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In this article, supposing that the velocity, pressure, and temperature are approximated by the elements
P2 − P1 − P2, and applying the orthogonal projection technique, we introduce two Gauss integrations as a
stabilizing term in the common variational multiscale (VMS) method and derive a new VMS (Two Gauss
VMS) method for steady-state natural convection problem. Comparing with the common VMS method, the
Two Gauss VMS method does not need to introduce any extra variable and reduces the degrees of freedom
of the discrete system a lot, but gets the same stabilized result. The effectiveness and stability of the Two
Gauss VMS method are further demonstrated through two numerical examples. © 2013 Wiley Periodicals,
Inc. Numer Methods Partial Differential Eq 30: 361–375, 2014

Keywords: natural convection problem; finite element method; variational multiscale method; two local
gauss integrations

I. INTRODUCTION

Natural convection [1] is presented in many real situations, such as room ventilation, double glass
window design, and so forth. Typically, fluid flow and heat transfer are governed by the partial
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differential equation system of mass, momentum, and energy conservation, but in the case of
natural convection, the so-called Boussinesq approximation is generally us. In this article, we
present a new variational multiscale (VMS) method for buoyancy driven flows, namely, natural
convection problem.

Let � ⊂ R
2 be a regular bounded open domain, the steady-state natural convection problem

including solid media in dimensionless form is given by (see e.g., [2–4]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Pr�u + (u · ∇)u + ∇p = Pr Ra βT , in �f ,

div u = 0 in �f ,

u = 0 on ∂�f , u ≡ 0 in � − �f = �s ,

−∇ · (k∇T ) + (u · ∇)T = γ in �,

T = 0 on �T ,
∂T

∂n
= 0 on �B .

(1)

Here �s and �f are disjoint polyhedral domains, �T = ∂� \ �B which �B is a regular open
subset of ∂�, and u, p, T denote the velocity, pressure, and temperature, respectively. β, γ ,
and n are the gravitational acceleration vector, forcing function, and the outward unit normal to
�, respectively. The parameters Pr , Ra, k > 0 denote Prandtl number, Rayleigh number, and
thermal conductivity parameter, respectively. Moreover, k = kf in �f and k = ks in �s , where
kf and ks are two positive constants.

We denote by (·, ·)�, ‖ · ‖0,� the inner product and norm on L2(�), L2(�)2 or L2(�)2×2. The
standard Sobolev [5] space Hμ(�)(μ < ∞) is equipped with the norm ‖ · ‖μ,�. Generally, �

is omitted, that is, (·, ·) = (·, ·)� and ‖ · ‖μ = ‖ · ‖μ,�. The function spaces for u, p and T are
defined, respectively, by

X : = H 1
0 (�f )2 = {v ∈ H 1(�f )2 : v = 0 on ∂�f },

Q : = L2
0(�) = {p ∈ L2(�), (p, 1)� = 0},

W : = {S ∈ H 1(�) : S = 0on�B}.

The corresponding variational formulation of problem (1) is followed: find (u, p, T ) ∈
X × Q × W , for all (v, q, S) ∈ X × Q × W such that

Pr a(u, v) + c(u, u, v) + b(v, p) = Pr Ra d(T , v),

b(u, q) = 0,

ā(T , S) + c̄(u, T , S) = (γ , S). (2)

Here, we used notations

a(u, v) =
∫

�f

∇u : ∇vdxdy,

ā(T , S) =
∫

�

k∇T · ∇Sdxdy,

b(v, q) = −
∫

�f

qdivvdxdy,
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c(u, v, w) = 1

2

∫
�f

((u · ∇)v · w − (u · ∇)w · v)dxdy,

c̄(u, T , S) = 1

2

∫
�

((u · ∇)T S − (u · ∇)ST )dxdy,

d(T , v) =
∫

�f

T β · vdxdy.

It is well-known that the solution of problem (2) is unique under some restrictions on the
Rayleigh and Prandtl numbers [6]. If problem (2) is solved by standard Galerkin method, it may
exhibit global spurious oscillations [7, 8] and may yield inaccurate approximation. One of the
reasons is the dominance of convection terms. There are various stabilized methods for such
problem. Among these methods, we only list some of them, such as, classical large eddy simula-
tion approach in (see e.g., [9]); two-level stabilization scheme in (see e.g., [10]); VMS method (see
e.g., [11–19]); and so forth. Recently, the projection-based stabilized method has been advanced
for the natural convection problem [4,20] and the Darcy–Brinkman equations in double-diffusive
convection [21]. The philosophy of the projection-based stabilized method is to use projections
into appropriate function spaces to decompose solution scales.

The two Gauss integrations technique was first used as a stabilizing term for the Stokes problem
in (see e.g., [22–25]), where the authors applied them to overcome the inf-sup condition restriction
between the velocity and pressure, and proved that the equal-order elements P1 −P1 were compat-
ible. While in [26, 27], we have developed a new VMS method by using two Gauss-integrations
technique for incompressible flow. In this article, assuming that the velocity, the pressure, and
the temperature are approximated by the elements P2 − P1 − P2, and applying the orthogonal
projection technique, we introduce two Gauss integrations as a stabilizing term in the common
VMS method, and prove these two VMS methods are equivalent in mathematics. Namely, we
formulate the Two Gauss VMS method for steady-state natural convection problem. The proposed
method does not need to introduce any degrees of freedom, and can save computational cost a lot.

The article is organized as follows. In Section 2, we introduce some notations, and establish
the Two Gauss VMS method for steady-state natural convection problem. Section 3 includes two
numerical experiments to test and verify the stability and accuracy properties of the Two Gauss
VMS method. Finally, conclusions are given in Section 4. The implementation of the stabilizing
terms is given in Appendix section.

II. THE TWO GAUSS VMS METHOD

Let �h be the uniformly regular family of triangulation of the domain � where � is the closure
of �, and define the mesh parameter h = max

K∈�h
{hK , hK = diam(K)}. For the velocity u, pressure

p, and temperature T , we introduce the following finite element spaces to approximate them:

Xh = {vh ∈ X ∩ C(�)2, vh|K ∈ P2(K)2, ∀K ∈ �h},
Qh = {qh ∈ Q ∩ C(�), qh|K ∈ P1(K), ∀K ∈ �h},
Wh = {Sh ∈ W ∩ C(�), Sh|K ∈ P2(K), ∀K ∈ �h},
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where Pr(K), r = 1, 2 is the space of rth order polynomial on K . Obviously, (Xh, Qh) satisfies
the discrete inf-sup condition [28]. To introduce the modified VMS method, we need to define
some spaces:

R0 = {vh ∈ L2(�), vh|K ∈ P0(K), ∀K ∈ �h},
where P0(K) is the space of all constant polynomial on K . Let L = L2(�)(or L2(�)2×2), the
finite element space Lh = R0(�)2×2 and Mh = R0(�)2.

With above notations, the projection-based stabilized method [4] of (2) reads: find (uh, ph, Th) ∈
Xh × Qh × Wh, and (gh, th) ∈ Lh × Mh such that

Pr a(uh, vh) + α1((∇uh − gh), ∇vh) + c(uh, uh, vh) + b(vh, ph) = Pr Ra d(Th, vh), ∀vh ∈ Xh,

b(uh, qh) = 0, ∀qh ∈ Qh, (gh − ∇uh, lh) = 0, ∀lh ∈ Lh,

ā(Th, Sh) + α2((∇Th − th), ∇Sh) + c̄(uh, Th, Sh) = (γ , Sh), ∀Sh ∈ Wh,

(th − ∇Th, mh) = 0, ∀mh ∈ Mh, (3)

where the stabilized parameters α1 = α1(h) and α2 = α2(h) are non-negative constant functions.
The parameters α1 and α2 act only on the small scales. The scheme (3) is to add additional diffusion
acting on all discrete velocity and temperature scales, and then to anti-diffuse on the resolvable
scales. This is exactly the main idea of VMS method of Hughes et al. (see e.g., [12–14]), and
we call the scheme (3) as the common VMS method. However, comparing with the continuous
problem (2), the auxiliary spaces Lh × Mh and variables (gh, th) are introduced in (3), it need
to solve additional variables (gh, th), which will increase the degrees of freedom of the discrete
system a lot. This situation will be more serious for the three-dimensional (3D) problem.

Now, we introduce a new VMS method without adding any degrees of freedom. From (3), it
is easy to see that the variable gh is the L2 projection of ∇uh onto space Lh, and the variable
th is the L2 projection of ∇Th onto space Mh, respectively. This technique was also used as a
stabilizing factor for some convection-dominated problems (see e.g.,[15, 26, 29]). Thus, we can
define an orthogonal projection operator 	 : L → Lh(orMh) with the following properties (see
e.g.,[17, 26, 28]):

((I − 	)l, 
h) = 0, ∀l ∈ L, 
h ∈ Lh (or Mh),

‖	l‖0 ≤ C‖l‖0, ∀l ∈ L, (4)

‖(I − 	)l‖0 ≤ Ch‖l‖1, ∀l ∈ L ∩ H 1(�),

where the symbol I denotes identical operator. Using the properties of orthogonal projection
operator 	, we can rewrite the scheme (3) as: find (uh, ph, Th) ∈ Xh × Qh × Wh, for all
(vh, qh, Sh) ∈ Xh × Qh × Wh such that

Pr a(uh, vh) + α1((I − 	)∇uh, (I − 	)∇vh) + c(uh, uh, vh) + b(vh, ph) = Pr Ra d(Th, vh),

b(uh, qh) = 0, (5)

ā(Th, Sh) + α2((I − 	)∇Th, (I − 	)∇Sh) + c̄(uh, Th, Sh) = (γ , Sh).

For the stabilized terms α1((I −	)∇uh, (I −	)∇vh) and α2((I −	)∇Th, (I −	)∇Sh) in (5), to
make them easy to implement, we supply the local stabilization form of the difference between a

Numerical Methods for Partial Differential Equations DOI 10.1002/num



A FINITE ELEMENT VARIATIONAL MULTISCALE METHOD 365

TABLE I. Information on the grids and the numbers of degrees of freedom for the common VMS method.√
2/h Cells Xh Qh Wh Lh Mh Total

4 32 162 25 81 128 64 460
8 128 578 81 289 512 256 1716
16 512 2178 289 1089 2048 1024 6628
32 2048 8450 1089 4225 8192 4096 26,052

consistent and an under-integrated mass matrices on the local Gauss integrations at element level
as follows (see e.g., [22–24]):

G(σh, τh) = α(ar(σh, τh) − a1(σh, τh)), ∀σh, τh ∈ Xh (or Wh). (6)

Here, α = α1(h) (or α2(h)) is a parameter and

ar(σh, τh) = σT
GMrτG, a1(σh, τh) = σT

GM1τG,

σT
G = [σ1, σ2, . . . , σN ]T , τG = [τ1, τ2, . . . , τN ],

Mij = (∇φi , ∇φj ), σh =
N∑

i=1

σiφi , σi = σh(xi), ∀σh ∈ Xh(or Wh),

Mr = (Mr
ij )N×N , M1 = (M1

ij )N×N , i, j = 1, 2, . . . , N ,

and φi is the basis function of the velocity (temperature) on the domain � such that its value is one
at node xi and zero at other nodes; N is the dimension of Xh (or Wh); the symmetric and positive
matrices Mr

ij (r ≥ 2) and M1
ij are the mass matrices computed by using r−order and 1−order

Gauss integrations at element level, respectively; σi and τi (i = 1, 2, . . . , N ) are the values of σh

and τh at the node xi ; σT
G is the transpose of the matrix σG. In details, for ∀σh, τh ∈ Xh(or Wh),

the stabilized term can be rewritten as

G(σh, τh) = α
∑
K

{∫
K ,r

∇σh∇τhdxdy −
∫

K ,1
∇σh∇τhdxdy

}
, (7)

where
∫

K ,i ς(x, y)dxdy denotes an appropriate Gauss integral over K which is exact for polyno-
mials of degree i (i = 1, r). In particular, for all test functions τh ∈ Xh (or Wh), ∇σh must be
piecewise constant when i = 1.

Therefore, we derive a new stabilized VMS method (Two Gauss VMS method) as follows:
find (uh, ph, Th) ∈ Xh × Qh × Wh such that

Pr a(uh, vh) + c(uh, uh, vh) + b(vh, ph) + G(uh, vh) = Pr Ra d(Th, vh),

b(uh, qh) = 0, (8)

ā(Th, Sh) + c̄(uh, Th, Sh) + G(Th, Sh) = (γ , Sh),

for all (vh, qh, Sh) ∈ Xh × Qh × Wh.
We present the information on the grids and the numbers of the degrees of freedom for the

common VMS method (3) in Table I and the Two Gauss VMS method (8) in Table II, respectively.
It is easy to see that the common VMS method (3) will add more extra degrees of freedom in
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TABLE II. Information on the grids and the numbers of degrees of freedom for the Two Gauss VMS
method.√

2/h Cells Xh Qh Wh Total

4 32 162 25 81 268
8 128 578 81 289 948
16 512 2178 289 1089 3556
32 2048 8450 1089 4225 13,764

spaces Lh ×Mh than the standard Galerkin method whereas h decreases, whereas the Two Gauss
VMS method (8) does not add any extra degrees of freedom.

Remark 2.1. As afore mentioned, the Two Gauss VMS method (8) is only suitable for the
elements P2 − P1 − P2, our analysis and numerical tests are all carried out for this case. Now
we establish the equivalence between the Two Gauss VMS method (8) and the common VMS
method (3) for completeness. The reader can also see the proof in Ref. [26, 29]. To derive the
equivalence, we only need to show the stabilized term G(σh, τh) = α((I −	)∇σh, (I −	)∇τh),
∀σh, τh ∈ Xh (or ∈ Wh). Using the properties (4) of 	, it suffices to prove that, at each element K

∫
K ,1

∇σh∇τhdxdy = (	∇σh, 	∇τh)K .

Let qi , i = 1, 2, 3 denote the three vertices of K . For ∀σh, τh ∈ Xh (or Wh), we have
∇σh, ∇τh ∈ P1(�)2×2 (or ∈ P1(�)2). Then, we obtain
∫

K ,1
∇σh∇τhdxdy =

∫
K ,r

∇σh

(
q1 + q2 + q3

3

)
∇τh

(
q1 + q2 + q3

3

)
dxdy

=
∫

K ,r

∇σh(q1) + ∇σh(q2) + ∇σh(q3)

3

∇τh(q1) + ∇τh(q2) + ∇τh(q3)

3
dxdy

=
∫

K ,r
	∇σh	∇τhdxdy = (	∇σh, 	∇τh)K . (9)

The equivalence is true.

Remark 2.2. Now, we discuss how to choose the stabilized parameter α = α1(h) (or α2(h)).
From [4], we see that the optimal error estimates for the velocity, the pressure, and the tempera-
ture can be obtained if and only if the stabilized parameters α1 and α2 are equal to O(h2) for the
elements P2 −P1 −P2. As the equivalence between the two VMS methods in Eq. (9), we directly
choose the stabilized parameters α1 = O(h2) and α2 = O(h2), and omit the proof.

Remark 2.3. While taking the numerical tests, the stabilized terms in our VMS method (8)
will be treated explicitly, that is,

G(σ
(j)

h , τh) = α
∑
K

{∫
K ,r

∇σ
(j)

h ∇τhdx −
∫

K ,1
∇σ

(j−1)

h ∇τhdx

}
,

for all σ
(j)

h , τh ∈ Xh (or Wh), where (j) denotes the number of Newton iteration. Meanwhile, the
stabilization terms in (3) will be treated similarly.
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III. NUMERICAL EXPERIMENTS

In this section, we give two numerical tests to validate the effectiveness of our VMS method
(8). The first example is a known particular analytical solution, and the second one is natural
convection in a squared cavity. All these computations are based on the package FreeFem++
(http://www. freefem.org/ff++ [30]), with some our additional codes. All nonlinear systems are
solved by Newton method with stopping criteria 10−6. More specifically, given an initial guess
(u

(0)

h , T (0)

h ), we generate the sequence of iterates (u
(j)

h , p(j)

h , T (j)

h ) ∈ Xh × Qh × Wh for j ≥ 1 by
solving the sequence of linear systems

Pr a(u
(j)

h , vh) + c(u
(j)

h , u(j−1)

h , vh) + c(u
(j−1)

h , u(j)

h , vh) + b(vh, p(j)

h ) + G(u
j

h, vh)

= Pr Ra d(T
(j)

h , vh) + c(u
(j−1)

h , u(j−1)

h , vh),

b(u
(j)

h , qh) = 0, (10)

ā(T
(j)

h , Sh) + c̄(u
(j)

h , T (j−1)

h , Sh) + c̄(u
(j−1)

h , T (j)

h , Sh) + G(T
(j)

h , Sh)

= (γ , Sh) + c̄(u
(j−1)

h , T (j−1)

h , Sh).

for all (vh, qh, Sh) ∈ Xh × Qh × Wh. The linear systems are solved by UMFPACK solver. The
stopping criterion is defined by max{‖u(j)

h − u
(j−1)

h ‖, ‖T (j)

h − T
(j−1)

h ‖} < 10−6 for the iterative
solver. We also record the iteration times (Iter) which reach the stopping criteria 10−6 in two VMS
methods. The stabilized parameters α1 = α2 = 2.0h2. The implementation of the stabilizing terms
G(uh, vh) and G(Th, Sh) in freefem++[30] code is presented in Appendix section.

A. An Analytical Solution

We choose the domain � = [0, 1]2 and the parameters k = 1.0, Pr = 1.0, and Ra = 10, 000. The
forcing function γ and boundary values of (u, p, T ) are given such that the prescribed solution
of problem (1) is

p(x, y) = 10(2x − 1)(2y − 1),

u1(x, y) = 10x2(x − 1)2y(y − 1)(2y − 1),

u2(x, y) = −10x(x − 1)(2x − 1)y2(y − 1)2,

T (x, y) = u1(x, y) + u2(x, y), u(x, y) = (u1(x, y), u2(x, y)).

The numerical results for this test are presented in Tables III–IV and Fig. 1. We see that the
optimal convergence rates of (u, p, T ) are obtained in terms of the elements P2 − P1 − P2 for the
two VMS methods. Besides, comparing Table III with Table IV, the numerical results are almost
the same, which verify the two VMS methods are equivalent. However, Two Gauss VMS method
needs less time, which implies that Two Gauss method (8) is more efficient than the common
VMS method (3).

B. Natural Convection in a Squared Cavity

In this subsection, we consider a 2D problem of natural convection in an unit square cavity
(see Fig. 2). The left and right walls are maintained at temperatures TH = 1 and TC = 0,
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TABLE III. Numerical results of common VMS method for the numerical experiment A.
√

2
h

‖u − uh‖0 ‖u − uh‖1 ‖p − ph‖0 ‖T − T h‖0 ‖T − T h‖1 Iter CPU(s)

8 0.0111238 0.0854609 0.149398 1.69704e-4 0.00825468 9 6.911
12 0.00225232 0.0180354 0.033976 4.33071e-5 0.00358352 7 11.809
16 7.1826e-4 0.00635417 0.0136352 1.69488e-5 0.00199608 6 17.301
24 1.42687e-4 0.00181793 0.0048374 4.70282e-6 8.8048e-4 5 31.715
32 4.52658e-5 8.91453e-4 0.00258643 1.93292e-6 4.93912e-5 4 56.612

respectively, the horizontal walls are adiabatic (i.e. insulated, there is no heat transfer through
these walls), no-slip boundary conditions are imposed for the fluid flow at all walls. Set the para-
meters k = 1.0, Pr = 0.71, γ = 0, and the Rayleigh numbers in the range 103 ≤ Ra ≤ 106.
For Ra = 103, 104, 105, and Ra = 106, we solve problems (3) and (8) on the uniform meshes of
11 × 11, 11 × 11, 21 × 21, and 32 × 32, respectively, where the mesh m × m denotes the domain
� = [0, 1]2 by dividing into m × m squares and then drawing a diagonal in each square in the
same direction.

Numerical results of this example are given in Tables V and VI, and Figs. 3–6. Tables V
and VI present the maximum vertical velocity values at y = 0.5 and the maximum horizontal
velocity values at x = 0.5 for different Rayleigh numbers, respectively, where the number “m” in
parenthesis corresponds to the used mesh m × m. It is easy to see that our results are concordant
with the benchmark data [4, 31–34] even at coarser grid. We also present the vertical velocity
distribution at y = 0.5 and the horizontal velocity distribution at x = 0.5 in Fig. 3, and give the
variation of temperature at mid-height cavity y = 0.5 in Fig. 4, which are very popular graphical
illustrations in the study of buoyancy-driven cavity type tests. We see that the differences in the
profiles are getting bigger with the increase of Rayleigh numbers, which are concordant with the
previous studies in [4, 34, 35].

The dimensionless parameter Nusselt number represents the rate of heat transfer along the
vertical walls of the cavity. The local Nusselt number is calculated by Nulocal = ± ∂T

∂x
, where the

negative sign will be chosen at the hot wall and the positive sign will be chosen at the cold wall,
respectively. The average Nusselt number at hot wall for different Rayleigh numbers are given
in Table VII. The left and the right hand sides of Fig. 5 describe the variation of local Nusselt
number at hot wall and cold wall for varying Rayleigh numbers, respectively. The results of Table
VII and Fig. 5 are according with the benchmark solutions in [4, 31–33, 35].

The iso-u1 contours, iso-u2 contours, isotherms, isobars, and streamlines of the solutions
(u, p, T ) with Ra = 103, 104, 105, 106 are plotted in Fig. 6. It is easy to see that two horizontal
eddies appear in the iso-u1 contours of Fig. 6 for lower Rayleigh numbers Ra = 103, 104, and
these eddies are stretched to the upper-left and the lower-right corners for higher Rayleigh numbers

TABLE IV. Numerical results of Two Gauss VMS method for the numerical experiment A.
√

2
h

‖u − uh‖0 ‖u − uh‖1 ‖p − ph‖0 ‖T − T h‖0 ‖T − T h‖1 Iter CPU(s)

8 0.0111238 0.0854609 0.149398 1.69704e-4 0.00825468 9 3.651
12 0.00225232 0.0180354 0.033976 4.33071e-5 0.00358352 7 6.412
16 7.18259e-4 0.00635417 0.0136352 1.69488e-5 0.00199608 6 9.828
24 1.42687e-4 0.00181793 0.0048374 4.70282e-6 8.8048e-4 5 18.923
32 4.52658e-5 8.91453e-4 0.00258643 1.93292e-6 4.93912e-4 5 33.946

Numerical Methods for Partial Differential Equations DOI 10.1002/num



A FINITE ELEMENT VARIATIONAL MULTISCALE METHOD 369

FIG. 1. Convergence analysis for the velocity, the pressure, and the temperature. From upper-left to lower-
right, there are H 1 error for the velocity, L2 error for the pressure, H 1 error for the temperature, L2 error for
the velocity, and L2 error for the temperature, respectively. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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FIG. 2. Natural convection in cavity: schematic of the problem.

TABLE V. Comparison of maximum vertical velocity at y = 0.5 with mesh size used in computation for
the numerical experiment B.

Ra Two Gauss Ref. [4] Ref. [31] Ref. [32] Ref. [33] Ref. [34]

104 19.46(11) 19.91(11) 19.51(41) 19.63(71) 19.90(71) 19.79(101)

105 68.31(21) 70.60(21) 68.22(81) 68.85(71) 70(71) 70.63(101)

106 216.36(32) 228.12(32) 216.75(81) 221.6(71) 228(71) 227.11(101)

TABLE VI. Comparison of maximum horizontal velocity at x = 0.5 with mesh size used in computation
for the numerical experiment B.

Ra Two Gauss Ref. [4] Ref. [31] Ref. [33] Ref. [34]

104 16.21(11) 15.90(11) 16.18(41) 16.10(71) 16.10(101)

105 34.68(21) 33.51(21) 34.81(81) 34(71) 34(101)
106 64.65(32) 65.52(32) 65.33(81) 65.40(71) 65.40(101)

FIG. 3. Natural convection cavity: comparison of vertical velocity at the mid-height (left) and horizontal
velocity at mid-width (right) for varying Rayleigh numbers, obtained by using Two Gauss VMS method.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 4. Natural convection cavity: comparison of temperature at mid-height cavity y = 0.5 for varying
Rayleigh numbers, obtained by using Two Gauss VMS method. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Ra = 105, 106. For lower Rayleigh numbers Ra = 103, 104, there are two vertical eddies appear
in the iso-u2 contours of Fig. 6. With the increase of Rayleigh numbers, these vertical eddies
become closer to the hot and cold walls. The isotherm of Fig. 6 is nearly linear with the verti-
cal contours for Ra = 103, which indicates that the heat transfer is almost entirely in the form
of conduction. While for higher Rayleigh numbers Ra = 105, 106, the growth of the boundary
layer along the wall dominates, which shows that the hot fluid has been carried to the cold wall.
From the isobar patterns of Fig. 6, we see that the pressure differences increase gradually with
Rayleigh number increasing. From the streamline patterns of Fig. 6, it is clear that circular vortex
at the cavity center begin to deform into an ellipse and then break up into two vortices tending
to approach to the corners differentially heated sides of the cavity as Rayleigh number increases.
We remark that these results of Fig. 6 are according with the results of [1, 31–35].

FIG. 5. Natural convection cavity: Nusselt number along the hot wall (left) and the cold wall (right) for
varying Rayleigh numbers, obtained by using Two Gauss VMS method. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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FIG. 6. Iso-u1 contours, iso-u2 contours, isotherms, isobars, streamlines from top to bottom, and with
Ra = 103, 104, 105, 106 from left to right for Natural convection problem, respectively. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE VII. Comparison of average Nusselt number on the vertical boundary of the cavity at x = 0 with
mesh size used in computation for the numerical experiment B.

Ra Two Gauss Ref. [4] Ref. [31] Ref. [32] Ref. [33] Ref. [34]

104 2.23(11) 2.15(11) 2.24(41) 2.24(71) 2.08(71) 2.25(101)

105 4.55(21) 4.35(21) 4.52(81) 4.52(71) 4.30(71) 4.59(101)

106 9.01(32) 8.83(32) 8.92(81) 8.82(71) 8.74(71) 8.97(101)

IV. CONCLUSIONS

In this article, we have proposed Two Gauss VMS method for steady-state natural convection
problem, which is proved to be equivalent to the common VMS in mathematics, but it does not
introduce any additional degrees of freedom in the discrete system. Thus, Two Gauss VMS method
is efficient when implementing and can save computational cost a lot. The numerical experiments
verified the theoretical predictions.

There are many open questions including the possible extension of the method to time-
dependent problems and more extensive testing, and so forth.

APPENDIX

The Appendix presents the implementation of the stabilizing term G(σh, τh) in freefem++
code, for details, please see [30].

mesh Th=square(z,z,[0+(1.0-0)*x,0+(1.0-0)*y]);
\\ defining the mesh on [0, 1]2

fespace Xh(Th, P2);
\\ definition of the velocity component finite element space
Xh u1,u2,v1,v2; \\ unknown and test functions
Xh u01,u02;
\\ here u01, u02 denote the above step iterative value of u1,u2, respectively.
fespace Qh(Th,P1); \\ definition of the pressure finite element space
Qh p,q; \\unknown and test function
fespace Wh(Th,P2);\\definition of the temperature finite element space.
Wh T,S;\\ unknown and test function
Wh T0;\\here T0 denotes the above step iterative value of T
...
problem TwoGaussVMS([u1,u2,p,T],[v1,v2,q,S],solver=UMFPACK)
\\definition of the problem
=int2d(Th)(Pr*(dx(u1)*dx(v1)+dy(u1)*dy(v1)+dx(u2)*dx(v2)+dy(u2)*dy(v2))

\\bilinear term: Pr a(u, v) = Pr
∫

�f

(
∂u1
∂x

∂v1
∂x

+ ∂u1
∂y

∂v1
∂y

+ ∂u2
∂x

∂v2
∂x

+ ∂u2
∂y

∂v2
∂y

)
dxdy

+int2d(Th)(k*(dx(T)*dx(S)+dy(T)*dy(S)))

\\bilinear term: ā(T , S) = ∫
�

(
k ∗

(
∂T

∂x

∂S

∂x
+ ∂T

∂y

∂S

∂y

))
+...
+int2d(Th,qft=qf2pT)(2.0*hTriangle*hTriangle*(dx(u1)*dx(v1)
+dy(u1)*dy(v1) +dx(u2)*dx(v2)+dy(u2)*dy(v2)))
\\ hTriangle denotes the size of the current triangle K(diam(K))

-int2d(Th,qft=qf1pT)(2.0*hTriangle*hTriangle*(dx(u01)*dx(v1)
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+dy(u01)*dy(v1) +dx(u02)*dx(v2)+dy(u02)*dy(v2)))
\\stabilizing term: G(uh, vh), here the parameter α1(h) = 2.0 ∗ (hT riangle)2

+int2d(Th,qft=qf2pT)(2.0*hTriangle*hTriangle*(dx(T)*dx(S)+dy(T)*dy(S)))
-int2d(Th,qft=qf1pT)(2.0*hTriangle*hTriangle*(dx(T0)*dx(S)+dy(T0)*dy(S)))
\\stabilizing term: G(Th, Sh), here the parameter α2(h) = 2.0 ∗ (hT riangle)2

+...

The authors would like to thank the editor and the anonymous referees for their valuable
comments, which led to great improvements in content.
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