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In this report, a variational multiscale (VMS) method based on the Crank–Nicolson extrapolation scheme
of time discretization for the turbulent flow is analysed. The flow is modelled by the fully evolutionary
Navier–Stokes problem. This method has two differences compared to the standard VMS method: (i) For
the trilinear term, we use the extrapolation skill to linearize the scheme; (ii) for the projection term, we
lag it onto the previous time level to simplify the construction of the projection. These modifications make
the algorithm more efficient and feasible. An unconditionally stability and an a priori error estimate are
given for a case with rather general linear (cellwise constant) viscosity of the turbulent models. Moreover,
numerical tests for both linear viscosity and nonlinear Smagorinsky-type viscosity are performed, they
confirm the theoretical results and indicate the schemes are effective.
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1. Introduction

Turbulent flows are characterized by high Reynolds numbers, which occur in many processes in
nature as well as in many industrial applications. They posses a richness of scales, that means
there are large flow structures and also very small ones. For example, a hurricane has a number
of very large eddies but also millions of small eddies. Due to the richness of scales, it is very hard
to simulate them by the direct numerical simulation, large eddy simulation (LES) is one of very
popular approach for turbulent flow simulation. However, the goal of LES is to compute only
the large flow structures accurately. The definition of the large scales by spatial averaging leads
to serious problems if the flow is given in a bounded domain, which is the most frequent case
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in applications. A second serious problem is the definition of appropriate boundary conditions
for the large scales, which is unresolved so far. Variational multiscale (VMS) method is another
good numerical method for the turbulent flows, see [18]. They consider large scales which are
defined by projection into appropriate spaces. It simultaneously discretizes coupled systems of
both large and small scales. It has proved that VMS methods are an efficient and simple realization
of the idea of introducing eddy viscosity locally into scale space only on the marginally resolved
scales and tuned to add dissipation to mimic the loss of energy in the marginally resolved scales
caused by breakdown of eddies to unresolved scales. This idea is inspired by Layton [31] and John
and Kaya [24]. They start by writing the Navier–Stokes equations as a coupled system of three
equations for the three types of scales. Then, the equation for the unresolved scales is neglected
and the equation for the resolved small scales will be modelled with a turbulence model. An
important feature of the VMS presented in this paper is that it allows the resolved small scales
to move across faces of mesh cells. Herein a variationally consistent eddy viscosity turbulence
model is introduced acting only on the discrete resolved small scales (fluctuations).

In the last 10 years, there has been an explosion of work on the VMS method for turbulent
flow [17–19,21,24,25,28,31,32,43]. It was also introduced in [15,16,20] as a procedure for deriving
models and numerical methods capable of dealing with multi-scale phenomena ubiquitous in
science and engineering. Similar ideas, such as, subgrid modelling, three-level method, local
projection stabilization and so on, are introduced in [3,6,7] and other literatures.

To introduce the idea, suppose the Navier–Stokes equations are written as

∂u
∂t

+ N(u, u) + νAu = f(t). (1)

The well-known classical Crank–Nicolson (CN) discretization in time and VMS method in space
reads as follows:

un+1
h − un

h

�t
+ N

(
un+1

h + un
h

2
,

un+1
h + un

h

2

)
+ νA

(
un+1

h + un
h

2

)
+ νT∇ · P′

H(∇un+1
h ) = f(tn+1/2),

where P′
H = I − PH is called the fluctuation operator with an L2-projection defined in

Equation (15). Our goal is to solve the discretized nonlinear PDEs efficiently and accurately.
Many popular, efficient methods for this purpose are based on multilevel strategies and all require
a linearization process somewhere in the algorithm, see [9,11,14,30,33,34,42] and so on. Usually
fully implicit schemes are (almost) unconditionally stable. However, at each time step, one has to
solve a system of nonlinear equations. An explicit scheme is much easier in computation. But it
suffers a restricted time step size from the stability requirement. A popular approach is based on
an implicit scheme for the linear term and a semi-implicit scheme or an explicit scheme for the
nonlinear term. In [5], they proposed a first-order semi-implicit scheme using one or two steps to
handle the nonlinear term in computations. Obviously, high-order schemes are of more interest
since first-order schemes are not efficiently accurate for large time approximations. In this paper,
we take the next step in its development by extending the first-order scheme to the second-order
CN scheme. Furthermore, we only require to solve one linear system per time step:

un+1
h − un

h

�t
+ N

(
ξn(uh),

un+1
h + un

h

2

)
+ νA

(
un+1

h + un
h

2

)
+ νT∇ · (Dun+1

h )

= f(tn+1/2) + νT∇ · PH(Dun
h),

where ξn(uh) is the extrapolation of the velocity to tn+1/2 from the previous time levels, which is
defined in Equation (17), νT is called the turbulent viscosity, which may like a cellwise constant or
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2200 Li Shan et al.

a nonlinear Smagorinsky type. It is a three time levels scheme which always is called the Crank–
Nicolson-linearized-extrapolation (CNLE) discretization. Besides, the VMS method is modified
by lagging the projection term onto the previous time level, i.e. νT∇ · PH(Dun

h). Since treating
νT∇ · PH(Duh) explicitly is computationally less expensive than treating it implicitly, and in this
case, the projection PH is easy to construct and compute as well. We give a simple proof that the
Algorithm 2.1 is unconditionally stable in Theorem 3.2 and then explore the rates of convergence
for velocity in Theorem 4.2. We conclude with numerical experiments which verify the theoretical
results.

The rest of the paper is organized as follows. Section 2 presents some mathematical
preliminariesfor analysis and give the CNLE–VMS scheme for the Navier–Stokes equations.
We prove it is unconditionally stable in Section 3. In Section 4, we analyse its error for velocity.
Numerical tests are reported in Section 5, followed by conclusions in Section 6.

2. The CNLE–VMS method

The flow in�over time interval [0, T ] is governed by the time-dependent Navier–Stokes equations:

∂u
∂t

− 2ν∇ · Du + u · ∇u + ∇p = f in � × (0, T ], (2)

∇ · u = 0 in � × [0, T ], (3)

u = 0 on ∂� × (0, T ], (4)

u(0) = u0 in �, (5)

with the usual normalization condition that
∫
�

p(x, t) dx = 0 for 0 < t ≤ T . Here u(x, t) is the
velocity of the fluid, D(u) = (∇u + (∇u)T)/2 is the velocity deformation tensor (symmetric
part of the gradient), p(x, t) is the pressure, ν > 0 is the kinematic viscosity which is inversly
proportional to the Reynolds number Re = O(ν−1), f(x, t) is the prescribed body force and the
initial velocity field u0(x).

Define the velocity space X, the pressure space Q and a deformation tensor space L as follows:

X := H1
0(�) = {v : v ∈ H1(�), v = 0 on ∂�},

Q := L2
0(�) := {q ∈ L2(�),

∫
�

q dx = 0},

L := {S ∈ L2(�)d×d : Sij = Sji},
and the space L2(�) is endowed with the L2-scalar product and L2-norm denoted by (·, ·) and
|| · ||. The variational formulation is defined as follows: Find (u, p) ∈ (X, Q) such that(

∂u
∂t

, v
)

+ 2ν(Du, Dv) + b(u, u, v) − (p, ∇ · v) = (f , v) ∀v ∈ X,

(∇ · u, q) = 0 ∀q ∈ Q. (6)

where the skew-symmetric trilinear form

b(u, v, w) = 1
2 (u · ∇v, w) − 1

2 (u · ∇w, v)

which satisfies

b(u, v, w) = −b(u, w, v), (7)

b(u, v, v) = 0, (8)
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and the following lemma.

Lemma 2.1 (see [30]) Let � ⊂ R
2 or R

3. For all u, v, w ∈ X

|b(u, v, w)| ≤ C||∇u||||∇v||||∇w||, (9)

and

|b(u, v, w)| ≤ C
√||u||||∇u||||∇v||||∇w||, (10)

If, in addition, v, ∇v ∈ L∞(�),

|b(u, v, w)| ≤ C(||v||L∞(�) + ||∇v||L∞(�))||∇u||||∇w||, (11)

and

|b(u, v, w)| ≤ C(||u||||∇v||L∞(�) + ||∇u||||v||L∞(�))||w||. (12)

We also define the space of divergence free functions

V := {v ∈ X : (∇ · v, q) = 0, ∀ q ∈ Q},

then the variational formulation can be simplified as: Find u ∈ V such that

(
∂u
∂t

, v
)

+ 2ν(Du, Dv) + b(u, u, v) = (f , v) ∀ v ∈ V. (13)

A standard Galerkin finite-element (FE) discretization of Equation (6) is unstable in the case
of the small viscosity (or the large Reynold number). It is necessary to introduce the idea of the
turbulence model, which should model the action of the unresolved scales onto the resolved scales.

Let TH denote a coarse FE mesh which is refined (once, twice, . . .) to produce the finer mesh Th,
so h < H . Let (Xh, Qh) ⊂ (X, Q) be a pair of conforming velocity-pressure FE spaces satisfying
the usual inf-sup condition (see [8]): there exists a constant β independent of h such that

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)

||qh||||∇vh|| ≥ β > 0. (14)

We assume that the spaces Xh and Qh contain piecewise continuous polynomials of degree k
and k − 1, respectively, and suppose that the spaces (Xh, Qh) satisfy the following approximation
properties:

inf
vh∈Xh

{||u − vh|| + h||∇(u − vh)||} ≤ Chk+1|u|k+1.

Define the space of discretely divergence-free functions as follows:

Vh = {vh ∈ Xh : (qh, ∇ · vh) = 0, ∀ qh ∈ Qh}.

We shall use a space L
H of ‘well resolved’ velocity deformations. There are two natural ways to

define L
H (see [24,29]). If Xh is a higher order FE space on a given mesh, one approach is to

define L
H by using lower order FEs on the same mesh. The second option, and only one for low
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2202 Li Shan et al.

order elements, is to define L
H on a coarse mesh leading to a two-level discretization. A semi-

discrete version of the VMS model reads: find uh : [0, T ] → Xh, ph : [0, T ] → Qh, GH : [0, T ] →
L

H such that

(uht , vh) + 2ν(Duh, Dvh) + b(uh, uh, vh) − (ph, ∇ · vh) + (νT (Duh − GH), Dvh)

= (f , vh) ∀vh ∈ Xh,

(qh, ∇ · uh) = 0 ∀ qh ∈ Qh,

(GH − Duh, SH) = 0 ∀ SH ∈ L
H ,

The third equation implies GH = PH(Duh), where PH is a L2-orthogonal projection from L onto
L

H such that

(PH(Duh) − Duh, SH) = 0 ∀SH ∈ L
H . (15)

If we think of a cellwise constant νT per cell K ⊂ �, the additional viscosity model term becomes
symmetric with

(νT (I − PH)Duh, Dvh) =
∑
K∈Th

νK
T ((I − PH)Duh, Dvh)

=
∑
K∈Th

νK
T ((I − PH)Duh, (I − PH)Dvh)

= (νT (I − PH)Duh, (I − PH)Dvh). (16)

In this case, one can write the problem as: find uh : [0, T ] → Xh, ph : [0, T ] → Qh, such that

(uht , vh) + 2ν(Duh, Dvh) + b(uh, uh, vh) − (ph, ∇ · vh) + (νT (I − PH)Duh, (I − PH)Dvh)

= (f , vh) ∀vh ∈ Xh,

(qh, ∇ · uh) = 0 ∀qh ∈ Qh.

In the analysis part of the paper, we consider a rather simple case for νT is a constant independent
of the space variable uh. Later on, we consider a Smagorinsky-type model for νT = (Cδδ)

2||(I −
PH)Duh||F . Numerical analysis of such a method can be found for a constant viscosity parameter
in [25], and for the piecewise constant parameter in [36] (which also introduces the so-called grad-
div stabilization as a subgrid model for the pressure). John et al. [28] considers a Smagorinsky-type
parameter, the difference is that the velocity deformation tensor is applied to the fluctuation
operator P′

H in [28] first whereas the fluctuation operator is applied to the velocity deformation
tensor here. All these works only analyse the semi-discretization of the VMS scheme, in the
present paper, we consider a fully discrete version of the method which only need to solve a linear
system per time step.

Let tn = n�t, n = 0, 1, 2, . . . , N and T = N�t. The CN–FE discretization in time and the VMS
method in space of Equation (6) reads as follows: find {un+1

h }N
n=0 ∈ Xh, {pn+1

h }N
n=0 ∈ Qh such that(

un+1
h − un

h

�t
, vh

)
+ 2ν

(
D

(
un+1

h + un
h

2

)
, Dvh

)
+ b

(
un+1

h + un
h

2
,

un+1
h + un

h

2
, vh

)

+ (νT (I − PH)Dun+1
h , (I − PH)Dvh) −

(
pn+1

h + pn
h

2
, ∇ · vh

)

= (f(tn+1/2), vh) ∀ vh ∈ Xh,

(qh, ∇ · un+1
h ) = 0 ∀ qh ∈ Qh.
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International Journal of Computer Mathematics 2203

with uh(0, x) = u0
h ∈ Vh.

It is easy to see that CN–FE scheme (17) is nonlinear, we try to linearize it from two respects.
Firstly, a variant of CN–FE obtained by extrapolation of the convecting velocity uh: for example,

b

(
un+1

h + un
h

2
,

un+1
h + un

h

2
, vh

)
≈ b

(
ξn(uh),

un+1
h + un

h

2
, vh

)
,

where

ξn(uh) =
{

u0
h for n = 0,

3
2 un

h − 1
2 un−1

h for n ≥ 1.
(17)

This method is often called CNLE and was first studied by Baker [1]. The second- and third-order
CNLE methods are introduced and analysed in [1,2].

Secondly, the viscosity model term can be written as

(νT (I − PH)Dun+1
h , Dvh) = (νT Dun+1

h , Dvh) − (νT PHDun+1
h , Dvh),

It is not easy to construct a projection PH of unknown un+1
h on the time level n + 1, a simple

and direct idea to modify it is lagging the second term onto the previous time step n. Thus,
CNLE–VMS scheme is presented as follows.

Algorithm 2.1 (CNLE–VMS)

Step 1. Let u0
h = u0, then at the first time level, we find (u1

h, p1
h) ∈ (Xh, Qh) such that

(
u1

h − u0
h

�t
, vh

)
+ 2ν

(
D

(
u1

h + u0
h

2

)
, Dvh

)
+ νT (Du1

h, Dvh)

+ b

(
u0

h,
u1

h + u0
h

2
, vh

)
−

(
p1

h + p0
h

2
, ∇ · vh

)

= (f(t1/2), vh) + νT (PHDu0
h, Dvh) ∀vh ∈ Xh,

(∇ · u1
h, qh) = 0 ∀qh ∈ Qh. (18)

Step 2. For n ≥ 1, given (un
h, pn

h) ∈ (Xh, Qh), find (un+1
h , pn+1

h ) ∈ (Xh, Qh) satisfying(
un+1

h − un
h

�t
, vh

)
+ 2ν

(
D

(
un+1

h + un
h

2

)
, Dvh

)
+ νT (Dun+1

h , Dvh)

+ b

(
3un

h − un−1
h

2
,

un+1
h + un

h

2
, vh

)
−

(
pn+1

h + pn
h

2
, ∇ · vh

)

= (f(tn+1/2), vh) + νT (PHDun
h, ∇vh) ∀vh ∈ Xh,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh. (19)

3. The stability of the CNLE–VMS method

In this section, we prove the unconditionally stability of Algorithm 2.1. We start it with a useful
discrete version of the Gronwall lemma used in [10,39].
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2204 Li Shan et al.

Lemma 3.1 (Discrete Gronwall) Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for any integer n ≥ 0 and
satisfy

AN + �t
N∑

n=0

Bn ≤ �t
N−1∑
n=0

κnAn + �t
N∑

n=0

Cn + D, N ≥ 1,

then for all �t > 0,

AN + �t
N∑

n=0

Bn ≤ exp

(
�t

N−1∑
n=0

κn

) (
�t

N∑
n=0

Cn + D

)
, N ≥ 1.

Theorem 3.2 Let f ∈ L2(0, T ; H−1(�)), we choose cellwise constant turbulent viscosity νT ≥ 0.
Algorithm 2.1 is unconditionally stable in the following sense, for any l ≥ 0

||ul+1
h ||2 + ν�t

l∑
n=0

∥∥∥∥∥D

(
un+1

h + un
h

2

)∥∥∥∥∥
2

+ νT�t

2
||(I − PH)Dul+1

h ||2 + νT�t||PHDul+1
h ||2

≤ ||u0
h||2 + νT�t

2
||(I − PH)Du0

h||2 + νT�t||PHDu0
h||2 + �t

3ν

l∑
n=0

||f(tn+1/2)||2H−1(�). (20)

Proof Choosing vh = (u1
h + u0

h)/2 in Equation (18) and using the divergence-free property gives

1

2�t
(||u1

h||2 − ||u0
h||2) + 2ν

∥∥∥∥D

(
u1

h + u0
h

2

)∥∥∥∥
2

+ νT

(
Du1

h − PHDu0
h, D

(
u1

h + u0
h

2

))

=
(

f(t1/2),
u1

h + u0
h

2

)
. (21)

From the orthogonality of PH , the identity 2(a + b, a) = |a|2 − |b|2 + |a + b|2 gives

νT

(
Du1

h − PHDu0
h, D

(
u1

h + u0
h

2

))

= νT

(
(I − PH)Du1

h, (I − PH)D

(
u1

h + u0
h

2

))
+ νT

(
PHD(u1

h − u0
h), PHD

(
u1

h + u0
h

2

))

= νT

4
(||(I − PH)Du1

h||2 − ||(I − PH)Du0
h||2 + ||(I − PH)D(u1

h + u0
h)||2)

+ νT

2
(||PHDu1

h||2 − ||PHDu0
h||2). (22)

By using the Cauchy–Schwarz inequality on the right-hand side (RHS) of Equation (21), and then
taking the above equality into it and multiplying it with 2�t gives

||u1
h||2 + ν�t

∥∥∥∥D

(
u1

h + u0
h

2

)∥∥∥∥
2

+ νT�t

2
||(I − PH)Du1

h||2 + νT�t||PHDu1
h||2

≤ ||u0||2 + νT�t

2
||(I − PH)Du0||2 + νT�t||PHDu0||2 + �t

3ν
||f(t1/2)||2H−1 . (23)
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Similarly, for n ≥ 1, we choose vh = (un+1
h + un

h)/2 in Equation (18) and using the divergence-free
property gives

1

2�t
(||un+1

h ||2 − ||un
h||2) + 2ν

∥∥∥∥∥D

(
un+1

h + un
h

2

)∥∥∥∥∥
2

+ νT

4
(||(I − PH)Dun+1

h ||2

− ||(I − PH)Dun
h)||2) + νT

4
||(I − PH)D(un+1

h + un
h)||2 + νT

2
(||PHDun+1

h ||2 − ||PHDun
h||2)

=
(

f(tn+1/2),
un+1

h + un
h

2

)
. (24)

Applying Cauchy–Schwarz and Young inequalities leads to

1

2�t
(||un+1

h ||2 − ||un
h||2) + ν

2

∥∥∥∥∥D

(
un+1

h + un
h

2

)∥∥∥∥∥
2

+ νT

4
(||(I − PH)Dun+1

h ||2

− ||(I − PH)Dun
h)||2) + νT

2
(||PHDun+1

h ||2 − ||PHDun
h||2) ≤ 1

6ν
||f(tn+1/2)||2H−1(�). (25)

Multiplying it with 2�t and summing over n from n = 1 to l gives

||ul+1
h ||2 + ν�t

l∑
n=1

∥∥∥∥∥D

(
un+1

h + un
h

2

)∥∥∥∥∥
2

+ νT�t

2
||(I − PH)Dul+1

h ||2 + νT�t||PHDul+1
h ||2

≤ ||u1
h||2 + νT�t

2
||(I − PH)Du1

h||2 + νT�t||PHDu1
h||2 + �t

3ν

l∑
n=1

||f(tn+1/2)||2H−1(�). (26)

By using Equation (23) to bound the RHS of Equation (26), we obtain that for l ≥ 0

||ul+1
h ||2 + ν�t

l∑
n=0

∥∥∥∥∥D

(
un+1

h + un
h

2

)∥∥∥∥∥
2

+ νT�t

2
||(I − PH)Dul+1

h ||2 + νT�t||PHDul+1
h ||2

≤ ||u0
h||2 + νT�t

2
||(I − PH)Du0

h||2 + νT�t||PHDu0
h||2 + �t

3ν

l∑
n=0

||f(tn+1/2)||2H−1(�). (27)

�

4. Error estimation

In this section, we prove the error estimate for the velocity. At the beginning, we introduce some
notations and definitions,

en = u(tn) − un
h = (u(tn) − ũn) − (un

h − ũn) =: ẽn − en
h, (28)

φn = p(tn) − pn
h = (p(tn) − p̃n) − (pn

h − p̃n) =: φ̃n − φn
h . (29)

with (ũn, p̃n) is the Stokes projection of (u(tn), p(tn)) into (Xh, Qh), which defined as
below.
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Definition 4.1 (Stokes projection) The Stokes projection operator Ps : (X, Q) → (Xh, Qh),
Ps(u, p) = (ũ, p̃), satisfies

2ν(D(u − ũ), ∇vh) − (p − p̃, ∇ · vh) = 0 ∀vh ∈ Xh,

(∇ · (u − ũ), qh) = 0 ∀qh ∈ Qh. (30)

Under the discrete inf-sup condition (14), the Stokes projection is well defined. Its error satisfies
(see [30])

ν||D(u − ũ)||2 ≤ C[ν inf
vh∈Xh

||D(u − vh)||2 + ν−1 inf
qh∈Qh

||p − qh||2], (31)

where C is a constant independent of h and ν. we choose ũ0 = u0
h in the initial error decomposition

gives e0
h = 0.

For simplicity, we will denote time averages by

vn+1/2 = vn+1 + vn

2
.

We assume that the exact solution satisfies the following regularity assumptions:

u ∈ L2(0, T ; Hk+1(�)d) ∩ L∞(0, T ; Hk+1(�)d), ut ∈ L2(0, T ; Hk+1(�)d), (32)

utt ∈ L2(0, T ; H1(�)d), uttt ∈ L∞(0, T ; L2(�)d), ptt ∈ L∞(0, T ; L2(�)). (33)

Remark Before providing the error estimate Theorem 4.2, it is important to comment on these
regularity assumptions. Turbulent flows, the target of the VMS methods, evolve over a long
time period from smooth data and are commonly initialized by either zero initial conditions that
are ramped up or by a separate initialization procedure called spin up which provides smooth,
compatible, statistically steady initial data. It is unknown if the regularity assumptions hold in
general (even for flows that begin as C∞)for longer time intervals. Thus, error estimates that predict
reduced rates of convergence under reduced regularity assumed, while not developed herein, are of
great interest and importance. It is also known since the work of Heywood and Rannacher [13] and
Rautmann [35] that unless the initial data satisfies a global compatibility condition, the solution
can be regular for (small) t > 0, but not down to t = 0. Like most high-order methods (see [13]),
the smoothness assumed as in (32)–(33) implicitly imposes these compatibility conditions on the
initial data. Thus, it is also an interesting open question to explore the effect of the regularization
term on the initial layer in the error when the conditions fail.

Theorem 4.2 Let the FE space (Xh, Qh) include continuous piecewise polynomials of degree k
and k − 1, respectively, (k ≥ 2). If �t satisfies the condition

C||u||L∞(0,T ;Hk+1)h
k−3/2�t ≤ 1

2 , (34)

and we choose νT = Chk/2, H = h or νT = Chk−1, H = h1/2. There exists a constant Ĉ =
Ĉ(ν, �, T , u, p) such that for any l ≥ 0

1

2
‖u(tl+1) − ul+1

h ‖2 + �tν
l∑

n=0

∥∥∥∥∥D

(
u(tn+1) − un+1

h + u(tn) − un
h

2

)∥∥∥∥∥
2

+ νT�t

2
‖(I − PH)D(u(tl+1) − ul+1

h )‖2 + νT�t‖PHD(u(tl+1) − ul+1
h )‖2

≤ Ĉ(h2k + �t4). (35)
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Proof First we prove the error for the first step in Algorithm 2.1. Taking the variational
formulation (6) at t1/2 gives

(ut(t
1/2), vh) + 2ν(Du(t1/2), Dvh) + b(u(t1/2), u(t1/2), vh) − (p(t1/2), ∇ · vh) = (f(t1/2), vh),

(36)
subtracting Equation (18) from Equation (36) gives

(
ut(t

1/2) − u1
h − u0

h

�t
, vh

)
+ 2ν

(
Du(t1/2) − D

(
u1

h + u0
h

2

)
, Dvh

)

+ b(u(t1/2), u(t1/2), vh) − b

(
u0

h,
u1

h + u0
h

2
, vh

)

− νT (Du1
h − PHDu0

h, Dvh) −
(

p(t1/2) − p1
h + p0

h

2
, ∇ · vh

)
= 0. (37)

For the trilinear terms, by adding and subtracting b(u0
h − u(t0), (u(t1) + u(t0))/2, vh) gives

b(u(t1/2), u(t1/2), vh) − b

(
u0

h,
u1

h + u0
h

2
, vh

)

= b(u(t1/2), u(t1/2), vh) + b(u0
h, e1/2, vh) + b

(
e0,

u(t1) + u(t0)

2
, vh

)

− b

(
u(t0),

u(t1) + u(t0)

2
, vh

)
. (38)

For the remaining linear terms in Equation (37), by adding and subtracting

(
u(t1) − u(t0)

�t
, vh

)
+ 2ν(Du(t0), Dvh) +

(
p(t1) + p(t0)

2
, ∇ · vh

)

+ νT (Du(t1) − PHDu(t0), Dvh)

gives the error equation for the first step as follows:

(
e1 − e0

�t
, vh

)
+ 2ν(De1/2, Dvh) + νT ((I − PH)De1, (I − PH)Dvh) + νT (PHD(e1 − e0), PHDvh)

= (φ1/2, ∇ · vh) − b(u0
h, e1/2, vh) − b

(
e0,

u(t1) + u(t0)

2
, vh

)
+ R1(u, p; vh), (39)

with

R1(u, p; vh) =
(

u(t1) − u(t0)

�t
− ut(t

1/2), vh

)
+ 2ν

(
D

(
u(t1) + u(t0)

2
− u(t1/2)

)
, Dvh

)

+ νT (Du(t1) − PHDu(t0), Dvh) −
(

p(t1) + p(t0)

2
− p(t1/2), ∇ · vh

)

− b(u(t1/2), u(t1/2), vh) + b

(
u(t0),

u(t1) + u(t0)

2
, vh

)
. (40)
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2208 Li Shan et al.

Using the error decomposition (28)–(29) and setting vh = e1/2
h gives

1

2�t
(||e1

h||2 − ||e0
h||2) + 2ν||De1/2

h ||2 + νT

4
(||(I − PH)De1

h||2 − ||(I − PH)De0
h||2)

+ νT ||(I − PH)De1/2
h ||2 + νT

2
(||PHDe1

h||2 − ||PHDe0
h||2)

=
(

ẽ1 − ẽ0

�t
, e1/2

h

)
+ 2ν(Dẽ1/2, De1/2

h ) + νT ((I − PH)Dẽ1, (I − PH)De1/2
h )

+ νT (PHD(ẽ1 − ẽ0), De1/2
h ) − (φ1/2, ∇ · e1/2

h ) − R1(u, p; e1/2
h )

+ b(u0
h, ẽ1/2, e1/2

h ) + b

(
e0,

u(t1) + u(t0)

2
, e1/2

h

)
. (41)

From the definition of the Stokes projection (30), we know that

2ν(Dẽ1/2, De1/2
h ) − (φ1/2, ∇ · e1/2

h ) = 0. (42)

Applying the Cauchy–Schwarz and Young inequalities to the linear terms on the RHS of
Equation (41) gives(

ẽ1 − ẽ0

�t
, e1/2

h

)
+ νT ((I − PH)Dẽ1, (I − PH)De1/2

h ) + νT (PHD(ẽ1 − ẽ0), De1/2
h )

≤ ν

4
‖De1/2

h ‖2 + C

ν

∥∥∥∥ ẽ1 − ẽ0

�t

∥∥∥∥
2

+ 2ν2
T

ν
‖PHD(ẽ1 − ẽ0)‖2

+ νT

2
‖(I − PH)Dẽ1‖2 + νT

2
‖(I − PH)De1/2

h ‖2. (43)

Taking Equation (43) into Equation (41) yields

1

2�t
(||e1

h||2 − ||e0
h||2) + 7ν

4
||De1/2

h ||2 + νT

4
(||(I − PH)De1

h||2 − ||(I − PH)De0
h||2)

+ νT

2
‖(I − PH)De1/2

h ‖2 + νT

2
(||PHDe1

h||2 − ||PHDe0
h||2)

≤ C

ν

∥∥∥∥ ẽ1 − ẽ0

�t

∥∥∥∥
2

+ νT

2

∥∥(I − PH)Dẽ1
∥∥2 + 2ν2

T

ν

∥∥PHD(ẽ1 − ẽ0)
∥∥2

+ |b(u0
h, ẽ1/2, e1/2

h )| +
∣∣∣∣b

(
e0,

u(t1) + u(t0)

2
, e1/2

h

)∣∣∣∣ + |R1(u, p; e1/2
h )|, (44)

For the trilinear terms on the RHS of Equation (44) is bounded by using Equation (9) and the
regularity assumptions on u,

|b(u0
h, ẽ1/2, e1/2

h )| ≤ |b(ẽ0, ẽ1/2, e1/2
h )| + |b(u(t0), ẽ1/2, e1/2

h )|

≤ 5ν

24
||De1/2

h ||2 + C

ν
||∇ ẽ1/2||2 + C

ν
||∇ ẽ0||2, (45)∣∣∣∣b(e0,

u(t1) + u(t0)

2
, e1/2

h )

∣∣∣∣ =
∣∣∣∣b(ẽ0,

u(t1) + u(t0)

2
, e1/2

h )

∣∣∣∣
≤ C||∇ ẽ0||||De1/2

h || ≤ 5ν

24
||De1/2

h ||2 + C

ν
||∇ ẽ0||2. (46)
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We bound R1(u, p; e1/2
h ) as follows:∣∣∣∣

(
u(t1) − u(t0)

�t
− ut(t

1/2), e1/2
h

)∣∣∣∣ ≤ ν

15
||De1/2

h ||2 + Cν−1�t4 max
t0≤t≤t1

||uttt(t)||2, (47)

2ν|(D(u(t1) + u(t0)2 − u(t1/2)), De1/2
h )| ≤ ν

15
||De1/2

h ||2 + Cν�t4 max
t0≤t≤t1

||Dutt(t)||2, (48)

and

νT |(Du(t1) − PHDu(t0), De1/2
h )|

= νT |((I − PH)Du(t1), (I − PH)De1/2
h )| + νT |(PHD(u(t1) − u(t0)), De1/2

h )|

≤ ν

15
||De1/2

h ||2 + νT

2
‖(I − PH)De1/2

h ‖2 + Cν2
T�t

ν

∫ t1

t0
||∇ut(t)||2 dt + CνT H2k+2||u(t1)||2k+2,

∣∣∣∣
(

p(t1) + p(t0)

2
− p(t1/2), ∇ · e1/2

h

)∣∣∣∣ ≤ ν

15
||De1/2

h ||2 + Cν−1�t4 max
t0≤t≤t1

||ptt(t)||2.

For the trilinear term in R1, Lemma 2.1 and the regularity assumption on u gives∣∣∣∣−b(u(t1/2), u(t1/2), e1/2
h ) + b

(
u(t0),

u(t1) + u(t0)

2
, e1/2

h

)∣∣∣∣
= |b(u(t0), u(t1/2) + C�t2utt(t

θ ), e1/2
h ) + b(u(t1/2), u(t1/2), e1/2

h )|
≤ |b(u(t0) − u(t1/2), u(t1/2), e1/2

h )| + C�t2|b(u(t0), utt(t
θ ), e1/2

h )|
≤ �t|b(ut(t

θ ), u(t1/2), e1/2
h )| + C�t2|b(u(t0), utt(t

θ ), e1/2
h )|, (49)

with any tθ ∈ (0, �t). The first term in Equation (49) can be bounded by Equation (12)

�t|b(ut(t
θ ), u(t1/2), e1/2

h )|
≤ C�t(||ut(t

θ )||||∇u(t1/2)||L∞(�) + ||∇ut(t
θ )||||u(t1/2)||L∞(�))||e1/2

h ||

≤ 1

4�t
||e1

h||2 + C�t3(||ut(t
θ )||||∇u(t1/2)||L∞(�) + ||∇ut(t

θ )||||u(t1/2)||L∞(�))
2.

The second term in Equation (49) can be bounded by

C�t2|b(u(t0), utt(t
θ ), e1/2

h )| ≤ ν

15
||De1/2

h ||2 + Cν−1�t4||∇u(t0)||2||utt(t
θ )||2. (50)

Combining Equation (47) with Equation (50) gives

|R1(u, p; e1/2
h )| ≤ ν

3
||De1/2

h ||2 + νT

2
‖(I − PH)De1/2

h ‖2 + 1

4�t
||e1

h||2

+ Cν−1�t4 max
t0≤t≤t1

||uttt(t)||2 + Cν�t4 max
t0≤t≤t1

||Dutt(t)||2

+ Cν2
T�t

ν

∫ t1

t0
||∇ut(t)||2 dt + CνT H2k+2||u(t1)||2k+2

+ C�t3(||ut(t
θ )||||∇u(t1/2)||L∞(�) + ||∇ut(t

θ )||||u(t1/2)||L∞(�))
2

+ Cν−1�t4||∇u(t0)||2||utt(t
θ )||2. (51)
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Multiplying Equation (44) with 2�t and combining all the estimates above, we have

1

2
||e1

h||2 + ν�t||De1/2
h ||2 + νT�t

2
||(I − PH)De1

h||2 + νT�t||PHDe1
h||2

≤ C�t

ν

∥∥∥∥ ẽ1 − ẽ0

�t

∥∥∥∥
2

+ νT�t

2
‖(I − PH)Dẽ1‖2 + 2ν2

T�t

ν
‖PHD(ẽ1 − ẽ0)‖2 + C�t

ν
||∇ ẽ1/2||2

+ C�t

ν
||∇ ẽ0||2 + Cν−1�t5 max

t0≤t≤t1
||uttt(t)||2 + Cν�t5 max

t0≤t≤t1
||∇utt(t)||2

+ Cν2
T�t2

ν

∫ t1

t0
||∇ut(t)||2 dt + CνT H2k+2�t||u(t1)||2k+2

+ C�t4(||ut(t
θ )||||∇u(t1/2)||L∞(�) + ||∇ut(t

θ )||||u(t1/2)||L∞(�))
2

+ Cν−1�t5||∇u(t0)||2||utt(t
θ )||2. (52)

By using the interpolation inequality and the property of PH and the approximation error, we have

1

2
||e1

h||2 + ν�t||De1/2
h ||2 + νT�t

2
||(I − PH)De1

h||2 + νT�t||PHDe1
h||2

≤ Ch2k+2

ν�t

∫ t1

t0
||ut(t)||2k+1 dt + CνT�th2k||u(t1)||2k+1

+ Cν2
T h2k�t

ν

∫ t1

t0
||ut(t)||2k+1 dt + Cν−1�th2k(||u(t1)||2k+1 + ||u(t0)||2k+1)

+ Cν−1�t5 max
t0≤t≤t1

||uttt(t)||2 + Cν�t5 max
t0≤t≤t1

||Dutt(t)||2

+ Cν2
T�t2

ν

∫ t1

t0
||∇ut(t)||2 dt + CνT H2k+2�t||u(t1)||2k+2

+ C�t4(||ut(t
θ )||||∇u(t1/2)||L∞(�) + ||∇ut(t

θ )||||u(t1/2)||L∞(�))
2

+ Cν−1�t5||∇u(t0)||2||utt(t
θ )||2. (53)

For n ≥ 1. Taking the variational formulation (6) at tn+1/2 gives

(ut(t
n+1/2), vh) + 2ν(Du(tn+1/2), Dvh) + b(u(tn+1/2), u(tn+1/2), vh)

− (p(tn+1/2), ∇ · vh) = (f(tn+1/2), vh), (54)

Subtracting Equation (18) from Equation (54) gives

(
ut(t

n+1/2) − un+1
h − un

h

�t
, vh

)
+ 2ν

(
D

(
u(tn+1/2) − un+1

h + un
h

2

)
, Dvh

)

+ b(u(tn+1/2), u(tn+1/2), vh) − b

(
ξn(uh),

un+1
h + un

h

2
, vh

)

− νT (Dun+1
h − PHDun

h, Dvh) −
(

p(tn+1/2) − pn+1
h + pn

h

2
, ∇ · vh

)
= 0, (55)
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Adding and subtracting(
u(tn+1) − u(tn)

�t
, vh

)
+ 2ν

(
D

(
u(tn+1) − u(tn)

2

)
, Dvh

)
+ νT (Du(tn+1) − PHDu(tn), Dvh)

+
(

p(tn+1) + p(tn)

2
, ∇ · vh

)
+ b

(
u(tn+1/2),

u(tn+1) + u(tn)

2
, vh

)

+ b

(
ξn(u),

u(tn+1) + u(tn)

2
, vh

)
+ b

(
ξn(uh),

u(tn+1) + u(tn)

2
, vh

)
(56)

to Equation (55) to derive the error equation, where ξn(u) = 3
2 u(tn) − 1

2 u(tn−1),(
en+1 − en

�t
, vh

)
+ 2ν(Den+1/2, Dvh) + νT ((I − PH)Den+1, (I − PH)Dvh)

+ νT (PHD(en+1 − en), PHDvh)

= (φ1/2, ∇ · vh) − b(ξn(uh), en+1/2, vh)

− b

(
ξn(e),

u(tn+1) + u(tn)

2
, vh

)
+ Rn(u, p; vh). (57)

where

Rn(u, p; vh) =
(

u(tn+1) − u(tn)

�t
− ut(t

n+1/2), vh

)

+ 2ν

(
D

(
u(tn+1) + u(tn)

2
− u(tn+1/2)

)
, Dvh

)

+ νT (Du(tn+1) − PHDu(tn), Dvh) −
(

p(tn+1) + p(tn)

2
− p(tn+1/2), ∇ · vh

)

+ b

(
u(tn+1/2),

u(tn+1) + u(tn)

2
− u(tn+1/2), vh

)

+ b

(
ξn(u) − u(tn+1/2),

u(tn+1) + u(tn)

2
, vh

)
. (58)

Using the error decomposition and setting vh = en+1/2
h in Equation (57) gives

1

2�t
(||en+1

h ||2 − ||en
h||2) + 2ν||Den+1/2

h ||2 + νT

4
(||(I − PH)Den+1

h ||2 − ||(I − PH)Den
h||2)

+ νT ||(I − PH)Den+1/2
h ||2 + νT

2
(||PHDen+1

h ||2 − ||PHDen
h||2)

=
(

ẽn+1 − ẽn

�t
, en+1/2

h

)
+ 2ν(Dẽn+1/2, Den+1/2

h ) + νT ((I − PH)Dẽn+1, (I − PH)Den+1/2
h )

+ (PHD(ẽn+1 − ẽn), Den+1/2
h ) − (φn+1/2, ∇ · en+1/2

h )

+ b(ξn(uh), ẽn+1/2, en+1/2
h ) + b

(
ξn(ẽ),

u(tn+1) + u(tn)

2
, en+1/2

h

)

+ b

(
ξn(eh),

u(tn+1) + u(tn)

2
, en+1/2

h

)
− Rn(u, p; en+1/2

h ). (59)
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From the definition of the Stokes projection, we know that

2ν(Dẽn+1/2, Den+1/2
h ) − (φn+1/2, ∇ · en+1/2

h ) = 0. (60)

Applying the Cauchy–Schwarz and Young inequalities to the linear terms on the RHS of
Equation (59) gives

(
ẽn+1 − ẽn

�t
, en+1/2

h

)
≤ ν

4
||Den+1/2

h ||2 + C

ν

∥∥∥∥ ẽn+1 − ẽn

�t

∥∥∥∥
2

,

νT ((I − PH)Dẽn+1, (I − PH)Den+1/2
h ) ≤ νT

2
||(I − PH)∇en+1/2

h ||2 + νT

2
||(I − PH)Dẽn+1||2,

(PHD(ẽn+1 − ẽn), Den+1/2
h ) ≤ ν

4
||Den+1/2

h ||2 + Cν2
T

ν
||PHD(ẽn+1 − ẽn)||2.

Taking them into Equation (59) again yields

1

2�t
(||en+1

h ||2 − ||en
h||2) + 3ν

2
||Den+1/2

h ||2 + νT

4
(||(I − PH)Den+1

h ||2 − ||(I − PH)Den
h||2)

+ νT

2
||(I − PH)Den+1/2

h ||2 + νT

2
(||PHDen+1

h ||2 − ||PHDen
h||2)

≤ C

ν

∥∥∥∥ ẽn+1 − ẽn

�t

∥∥∥∥
2

+ νT

2
||(I − PH)Dẽn+1||2 + Cν2

T

ν
||PHD(ẽn+1 − ẽn)||2

+ |b(ξn(uh), ẽn+1/2, en+1/2
h )| +

∣∣∣∣b
(

ξn(ẽ),
u(tn+1) + u(tn)

2
, en+1/2

h

)∣∣∣∣
+

∣∣∣∣b
(

ξn(eh),
u(tn+1) + u(tn)

2
, en+1/2

h

)∣∣∣∣ + |Rn(u, p; en+1/2
h )|. (61)

For the trilinear terms on the RHS of Equation (61), we analyse them individually. For the first
one, by using Lemma 2.1, we get

|b(ξn(uh), ẽn+1/2, en+1/2
h )|

≤ |b(ξn(e), ẽn+1/2, en+1/2
h )| + |b(ξn(u), ẽn+1/2, en+1/2

h )|
≤ |b(ξn(ẽ), ẽn+1/2, en+1/2

h )| + |b(ξn(eh), ẽn+1/2, en+1/2
h )| + |b(ξn(u), ẽn+1/2, en+1/2

h )|. (62)

For the first one in Equation (62), from Equation (9), we have

|b(ξn(ẽ), ẽn+1/2, en+1/2
h )| ≤ C||∇ξn(ẽ)||||∇ ẽn+1/2||||∇en+1/2

h ||
≤ ν

18
||Den+1/2

h ||2 + C

ν
||∇ξn(ẽ)||2||∇ ẽn+1/2||2

≤ ν

18
||Den+1/2

h ||2 + C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)||∇ ẽn+1/2||2. (63)

For the second one in Equation (62), from Equation (10), we have

|b(ξn(eh), ẽn+1/2, en+1/2
h )| ≤ C||en

h||1/2||en−1
h ||1/2||∇ ẽn+1/2||||∇en+1/2

h ||
≤ CCI h

−3/2||en
h||1/2||en−1

h ||1/2||∇ ẽn+1/2||(||en+1
h || + ||en

h||)
≤ CCI h

−3/2||∇ ẽn+1/2||(||en
h|| + ||en−1

h ||)(||en+1
h || + ||en

h||).
(64)
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For the third one in Equation (62), from Equation (9) and the regularity of u, we have

|b(ξn(u), ẽn+1/2, en+1/2
h )| ≤ C||∇ξn(u)||||∇ ẽn+1/2||||∇en+1/2

h ||
≤ ν

18
||Den+1/2

h ||2 + C

ν
||∇ ẽn+1/2||2 (65)

Taking Equations (63)–(65) into Equation (62), we have

|b(ξn(uh), ẽn+1/2, en+1/2
h )| ≤ ν

6
||Den+1/2

h ||2 + C

ν
||∇ ẽn+1/2||2

+ C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)||∇ ẽn+1/2||2

+ Ch−3/2||∇ ẽn+1/2||(||en
h|| + ||en−1

h ||)(||en+1
h || + ||en

h||). (66)

For the second trilinear term in Equation (61), using Lemma 2.1 and the regularity assumption
of u, we have

∣∣∣∣b
(

ξn(ẽ),
u(tn+1) + u(tn)

2
, en+1/2

h

)∣∣∣∣ ≤ C||∇ξn(ẽ)||||Den+1/2
h ||

≤ ν

6
||Den+1/2

h ||2 + C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2). (67)

The last trilinear term in Equation (61) is bounded by the third inequality in Lemma 2.1,

∣∣∣∣b
(

ξn(eh),
u(tn+1) + u(tn)

2
, en+1/2

h

)∣∣∣∣ ≤ C||ξn(eh)||||Den+1/2
h ||

≤ ν

6
||Den+1/2

h ||2 + C

ν
(||en

h||2 + ||en−1
h ||2). (68)

Combing Equations (66)–(68) with Equation (61) gives

1

2�t
(||en+1

h ||2 − ||en
h||2) + ν||Den+1/2

h ||2 + νT

4
(||(I − PH)Den+1

h ||2 − ||(I − PH)Den
h||2)

+ νT

2
||(I − PH)Den+1/2

h ||2 + νT

2
(||PHDen+1

h ||2 − ||PHDen
h||2)

≤ C

ν

∥∥∥∥ ẽn+1 − ẽn

�t

∥∥∥∥
2

+ νT

2
‖(I − PH)Dẽn+1‖2 + Cν2

T

ν
‖PHD(ẽn+1 − ẽn)‖2

+ C

ν
||∇ ẽn+1/2||2 + C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)||∇ ẽn+1/2||2

+ Ch−3/2||∇ ẽn+1/2||(||en
h|| + ||en−1

h ||)(||en+1
h || + ||en

h||)
+ C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2) + C

ν
(||en

h||2 + ||en−1
h ||2) + |Rn(u, p; en+1/2

h )|. (69)
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Now we estimate the last term |Rn(u, p; en+1/2
h )|, each of its linear terms can be bounded by the

Cauchy–Schwarz and Young’s inequalities,∣∣∣∣
(

u(tn+1) − u(tn)

�t
− ut(t

n+1/2), en+1/2
h

)∣∣∣∣
≤ ν

10
||Den+1/2

h ||2 + Cν−1�t4 max
tn≤t≤tn+1

||uttt(t)||2,

ν

∣∣∣∣
(

D

(
u(tn+1) + u(tn)

2
− u(tn+1/2)

)
, Den+1/2

h

)∣∣∣∣
≤ ν

10
||Den+1/2

h ||2 + Cν�t4 max
tn≤t≤tn+1

||∇utt(t)||2,

∣∣∣∣
(

p(tn+1) + p(tn)

2
− p(tn+1/2), ∇ · en+1/2

h

)∣∣∣∣
≤ ν

10
||Den+1/2

h ||2 + Cν−1�t4 max
tn≤t≤tn+1

||ptt(t)||2

as well as

νT |(Du(tn+1) − PHDu(tn), ∇en+1/2
h )|

= νT |((I − PH)Du(tn+1), (I − PH)Den+1/2
h )| + νT |(PHD(u(tn+1) − u(tn)), Den+1/2

h )|

≤ ν

10
||Den+1/2

h ||2 + νT

2
||(I − PH)Den+1/2

h ||2 + Cν2
T�t

ν

∫ tn+1

tn

||∇ut(t)||2 dt

+ CνT H2k+2||u(tn+1)||2k+2.

From Lemma 2.1 and the regularity assumption of u, the trilinear term in Rn(·, ·; ·) can be
bounded by ∣∣∣∣b

(
u(tn+1/2),

u(tn+1) + u(tn)

2
− u(tn+1/2), en+1/2

h

)∣∣∣∣
≤ C

∥∥∥∥∇
(

u(tn+1) + u(tn)

2
− u(tn+1/2)

)∥∥∥∥ ‖∇u(tn+1/2)‖‖∇en+1/2
h ‖

≤ ν

20
‖Den+1/2

h ‖2 + Cν−1�t4 max
tn≤t≤tn+1

||∇utt(t)||2.

and ∣∣∣∣b
(

ξn(u) − u(tn+1/2),
u(tn+1) + u(tn)

2
, en+1/2

h

)∣∣∣∣
≤ C‖∇(ξn(u) − u(tn+1/2))‖

∥∥∥∥∇
(

u(tn+1) + u(tn)

2

)∥∥∥∥ ‖∇en+1/2
h ‖

≤ ν

20
‖Den+1/2

h ‖2 + Cν−1�t4 max
tn−1≤t≤tn+1

||∇utt(t)||2.

Combining these estimations above, we have

|Rn(u, p; en+1/2
h )| ≤ ν

2
||Den+1/2

h ||2 + νT

2
||(I − PH)Den+1/2

h ||2 + Cν−1�t4 max
tn≤t≤tn+1

||uttt(t)||2

+ Cν�t4 max
tn≤t≤tn+1

||∇utt(t)||2 + Cν−1ν2
T�t

∫ tn+1

tn

||∇ut(t)||2 dt
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+ CνT H2k+2||u(tn+1)||2k+2 + Cν−1�t4 max
tn≤t≤tn+1

||ptt(t)||2

+ Cν−1�t4 max
tn≤t≤tn+1

||∇utt(t)||2 + Cν−1�t4 max
tn−1≤t≤tn+1

||∇utt(t)||2. (70)

Combining Equation (70) with the error equation (69) gives

1

2�t
(||en+1

h ||2 − ||en
h||2) + ν

2
||Den+1/2

h ||2 + νT

2
(||PHDen+1

h ||2 − ||PHDen
h||2)

+ νT

4
(||(I − PH)Den+1

h ||2 − ||(I − PH)Den
h||2)

≤ C

ν

∥∥∥∥ ẽn+1 − ẽn

�t

∥∥∥∥
2

+ νT

2
‖(I − PH)Dẽn+1‖2 + Cν2

T

ν
‖PHD(ẽn+1 − ẽn)‖2

+ C

ν
||∇ ẽn+1/2||2 + C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)||∇ ẽn+1/2||2 + C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)

+ Ch−3/2||∇ ẽn+1/2||(||en
h|| + ||en−1

h ||)(||en+1
h || + ||en

h||)
+ C

ν
(||en

h||2 + ||en−1
h ||2) + Cν−1�t4 max

tn≤t≤tn+1
||uttt(t)||2

+ Cν�t4 max
tn≤t≤tn+1

||∇utt(t)||2 + Cν−1ν2
T�t

∫ tn+1

tn

||∇ut(t)||2 dt

+ CνT H2k+2||u(tn+1)||2k+2 + Cν−1�t4 max
tn≤t≤tn+1

||ptt(t)||2

+ Cν−1�t4 max
tn≤t≤tn+1

||∇utt(t)||2 + Cν−1�t4 max
tn−1≤t≤tn+1

||∇utt(t)||2. (71)

From the interpolation property, we bound the terms including ẽn, ẽn+1/2 or ẽn+1 in Equation (71)
below,

C

ν

∥∥∥∥ ẽn+1 − ẽn

�t

∥∥∥∥
2

≤ C

ν�t

∫ tn+1

tn

||ẽt(t)||2 dt ≤ Ch2k+2

ν�t

∫ tn+1

tn

||ut(t)||2k+1 dt, (72)

νT

2
||(I − PH)∇ ẽn+1||2 ≤ CνT ||∇ ẽn+1||2 ≤ CνT h2k||u(tn+1)||2k+1, (73)

Cν2
T

ν
||PH∇(ẽn+1 − ẽn)||2 ≤ Cν2

T h2k�t

ν

∫ tn+1

tn

||ut(t)||2k+1 dt, (74)

C

ν
||∇ ẽn+1/2||2 + C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)

≤ Ch2k

ν
(||u(tn+1)||2k+1 + ||u(tn)||2k+1 + ||u(tn−1)||2k+1), (75)

C

ν
(||∇ ẽn||2 + ||∇ ẽn−1||2)||∇ ẽn+1/2||2

≤ Ch4k

ν
(||u(tn+1)||2k+1 + ||u(tn)||2k+1)(||u(tn)||2k+1 + ||u(tn−1)||2k+1), (76)

Ch−3/2||∇ ẽn+1/2||(||en
h|| + ||en−1

h ||)(||en+1
h || + ||en

h||)
≤ Chk−3/2(||u(tn+1)||k+1 + ||u(tn)||k+1)(||en+1

h ||2 + ||en
h||2 + ||en−1

h ||2). (77)
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2216 Li Shan et al.

Multiplying both side of Equation (69) by 2�t and summing it over n from 1 to l, combined with
the first time step error (53), we have

||el+1
h ||2 + ν�t

l∑
n=0

||Den+1/2
h ||2 + νT�t

2
||(I − PH)Del+1

h ||2 + νT�t||PHDel+1
h ||2

≤ Ch2k+2

ν
||ut||2L2(0,T ;Hk+1(�))

+ CνT h2k||u||2L2(0,T ;Hk+1(�))
+ Cν2

T h2k�t2

ν
||ut||2L2(0,T ;Hk+1(�))

+ Ch2k

ν
||u||2L2(0,T ;Hk+1(�))

+ C�t5

ν
(||uttt||2L∞(0,T ;L2(�)) + ||ptt||2L∞(0,T ;L2(�))

+ ||∇utt||2L∞(0,T ;L2(�))) + Cν�t4||uttt||2L∞(0,T ;L2(�)) + Cν−1ν2
T�t2||∇ut||2L2(0,T ;L2(�))

+ CνT H2k+2||u||2L2(0,T ;Hk+2(�))
+ C(ν−1 + hk−3/2||u||L∞(0,T ;Hk+1))�t

l∑
n=0

||en
h||2

+ C||u||L∞(0,T ;Hk+1)h
k−3/2�t||el+1

h ||2.

We assume that

C||u||L∞(0,T ;Hk+1)h
k−3/2�t ≤ 1

2 , (78)

then by using the regularity of u and p, Equation (78) becomes

1

2
||el+1

h ||2 + ν�t
l∑

n=0

||Den+1/2
h ||2 + νT�t

2
||(I − PH)Del+1

h ||2 + νT�t||PHDel+1
h ||2

≤ C(ν−1 + hk−3/2||u||L∞(0,T ;Hk+1))�t
l∑

n=0

||en
h||2

+ C(h2k + νT h2k + ν2
T h2k�t2 + ν2

T�t2 + νT H2k+2).

Finally, it follows from the discrete Gronwall lemma, that there exists Ĉ = Ĉ(ν, �, T , u, p) such
that for any l ≥ 0

1

2
||el+1

h ||2 + ν�t
l∑

n=0

||Den+1/2
h ||2 + νT�t

2
||(I − PH)Del+1

h ||2 + νT�t||PHDel+1
h ||2

≤ Ĉ(h2k + νT h2k + ν2
T h2k�t2 + ν2

T�t2 + νT H2k+2). (79)

The final result is easily obtained by using the triangle inequality and choosing νT = Chk/2, H = h
or νT = Chk−1, H = h1/2. �

Remark We prove that our scheme is conditionally convergent, but condition (34) is not necessary
theoretically, it might be removed. However, we could not make it herein. We would like to leave
it as an open question.

Corollary 4.3 Let (Xh, Qh) is a Taylor–Hood FE pair, under the assumption (34), we choose
νT = Ch, H = h or h1/2. There exists a constant Ĉ = Ĉ(ν, �, T , u, p) such that for any l ≥ 0

1

2
‖u(tl+1) − ul+1

h ‖2 + �tν
l∑

n=0

∥∥∥∥∥D

(
u(tn+1) − un+1

h + u(tn) − un
h

2

)∥∥∥∥∥
2

+ νT�t

2
‖(I − PH)D(u(tl+1) − ul+1

h )‖2 ≤ Ĉ(h4 + �t4). (80)
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5. Numerical results

In all experiments, algorithms are implemented by using the public domain FE software
Freefem++ [12]. The Taylor–Hood elements are chosen for the velocity-pressure FE spaces
(Xh, Qh), the well-resolved space L

H is the piecewise constant space on the given mesh.

5.1 Rates of convergence study

Let us consider � as the unit square in R
2. The uniform mesh is obtained by dividing � into

squares and then drawing a diagonal in each square in the same direction. Here,according to the
numeral analysis, we set νT = 0.1h.

We choose the true solution (u = (u1, u2), p) as follows:

u1 = − cos(πx) sin(πy) exp

(−2π2t

Re

)
,

u2 = sin(πx) cos(πy) exp

(−2π2t

Re

)
,

p = −0.25(cos(2πx) + cos(2πy)) exp

(−4π2t

Re

)
,

which is the solution of an interesting test problem of simulating decay of the Green–
Taylor vortex. It was used as a numerical test in Chorin [4], Tafti [41] and John and
Layton [26].

To demonstrate the convergence with respect to time step �t, we choose h = �t/10, which
means that h is much smaller than �t. If we denote the approximation errors by O(�tγ ) +
O(hμ), then for the errors by using the CNLE–VMS method and CN–VMS method (CN time
discretization and full implicit scheme) for un+1

h in L2 norm, γ < μ. This implies �tγ � hμ. In
this case, the approximation errors are not dominated by the h-term O(hμ) when h varies in the
given range. Thus, we list the errors for un+1

h in L2 norm with both spacing h and time step �t
decreasing for both CN–VMS and CNLE–VMS schemes in Table 1, we also compare their CPU
costs. The errors listed in the second and fourth column in Table 1 are similar, which means that
the CNLE–VMS method is comparable to the CN–VMS method. However, CPU cost by CNLE–
VMS method is relatively less than CN–VMS method. As expected, since CNLE–VMS is the
linearized version of the CN–VMS method, which does not include any iterations in computing.
Moreover, from the orders listed in third and sixth column in Table 1, we can see that with the
relatively smaller h, both the CN–VMS method and the CNLE–VMS method are second-order
convergent in time.

Table 1. Errors and CPU costs by using both the CN–VMS method and the CNLE–VMS method, with
Re = 1000.

h 
t ‖u − uh‖CN
L2(0,T ;L2)

Order CPUCN ‖u − uh‖CNLE
L2(0,T ;L2)

Order CPUCNLE

1
40

1
4 0.000201355 – 16.25 0.000200775 – 12.328

1
80

1
8 3.78435e−005 2.41162 131.765 3.78089e−005 2.40878 98.656

1
120

1
12 1.30953e−005 2.61726 469.437 1.30879e−005 2.61639 348.407

1
160

1
16 6.02309e−006 2.69969 1176.7 6.02073e−006 2.69909 827
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2218 Li Shan et al.

Figure 1. Domain � of the test problem.

Figure 2. The triangulation of the computational domain for the CNLE–VMS method.

5.2 Flow around a cylinder

The second example is the ‘flow around a cylinder’ which is a popular benchmark problem for
testing numerical schemes. The � is the channel with the cylinder presented in Figure 1. This is
a well-known benchmark problem taken from Shäfer and Turek [38] and John [23]. The domain
� with 7510 triangles is presented in Figure 2. The time-dependent inflow and outflow profile are
showed as follows

u1(0, y, t) = u1(2.2, y, t) = 6

0.412
sin

(
π t

8

)
y(0.41 − y),

u2(0, y, t) = u2(2.2, y, t) = 0.

No-slip conditions are prescribed at the other boundaries. Computations are performed for the
Reynolds number corresponding to ν = 10−3, and the external force f = 0. Different meshes
(1864, 4236, 7516 triangles) with different time step sizes (0.02, 0.01, 0.005) are used, and linear
viscosity νT = 0.1h and nonlinear Smagorinsky viscosity (81) are compared, with Cδ = 0.1, δ =
h, h = minT∈τh{diam(T)}.

In this section, the nonlinear Smagorinsky model [37,40], which is a simple and popular LES
model with

νT = (Cδδ)
2||(I − PH)Duh||F (81)

is also used for the turbulent viscosity. Here, Cδ is a constant, δ is the filter width of LES, which
is related to the mesh width h, and || · ||F denotes the Frobenius norm of a tensor.

The parameters of interest are the drag coefficient cd(t) at the cylinder, the lift coefficient cl(t)
and the difference of the pressure between the front and the back of the cylinder

�p(t) = p(t; 0.15, 0.2) − p(t; 0.25, 0.2).

The definitions of cd(t) and cl(t) in reference [38] are as follows:

cd(t) = 2

ρLU2
max

∫
S

(
ρν

∂utS (t)

∂n
ny − p(t)nx

)
dS, (82)

cl(t) = − 2

ρLU2
max

∫
S

(
ρν

∂utS (t)

∂n
nx + p(t)ny

)
dS. (83)
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Here n = (nx, ny)
T is the normal vector on S directing into �, tS = (ny, −nx)

T the tangential vector
and utS the tangential velocity. A straightforward calculation gives

cd(t) = −20
∫

�

[ν∇u(t) : ∇vd + (u(t)·)u(t) · vd − p(t)(∇ · vd)] dx dy (84)

for all functions vd ∈ (H2(�))2 with (vd)|S = (1, 0)T and vd vanishes on all other boundaries.
Similarly, one obtains

cl(t) = −20
∫

�

[ν∇u(t) : ∇vl + (u(t)·)u(t) · vl − p(t)(∇ · vl)] dx dy (85)

for all test functions vl ∈ (H2(�))2 with (vl)|S = (0, 1)T and vl vanishes on all other boundaries.
We have the experience that the volume integral formulations (84), (85) are more accurate and
less sensitive to the approximation of the circular boundary S than the line integral (82), (83),
see [22]. The actual choice of vd and vl in our computations is the same as in the steady-state
problem investigated in [27].

Since it is not positive to give the complete data of cd(t), cl(t) and �p(t) as reference values, we
will concentrate on one special value for each parameter.As proposed in [38], we take the maximal
drag and lift coefficients together with the corresponding times and the final pressure difference
�p(8s). The values for the maximal drag cd,max, maximal lift cl,max and 
p(8s) (here 
p(t) =
p(t; 0.15, 0.2) − p(t; 0.25, 0.2)) for both CNLE–VMS methods with constant and Smagorinsky
viscosities are presented in Tables 2 and 3, respectively. The following reference intervals are

Table 2. Results maximal drag cd,max, maximal lift cl,max and 
p(8s) by CNLE–VMS with linear
viscosity.

Mesh �t t(cd,max) cd,max t(cl,max) cl,max 
p(8s)

1864 0.02 3.92 2.86688 5.46 0.665305 −0.104658
4236 0.01 3.94 2.91683 5.72 0.543051 −0.108992
7516 0.005 3.93 2.93339 5.715 0.490709 −0.110030

Table 3. Results maximal drag cd,max, maximal lift cl,max and 
p(8s) by CNLE–VMS with the
Smagorinsky viscosity.

Mesh �t t(cd,max) cd,max t(cl,max) cl,max 
p(8s)

1864 0.02 3.92 2.91882 5.42 0.615220 −0.094712
4236 0.01 3.94 2.93886 5.7 0.528322 −0.107860
7516 0.005 3.93 2.94649 5.705 0.481234 −0.109300
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Figure 3. The evolutions of cd,max, cl,max and 
p by the CNLE–VMS method with constant viscosity and 7516 triangles
and �t = 0.005.

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 1
9:

29
 3

1 
Ja

nu
ar

y 
20

13
 



2220 Li Shan et al.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

2

2.5

3

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5

0

0.5

1

1.5

2

2.5

Figure 4. The evolutions of cd,max, cl,max and 
p by the CNLE–VMS method with the Smagorinsky viscosity and 7516
triangles and �t = 0.005.

Figure 5. The streamline at t = 2, 4, 5, 6, 7, 8 by the CNLE–VMS method with linear viscosity and with 7516 triangles
and �t = 0.005.
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given in [38],

cref
d,max ∈ [2.93, 297], cref

l,max ∈ [0.47, 0.49], 
p(8s)ref ∈ [−0.115, −0.105].

The results list in both tables show that as the time step size and mesh size decreases, all coefficients
approach the reference results as we expected.

The evolutions of cd,max, cl,max and 
p with 7516 triangles and 
t = 0.005 for the CNLE–VMS
method with constant and Smagorinsky viscosities are presented in Figures 3 and 4, respectively.
It is easy to see that the results for both the CNLE–VMS methods are almost the same. They also
coincide with the results provided in [23].

Figure 6. The streamline at t = 2, 4, 5, 6, 7, 8 by CNLE–VMS method with Smagorinsky viscosity and with 7516
triangles and �t = 0.005.

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 1
9:

29
 3

1 
Ja

nu
ar

y 
20

13
 



2222 Li Shan et al.

Furthermore, the development of the flows by both the CNLE–VMS methods with 7510 trian-
gles and �t = 0.05 are depicted in Figures 5 and 6, respectively. From both figures, we notice that
from t = 2 to t = 4, as time progresses, two vortices start to develop behind the cylinder. Then,
the vortices separate from the cylinder between t = 4 and t = 5, and a vortex street develops, and
they continue to be visible through the final time t = 8, which agrees with the results of [23,38].

6. Conclusions

In this report, aVMS method based on the CN extrapolation scheme for the non-stationary Naiver–
Stokes problem is considered. This method is unconditionally stable, an a priori error estimate is
given, but it is sub-optimal in space for velocity with respect to the L2-norm. We leave it as our
future work to provide an optimal error analysis. In the numerical studies, both constant viscosity
and the nonlinear Smagorinsky type viscosity are performed, the results show that these schemes
are efficient and feasible for turbulent flow simulations.
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