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Abstract

In this paper, we first get the uniqueness result of the possible solution
to the steady-state coupled Stokes/Darcy model with Beavers-Joseph in-
terface condition for any physical parameters, especially for any α > 0.
Then we show the existence of solutions for any α > 0 by using Galerkin
method. Furthermore, we analyze the error of the corresponding coupled
finite element scheme and derive the optimal error estimates.
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1 Introduction
Because of the important applications in real world, the mixed Stokes/Darcy
and Navier-Stokes/Darcy model received much attention in both theoretical and
numerical aspects in last decades. Many numerical methods have been studied
for such mixed models, including coupled finite element methods [1, 2, 7, 10, 26,
33, 35], discontinuous Galerkin methods [11, 21, 25, 31, 32], domain decompo-
sition methods [8, 13, 14, 15, 16, 17, 18, 19, 23], Lagrange multiplier methods
[22, 27], interface relaxation methods [28, 29], and decoupled methods based on
two-grid or multi-grid finite element [4, 5, 24, 30, 36, 37, 38]. Although there
are so many literatures that made great contribution to the numerical simula-
tion of the steady-state mixed Stokes/Darcy and Navier-Stokes/Darcy model
with different interface conditions, some basic mathematical problems related
to these coupled systems still remain unresolved. For examples, the existence
of a weak solution to the steady-state mixed Navier-Stokes/Darcy model with
Beavers-Joseph (BJ) or even more simpler Beavers-Joseph-Saffman (BJS) in-
terface condition for general data and therefore the global uniqueness of the
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weak solution, the well-posedness of the steady-state Stokes/Darcy model with
BJ interface condition for any physical parameters keep unresolved. For the
steady-state Stokes/Darcy model with BJ interface condition, the authors in [6]
show that the coupled system is well-posed for small physical experiments deter-
mined parameter α > 0 and then they established the error estimations of the
coupled finite element approximation based on this small α assumption. In this
paper, we focus our attention in investigating the well-posedness of this steady-
state Stokes/Darcy model with BJ interface condition for any given physical
parameters, especially any α > 0 and try to establish the error estimates of the
coupled finite element approximation for any α > 0. The difficulty to do this is
that, for large α > 0, some interface bilinear form in the weak formulation of
this model could not be absorbed in the other positive terms as is pointed out
in [6]. The main idea in our investigation is to expanding the coupled model
to a larger coupled system and try to make that bilinear form be absorbed in
some newly appeared positive terms.

The rest of this paper is arranged as follows. In section 2, we give a brief
introduction to the steady-state Stokes/Darcy model with BJ interface condition
and its weak forms. In section 3, we give some technique lemmas for the later
analysis. In section 4, we first get the uniqueness result of the possible solution
to the steady-state coupled Stokes/Darcy model with Beavers-Joseph interface
condition for any physical parameters, especially for any α > 0. Finally, we show
the existence of solutions for any α > 0 by using Galerkin method. Furthermore,
we analyze the error of the corresponding coupled finite element scheme and
derive the optimal error estimates in section 5.

2 Mixed model with BJ interface condition
Let us consider the following mixed model for coupling a fluid flow and a porous
media flow in a bounded smooth domain Ω ⊂ Rd, d = 2, 3. Here Ω = Ωf∪Γ∪Ωp,
where Ωf and Ωp are two disjoint, connected and bounded domains occupied
by fluid flow and porous media flow and Γ = Ωf ∩ Ωp is the interface. For
simplicity, we assume ∂Ωp and ∂Ωf are smooth enough in the rest of this paper.
We denote Γf = ∂Ωf ∩ ∂Ω, Γp = ∂Ωp ∩ ∂Ω and we also denote by np and nf

the unit outward normal vectors on ∂Ωp and ∂Ωf , respectively. Furthermore,
Γp consists of two disjoint parts Γpd and Γpn. We also assume |Γf |, |Γpd| > 0.
See Figure 1 for a sketch.

In the rest of this paper, we always use boldface characters to denote vectors
or vector valued spaces. For examples, for any given bounded domain D, we
denote

L2(D) = L2(D)d, H1(D) = H1(D)d, H
1
2 (∂D) = H

1
2 (∂D)d.

The fluid motion in the fluid region Ωf is governed by the Stokes equations{
−∇ · (Tν(uf , pf )) = gf , in Ωf ,
∇ · uf = 0, in Ωf ,

(2.1)
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Figure 1: A global domain Ω consisting of a fluid flow region Ωf and a porous media
flow region Ωp separated by an interface Γ.

where

Tν(uf , pf ) = −pfI+ 2νD(uf ), D(uf ) =
1

2
(∇uf +∇Tuf ),

are the stress tensor and the deformation rate tensor, ν > 0 is the kinetic
viscosity and gf is the external force.

The fluid motion in the porous medium region Ωp is governed by{
∇ · ud = gp, in Ωp,
ud = −K∇ϕp, in Ωp,

(2.2)

where K denotes the hydraulic conductivity in Ωp, which is a positive symetric
tensor and is allowed to vary in space, and gp is a source term. The first
equation is the saturated flow model and the second equation is the Darcy’s
law. Here ϕp = z +

pp

ρg is the piezometric (hydraulic) head, where pp represents
the dynamic pressure, z the height from a reference level, ρ the density and g
the gravitational constant, and ud is the flow velocity in the porous medium
which is proportional to the gradient of ϕp, namely, the Darcy’s law.

Combining the two equations in (2.2), we get the equation for the piezometric
head, which we will refer to it simply as the Darcy equation:

−∇ · (K∇ϕp) = gp, in Ωp. (2.3)

The above equations (2.1) and (2.3) are completed and coupled together by
the following boundary conditions:

uf = 0 on Γf , K∇ϕp · np = 0 on Γpn, ϕp = 0 on Γpd, (2.4)

3



and the interface conditions on Γ:
uf · nf −K∇ϕp · np = 0,
−[Tν(uf , pf ) · nf ] · nf = g(ϕp − z),

−[Tν(uf , pf ) · nf ] · τ i =
αν

√
d√

trace(Π)
(uf +K∇ϕp) · τ i,

(2.5)

where τ i, i = 1, · · · , d−1, are the orthonormal tangential unit vectors along Γ, α
is an experimentally determined parameter and Π represents the permeability,
which has the following relation with the hydraulic conductivity, K = Πg

ν . The
first condition is the mass conservation, the second one is the balance of normal
force and the third interface condition means the tangential components of the
normal stress force is proportional to the difference of the tangential components
of the fluid flow and the porous media flow velocities, which is called the Beavers-
Joseph (BJ) interface condition (see [3] and [34]). For more details of these
equations, we refer readers to [21] and [30].

Furthermore, we assume

gf ∈ L2(Ωf ), gp ∈ L2(Ωp), K ∈ L∞(Ωp)
d×d. (2.6)

In the rest of the paper, we assume that there exist two constants λmax >
0, λmin > 0 such that

0 < λmin|x|2 ≤ Kx · x ≤ λmax|x|2, ∀x ∈ Ωp. (2.7)

From now on, we always use (·, ·)D and ∥ ·∥D to denote the L2 inner product
and the corresponding norm on any given domain D.

Now let us introduce some Hilbert spaces

Xf = {vf ∈ H1(Ωf ) : vf |Γf
= 0},

Xp = {ψp ∈ H1(Ωp) : ψp|Γpd
= 0},

Qf = L2
0(Ωf ) = {qf ∈ L2(Ωf ) :

∫
Ωf

qf = 0},

where Xf is equipped with the following inner product and the associated norm

(vf ,wf )Xf
:= (D(vf ),D(wf ))Ωf

, ∥D(vf )∥Ωf
=

√
(D(vf ),D(vf ))Ωf

,

while Xp is equipped with the following inner product and its associated norm

(ψp, ξp)Xp
:= (K

1
2∇ψp,K

1
2∇ξp)Ωp

, ∥K 1
2∇ψp∥Ωp

:=

√
(K

1
2∇ψp,K

1
2∇ψp)Ωp

,

and Qf is equipped with the usual L2 inner product and its associated norm.
Since |Γf |, |Γpd| > 0, thanks to the Korn’s inequality and the Poincaré inequality,
the above norms are equivalent to the usual Sobolev norms.

Sometimes in the rest, we need the following subspaces of Xp

Xp,div = {ψp ∈ Xp : ∇ · (K∇ψp) ∈ L2(Ωp)},
X0

p,div = {ψp ∈ Xp : ∇ · (K∇ψp) = 0}.
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Let us denote
U = Xf ×Xp.

Henceforth, we use the notational convention that u = (uf , ϕp) and v =
(vf , ψp). They all belong to U. Now the weak formulation of the mixed
Stokes/Darcy model (2.1), (2.3), (2.4), (2.5) reads as follows (see [5], [21], [27]
and [30] for details): for gf ∈ L2(Ωf ) and gp ∈ L2(Ωp), find (u, pf ) ∈ U × Qf

such that ∀(v, qf ) ∈ U×Qf

(Q) a(u,v)− (pf ,∇ · vf )Ωf
+ (qf ,∇ · uf )Ωf

=< F,v >U′ ,

where

a(u,v) = 2ν(D(uf ),D(vf ))Ωf
+ g(ϕp,vf · nf )Γ

+(
αν

√
d√

trace(Π)
Pτ (uf +K∇ϕp),vf )Γ

+g(K∇ϕp,∇ψp)Ωp
− g(ψp,uf · nf )Γ

< F,v >U′= (gf ,vf )Ωf
+ g(gp, ψp)Ωp

+ g(z,vf · nf )Γ,

and U′ is the dual space of U, Pτ (·) is the projection onto the local tangential
plane that can be explicitly expressed as Pτ (vf ) = vf − (vf · nf )nf .

Thanks to [21], we know that there exists a positive constant β > 0 such
that the following Ladyzhenskaya-Babuška-Brezzi (LBB) condition holds:

inf
qf∈Qf

sup
vf∈Xf

(qf ,∇ · vf )Ωf

∥qf∥Qf
∥vf∥Xf

≥ β. (2.8)

If we define the following divergence-free space

Vf = {vf ∈ Xf : ∇ · vf = 0},

and introduce
V = Vf ×Xp,

the restriction of the test function v to V in (Q) leads to the following reduced
weak form: find u ∈ V such that ∀v ∈ V

(P ) a(u,v) =< F,v >V′ .

By the same argument in [20], we know that the problem (Q) and (P ) are
equivalent.

For the purpose of later analysis, we recall some inequalities: ∀v ∈ H1(D)

∥v∥L2(∂D) ≤ c0∥v∥
1
2

L2(D)∥v∥
1
2

H1(D),

∥v∥L2(∂D) ≤ c1∥v∥H1(D),

∥∇v∥L2(D) ≤ c2∥D(v)∥L2(D).

Here and hereafter, we always use ci and Ci to denote positive constants
which are not dependent on the data of the problem.
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3 Technique Lemmas
In this section, we first give two lemmas which are curial for our later analysis.

We use D(Rd) to denote the space of infinitely differentiable vector valued
functions with compact supports in Rd and D(Ωp) = {v|Ωp

: v ∈ D(Rd)} the
space of bounded infinitely differentiable functions in domain Ωp.

Let
H1

E(Ωp) = {ψp ∈ H1(Ωp) : ψp|Γp = 0}.

We denote by H 1
2 (∂Ωp) = H1(Ωp)|∂Ωp

and H 1
2 (Γ) = H1(Ωp)|Γ the trace spaces

on ∂Ωp and Γ equipped with the following norm

∥ψp∥
H

1
2 (γ)

= (

∫
γ

∫
γ

|ψp(x)− ψp(y)|2

|x− y|2
dxdy)

1
2 ,

where γ = ∂Ωp or Γ. Their dual spaces are denoted by (H
1
2 (∂Ωp))

′ and
(H

1
2 (Γ))′. We also consider the trace space H

1
2
00(Γ) = H1

E(Ωp)|Γ, whose norm is
as follows:

∥ψp∥
H

1
2
00(Γ)

= (∥ψp∥2
H

1
2 (Γ)

+ ∥ψp

r
1
2

∥2L2(Γ))
1
2 ,

where r is the distance function to the end-points of Γ (see [21]). Sometimes we
will use vector valued trace spaces, their definitions are the same as the above
scalar valued trace space.

In addition, we introduce a Hilbert space

H(div,Ωp) = {ψp ∈ L2(Ωp) : divψp ∈ L2(Ωp)},

equipped with the inner product and its associated norm

[ψp, ξp]Ωp
= (ψp, ξp)Ωp

+ (divψp,divξp)Ωp
, ∥|ψp|∥2Ωp

= [ψp,ψp]Ωp
.

Suppose h > 0 is a positive small constant, let us denote by T p
h = {K} a

regular triangulation of Ωp, Xp
h ⊂ H1(Ωp) and XpE

h ⊂ Xp
h ∩ H1

E(Ωp) are two
finite element spaces over Ωp. In addition, we introduce some finite dimensional
trace spaces H

1
2

h (∂Ωp) = Xp
h|∂Ωp

and H
1
2

h (Γ) = Xp
h|Γ equipped with the norm of

H
1
2 (∂Ωp) and H

1
2 (Γ), respectively. Let (H

1
2

h (∂Ωp))
′ and (H

1
2

h (Γ))
′ be the dual

spaces of H
1
2

h (∂Ωp) and H
1
2

h (Γ). We also introduce H
1
2

h,00(Γ) = XpE
h |Γ, which is

a closed subspace of H
1
2

h (Γ) in the sense of H 1
2 (Γ) norm because of the finite

dimensionality of H
1
2

h (Γ).
Now, for any ψp ∈ L2(Ωp), we give a discrete analog of the divergence

operator divh from L2(Ωp) to Xp
h:

(divhψp, ψph)Ωp
= (ψp · np, ψph)∂Ωp

− (ψp,∇ψph)Ωp
, ∀ψph ∈ Xp

h. (3.1)

It is clear that

divhψp ∈ L2(Ωp) ⇐⇒ ψp · np ∈ (H
1
2

h (∂Ωp))
′.
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Now for such a triangulation T p
h = {K}, we define a Hilbert subspace of

L2(Ωp):
H(divh, T p

h ) = {ψp ∈ L2(Ωp) : ∥divhψp∥Ωp
<∞},

which is equipped with the following inner product and its associated norm

[ψp, ξp]h,Ωp = (ψp, ξp)Ωp + (divhψp,divhξp)Ωp , ∥|ψp|∥2h,Ωp
= [ψp,ψp]h,Ωp .

Furthermore, from the definition of divh, for any given ψp ∈ H(div,Ωp), we
can easily verify that

(divhψp, ψph)Ωp
= (divψp, ψph)Ωp

, ∀ψph ∈ Xp
h. (3.2)

Lemma 3.1. The space D(Ωp) is dense in H(divh, T p
h ).

Proof. Readers can find the proof of this lemma in the Appendix.

Corollary 3.1. For any ψp ∈ H(divh, T p
h ), there holds

∥ψp · np∥
(H

1
2
h (∂Ωp))′

≤ ∥|ψp|∥h,Ωp
.

Once we have Lemma 3.1 and (3.2), the above result can be obtained by
completely the same argument for the similar result in H(div,Ωp) in textbooks.

Lemma 3.2. There exists a positive constant C1 that may depend on K and Γ
such that

∥Pτ (K∇ψp)∥
(H

1
2
00(Γ))

′
≤ C1∥|K∇ψp|∥Ωp

, (3.3)

for any ψp ∈ Xp with K∇ψp ∈ H(div,Ωp).

Proof. The detail proof can be found in the Appendix.

By the same procedure in the proof of Lemma 3.2, we can easily get the
following corollary.

Corollary 3.2. There exists a positive constant C2 that may depend on K and
Γ such that

∥Pτ (K∇ψp)∥
(H

1
2
h,00(Γ))

′
≤ C2∥|K∇ψp|∥h,Ωp , (3.4)

for any ψp ∈ Xp with K∇ψp ∈ H(divh, T p
h ).

4 Uniqueness Result of the Coupled Model
In literatures, many authors have already discussed the well-posedness of the
weak solution to the steady-state Stokes/Darcy model with BJS interface con-
dition, which regard Pτ (K∇ϕp) = 0 since it is usually very small compared
with Pτ (uf ). In this case, the left hand side of (P ) is obvious V− elliptic and
the well-posedness of (P ) is a straight result of Lax-Milgram theorem. But for
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the coupled system with BJ interface condition, since one of the interface bi-
linear terms, that is ( αν

√
d√

trace(Π)
Pτ (K∇ϕp),vf )Γ, is not non-negative definite

and can not be absorbed in the other positive definite bilinear forms unless the
physical parameter α > 0 is small enough. For examples, we refer readers to
[6] for details. This is also the crucial difficulty for showing the existence and
uniqueness of the solution to the finite dimensional approximation to (P ). On
the other hand, if we expand the coupled system to a larger coupled system and
produce some other positive terms, we have the possibility to make this term to
be absorbed in some newly appeared positive terms. That is the main idea in
the following sections.

In this section, if there exist weak solutions to the steady-state coupled
Stokes/Darcy model with BJ interface condition, we want to show that the
solution is unique for any α > 0.

Since the Stokes/Darcy model with BJ interface condition, the problem (P ),
is a linear system, the uniqueness of the solution to such linear system is equiv-
alent to the related homogeneous system

(P0) a(u,v) = 0 ∀v ∈ W,

only has zero solution, where

W = Vf ×X0
p,div.

That is, to show the uniqueness of the solution to (P ), we only have to show
that any solution u ∈ W to (P0) is actual u = 0.

As we mentioned previously, the main difficulty here is the presence of the
interface bilinear term ( αν

√
d√

trace(Π)
Pτ (K∇ϕp),vf )Γ. In order to overcome this

difficulty, our idea is to expand the above homogeneous equation to a larger
coupled system such that this interface bilinear term could be absorbed in some
newly appeared positive terms.

To construct the above mentioned larger coupled system, we first introduce
a new Hilbert space defined on Ωp as

Ep = {vp ∈ H1(Ωp) : vp|Γp = 0}.

For any given ξf ∈ Xf , we consider the following auxiliary elliptic problem
defined in Ωp: {

−α1∆up + α0up = 0, in Ωp,
up|Γp

= 0, up|Γ = ξf |Γ,
(4.1)

where α0, α1 > 0 are two constants which will be determined later.
For any given small parameter h > 0, let us denote by Th = {K} a regular

triangulation of Ω such that the mesh aligns with Γ. We denote Tfh = Th|Ωf

and Tph = Th|Ωp
, which are regular triangulations of Ωf and Ωp, respectively.

In addition, let Xfh, Qfh, Xph and Eph be finite element subspaces of Xf , Qf ,
Xp and Ep, respectively.
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In addition, we define the following orthogonal projection Pfh from Xf onto
Xfh as: for any given vf ∈ Xf , find Pfhvf ∈ Xfh such that

2ν(D(vf − Pfhvf ),D(vfh))Ωf

+(
αν

√
d√

trace(Π)
Pτ (vf − Pfhvf ),vfh)Γ = 0 ∀vfh ∈ Xfh.

It is clear that
lim
h→0

∥D(vf − Pfhvf )∥Ωf
= 0.

The finite element approximation of (4.1) reads: find uph ∈ Eph such that
∀vph ∈ Eph

(AUX1
h)

 α1(∇uph,∇vph)Ωp
+ α0(uph,vph)Ωp

− α1(
∂uph

∂np
,vph)Γ = 0,

uph|Γ = Pfhuf |Γ.

where we choose ξf = Pfhuf , the projection of the solution to (P0).
Here we give the following inequality (see[9] and [12]) which will be used in

the later analysis

∥χ∥L2(∂K) ≤ c3h
− 1

2 ∥χ∥L2(K) for any polynomial χ on K ∈ Th. (4.2)

Now the problems (P0) and (AUX1
h) form a new larger coupled system. The

problem (AUX1
h) is subjected to the problem (P0), while the problem (P0) is

independent of the problem (AUX1
h). The well-posedness of this larger cou-

pled system implies the well-posedness of the problem (P0), which ensures the
uniqueness of the possible solutions to (P ).

Taking v = u in (P0) and vph = uph in (AUX1
h),

a(u,u) + α1∥∇uph∥2Ωp
+ α0∥uph∥2Ωp

− α1(
∂uph

∂np
,uph)Γ

≥ 2ν∥D(uf )∥2Ωf
+ g∥K 1

2∇ϕp∥2Ωp
+ α1∥∇uph∥2Ωp

+ α0∥uph∥2Ωp

−|( αν
√
d√

trace(Π)
Pτ (K∇ϕp),uf )Γ| − α1|(

∂uph

∂np
,uph)Γ|.

Now we estimate the last two terms on the right hand side of the above
inequality one by one. Firstly for the first term of them, noticing the boundary
condition of the problem (AUX1

h), Lemma 3.2, div(K∇ϕp) = 0 and using the
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inverse inequality in finite element spaces, we have

|( αν
√
d√

trace(Π)
Pτ (K∇ϕp),uf )Γ| ≤ |( αν

√
d√

trace(Π)
Pτ (K∇ϕp),uf − Pfhuf )Γ|

+|( αν
√
d√

trace(Π)
Pτ (K∇ϕp),uph)Γ|

≤ αg
1
2 ν

1
2

λ
1
2
min

∥Pτ (K∇ϕp)∥
(H

1
2
00(Γ))

′
(∥uf − Pfhuf∥

H
1
2
00(Γ)

+ ∥uph∥
H

1
2
00(Γ)

)

≤ C1αg
1
2 ν

1
2

λ
1
2
min

∥K∇ϕp∥Ωp
(c1c2∥D(uf − Pfhuf )∥Ωf

+ c0h
− 1

2 ∥uph∥
1
2

Ωp
∥∇uph∥

1
2

Ωp
)

≤ g

4
∥K 1

2∇ϕp∥2Ωp
+
C2

1c
2
1c

2
2α

2νλmax

λmin
∥D(uf − Pfhuf )∥2Ωf

+
g

4
∥K 1

2∇ϕp∥2Ωp
+
C2

1c
2
0α

2νλmax

λminh
∥uph∥Ωp∥∇uph∥Ωp

≤ g

2
∥K 1

2∇ϕp∥2Ωp
+
α1

4
∥∇uph∥2Ωp

+
c4ν

2α4

α1h2
∥uph∥2Ωp

+c5∥D(uf − Pfhuf )∥2Ωf
.

We want to emphasis that the constant c5 > 0 is independent of h, α0 and α1.
For the second term, we have

|α1(
∂uph

∂np
,uph)Γ| ≤ α1∥

∂uph

∂np
∥L2(Γ)∥uph∥L2(Γ)

≤ α1∥∇uph∥L2(∂Ωp)∥uph∥L2(∂Ωp)

≤ c0α1(
∑

K∈Tph

∥∇uph∥2L2(∂K))
1
2 ∥uph∥

1
2

Ωp
∥∇uph∥

1
2

Ωp

≤ c0c3α1h
−1∥∇uph∥Ωp

∥uph∥Ωp

≤ α1

4
∥∇uph∥2Ωp

+ c6α1h
−2∥uph∥2Ωp

.

Now for any given h > 0, choosing α1 =
√

c4
c6
να2, α0 = 2

√
c4c6να

2h−2

admits

0 = a(u,u) + α1∥∇uph∥2Ωp
+ α0∥uph∥2Ωp

− α1(
∂uph

∂np
,uph)Γ

≥ 2ν∥D(uf )∥2Ωf
+
g

2
∥K 1

2∇ϕp∥2Ωp
+
α1

2
∥∇uph∥2Ωp

− c5∥D(uf − Pfhuf )∥2Ωf
.

We actually get

2ν∥D(uf )∥2Ωf
+
g

2
∥K 1

2∇ϕp∥2Ωp
≤ c5∥D(uf − Pfhuf )∥2Ωf

.

Taking h → 0 and notice the approximation property of the projection, we
get

u = 0.
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This means the homogeneous problem has only zero solution and proves
the uniqueness of possible solutions to (P ), the Stokes/Darcy model with BJ
interface condition for any α > 0. And the uniqueness of the pressure pf ∈ Qf

can be easily gotten due to (2.8). We summarize the above result in the following
theorem.

Theorem 4.1. For any physical parameter α > 0, if there exist weak solutions to
the mixed Stokes/Darcy model with BJ interface condition, the possible solution
is unique in U×Qf .

5 Finite Element Approximation
In this section, we investigate the solvability of the steady-state mixed Stokes
/Darcy model with BJ interface condition for any α > 0 by the traditional
Galerkin method. Moreover, although the error estimates for the finite element
approximation for coupled Stokes/Darcy model with BJ interface condition have
already been discussed in formal literatures, for example see [6], the error esti-
mates were established heavily depending on the small α restriction and could
not be adopted in the case we consider here. Therefore we re-visit the error
estimate for the coupled finite element Galerkin scheme in this paper.

For any given small parameter h > 0, as what has been done in the previous
section, we construct the regular triangulations Th, Tfh and Tph of Ω, Ωf and
Ωp. For simplicity, we assume that Ωf and Ωp are smooth domains, for example,
polygons or polyhedrons. Let Xfh ⊂ Xf , Xph ⊂ Xp and Qfh ⊂ Qf are finite
element spaces such that the space pair (Xfh, Qfh) satisfies the discrete LBB
condition:

inf
qfh∈Qfh

sup
vfh∈Xfh

(qfh,∇ · vfh)Ωf

∥qfh∥Qf
∥vfh∥Xf

≥ β. (5.1)

For examples, in the rest of this paper, we always choose MINI finite element
pair for (Xfh, Qfh) and P1 finite element for Xph.

If we define
Uh = Xfh ×Xph,

the coupled finite element Galerkin approximation of (Q) reads:
Coupled Finite Element Scheme: find uh = (ufh, ϕph) ∈ Uh, pfh ∈ Qfh

such that for any vh = (vfh, ϕph) ∈ Uh and qfh ∈ Qfh

(Qh) a(uh,vh)− (pfh,∇ · vfh)Ωf
+ (qfh,∇ · ufh)Ωf

=< F,vh >U′ ,

Furthermore, we introduce

Vfh = {vfh ∈ Xfh : (∇ · vfh, qfh)Ωf
= 0, ∀qfh ∈ Qfh},

and denote
Vh = Vfh ×Xph.

11



Now the coupled finite element scheme for the problem (P ) reads: find uh ∈ Vh

such that ∀vh ∈ Vh

(Ph) a(uh,vh) =< F,vh >V′ .

Theorem 5.1. For any given small positive parameter h > 0, there exists a
unique solution uh = (ufh, ϕph) ∈ Vh of the coupled system (Ph). And there
holds

ν∥D(ufh)∥2Ωf
+
g

4
∥K 1

2∇ϕph∥2Ωp
≤ C(

1

2ν
∥gf∥2Ωf

+
g

λmin
∥gp∥2Ωp

+
g2

2
∥z∥2L2(Γ)),

where C > 0 is a constant independent of h. Furthermore, there exists a unique
pfh ∈ Qfh such that (uh, pfh) is the unique solution to the problem (Qh) with

∥pfh∥Ωf
≤ C̃β−1(ν∥D(ufh)∥Ωf

+
g + αg

1
2 ν

1
2

λ
1
2
min

∥K 1
2∇ϕph∥Ωp + ∥gf∥Ωf

, )

C̃ is a constant independent of h.

Proof. To show the unique solvability of (Ph), we will use the same method in
the previous section. Let us recall the auxiliary system (AUX1

h) with ξf = ufh,
the possible solution of (Ph). We construct a new auxiliary problem: find
ūph ∈ Eph such that ∀vph ∈ Eph

(AUX2
h)

 α1(∇ūph,∇vph)Ωp
+ α0(ūph,vph)Ωp

− α1(
∂ūph

∂np
,vph)Γ = 0,

ūph|Γ = ufh|Γ.

It is obvious that (Ph) and (AUX2
h) form a new larger coupled finite dimensional

system. The unique solvability of this new coupled system implies the unique
solvability of (Ph) since (AUX2

h) is subjected to (Ph) while (Ph) is independent
of (AUX2

h).
For any vh = (vfh, ψph) ∈ Vh and vph ∈ Eph with vph|Γ = vfh|Γ, we have

a(vh,vh) + α1∥∇vph∥2Ωp
+ α0∥vph∥2Ωp

− α1(
∂vph

∂np
,vph)Γ

≥ 2ν∥D(vfh)∥2Ωf
+ g∥K 1

2∇ψph∥2Ωp
+ α1∥∇vph∥2Ωp

+ α0∥vph∥2Ωp

−|( αν
√
d√

trace(Π)
Pτ (K∇ψph),vfh)Γ| − α1|(

∂vph

∂np
,vph)Γ|.

Now let us estimate the last two terms on the right hand side of the above

12



inequality. Firstly, by using (4.2), we have

|( αν
√
d√

trace(Π)
Pτ (K∇ψph),vfh)Γ| ≤

αg
1
2 ν

1
2

√
d√

trace(K)
∥K∇ψph∥L2(Γ)∥vfh∥L2(Γ)

≤ αg
1
2 ν

1
2λmax

λ
1
2
min

∥∇ψph∥L2(Γ)∥vph∥L2(Γ)

≤ αg
1
2 ν

1
2λmax

λ
1
2
min

∥∇ψph∥L2(∂Ωp)∥vph∥L2(∂Ωp)

≤ c0αg
1
2 ν

1
2λmax

λ
1
2
min

(
∑

K∈Tph

∥∇ψph∥2L2(∂K))
1
2 ∥vph∥

1
2

Ωp
∥∇vph∥

1
2

Ωp

≤ c0c3αg
1
2 ν

1
2λmax

h
1
2λ

1
2
min

∥∇ψph∥Ωp
∥vph∥

1
2

Ωp
∥∇vph∥

1
2

Ωp

≤ c0c3αg
1
2 ν

1
2λmax

h
1
2λmin

∥K 1
2∇ψph∥Ωp

∥vph∥
1
2

Ωp
∥∇vph∥

1
2

Ωp

≤ g

2
∥K 1

2∇ψph∥2Ωp
+
c20c

2
3α

2νλ2max

2λ2minh
∥vph∥Ωp∥∇vph∥Ωp

≤ g

2
∥K 1

2∇ψph∥2Ωp
+
α1

4
∥∇vph∥2Ωp

+
c7ν

2α4

α1h2
∥vph∥2Ωp

.

For the last term, the estimation is completely the same as the estimation of
the same term in the previous section, we just copy the estimation here:

|α1(
∂vph

∂np
,vph)Γ| ≤

α1

4
∥∇vph∥2Ωp

+ c8α1h
−2∥vph∥2Ωp

.

Now, for fixed h > 0, if we take

α1 =

√
c7
c8
να2, α0 = 2

√
c7c8να

2h−2, (5.2)

we have

a(vh,vh) + α1∥∇vph∥2Ωp
+ α0∥vph∥2Ωp

− α1(
∂vph

∂np
,vph)Γ (5.3)

≥ 2ν∥D(vfh)∥2Ωf
+
g

2
∥K 1

2∇ψph∥2Ωp
+
α1

2
∥∇vph∥2Ωp

.

If we denote X̄h a finite element space on the whole domain Ω associated with
the regular triangulation Th and

Xh = {vh ∈ X̄h : (vh, qfh)Ωf
= 0,∀qfh ∈ Qfh, vh|Γf∪Γpd

= 0},

the above estimates actually mean that the bilinear form associated to the
coupled system (Ph) and (AUX2

h) is Xh ×Xph−elliptic, which guarantees the
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well-posedness of this coupled system in Xh×Xph by Lax-Milgram theory. This
implies the well-posedness of the problem (Ph).

Thanks to the following estimates

(gf ,vfh)Ωf
≤ c2∥gf∥Ωf

∥D(vfh)∥Ωf
≤ ν

2
∥D(vfh)∥2Ωf

+
c22
2ν

∥gf∥2Ωf
,

g(gp, ψph)Ωp ≤ c2g

λ
1
2
min

∥gp∥Ωp∥K
1
2∇ψph∥Ωp ≤ g

4
∥K 1

2∇ψph∥2Ωp
+

c22g

λmin
∥gp∥2Ωp

,

g(z,vfh · nf )Γ ≤ g∥z∥L2(Γ)∥vfh∥L2(Γ) ≤ c1c2g∥z∥L2(Γ)∥D(vfh)∥Ωf

≤ ν

2
∥D(vfh)∥2Ωf

+
c21c

2
2g

2

2
∥z∥2L2(Γ),

we can easily get

ν∥D(ufh)∥2Ωf
+
g

4
∥K 1

2∇ϕph∥2Ωp
≤ c22

2ν
∥gf∥2Ωf

+
c22g

λmin
∥gp∥2Ωp

+
c21c

2
2g

2

2
∥z∥2L2(Γ).

Let us choose
C = max{c22, c21c22},

and this ends the proof of the first part of this theorem.
Moreover, we can deduce that

(pfh,∇ · ufh)Ωf
= 2ν(D(ufh),D(ufh)Ωf

+ g(ϕph,ufh · nf )Γ

+(
αν

√
d√

trace(Π)
Pτ (ufh +K∇ϕph),ufh)Γ − (gf ,ufh)Ωf

,

and thanks to the discrete LBB condition (5.1)

∥pfh∥Ωf
≤ C̃β−1(ν∥D(ufh)∥Ωf

+
g + αg

1
2 ν

1
2

λ
1
2
min

∥K 1
2∇ϕph∥Ωp

+ ∥gf∥Ωf
)

For any mesh size h > 0, Theorem 5.1 ensures the existence of a bounded
sequence {uh}h>0 in Xf × Xp. Then we can extract a subsequence, which is
still denoted by h, such that the subsequence {uh}h>0 weakly converges to a
function u = (uf , ϕp) ∈ V. Taking h→ 0 in (Ph), we can show that u ∈ V is a
solution of (P ) and shares the same bound of the sequence.

Because of the weakly convergence of {uh}h>0 to u ∈ V, the following limits
hold:

lim
h→0

[2ν(D(ufh),D(vf ))Ωf
+ g(ϕph,vf · nf )Γ + (

αν
√
d√

trace(Π)
Pτufh,vf )Γ

+g(K∇ϕph,∇ψp)Ωp
− g(ψp,ufh · nf )Γ]

= 2ν(D(uf ),D(vf ))Ωf
+ g(ϕp,vf · nf )Γ + (

αν
√
d√

trace(Π)
Pτuf ,vf )Γ

+g(K∇ϕp,∇ψp)Ωp
− g(ψp,uf · nf )Γ], ∀v = (vf , ψp) ∈ V.
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Then we get ϕp ∈ Xp satisfies the following variational form:

(K∇ϕp,∇ψp)Ωp
= (ψp,uf · nf )Γ + (gp, ψp), ∀ψp ∈ Xp.

Being aware of that ϕph satisfies the following equation

(K∇ϕph,∇ψph)Ωp
= (ψph,ufh · nf )Γ + (gp, ψph), ∀ψph ∈ Xph,

and ∥uf − ufh∥Ωf
→ 0 as h→ 0, simple calculation shows that

∥K∇(ϕph − ϕp)∥Ωp → 0 as h→ 0.

That is ϕph also strongly converges to ϕp ∈ Xp. Furthermore, from the equation
that ϕp satisfies, we can show that

divh(K∇ϕp) = divh(K∇ϕph). (5.4)

To show that u is a solution of (P ), the only thing left is to show

lim
h→0

(
αν

√
d√

trace(Π)
Pτ (K∇(ϕph − ϕp)),vf )Γ = 0, ∀vf ∈ Vf .

Let us denote by vfh = Pfhvf , the H1−orthogonal projection of vf ∈ Vf

onto Vfh. And there holds

lim
h→0

∥D(vf − vfh)∥Ωf
= 0.

We have

(
αν

√
d√

trace(Π)
Pτ (K∇(ϕph − ϕp)),vf )Γ = (

αν
√
d√

trace(Π)
Pτ (K∇(ϕph − ϕp)),vfh)Γ

+(
αν

√
d√

trace(Π)
Pτ (K∇(ϕph − ϕp)),vf − vfh)Γ

△
= I1 + I2.

Being aware of the result of Corollary 3.2 and divh(K∇(ϕph − ϕp)) = 0, we
have

|I1| = |( αν
√
d√

trace(Π)
Pτ (K∇(ϕph−ϕp)),vfh)Γ| ≤ c∥K∇(ϕph−ϕp)∥Ωp∥D(vfh)∥Ωf

.

Then I1 tends to zero as h→ 0 since ϕph−ϕp strongly converges to zero in Xp.
The second term I2 tends to zero as h→ 0 since the two terms,

(
αν

√
d√

trace(Π)
Pτ (K∇ϕph),vf−vfh)Γ and (

αν
√
d√

trace(Π)
Pτ (K∇ϕp),vf−vfh)Γ,

go to zero, respectively.
We conclude the above investigation by giving the following theorem.
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Theorem 5.2. For gf ∈ L2(Ωf ), gp ∈ L2(Ωp) and any given physical parameter
α > 0, the problem (P ) is unique solvable and its unique solution u = (uf , ϕp) ∈
V satisfies

ν∥D(uf )∥2Ωf
+
g

4
∥K 1

2∇ϕp∥2Ωp
≤ C(

1

2ν
∥gf∥2Ωf

+
g

λmin
∥gp∥2Ωp

+
g2

2
∥z∥2L2(Γ)),

where C > 0 is the same constant appeared in Theorem 5.1.

The existence a solution to the problem (Q) is obvious because the space
pair (Xf , Qf ) satisfies the LBB condition.

Remark From the results of Theorem 4.1 and 5.2, it is clear that the bound
for fluid velocity uf and the piezometric head ϕp are independent of the param-
eter α > 0.

For later analysis, we introduce the following orthogonal projections ρfh and
Pph from Qf and Xp onto Qfh and Xph: for any qf ∈ Qf , ψp ∈ Xp, find
ρfhqf ∈ Qfh, Pphψp ∈ Xph such that

(qf − ρfhqf , qfh)Ωf
= 0 ∀qfh ∈ Qfh,

g(K∇(ψp − Pphψp),∇ψph)Ωp
= 0 ∀ψph ∈ Xph.

For these two projections ρfh, Pph and the projection Pfh from Xf onto Xfh

in the previous section, we make the following assumption: for any given vf ∈
H2(Ωf ) ∩Xf , ψp ∈ H2(Ωp) ∩Xp and qf ∈ H1(Ωf ), there holds

∥D(vf − Pfhvf )∥+ ∥K 1
2∇(ψp − Pphψp)∥+ ∥qf − ρfhqf∥ ≤ ch. (5.5)

Suppose the weak solution (u, pf ) of the mixed Stokes/Darcy problem is
local H2−regular, that is

uf ∈ H2(Ωf ) ∩Xf , pf ∈ H1(Ωf ) and ϕp ∈ H2(Ωp) ∩Xp.

Now we discuss the error estimate of the finite element approximation (uh, pfh)
to the above coupled finite element scheme.

Theorem 5.3. For any given small positive parameter h > 0, there holds

ν∥D(uf − ufh)∥2Ωf
+
g

4
∥K 1

2∇(ϕp − ϕph)∥2Ωp
≤ C(

λmingν + λming
2 + α2gν

λ2minν
)h2.

where C > 0 is a constant independent of h.

Proof. Since the bilinear form a(·, ·) is non-coercive in Vh unless α > 0 is
small enough, we first try to give an H1 estimate of uf − ufh and ϕp − ϕph
by considering the difference of the corresponding expanded coupled system
(P ) ∼ (AUX1

h) and (Ph) ∼ (AUX2
h).

If we denote

uf − ufh = efh + ûf , ϕp − ϕph = eph + ϕ̂p, uph − ūph = eph,
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where

efh = Pfhuf − ufh, ûf = (I − Pfh)uf ,

eph = Pphϕp − ϕph, ϕ̂p = (I − Pph)ϕp,

and notice the definitions of the orthogonal projections, we have

2ν(D(efh),D(vfh)Ωf
+ g(eph,vfh · nf )Γ

+(
αν

√
d√

trace(Π)
Pτ (efh +K∇eph),vfh)Γ + g(K∇eph,∇ψph)Ωp

−g(ψph, efh · nf )Γ = g(ψph, ûf · nf )Γ − g(ϕ̂p,vfh · nf )Γ

−(
αν

√
d√

trace(Π)
PτK∇ϕ̂p,vfh)Γ,

α1(∇eph,∇vph)Ωp + α0(eph,vph)Ωp − α1(
∂eph
∂np

,vph)Γ = 0,

eph|Γ = efh|Γ.

For any given h > 0, choosing α0, α1 satisfying (5.2) and taking vfh = efh,
ψph = eph, vph = eph and noticing that efh|Γ = eph|Γ, by completely the same
procedure for getting (5.3), we can get

2ν∥D(efh)∥2Ωf
+
g

2
∥K 1

2∇eph∥2Ωp
(5.6)

≤ g|(eph, ûf · nf )Γ|+ g|(ϕ̂p, efh · nf )Γ|+ |( αν
√
d√

trace(Π)
PτK∇ϕ̂p, efh)Γ|.

Let us estimate the three terms on the right hand side of the above inequality.
For the first two terms, we have

g|(eph, ûf · nf )Γ| ≤ g∥eph∥L2(Γ)∥ûf∥L2(Γ) ≤
c21c2g

λ
1
2
min

∥K 1
2∇eph∥Ωp

∥D(ûf )∥Ωf

≤ g

4
∥K 1

2∇eph∥2Ωp
+
c41c

2
2g

λmin
∥D(ûf )∥2Ωf

,

g|(ϕ̂p, efh · nf )Γ| ≤ g∥ϕ̂p∥L2(Γ)∥efh∥L2(Γ) ≤
c21c2g

λ
1
2
min

∥K 1
2∇ϕ̂p∥Ωp

∥D(efh)∥Ωf

≤ c41c
2
2g

2

2λminν
∥K 1

2∇ϕ̂p∥2Ωp
+
ν

2
∥D(efh)∥2Ωf

.

For the third term, being aware of that divh(K∇ϕ̂p) = 0 and Corollary 3.2, we
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obtain

|( αν
√
d√

trace(Π)
PτK∇ϕ̂p, efh)Γ| ≤

αg
1
2 ν

1
2

λ
1
2
min

∥|Pτ (K∇ϕ̂p)|∥
(H

1
2
h,00Γ)

′
∥efh∥

H
1
2
h,00(Γ)

≤ C2c1c2αg
1
2 ν

1
2

λmin
∥K 1

2∇ϕ̂p∥Ωp
∥D(efh)∥Ωf

≤ C2
2c

2
1c

2
2α

2g

2λ2min

∥K 1
2∇ϕ̂p∥2Ωp

+
ν

2
∥D(efh)∥2Ωf

.

Finally, by using (5.5), we can get

ν∥D(efh)∥2Ωf
+
g

4
∥K 1

2∇eph∥2Ωp
≤ C(

λmingν + λming
2 + α2gν

λ2minν
)h2.

C > 0 is a constant independent of any physical parameters and h. Then we
end the proof of this theorem with triangle inequalities.

Remark Let us introduce the formal adjoint problem of (P ): find w =
(wf , ζp) ∈ V such that

a(v,w) = (uf − ufh,vf )Ωf
+ g(ϕp − ϕph, ψp)Ωp ∀v = (vf , ψp) ∈ V. (5.7)

By the same method, we can show that this formal adjoint problem is well-
posed. If we further assume the unique solution of (5.7) is sufficiently regular,
by using the classical duality argument we can get the L2 estimate of u − uh

given by
∥uf − ufh∥Ωf

+ g∥ϕp − ϕph∥Ωp ≤ ch2.

In fact, let v = u− uh in (5.7),

a(u− uh,w) = (uf − ufh,uf − ufh)Ωf
+ g(ϕp − ϕph, ϕp − ϕph)Ωp .

Let us consider the problem (P ) and (Ph), we have

a(u− uh,wh) = 0 ∀wh = (wfh, ζph) ∈ V,

then

a(u− uh,w −wh) = (uf − ufh,uf − ufh)Ωf
+ g(ϕp − ϕph, ϕp − ϕph)Ωp

.

Now, we have

∥uf − ufh∥2Ωf
+ g∥ϕp − ϕph∥2Ωp

≤ C(∥D(uf − ufh)∥Ωf
+ ∥K 1

2∇(ϕp − ϕph)∥Ωp)

( inf
wfh∈Vfh

∥D(wf −wfh)∥Ωf
+ inf

ζph∈Xph

∥K 1
2∇(ζp − ζph)∥Ωp

).

The approximation properties of the finite element spaces and the regularity of
the unique solution of (5.7) give us

∥uf − ufh∥Ωf
+ g∥ϕp − ϕph∥Ωp

≤ Ch(∥D(uf − ufh)∥Ωf
+ ∥K 1

2∇(ϕp − ϕph)∥Ωp
).

By using the Theorem 5.3, we have the result.
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Appendix A
In this appendix, we give the proofs of the two lemmas in Section 3.

A.1 Proof of Lemma 3.1
Proof. Let F ∈ (H(divh, T p

h ))′, the dual space of the Hilbert space H(divh, T p
h ),

we can associate with the functional F a function fp = (fp1, · · · , fpd) ∈ H(divh, T p
h )

such that ∀ψp = (ψp1, · · · , ψpd) ∈ H(divh, T p
h )

< F,ψp >= (fp,ψp)Ωp
+ (fp(d+1),divhψp)Ωp

,

where
fp(d+1) = divhfp ∈ Xp

h.

Now, assume that F vanishes on D(Ωp), that is

< F,vp >= (fp,vp)Ωp + (fp(d+1),divhvp)Ωp = 0, ∀vp ∈ D(Ωp).

Because fp(d+1) ∈ Xp
h and (3.2), we know from the above assumption that

< F,vp >= (fp,vp)Ωp
+ (fp(d+1),divhvp)Ωp

= (fp,vp)Ωp + (fp(d+1),divvp)Ωp = 0, ∀vp ∈ D(Ωp).

If we denote f̃p and f̃p(d+1) the extensions of fp and fp(d+1) by zero outside
Ωp, the above formula can be rewritten as follows:∫

Rd

{f̃p · v + f̃p(d+1)divv}dx = 0, ∀v ∈ D(Rd).

This means
f̃p = ∇f̃p(d+1),

in the sense of distribution in Rd.
Since f̃p ∈ L2(Rd), we have f̃p(d+1) ∈ H1(Rd), which means fp(d+1) ∈

H1
0 (Ωp). That is fp(d+1) ∈ Xp

h ∩ H1
0 (Ωp). Then by the definition of divh in

(3.1) and the property (3.2),

< F,ψp >= (∇fp(d+1),ψp)Ωp + (fp(d+1),divhψp)Ωp = 0, ∀ψp ∈ H(div, T p
h ).

In summary, we just showed that for any functional F ∈ (H(divh, T p
h ))′, if

F vanishes on D(Ωp), it vanishes on H(divh, T p
h ) . This completes the proof of

this lemma.
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Proof of Lemma 3.2
For the purpose of proving Lemma 3.2, we need some Green’s formula in curl
form. First of all, we define the curl operator in 2D case for scalar and vector
function by

curlϕ = (
∂ϕ

∂x2
,− ∂ϕ

∂x1
), ∀ϕ ∈ H1(D),

curlv =
∂v2
∂x1

− ∂v1
∂x2

, ∀v = (v1, v2) ∈ H1(D),

and the curl operator in 3D case

curlv = ∇× v, ∀v ∈ H1(D).

Then for the mapping γτ

γτv = v · τ |∂D for d = 2 and γτv = v × n|∂D for d = 3,

we have the following Green’s formula in 3D case (see Chapter I, Section 2.3 in
[20]) ∫

D

curlv · ϕ−
∫
D

v · curlϕ =

∫
∂D

ϕ · γτv, (A.1)

for any v,ϕ ∈ H1(D) and the Green’s formula in 2D case∫
D

curlv · ϕ−
∫
D

v · curlϕ =

∫
∂D

ϕγτv, (A.2)

for any v ∈ H1(D) and ϕ ∈ H1(D).
Now it is ready for us to begin the proof.

Proof. Note that

Pτ (K∇ψp) = K∇ψp − [(K∇ψp) · np]np (A.3)
= K(∇ψp · np)np +K∇τψp − [(K∇ψp) · np]np,

where
∇τψp = Pτ (∇ψp) =

∂ψp

∂τ 1
τ 1 + · · ·+ ∂ψp

∂τ d−1
τ d−1.

To show Pτ (K∇ψp) ∈ (H
1
2
00(Γ))

′, we have to show the three terms on the right
hand side of the last identity in (A.3) belong to (H

1
2
00(Γ))

′, respectively.
It is obvious that (H

1
2 (∂Ωp))

′|Γ ⊂ (H
1
2
00(Γ))

′ (see [6]) and since K∇ψp ∈
L2(Ωp), we know

∥(K∇ψp) · np∥
(H

1
2
00(Γ))

′
≤ ∥|K∇ψp|∥Ωp

. (A.4)
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For smooth interface Γ, i.e., np(x) is continuous on Γ, we can easily get from
(A.4)

∥[(K∇ψp) · np]np∥
(H

1
2
00(Γ))

′
≤ CΓ∥|K∇ψp|∥Ωp

, (A.5)

where CΓ > 0 is a constant depending on the shape of Γ.
It is clear that Pτ (∇ψp) is exactly the gradient on Γ, which ensures KPτ (∇ψp)|Γ ∈

(H
1
2
00(Γ))

′. In fact, thanks to the definition of the dual norm, we know

∥KPτ (∇ψp)∥
(H

1
2
00(Γ))

′
= sup

vp∈H
1
2
00(Γ)

∫
Γ
Pτ (∇ψp) ·Kvp

∥vp∥
H

1
2
00.(Γ)

.

In the case of d = 3, for any given vp ∈ H
1
2
00(Γ), there must be some

ṽp ∈ H1(Ωp) such that ṽp|Γ = Kvp, ṽp|Γp
= 0 satisfying ∥ṽp∥H1(Ωp) ≤

CK∥vp∥
H

1
2
00(Γ)

, where CK > 0 is a constant that depends on K. And we con-

struct a function v̄p ∈ H1(Ωp) such that

v̄p|∂Ωp
= [(ṽp · τ 2)τ 1 + (ṽp · τ 1)τ 2 + (ṽp · np)np]|∂Ωp

,

since Γ is smooth,
∥v̄p∥H1(Ωp) ≤ CKΓ∥ṽp∥H1(Ωp).

Here CKΓ > 0 is a constant depending on K and Γ.
Applying the Green’s formula (A.1) leads to∫

Γ

∇τψp ·Kvp =

∫
Γ

∇ψp · Pτ (ṽp) =

∫
Γ

∇ψp · γτ (v̄p)

= (∇× v̄p,∇ψp)Ωp
− (v̄p,∇×∇ψp)Ωp

= (∇× v̄p,∇ψp)Ωp

≤ ∥v̄p∥H1(Ωp)∥∇ψp∥Ωp

≤ CKΓ∥∇ψp∥Ωp
∥vp∥

H
1
2
00(Γ)

.

In the case of d = 2, for smooth Γ, we know Kvp · τ ∈ H
1
2
00(Γ) and

∥Kvp · τ∥
H

1
2
00(Γ)

≤ CKΓ∥vp∥
H

1
2
00(Γ)

,

Then we know there must be some vpτ ∈ H1(Ωp) such that vpτ |Γ = Kvp · τ ,
vpτ |Γp = 0 and

∥vpτ∥H1(Ωp) ≤ ∥Kvp · τ∥
H

1
2
00(Γ)

≤ CKΓ∥vp∥
H

1
2
00(Γ)

.
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By using the Green’s formula (A.2), we have∫
Γ

∇τψp ·Kvp =

∫
Γ

γτ (∇ψp)(Kvp · τ ) =
∫
Γ

γτ (∇ψp)vpτ

= (curl vpτ ,∇ψp)Ωp − (vpτ , curl ∇ψp)Ωp

= (curl vpτ ,∇ψp)Ωp

≤ ∥vpτ∥H1(Ωp)∥∇ψp∥Ωp

≤ CKΓ∥vp∥
H

1
2
00(Γ)

∥∇ψp∥Ωp .

Combination of the estimations in 2D and 3D cases, we get

∥KPτ (∇ψp)∥
(H

1
2
00(Γ))

′
≤ CKΓ∥∇ψp∥Ωp

≤ CKΓ

λmin
∥K∇ψp∥Ωp

. (A.6)

Note that

(nT
p Knp)

∂ψp

∂np
= (K∇ψp) · np − (K∇τψp) · np,

and (A.4) and (A.6), we have

∥(nT
p Knp)

∂ψp

∂np
∥
(H

1
2
00(Γ))

′
≤ (1 +

CKΓ

λmin
)∥|K∇ψp|∥Ωp

. (A.7)

Then, for smooth Γ, we can finally get

∥K∂ψp

∂np
np∥

(H
1
2
00(Γ))

′
≤ CΓ(1 +

CKΓ

λmin
)∥|K∇ψp|∥Ωp . (A.8)

Combination of the above estimates (A.5), (A.6) and (A.8) with (A.3) leads
to

∥Pτ (K∇ψp)∥
(H

1
2
00(Γ))

′
≤ C1∥|K∇ψp|∥Ωp

, (A.9)

where
C1 = 2CΓ +

CΓCKΓ + CKΓ

λmin
. (A.10)

This concludes the proof of this lemma.
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