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a b s t r a c t

Although the numerical results suggest the optimal convergence order of the
two-grid finite element decoupled scheme for mixed Stokes–Darcy model with
Beavers–Joseph–Saffman interface condition in literatures, the numerical analysis
only gets the optimal error order for porous media flow and a non-optimal error
order that is half order lower than the optimal one in fluid flow. The purpose of this
paper is to fill in the gap between the numerical results and the theoretical analysis.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The mixed Stokes–Darcy model has a wide range of applications in science and engineering, especially
in cases where a free flowing fluid moves over a porous medium. Since its important applications in real
world, many sorts of numerical methods have been proposed and studied for this model in the past years,
for examples, see [1–8]. To overcome the mathematical difficulties in simulation of coupled multiphysics
models, especially for the steady state problems, some decoupled schemes based on two-grid or multi-grid
finite element for coupled problems like mixed Stokes–Darcy problem have been proposed and investigated
in [9], [10–12]. For transient coupled problems, the decoupling algorithm based on interface approximation
via temporal extrapolation are studied in [13,14] with same time step length in both subproblems and [15]
with different time step length in different subproblems.

To our knowledge, the first two-grid decoupled numerical scheme for the steady state mixed Stokes–Darcy
model was successfully introduced by Mu and Xu in [10]. Later on, Cai and Mu studied the multi-grid
decoupled scheme for such problem based on the same interface condition treatment strategy in [16].
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Although such decoupled schemes are easy to be implemented and numerical experiments show that the
convergence orders of velocity and pressure in fluid flow region and piezometric head in porous media flow
region are all optimal with proper configuration of the coarse and fine mesh sizes (for example, see [16]),
only an optimal error estimate for piezometric head in the porous media flow region was obtained in the
previous mentioned papers. For velocity and pressure in the fluid flow region, the estimates are half order
lower than the optimal one. Subsequently, to improve the convergence order of the velocity and pressure in
fluid flow region, some modified two-grid algorithms were proposed in [11] and [12] for mixed Stokes–Darcy
model. The optimal convergence orders for the velocity and pressure in fluid flow region were obtained at
the price of changing the parallel implementation in [10] of the decoupled scheme in fine grid with a serial
implementation.

In this paper, we re-visit the decoupled scheme in [10] and try to give the optimal error estimates for
fluid flow.

The rest of the paper is organized as follows. A mixed Stokes–Darcy model with Beavers–Joseph–Saffman
interface condition is described in the next section. In Section 3, the two-grid decoupled scheme proposed
in [10] is presented. The main result is presented in Section 4 which shows that the error orders of the
velocity and pressure in fluid flow region are optimal.

2. Mixed Stokes–Darcy model

Let us consider a mixed model of the Stokes equations and the Darcy equation for coupling a fluid flow
and porous media flow in Ω ⊂ Rd, d = 2, 3. Here Ω = Ωf ∪Γ ∪Ωp, where Ωf and Ωp are two disjoint domains
occupied by fluid flow and porous media flow respectively and Γ = Ωf ∩ Ωp is the interface. Furthermore,
we denote by Γf = ∂Ωf ∩∂Ω , Γp = ∂Ωp ∩∂Ω and np, nf the unit outward normal vectors on ∂Ωp and ∂Ωf ,
respectively. And we decompose Γp into two disjoint segments Γpd and Γpn.

Let us denote by (uf , pf ) the velocity field and pressure of the fluid flow in Ωf and φp the piezometric
head in Ωp. Now we give the mixed Stokes–Darcy model

−∇ · (T(uf , pf )) = gf , in Ωf (conservation of momentum),
∇ · uf = 0, in Ωf (conservation of mass),

−∇ · K
n
∇φp = gp, in Ωp (conservation of mass),

(2.1)

which is completed by the following homogeneous boundary conditions:

uf = 0 on Γf , φp = 0 on Γpd,
∂φp
∂np

= 0 on Γpn, (2.2)

and the interface conditions on Γ :
uf · nf −

K

n
∇φp · np = 0,

−[T(uf , pf ) · nf ] · nf = ρfgφp,

−[T(uf , pf ) · nf ] · τi = α√
τi ·K · τi

uf · τi, i = 1, . . . , d− 1.
(2.3)

Here K is the hydraulic conductivity tensor which is assumed to be symmetric and positive, n is the
volumetric porosity, ρf is the density, g is the gravity acceleration, α is an experimentally determined
positive parameter depending on the properties of the porous medium, gf and gp are the source terms in
fluid region and the porous medium region, respectively. And

T(uf , pf ) = −pfI+ 2νD(uf ), D(uf ) = 1
2(∇uf +∇Tuf ),
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are the stress and the deformation rate tensors, ν > 0 is the kinetic viscosity. For the sake of simplicity, we
regard ρf , g and n as positive constants (see [10]).

The first condition in (2.3) ensures the mass conservation across Γ . The second one is the balance of
normal forces on Γ . And the third one is called Beavers–Joseph–Saffman law (BJS) which is a most accepted
approximation of the Beavers–Joseph law (BJ) (see [17] and [18]), where {τi}d−1

i=1 are linearly independent
unit tangential vectors on Γ .

Following the terminology in [10], let us denote

Hf = {v ∈ (H1(Ωf ))d : v|Γf = 0}, Hp = {ψ ∈ H1(Ωp) : ψ|Γpd = 0},
W = Hf ×Hp, Q = L2(Ωf ).

Then the weak formulation of the mixed Stokes–Darcy model reads as follows (see [10]): for f ∈ W ′, find
u = (uf , φp) ∈W , pf ∈ Q such that

a(u, v) + b(v, pf ) = f(v) ∀v = (vf , ψp) ∈W,
b(u, qf ) = 0 ∀qf ∈ Q,

(2.4)

where

a(u, v) = aΩ (u, v) + aΓ (u, v),

with

aΩ (u, v) = aΩf (uf , vf ) + aΩp(φp, ψp),

aΩf (uf , vf ) =

Ωf

2nν(D(uf ),D(vf )) +
d−1
i=1

αn√
τi ·K · τi


Γ

(uf · τi)(vf · τi),

aΩp(φp, ψp) =

Ωp

ρfg∇ψp ·K∇φp, aΓ (u, v) =

Γ

nρfg[φpvf − ψpuf ] · nf

and

b(v, pf ) ≡ b(vf , pf ) = −

Ωf

npf∇ · vf , f(v) =

Ωf

ngfvf +

Ωp

ngpψp.

Thanks to [10], we know that (i) a(·, ·) is continuous and coercive on W , (ii) b(·, ·) is continuous on W ×Q
and satisfies the Ladyzhenskaya–Babuška–Brezzi (LBB) condition: there exists a positive constant β > 0
such that

inf
qf∈Q

sup
vf∈Hf

b(vf , qf )
∥qf∥Q ∥vf∥Hf

≥ β, (2.5)

and (iii) the model (2.4) is well-posed.

3. Two-grid decoupled scheme

Let Wh = Hfh ×Hph ⊂ W and Qh ⊂ Q be two finite element spaces with mesh size h > 0. In the rest,
we assume that MINI element and piecewise linear continuous element are applied in the fluid and porous
media regions, respectively. Here we assume that the triangulation of the entire domain Ω is regular, as well
as compatible and quasi-uniform on Γ as described in [19] and [10], and (Hfh, Qh) satisfies the following
discrete LBB condition: there exists a positive constant β∗ > 0, independent of h, such that

inf
qfh∈Qh

sup
vfh∈Hfh

b(vfh, qfh)
∥qfh∥Q ∥vfh∥Hf

≥ β∗. (3.1)
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In addition, we assume the local regularity

u ∈ H2(Ωf )d ×H2(Ωp), pf ∈ H1(Ωf ). (3.2)

Then the finite element discretization of the coupled model (2.4) reads: find uh = (ufh, φph) ∈Wh, pfh ∈ Qh
such that ∀vh = (vfh, ψph) ∈Wh, qfh ∈ Qh

a(uh, vh) + b(uh, qfh) + b(vh, pfh) = f(vh). (3.3)

The well-posedness and error estimates of this discrete model can be found in [19]. That is

∥u− uh∥W . h, ∥pf − pfh∥Q . h. (3.4)

Here and after, x . y means that there exists a mesh size independent positive constant c > 0 such that
x ≤ cy. And for L2 estimate, we know that (see [10])

∥u− uh∥L2(Ωf )d×L2(Ωp) . h2. (3.5)

Now we state the two-grid algorithm proposed in [10] as follows.

Two-grid algorithm

1. Solve (3.3) with a coarse mesh size H > h: find uH = (ufH , φpH) ∈ WH , pfH ∈ QH such that
∀vH = (vfH , ψpH) ∈WH , qfH ∈ QH

a(uH , vH) + b(uH , qfH) + b(vH , pfH) = f(vH). (3.6)

2. Solve a modified fine grid problem: find uh = (ufh, φph) ∈Wh, pfh ∈ Qh such that ∀vh = (vfh, ψph) ∈Wh,
qfh ∈ Qh

aΩ (uh, vh) + b(uh, qfh) + b(vh, pfh) = f(vh)− aΓ (uH , vh). (3.7)

For simplicity, we always assume that the two triangulations are nested and

(WH , QH) ⊂ (Wh, Qh) ⊂ (W,Q).

In [10], the authors got the following error estimates

∥φph − φph∥Hp . H2, ∥ufh − ufh∥Hf . H
3
2 and ∥pfh − pfh∥Q . H

3
2 . (3.8)

And they also claim that the error estimates in the fluid region should be half order higher than the estimates
obtained. And the numerical experiments in [9] do suggest that ∥ufh − ufh∥Hf , ∥pfh − pfh∥Q = O(H2).

4. Optimal error estimates

In this section, we will give some more rigorous estimates on ∥ufh − ufh∥Hf and ∥pfh − pfh∥Q than that
of the estimates in [10] and show that they do reach the optimum convergence order.

Theorem 4.1. Let uh, ph and uh, ph be defined by the two discrete models (3.3) and (3.7). We assume that
both Ωf and Ωp are smooth domains and the source terms are all square integrable in corresponding domain
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such that the mixed Stokes–Darcy problem satisfies the local regularity assumption (3.2). Then there hold the
following optimal error estimates:

∥φph − φph∥Hp . H2, (4.1)

∥ufh − ufh∥Hf . H2, (4.2)

∥pfh − pfh∥Q . H2. (4.3)

Proof. The estimate (4.1) was obtained in [10] already. Thus we refer readers to [10] for its details.

For the estimates of the approximation to the velocity and pressure in the fluid flow region, we introduce
the following auxiliary problem in the porous media region: find Φ ∈ H1(Ωp) satisfies

(Auxiliary Problem)


−∇ · (K∇Φ) = 0 in Ωp,
K∇Φ · np = ξ · np on Γ ,
K∇Φ · np = 0 on Γp.

Here for any given vfh ∈ Hfh, we take ξ = nρfgvfh. And we can easily show that

∥K 1
2∇Φ∥L2(Ωp)d . ∥vfh∥Hf . (4.4)

Since Γ is smooth, we have for vfh ∈ Hf ,

∥Φ∥H2(Ωp) . ∥vfh∥Hf . (4.5)

Now by taking vh = (vfh, 0) in (3.7), it yields

aΩf (ufh − ufh, vfh) + b(vfh, pfh − pfh) =

Γ

nρfg(φph − φpH)vfh · nf .

For the right hand side of the above equation, we have
Γ

nρfg(φph − φpH)vfh · nf = −

Γ

(φph − φpH)K∇Φ · np

= −

∂Ωp

(φph − φpH)K∇Φ · np = −

Ωp

div((φph − φpH)K∇Φ)

= −

Ωp

(φph − φpH)div(K∇Φ)−

Ωp

K∇(φph − φpH) · ∇Φ

= −

Ωp

K∇(φph − φpH) · ∇Φ

= −aΩp((φph − φph),Φ)− aΩp(φph − φpH ,Φ).

For the first term on the right hand side of the last equality, it is easy to get from (4.1) and (4.4) that

|aΩp((φph − φph),Φ)| . ∥φph − φph∥Hp∥K
1
2∇Φ∥L2(Ωp)d . H2∥vfh∥Hf . (4.6)

For the second term, as we can easily verify that

aΩp(φph − φpH , ψpH) = 0 ∀ψpH ∈ HpH ,

we have

aΩp(φph − φpH ,Φ) = aΩp(φph − φpH ,Φ − ψpH) ∀ψpH ∈ HpH .
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Therefore by using (3.4), (4.1) and (4.5), we obtain

|aΩp(φph − φpH ,Φ)| = inf
ψ∈HpH

|aΩp(φph − φpH ,Φ − ψpH)|

. ∥φph − φpH∥Hp inf
ψpH∈HpH

∥Φ − ψpH∥Hp

. H(∥φph − φph∥Hp + ∥φph − φpH∥Hp)∥Φ∥H2(Ωp)

. H(H2 +H)∥vfh∥Hf . H2∥vfh∥Hf . (4.7)

Taking into account (4.6) and (4.7), we have
Γ

nρfg(φph − φpH)vfh · nf
 . H2∥vfh∥Hf .

If we take vfh = ufh − ufh and note that b(ufh − ufh, pfh − pfh) = 0 and the Hp—coercive property of
aΩp(·, ·), we have

∥ufh − ufh∥Hf . H2.

Now let us give the error estimate of the pressure. By the discrete LBB condition we can get

∥pfh − pfh∥Q . sup
vfh∈Hfh

|aΩf (ufh − ufh, vfh)|+ |

Γ
nρfg(φph − φpH)vfh · nf |

∥vfh∥Hf
. H2. �

Remark. The numerical justifications of the optimality of the two-grid algorithm can be found in M.C. Cai’s
Ph.D. thesis [20] and also the paper [16] of M.C. Cai and M. Mu in 2012.
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