.

For physical coefficients v and 4, we also report some numerical results in Tables 3 and 4. We find that the effective index
I decreases as v or 4 decreases, however, the effective index Iy is less sensitive for A than for v. This question is currently
under investigation.

velocityfield

pressure _

0.8

0.6

04

021

Fig. 1. Exact solution for rqy = 3.5, r, = 0.1. (left): velocity field. (right): pressure.

Table 1

Uniform meshes for v=1.0, 2=1.0,r; =4.1,r,=0.1.
Mesh N Eq(u) Eo(p) E{(T) E, n Legr
12 x 12 288 0.41732 0.173035 0.376594 0.588149 4.99652 8.49533
16 x 16 512 0.240325 0.0763442 0.214324 0.330937 3.32426 10.045
24 x 24 1152 0.117942 0.0280296 0.106766 0.161539 1.71656 10.6263
32 x32 2048 0.0694607 0.0149413 0.0633338 0.0951798 1.01273 10.6402
48 x 48 4608 0.031943 0.00642167 0.0292762 0.0438029 0.463137 10.5732
64 x 64 8192 0.0181863 0.00357096 0.016698 0.0249463 0.262625 10.5276
72 x 72 10368 0.0144165 0.0028126 0.0132432 0.019777 0.207903 10.5124
80 x 80 12800 0.0117048 0.00227299 0.0107559 0.016058 0.168618 10.5006
88 x 88 15488 0.0096902 0.00187528 0.00890696 0.0132948 0.139478 10.4912
89 x 89 15842 0.00947542 0.00183304 0.00870978 0.0130001 0.136374 10.4902

90 x 90 16200 0.00926768 0.00179221 0.00851905 0.0127152 0.133372 10.4892
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Table 2
Adaptive meshes for v=1.0, 1=1.0, r; =4.1, r, = 0.1.
N Eq(u) Eo(p) Ey(T) Ey n Lo
172 0.496242 0.293 0.527071 0.780967 2.61738 3.35146
293 0.25333 0.119686 0.259643 0.381988 1.60124 419185
510 0.123429 0.0439571 0.123061 0.179752 0.986686 5.48914
1094 0.045364 0.0128941 0.045168 0.0653016 0.48127 7.36996
1808 0.0241433 0.00686228 0.0237789 0.0345749 0.290318 8.39679
2792 0.0147406 0.00437071 0.0145405 0.0211616 0.187505 8.86062
4423 0.00910426 0.00251417 0.00902693 0.013065 0.119078 9.11426
5726 0.00712507 0.00202163 0.0070154 0.0102014 0.0949947 9.31189
7258 0.00552339 0.00170527 0.00539269 0.0079055 0.0745884 9.43501
9520 0.00408493 0.00118323 0.00401302 0.00584731 0.0556845 9.5231
11885 0.00337291 0.00096654 0.00338277 0.00487379 0.0462988 9.49953
14121 0.00284108 0.000890163 0.00286308 0.00413054 0.0388237 9.39918
17495 0.0020751 0.000583912 0.00207008 0.00298868 0.0276867 9.26383
Table 3
v=1,h=1/32,r,=0.1,,=0.1.
A Eq(u) Eo(p) Ey(T) E n Lo
10 0.00408709 0.00165679 0.0021204 0.0048934 0.0516914 10.5635
8 0.00408684 0.00164672 0.00209684 0.00487962 0.0511647 10.4854
6 0.00408689 0.00166502 0.00207887 0.00487819 0.0507646 10.4065
4 0.0040867 0.00163904 0.00206517 0.00486338 0.0504844 10.3805
2 0.00408684 0.00164652 0.00205755 0.00486279 0.0503182 10.3476
1 0.00408668 0.00163804 0.00205435 0.00485845 0.050263 10.3455
Table 4
2=1,h=1/32,r;=0.1,1,=0.1.
v Eqy(u) Eo(p) E{(T) Eq n Le
2 0.00408075 0.00163845 0.00205435 0.0048536 0.0818078 16.8551
1.5 0.00408229 0.00163821 0.00205435 0.00485481 0.0652859 13.4477
1 0.00408668 0.00163804 0.00205435 0.00485845 0.050263 10.3455
0.5 0.00411031 0.00163794 0.00205435 0.0048783 0.0385358 7.89943
0.2 0.00427205 0.00163791 0.00205435 0.00501533 0.0345641 6.89169
0.1 0.00480547 0.00163791 0.00205435 0.00547683 0.0340245 6.21244

Example 5.2. Square cavity stationary flow The second example is a physical model of square cavity stationary flow [7]. The
side length of the square cavity and the boundary conditions are given in Fig. 2. From Fig. 1, we can see that T= 0 on left and
lower boundaries, 2L = 0 on upper boundary, and T =4y(1 — y) on right boundary of the cavity. In this example, we set /=1

and v=0.1.

on

u1=u2=0

u =u2=0 T=0

d T/o n=0

Fig. 2. Physics model of the cavity flows.
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refinement (right).

Fig. 5. Numerical isotherm of temperature solution after three levels of adaptation mesh refinement (left

levels of adaptation mesh refinement (right).
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We first give initialization mesh (the left of Fig. 3). Then we generate adaptive meshes based on the a posteriori error
estimate (9). The right of Fig. 3 and the left of Fig. 4 are one and three levels of adaptive meshes, respectively. From these
adaptively generated meshes, we see that our method is able to recognize the singularities and the regions with high
gradients of the solutions. After three levels of adaptive meshes refinement, we present the numerical solution of (up, Ty, pp).
The right of Fig. 4 is the streamlines of velocity numerical solutions. The left and right of Fig. 5 are numerical isotherm and
numerical isobar, respectively.

6. Conclusion

In this paper, based on mixed finite element formulation and the general framework of R.Verfiirth [14,17], residual type a
posteriori error estimates are derived for the stationary conduction convection problems. The effectiveness of the adaptive
method is further demonstrated through two numerical examples. The first example is problem with known solution and
the second example is a physical model of square cavity stationary flow. Precise information on the dependence of the con-
stants in the a posteriori error estimates on the coefficients v and / is currently under investigation.
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