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Abstract In this paper, a modified intrinsic extended finite element method (XFEM) for one-dimensional and two-
dimensional elliptic equations with discontinuous coefficients and interfaces is proposed. We improve the intrinsic
XFEM by changing the shape functions of the critical nodes. The improved shape functions can be used to catch
the discontinuous information near interfaces. In addition, we modify the Gauss integration in special elements cut
by interfaces. Numerical experiments are presented to verify the feasibility and superiority of the modified intrinsic
XFEM compared with the standard FEM and extrinsic XFEM for this type of problem. Results also show that the
modified intrinsic XFEM can generate an approximate solution whose error is O(h2) in an L2-norm and O(h) in
an energy norm if the Q1 element is used.

Keywords Extended finite element method · Generalized finite element method · Interface · Intrinsic

Mathematics Subject Classification 65N30 · 35Q10

1 Introduction

We consider a boundary value problem of the form{−∇ · (a(x, y)∇u(x, y)) = f (x, y) (x, y) ∈ Ω\Γ,

u(x, y) = 0 (x, y) ∈ ∂Ω,
(1)
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where Ω is a bounded domain in R
d (d = 2, 3) with polygonal or polyhedral boundary ∂Ω , f ∈ L2(Ω),

Γ = ⋃
i Γi is the internal interface that may consist of several pieces of local internal interfaces Γi , which are also

called interfaces henceforth. Generally, any two different interfacesmight be intersected, that is,Γi ∩Γ j �= ∅ (i �= j)
is possible. The function a(x, y) ∈ L∞(Ω) satisfies

0 < α ≤ a(x, y) ≤ β < ∞ ∀(x, y) ∈ Ω,

where α and β are constants. Assume that the function a(x, y) is discontinuous across the interface Γi , while it is
continuous away from the interfaces. Assume the discontinuous functions of u and a(x, y)∂u/∂n are v̂(x, y) and
ŵ(x, y):
{ [u(x, y)] = v̂(x, y) (x, y) ∈ Γ,[

a(x, y) ∂u
∂n

] = ŵ(x, y) (x, y) ∈ Γ.
(2)

This interface problem appears in fluid dynamics andmaterials science. The commonmethods [i.e., finite difference
method (FDM) and finite element method (FEM)] fail to solve such problems owing to the singularities of the
interface. It is essential to improve the common methods for this kind of interface problem.

For the approximation of nonsmooth solutions, there are two fundamental approaches. One approach is to refine
the discretization near the critical regions. Remeshing is required in this case, i.e., placing more grid points along
the interface and around the intersection. This strategy involves a posteriori error estimates. For examples, Cai and
Zhang [1] proposed recovery-based error estimators, and Bernardi and Verfùrth [2] proposed weighted-residual
error estimators to deal with interface problems. Another approach is to enrich a polynomial approximation space
such that the nonsmooth solutions can be modeled independently of the mesh. For example, the immersed boundary
method (IBM) [3] and the immersed interface method (IIM) [4–12] were developed on the basis of finite difference
methods, which modify the standard centered difference approximation to maintain second-order accuracy or to
obtain higher-order methods, while the immersed interface finite element method (IIFEM) [13–15] is designed to
cope with interface problems based on finite elements.

Meanwhile, a variety of modifications to the conventional FEM have been made within the framework of the
partition of unity (PU). A typical example is the extended finite element method (XFEM). It was first realized in
[16] by Belytschko and Black by enriching the nodes of finite elements near crack tips and along crack surfaces
with asymptotic crack tip functions. Since then, such methods have received wide attention, and fast progress has
been made with them [17–27]. However, the stiffness matrix of the XFEM could be severely ill-conditioned, and
the ill-conditioning is much worse than in the standard FEM [28]. Use of the XFEM would entrail a severe loss of
accuracy when computing the associated linear system.

Based on the development of these methods, we try to use the intrinsic XFEM [25] to solve elliptic problems
with complex interfaces, such as interfaces intersecting with each other. No additional unknowns are introduced
at the nodes contained in elements intersected by interfaces. The intrinsic XFEM often involves using the moving
least squares (MLS) method for construction of special, enriched shape functions. The condition number of stiff
matrices of the XFEM is much greater than that of the FEM becauseMLSmoment matrices are added. In this paper,
we modify the ordinary intrinsic XFEM in two ways. First, instead of the MLS function, we change the critical
shape function in those elements that are cut by interfaces. The special shape functions are discontinuous piecewise
linear polynomials. According to this modification, the shape function contains the information on the interface.
Moreover, the special shape functions build different PUs over each subdomain ofΩ , and they satisfy the connection
conditions of the interface in (1). Second, to obtain a sufficiently accurate integration, we use a modified integration
in elements cut by interfaces and a standard Gaussian integration in other elements. The condition number of the
final stiff matrix retains the same order as the standard FEM.

The rest of the paper is organized as follows. Section 2 introduces preliminary definitions related to the XFEM
and the weak form of (1). The modified intrinsic XFEM is proposed in Sect. 3. The integration strategy for XFEM
is discussed in Sect. 4, and a numerical experiment is presented in Sect. 5 to show the feasibility of the proposed
algorithms. Finally, conclusions are drawn in Sect. 6.
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Fig. 1 Decomposition of domain Ω into subdomains Ω ′
l and Ω∗

l , Ωl = Ω ′
l ∪ Ω∗

l (1 ≤ l ≤ 3), Γ : x2 + y2 = r2. a Ω1, Ω3,Ω
′
2, b

Ω2,Ω
′
1,Ω

′
3,Ω

∗
l . (Color figure online)

2 Preliminary definitions

We use the standard notations for Sobolev spaces Hk(Ω\Γ ) := Wk,2(Ω) and their associated norm ‖ · ‖Hk (Ω) and
seminorm | · |Hk (Ω), especially H0(Ω) := L2(Ω).

If the connection is v̂ = 0 and ŵ = 0, then the weak formulation of (1) reads as follows: find u ∈ H1
0 (Ω) such

that

B(u, v) :=
∫

Ω

a(x, y)∇u · ∇v dx dy =
∫

Ω

f v dx dy = ( f, v) ∀v ∈ H1
0 (Ω). (3)

Since a(x, y) is bounded and away from zero, the variational problem has a unique solution.
We consider a uniform rectangular partition ofΩ , whose set of all element nodes is denoted by I . We decompose

the set I into m nodal subsets Il , which satisfy I = ⋃m
l=1 Il and Ii ∩ I j = ∅, ∀i �= j .

For a given Il , we introduce its relative subdomains Ωl , Ω ′
l , and Ω�

l , and Ωl denotes the union of all elements
sharing the vertex xi for all i ∈ Il .

That is, Ωl := ⋃
i∈Il D

i , where Di denotes the union of elements possessing the vertex xi , Ω�
l is the subset of

Ωl and denotes the elements in Ωl but also shares other vertices x j ( j ∈ I \ Il ).
Moreover, Ω�

l := ⋃
s∈M\ lΩl

⋂
Ωs

where M = {1, 2, . . . ,m}. ThenΩ ′
l = Ωl −Ω�

l . It is obvious that Ωl consists
only of elements possessing the vertex {xi }, i ∈ I .

It becomes obvious from Fig. 1 that the subdomainsΩ ′
l neither overlap nor have any shared boundaries with each

other, whereas the transition elements belong to at least two subdomainsΩ∗
l . Different PUsmay be constructed over

each of the subdomainsΩl with respect to the nodal sets Il , respectively. For example, in the interface problem in 1,
in Ω1 and Ω3, a standard FE shape function can be used. However, special enriched shape functions are proposed
in Ω2 where the solution is highly discontinuous across the interface Γ . Our main idea is to construct an intrinsic
shape function for the elliptic equation with a complicated interface.

3 Modified intrinsic extended finite element method

The approximate solution can be written in the following form:

uh(x) =
∑
i∈I

ui Ñi (x), (4)

where the Ñi (x) are special shape functions. If the problem is continuous, then the polynomial approximation space is
adequate, that is, Ñi (x) := Ni (x) are the standard FEM shape functions. However, if the problem is discontinuous or
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weakly discontinuous, the special shape functions are used so that they are able to capture discontinuities. Similarly,
the method can be used to enrich the solution with singularity or other known characteristics. Of course, we need
to ensure {Ñi (x)} divide into partition of union, that is,

∑
i Ñi (x) = 1. Then the numerical scheme of (3) can be

written as follows: find uh(x) such that

B(uh(x), Ñ j (x)) = ( f, Ñ j (x)) ∀ j.

Let ωi be the impact domain of node xi . The set {ωi } is the open cover set of Ω . It can be divided into two cases.
If ωi is far from the interface Γ , we can use a standard FEM shape function as the corresponding shape function

Ñi (x) = Ni (x).
If ωi ∩ Γ �= ∅, we suppose that the nodes (x∗, y j1) and (xi1 , y

∗) are the intersections of Γ with the element
[xi1 , xi1+1] × [y j1 , y j1+1]. It can be fixed by the following expressions:

{
φ(x, y∗) = 0 x = xi1 , (5a)

φ(x∗, y) = 0 y = y j1 . (5b)

We can use a special shape function that is fixed by the information of the discontinuous interface:[
u
] = 0,

[
a(x, y) ∂u

∂n

] = 0.

For convenience, we transfer the element domain Ei = [x j1−1, x j1+1] × [y j2−1, y j2+1] to a reference element
[−1, 1]2 by linear transformation,

ξ = x−x j1
h , ξ ∈ [−1, 1], η = y−y j2

h , η ∈ [−1, 1]. (6)

First, we consider the shape function for the x-axis in the reference interval [−1, 1]. If there is a discontinuous
interface ξ∗ corresponding to the original element ξ∗ = (x∗ − x j1)/h, and [u]|x∗ = 0,

[
a(x, y) ∂u

∂n

] = 0, then

u+
ξ∗ = u−

ξ∗ , a+u+
x

∣∣∣
ξ∗ = a−u−

x

∣∣∣
ξ∗ . (7)

Second, we can solve the new shape function Ñi (x) using a piecewise polynomial function, for example, a− =
1, a+ = R (R > 0). Suppose uξ∗ = ū∗; then we obtain the relations

a− 1 − ū∗

−1 − ξ∗ = a+ ū∗ − 0

ξ∗ − 1
.

Then we obtain ū∗:

ū∗ =
(

a−

1 + ξ∗ + a+

1 − ξ∗

)−1 a−

1 + ξ∗ = a−(1 − ξ∗)
a−(1 − ξ∗) + a+(1 + ξ∗)

= 1 − ξ∗

1 + R + (R − 1)ξ∗ (8)

and

Ñ1(x) =
{ ū∗−1

ξ∗+1 (ξ − ū∗) + ū∗ if ξ ≤ ξ∗,
ū∗

ξ∗−1 (ξ − ū∗) + ū∗ if ξ > ξ∗,
(9)

which is different from N1(ξ) = (1 − ξ)/2. We can also obtain Ñ2(x) by defining

û∗ = R(1 + ξ∗)
1 + R + (R − 1)ξ∗ ,

Ñ2(x) =
{ û∗

ξ∗+1 (ξ − û∗) + û∗ if ξ ≤ ξ∗,
û∗−1
ξ∗−1 (ξ − û∗) + û∗ if ξ > ξ∗.

(10)

To understand the Ñi (x), see Fig. 2.
We can also verify Ñ1(ξ) + Ñ2(ξ) = 1 in the reference element.
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Fig. 2 Shape function N (ξ) in reference element: a using standard FEM, b R = 2, ξ∗ = 1/2 using intrinsic XFEM, c R = 100, ξ∗ =
1/2 using intrinsic XFEM. (Color figure online)

If we use the simple Q1 element, the shape function is a bilinear function. There are four shape functions with
respect to the reference element [−1, 1] × [−1, 1]:⎧⎨
⎩

N1(ξ, η) = (1−ξ)(1−η)
4 , N2(ξ, η) = (1+ξ)(1−η)

4 ,

N3(ξ, η) = (1 + ξ)(1 + η)

4
, N4(ξ, η) = (1−ξ)(1+η)

4 .
(11)

Suppose the interface passes through some elements as in Fig. 4:⎧⎨
⎩

Ñ1(ξ, η) = (1−ξ)
2 L14(η), Ñ2(ξ, η) = (1+ξ)

2 L23(η),

Ñ3(ξ, η) = (1 + ξ)

2
L32(η), Ñ4(ξ, η) = (1−ξ)

2 L41(η).
(12)

Here L14(η), L23(η), L32(η), L41(η) can be fixed by Ñ1(η) and Ñ2(η):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L14(η) = Ñ1(η) if η∗ = ηl ,

L23(η) = Ñ2(η) if η∗ = ηr,

L32(η) = Ñ1(η) if η∗ = ηr,

L41(η) = Ñ2(η) if η∗ = ηl ,

(13)

where η∗ denotes the intersection of interfaces on the reference element as in Fig. 4a, ηl is the y-coordinate of the
left node in the reference element, and ηr is the y-coordinate of the right node in the reference element. Obviously,∑4

i=1 Ñi (ξ, η) = 1 always holds.
If the intersection of interfaces lies in ωi , then the shape function should be modified at all nodes in that element.

Here we use the more complicated basis of approximation around a fixed point x ∈ ωi ⊂ Ω .
We present a specific example for a rectangle element. For example, the interface is each axis, and the intersection

is the origin of the coordinate axes. The shape function in that element can be described as{
Ñ1(ξ, η) = L12(ξ)L14(η), Ñ2(ξ, η) = L21(ξ)L23(η),

Ñ3(ξ, η) = L34(ξ)L32(η), Ñ4(ξ, η) = L43(ξ)L41(η),
(14)

where Li, j (ξ) represents the i th node shape function related to the j th node in the x-direction on the reference
element and Li, j (η) represents the i th node shape function related to the j th node in the y-direction on the
reference element. For the interface problem, the intrinsic XFEM also uses a special shape function, which reflects
the information of different interfaces, such as

pT =
(
1, x, y, |φ1(x)|, |φ2(x)|, |φ1(x)φ2(x)|

)
,
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Fig. 3 Dividing a fully or partially cut element into i subelements: a i = 2, b i = 5, c i = 8. (Color figure online)

where φ1 and φ2 are level-set functions of two different interfaces. Then the intrinsic XFEM need to solve the
weight function φi (x), matrix M(x), and the inverse matrix of M(x) in order to obtain the MLS function. If the
matrix is singular, then there would be a computation and accuracy loss. And the intrinsic XFEM did not consider
an interface in an intersection case.

The freedom that comes with the intrinsic XFEM is the same as that with the standard FEM. Actually, a finite
element matrix is only changed at locations associated with intrinsically enriched nodes.

Remark 3.1 More generally, the problem is discontinuous across the interface [u] �= 0 or the solution has singularity,
such as∇u|x∗ = ∞ or u|x̃ = ±∞. The intrinsic XFEM can also be used to solve these problems.We should change
the shape functions in domains near the interface and singularity nodes.

Remark 3.2 The immersed interface finite element method (IIFEM) proposed by Li [13] is still a special intrinsic
XFEM; it uses triangulation and utilizes the connection of the discontinuity to construct a special basis function by
which the element is cut by the interface.

4 Modified integration for intrinsic XFEM

Because of the existence of interfaces, the shape function may not be smooth in some elements, such as those
cut by the interfaces. Therefore, we should adopt a modified integration instead of a Gaussian integration in these
elements. Here we use the integration strategy of the XFEM [22,25].

In this work we first divide the special element by the interface (if the interface is a line), as shown in Fig. 3. The
subelements may contain a triangle, a common quadrangle, or curved-edge graphics. In particular, if an element
contains an intersection of interfaces (Fig. 4b), we should utilize the vertex of the element, the intersection of the
edge and interface, or the intersection of different interfaces. To improve accuracy, the integration should use the
same number of Gaussian nodes in the subdivision as in the ordinary elements.

If the interface Γ is curve and across any element by near or relative edge, then we should approximate it by
some segments. This approximation leads to more subdivisions of domain Ω . For example, we use 5–7 segments
in the (a)–(c) part of Fig. 4, respectively.

5 Numerical tests

We use MATLAB to implement our methods. First we introduce some notation:

SFEM: standard finite element method,

123



Modified intrinsic extended finite element method for elliptic equation with interfaces 153

−1 1
−1

1

1
2

3

4

Γ

5

(a)

−1 1
−1

1

1

2

3

4

5
6

Γ

(b)

−1 1
−1

1

Γ
1

2

3
4

5

6
7

(c)

Fig. 4 Dividing a fully or partially cut element into i subelements: a i = 5, b i = 6, c i = 7. (Color figure online)

Fig. 5 Force bimaterial bar
model

EXFEM: extrinsic extended finite element method,
IXFEM: intrinsic extended finite element method,
DOF: degrees of freedom,
‖u − uh‖0: relative L2-error for uh using IXFEM,
‖u − uh‖ε(Ω): relative energy error for uh using IXFEM, defined by

‖u − uh‖ε(Ω) =
(∫

Ω

a(x, y)|∇(u − uh)|2 dx dy
)1/2/(∫

Ω

a(x, y)|∇u|2 dx dy
)1/2

.

In this section we choose two one-dimensional elliptic interface problems and the standard benchmark test used in
some numerical results for an interface problem with intersecting interfaces used by many researchers [1].

Example 1 A bimaterial bar in one dimension is considered. A zero-displacement boundary is prescribed on the
left. A horizontal line force and a point force on the right end is present. A sketch of the situation is shown in
what follows. The exact displacement field features a kink, i.e., a weak discontinuity, where the material properties
change. The mesh is incorporate for the discontinuity. That is, the kink is within an element and is captured using
the XFEM (Fig. 5 and Table 1):

d

dx

(
k
du

dx

)
+ γ (x) = Fδ(x − 1).

The exact solution is divided into two cases.
(a) There is a horizontal line force Fr on the right end [γ (x) = 0]:

u =
{
Frx/kl 0 ≤ x < α,

Fr(x − α)/kr + Frα/kl α ≤ x ≤ 1.
(15)

(b) There is a point force on the right end (Fr):

u =
{−(x − α)2/(2kl) − (x − α)(kr − kl)/(4kl(kl + kr)) + (4kl + 4kr)−1 0 ≤ x < α,

−(x − α)2/(2kr) − (x − α)(kr − kl)/(4kr(kl + kr)) + (4kl + 4kr)−1 α ≤ x ≤ 1.
(16)

Based on the discontinuity at x = α, k is discontinuous, k = kl , if x ≤ α, and k = kr if x > α. We can obtain
a numerical solution using a modified IXFEM. If the numerical method is two-order accurate, its error will be
machine errors. The numerical result of Example 1(a) verifies this argument. The numerical errors and orders of
Example 1(b) are shown in Table 2. We use element P1, and the order of the L2-error is greater than 2 (Fig. 6).
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Table 1 Comparison of
L2-error using modified
IXFEM and SFEM for
Example 1, α = 0.5

1/h Example 1(a) Example 1(b) Orders
‖u − uh‖0 ‖u − uh‖0

10 2.93342140 × 10−14 7.58025222 × 10−4 –

40 4.37334270 × 10−13 4.21349229 × 10−5 2.8898

160 2.17641358 × 10−12 2.55844850 × 10−6 2.8015

640 2.94797212 × 10−10 1.58757579 × 10−7 2.7798

Table 2 DOF, the L2-errors for Example 2 using modified IXFEM and EXFEM

1/h DOF ‖u − uIXFEM‖0 + ‖v − vIXFEM‖0 DOFEXFEM ‖u − uEXFEM‖0 + ‖v − vEXFEM‖0
20 400 6.3756 × 10−3 441 1.3949 × 10−2

40 1600 1.7097 × 10−3 1681 5.7955 × 10−3

80 6400 4.1782 × 10−4 6561 8.1636 × 10−3

160 25,600 1.0664 × 10−4 25,921 1.6681 × 10−3
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Fig. 6 Numerical solution and exact solution: a Example 1(a), b Example 1(b) h = 0.1

Example 2 Here we consider the linear elastostatic governing equations
⎧⎨
⎩

∇ · σ + b = 0 in Ω,

σ = C : ε,

ε = ∇su.

(17)

We use a modified intrinsic XFEM to carry out a two-dimensional solid test, considering theΩ = [0, 1]×[0, 1],
with the material interface Γ : x2 + y2 = a2 = 0.1608. Let E1 = 100, ν1 = 0 in Ω1 = {

(x, y) ∈ Ω|x2 + y2 ≤
0.4042

}
and setting E2 = 10, ν2 = 0 in Ω2 = {

(x, y) ∈ Ω|x2 + y2 > 1
4

}
, where Ei , νi (i = 1, 2) are Young’s

modulus and Poisson’s ratio, respectively.
Moreover, let the area force fx = fy = 0 in the whole domain.

We use the notation r = √
x2 + y2, u = (u, v)T, and tan θ = y

x . Using the elastic equation, the exact solution is⎧⎨
⎩
u = a

8μ

(
r
a (κ + 1) cos θ + 2 a

r ((1 + κ) cos θ + cos 3θ) − 2 a3

r3
cos 3θ

)
,

v = a
8μ

(
r
a (κ − 3) sin θ + 2 a

r ((1 − κ) sin θ + sin 3θ) − 2 a3

r3
sin 3θ

)
.
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Fig. 7 Example 2 using modified IXFEM: a mesh and interface; b domain decomposed into three types by different colors; c u and v;
d numerical result on elastic deformation. (Color figure online)

The result is shown in Table 2 and Fig. 7. It can be easily found that the DOF of the stiff matrix and the L2-error
is quite different between the modified IXFEM and the EXFEM. The error order is approximately 2 in the L2 norm.

Example 3 Let Ω = (−1, 1) × (−1, 1); the exact solution is

u(r, θ) = rβμ(θ)

in polar coordinates at the origin, with

μ(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos
(
β
(

π
2 − σ

))
cos

(
β
(
θ − π

2 + ρ
))

if θ ∈ [0, π
2 ],

cos(βρ) cos(β(θ − π + σ)) if θ ∈ (
π
2 , π

]
,

cos(βσ) cos(β(θ − π − ρ)) if θ ∈ (
π, 3π

2

]
,

cos
(
β
(

π
2 − ρ

))
cos

(
β
(
θ − 3π

2 − σ
))

if θ ∈ ( 3π2 , 2π ],
where ρ and σ are constant numbers. The exact solution satisfies (1), f = 0, and a(x, y) = R if (x, y) ∈
(0, 1)2 ∪ (−1, 0)2 and a(x, y) = 1 if (x, y) ∈ Ω\([0, 1]2 ∪ [−1, 0]2). The numbers β, R, σ , and ρ satisfy the
nonlinear relations (e.g., [30,31])

R ≈ 161.4476387975881, ρ = π/4 and σ ≈ 14.92256510455152,

123



156 J. Zhao et al.

Table 3 DOF, condition of stiff matrix by FEM, modified IXFEM, and EXFEM

1/h DOF CondFEM CondIXFEM DOFEXFEM CondEXFEM

10 10 3.29891 × 103 1.0475 × 104 441 3.6304 × 104

40 1600 2.33598 × 104 2.4677 × 104 1681 2.84422 × 106

79 6400 9.83824 × 104 1.0091 × 105 6561 3.90791 × 109

159 25,600 4.03392 × 105 4.0835 × 105 25,921 1.27758 × 1011
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Fig. 8 Decomposition of domain Ω into subdomains Ωl = Ω ′
l ∪ Ω∗

l , Γ are four blue lines. Here 1 ≤ l ≤ 9. (Color figure online)

where β = 0.1; this is a difficult problem for computation using the standard FEM. The exact solution is singular on
the origin node and the interfacesΓ are the x-axis and y-axis [fixedby the discontinuity ofa(x, y)].Γ1 : {(x, y)|xy =
0, x ≥ 0}, Γ2 : {(x, y)|xy = 0, y ≥ 0}, Γ3 : {(x, y)|xy = 0, x ≤ 0}, and Γ4 : {(x, y)|xy = 0, y ≤ 0}. The origin
node (0, 0) is the intersecting interfaces (Table 3).

In this test we use a bilinear element, and divide the whole nodes into three different types. The division is showed
in Fig. 8.

1. The ordinary nodes are xi , xi ∈ Ω ′
l , l = 1, 2, 3, 4, and their shape functions are unchanged.

2. The first enriched nodes are x1i , x
1
i ∈ Ω ′

l , l = 6, 7, 8, 9, and their shape functions are partly changed in the
x-direction or the y-direction.

3. The second enriched nodes are x2i , x
2
i ∈ Ω ′

5, and their shape functions are changed in both the x- and y-directions.
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Table 4 DOF, condition of stiff matrix by FEM, modified IXFEM, and EXFEM

2/h DOF CondSFEM CondIXFEM DOFEXFEM CondEXFEM

19 400 1.01906 × 104 1.0475 × 104 441 3.6304 × 104

39 1600 2.33598 × 104 2.4677 × 104 1681 2.84422 × 106

79 6400 9.83824 × 104 1.0091 × 105 6561 3.90791 × 109

159 25,600 4.03392 × 105 4.0835 × 105 25,921 1.27758 × 1011

Table 5 Comparison of L2-error using modified IXFEM and SFEM

2/h DOF IXFEM SFEM

‖u − uh‖0 Order ‖u − uh‖0 Order

19 400 5.85229689 × 10−4 – 1.29367331 × 10−2 –

39 1600 1.31518929 × 10−4 2.1537 6.11857595 × 10−3 1.4541

79 6400 3.12260721 × 10−5 2.0745 2.97964019 × 10−3 1.4329

159 25,600 7.61075872 × 10−6 2.0366 1.47079316 × 10−3 1.4233

319 102,400 1.87886932 × 10−6 2.1722 7.30756777 × 10−4 1.4186

Table 6 Comparison of H1-error (‖u − uh‖ε(Ω)) using SFEM and modified IXFEM

2/h IXFEM SFEM

‖u − uh‖ε(Ω) Order ‖u − uh‖ε(Ω) Order

19 2.88822559 × 10−2 – 2.88876285 × 10−2 –

39 1.36756549 × 10−2 1.0786 1.9258 × 10−2 0.5850

79 6.66191543 × 10−3 1.0376 1.3467 × 10−2 0.5161

159 3.28872591 × 10−3 1.0184 9.4512 × 10−3 0.5112

319 1.63401288 × 10−3 1.0091 6.6192 × 10−3 0.5106

We list the numerical result in tables. In Table 4, the condition numbers of stiff matrices are compared. We easily
find that the intrinsic XFEM still has the same order with the increased number of degrees of freedom. Table 5
shows the L2-error and the rate of convergence obtained with the FEM and the modified IXFEM for the test. It
is found that order 2 in the L2-norm is obtained by using the modified IXFEM, while order 1.4 is obtained by
using the standard FEM. It may be seen that a reduced convergence of 0.5 occurs due to the discontinuity when we
use the standard FEM. It can be seen in Table 6 that for the proposed method the convergence is 1 in the energy
norm, while the convergence is 0.5 for the FEM. To compare the nodal error in the whole domain, we give the error
distribution by the FEM and the IXFEM in Fig. 9. It is obvious that the IXFEM decreases the error around the
interfaces.

Compared with the extrinsic XFEM and SFEM, the modified intrinsic XFEM has the following properties:

1. Enrichment is realized locally where it is needed in the IXFEM, as in the extrinsic XFEM. Here we do not use
enrichment intrinsic but rather modify the shape function instead of the MLS function.

2. The enrichment is realized intrinsically, without introducing additional unknowns. This is the most important
difference from the extrinsic XFEM.
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Fig. 9 Error distribution: a SFEM, b modified IXFEM h = 2/39

3. The condition number of the final system matrix scales with the same order over the element size as the SFEM
for arbitrary enrichments. In the extrinsic XFEM, however, the condition number may significantly increase
with refinement, which depends on a partial enrichment.

4. The increased amount of computational work for the intrinsic XFEM compared with the SFEM lies in the
evaluation of the MLS functions. The number of enrichment functions added to the intrinsic basis is directly
related to the computational burden in computing the MLS functions. Our method uses the modified function
only in critical subdomains.

6 Conclusions

In this article, an intrinsicXFEM for the second-order elliptic equationwith discontinuous coefficients and interfaces
was discussed. The following conclusions may be drawn. First, we modified the local enrichment function space.
The shape functions on critical subdomains are special functions that reflect the discontinuous information of the
interface. Obviously, they differ from the MLS functions in the traditional intrinsic XFEM. Second, the condition
number of the stiff matrix has the same order as the SFEM, while the extrinsic XFEM obtains an ill-conditioned
system. This method can be extended to the general area and uses different meshes and high-order polynomials.
Finally, a numerical simulation was given for the standard benchmark example. Numerical results give an L2-
error, an energy error, and their convergence orders. We obtained the convergence where ‖u − uh‖0 is O(h2), and
‖u − uh‖ε(Ω) is O(h) when a bilinear element is used. Thus, the modified intrinsic XFEM is better than the SFEM.
Of course, this method can be used in the future in many other interface problems, especially those containing
intersections.
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