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1. Introduction 

The parareal algorithm, first proposed in 2001 by Lions et al. [1] , can parallelize the numerical simulation in time for

the time dependent partial differential equations. Since then, the parareal method has been widely studied, such as its

convergency and stability in [2–6] , a clear present of the efficient scheduling of the tasks in [7] and some applications in

[8–12] . In this paper, we use a variant of the parareal algorithm in [13,14] , based on a parallel variation of the spectral

deferred correction method (SDC). Hereinafter, we denote it as the Para/SDC algorithm for simplicity. 

The SDC method was proposed for stiff ordinary differential equations in [15] and further developed in [16–18] and

the references therein. The main advantage of SDC method is that one can use a lower order numerical method to get a

numerical solution with higher order accuracy by solving a series of deferred correction equations during each time step.

While this may lead to higher and higher computational cost when more and more iterative steps are adopted in each time

step to achieve such higher accuracy. So the combination with the parareal method can effectively make up the defect by

distributing the computational cost to different computational cores. 

Due to various applications in science and engineering, the coupling of incompressible flow and porous media flow has

been widely studied in the past decades. We study the non-stationary mixed Stokes/Darcy model for the coupled fluid

flow and porous media flow, which are coupled with certain transmission conditions on the interface. There is an extensive

literature on the numerical methods for the mixed Stokes/Darcy model, see [19–32] and the references therein. In this paper,

we present a second-order Para/SDC algorithm for the non-stationary mixed Stokes/Darcy model and give its numerical

stability and the optimal error estimation. 

The remainder of this paper is organized as follows. In Section 2 , we introduce the non-stationary mixed Stokes/Darcy

model. In Section 3 , the full details of both the SDC algorithm and the Para/SDC algorithm are described. We present the
� Subsidized by NSFC (Grant no. 11971378 & 11571274 ). 
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Fig. 1. The global domain � consisting of the fluid region �f and the porous media region �p separated by the interface �. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unconditional stability of the Para/SDC algorithm in Section 4 and the optimal error estimates in Section 5 . Numerical exper-

iments are reported in Section 6 to verify the analysis results and the advantage of our algorithm, followed by conclusions

in Section 7 . 

2. The mixed Stokes/Darcy model 

Let us consider the non-stationary mixed model of the Stokes equations and the Darcy equations in a bounded domain

� ⊂ R 

d (d = 2 or 3) , which consists of a fluid region �f , a porous media region �p and the interface � = � f ∩ �p . Denote

by � f = ∂� f \ �, �p = ∂�p \ �, n f and n p the unit outward normal vectors on ∂�f and ∂�p , τ i , i = 1 , . . . , d − 1 , the unit

tangential vectors on the interface �, respectively. Furthermore, it is obvious that n p = −n f on �. See Fig. 1 for a sketch. 

Let T > 0 be a finite time. The fluid velocity and the kinematic pressure in the fluid region �f are denoted by u and p ,

respectively, and ϕ is the piezometric head in the porous media region �p . The partial differential equations governing the

fluid flow and the porous media flow are ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

u t − ∇ · (2 νD ( u ) − p I ) = f 1 , in � f × (0 , T ) , 
∇ · u = 0 , in � f × (0 , T ) , 
S 0 ϕ t − ∇ · ( K ∇ϕ) = f 2 , in �p × (0 , T ) , 
u ( x , 0) = u 

0 , in � f , 

ϕ(x, 0) = ϕ 

0 , in �p , 

(1) 

where D ( u ) is the deformation rate tensor defined by D ( u ) = 

1 
2 (∇ u + ∇ 

T u ) , ν > 0 is the kinematic viscosity, I is the d × d

identity tensor, f 1 is the external force acting on �f × [0, T ], f 2 is the source term acting on �p × [0, T ], S 0 is the specific

mass storativity coefficient and K is the hydraulic conductivity tensor. We assume K is a symmetric positive definite matrix,

K = { K i j } i, j=1 , ... ,d , K i j ∈ L ∞ (�p ) , K i j > 0 , and it is uniformly bounded in �p : there exist k min > 0 and k max > 0 such that 

k min | x | 2 ≤ K x · x ≤ k max | x | 2 a.e. x ∈ �p . (2)

The Eqs. (1) are completed by the boundary conditions stated in (4) and the following interface conditions along �: 

u · n f − K ∇ϕ · n p = 0 , on � × (0 , T ) , 

p − νn f 

∂ u 

∂ n f 

= gϕ, on � × (0 , T ) , 

−ντ i 

∂ u 

∂ n f 

= α

√ 

νg 

tr ( K ) 
( u · τ i ) , 1 ≤ i ≤ (d − 1) on � × (0 , T ) . 

(3) 

Here g is the gravitational acceleration and α is a positive parameter depending on the properties of the porous medium.

The first condition in (3) ensures the mass conservation across �, the second one states the balance of normal forces, and

the third one means that the tangential components of the normal stress force is proportional to the tangential components

of the fluid velocity, which is called the Beavers-Joseph-Saffman’s (BJS) interface condition [33,34] . 

For simplicity, we assume that the fluid velocity and the piezometric head satisfy the homogenous Dirichlet boundary

conditions on �f and �p , that is 

u = 0 on � f × (0 , T ) , ϕ = 0 on �p × (0 , T ) . (4)
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We define the following Hilbert spaces. 

W f = { v ∈ (H 

1 (� f )) 
d : v = 0 on � f } , W p = { ψ ∈ H 

1 (�p ) : ψ = 0 on �p } , 
W = W f × W p , Q = L 2 (� f ) , 

V f = { v ∈ W f : ∇ · v = 0 } , V = V f × W p . 

The space W is equipped with the following norms: for all w = ( u , ϕ) ∈ W , 

‖ w ‖ 0 = 

√ 

( u , u ) � f 
+ gS 0 (ϕ , ϕ ) �p 

, 

‖ w ‖ W 

= 

√ 

2 ν( D ( u ) , D ( u )) � f 
+ g( K ∇ ϕ, ∇ ϕ) �p 

, (5)

where ( · , · ) D refers to the scalar product in the corresponding domain D for D = � f or �p . Once again, for simplicity, we

denote ‖ · ‖ D = ‖ · ‖ L 2 (D ) hereinafter. In addition, if we take w ∈ V , the norms for the space V are the same as that in space

W , denoted by ‖ w ‖ 0 and ‖ w ‖ V . 
Assume that 

f 1 ∈ L 2 
(
0 , T ; L 2 (� f ) 

d 
)
, f 2 ∈ L 2 

(
0 , T ; L 2 (�p ) 

)
, K ∈ L ∞ (�p ) 

d×d . 

Then the weak formulation of the non-stationary mixed Stokes and Darcy equations reads: find w = ( u , ϕ) ∈ (L 2 (0 , T ;W f ) ∩
L ∞ (0 , T ; L 2 (� f )) 

d ) × (L 2 (0 , T ;W p ) ∩ L ∞ (0 , T ; L 2 (�p ))) and p ∈ L 2 (0, T ; Q ), such that { 

[ w t , z ] + a ( w , z ) + b( z , p) = ( f , z ) , ∀ z = ( v , ψ) ∈ W , 

b( w , q ) = 0 , ∀ q ∈ Q, 

w (0) = w 

0 , 

(6)

where 

[ w t , z ] = ( u t , v ) � f 
+ gS 0 (ϕ t , ψ) �p 

, 

a ( w , z ) = a f ( u , v ) + a p (ϕ, ψ) + a �( w , z ) , 

a f ( u , v ) = 2 ν( D ( u ) , D ( v )) � f 
+ 

d−1 ∑ 

i =1 

∫ 
�
α

√ 

νg 

tr ( K ) 
( u · τ i )( v · τ i ) , 

a p (ϕ, ψ) = g( K ∇ ϕ, ∇ ψ) �p 
, 

a �( w , z ) = g 

∫ 
�
(ϕ v · n f − ψ u · n f ) , 

b( z , q ) = −(q, ∇ · v ) � f 
, 

( f , z ) = ( f 1 , v ) � f 
+ g( f 2 , ψ) �p 

. 

(7)

Furthermore, the interface term a �( · , · ) in (7) is anti-symmetric, 

a �( w , z ) = −a �( z , w ) and a �( z , z ) = 0 , ∀ w , z ∈ W . (8)

Thanks to [21,29] , there exists a constant C � > 0 such that for all λ> 0, 

| a �( w , z ) | ≤ λ‖ w ‖ 

2 
W 

+ 

C �
4 λ

‖ z ‖ 

2 
W 

, ∀ w , z ∈ W . (9)

In addition, assume the true solution w (t) = ( u (t ) , ϕ(t )) satisfies the following regularities 

u (t) ∈ L 2 (0 , T ; H 

k 1 +1 (� f ) 
d ) , ϕ(t) ∈ L 2 (0 , T ; H 

k 2 +1 (�p )) , 

u 

0 ∈ H 

k 1 +1 (� f ) 
d , ϕ 

0 ∈ H 

k 2 +1 (�p ) , 

u t ∈ L 2 (0 , T ; H 

k 1 (� f ) 
d ) , ϕ t ∈ L 2 (0 , T ; H 

k 2 (�p )) , 

u tt ∈ L 2 (0 , T ; H 

k 1 −1 (� f ) 
d ) , ϕ tt ∈ L 2 (0 , T ; H 

k 2 −1 (�p )) , 

u t t t ∈ L 2 (0 , T ;W 

′ 
f ) , ϕ t t t ∈ L 2 (0 , T ;W 

′ 
p ) , 

(10)

where W 

′ 
f and W 

′ 
p are the dual spaces of W f and W p respectively. 

Let T h 
f 

and T h p be the regular triangulations of �f and �p , depending on a positive parameter h , made up of triangles

if d = 2 or tetrahedra if d = 3 . And we assume the triangulation T h = T h 
f 

⋃ 

T h p of the global domain � is quasi-uniform

and compatible on the interface �. Let W h = W f h × W ph ⊂ W and Q h ⊂ Q denote the finite element spaces based on the

above triangulations. Let k 1 ≥ 1, k 2 ≥ 1 and k 3 ≥ 1 be three integers. The spaces W fh , W ph and Q h are chosen to be the finite

element spaces with the k 1 , k 2 and k 3 order accuracy, respectively. Furthermore, we assume ( W fh , Q h ) satisfies the well-

known discrete inf-sup condition: there exists a positive constant β , independent of h such that 

inf 
q ∈ Q h 

sup 

z ∈ W h 

b( z , q ) 

‖ z ‖ W 

‖ q ‖ � f 

≥ β. (11)
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And we introduce a finite element space V fh ⊂ W fh defined on �f as 

V f h = { v h ∈ W f h : (∇ · v h , q h ) � f 
= 0 , ∀ q h ∈ Q h } , V h = V f h × W ph . 

Since the bilinear form a ( · , · ) is continuous and elliptic on V h , we define a elliptic projection P w 

h 
: w ∈ V 
→ P w 

h 
w ∈ V h 

satisfying 

a (P w 

h w , z h ) = a ( w , z h ) , ∀ z h ∈ V h . 

From the inf-sup condition (11) , we get a projection operator P 
p 

h 
: p ∈ Q 
→ P 

p 

h 
p ∈ Q h satisfying 

b( z h , P 
p 

h 
p) = b( z h , p) , ∀ z h ∈ V h . 

Obviously, we can get for any w ∈ V and p ∈ Q , 

a ( w − P w 

h 
w , z h ) = b( z h , p − P p 

h 
p) = 0 , ∀ z h ∈ V h , 

b( w − P w 

h 
w , q h ) = 0 , ∀ q h ∈ Q h . 

(12) 

In addition, if we assume w ( t ) ∈ H 

l ( �f ) 
d × H 

s ( �p ) and p ( t ) ∈ H 

r ( �f ) ( l, s > 1, r > 0), are the solutions of (1) - (4) , then the

projection 

(
P w 

h 
w (t) , P p 

h 
p(t) 

)
of ( w ( t ), p ( t )) satisfies the following approximation properties : 

‖ w (t) − P w 

h 
w (t ) ‖ 0 ≤ Ch 

l ‖ u (t ) ‖ H l (� f ) 
+ Ch 

s ‖ ϕ(t ) ‖ H s (�p ) , 

‖ w (t) − P w 

h 
w (t ) ‖ V ≤ Ch 

l−1 ‖ u (t ) ‖ H l (� f ) 
+ Ch 

s −1 ‖ ϕ(t ) ‖ H s (�p ) , 

‖ p(t) − P p 
h 

p(t)) ‖ L 2 (� f ) 
≤ Ch 

r ‖ p(t) ‖ H r (� f ) 
, 

(13) 

where C is a positive constant which is different in different places but independent of mesh size and time step. 

3. The para/SDC algorithm 

The Para/SDC algorithm to be considered is a variant of the parareal method, so we first introduce the SDC method and

then the parareal method. Let us consider the initial value problem { 

w 

′ (t) = f (t , w (t )) , t ∈ [0 , T ] , 

w (0) = w 

0 , 
(14) 

where w ( t ), w 

0 ∈ C 

d and f : R × C 

d → C 

d . 

3.1. The spectral deferred correction algorithm 

We present a SDC algorithm based on the first-order Euler method for the system (14) . The corresponding Picard integral

form of the solution to (14) is 

w (t) = w 

0 + 

∫ t 

0 

f (τ, w (τ )) dτ. (15) 

Suppose that we have gotten an approximate solution w 1 ( t ) to (15) . If we define the error δ(t) = w (t) − w 1 (t) , we can

construct a correction equation 

δ(t) = 

∫ t 

0 

(
f (τ, w 1 (τ ) + δ(τ )) − f (τ, w 1 (τ )) 

)
dτ + E(t , w 1 (t )) , (16)

where E ( t , w 1 ( t )) is the residual function denoted by 

E(t, w 1 (t)) = w 

0 + 

∫ t 

0 

f (τ, w 1 (τ )) dτ − w 1 (t) . 

In the numerical discretization, the time interval [0, T ] is divided into N subintervals [ t n , t n +1 ] by choosing points t n =
n �t = n T N for n = 0 , . . . , N with 0 = t 0 < t 1 < . . . < t N = T . Let w 

n 
i 

denote the numerical approximations to w ( t n ). Assume

that a sequence of the approximate solutions w 

n +1 
1 

are firstly obtained by the first-order backward Euler method, i.e. 

w 

n +1 
1 = w 

n 
1 + �t f (t n +1 , w 

n +1 
1 ) . (17) 

We approximate (16) by a simple discretization that resembles backward Euler, leading to the implicit approximation of the

correction equation 

δ
n +1 
i = δ

n 
i + �t 

(
f (t n +1 , w 

n +1 
i 

+ δ
n +1 
i ) − f (t n +1 , w 

n +1 
i 

) 
)

+ E(t n +1 , w 

n +1 
i 

) − E(t n , w 

n 
i ) . 



D. Xue, Y. Hou and W. Liu / Applied Mathematics and Computation 387 (2020) 124625 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the corrected solution w 

n +1 
i +1 

= w 

n +1 
i 

+ δ
n +1 
i satisfies the following equation 

w 

n +1 
i +1 

= w 

n 
i +1 + �t 

(
f (t n +1 , w 

n +1 
i +1 

) − f (t n +1 , w 

n +1 
i 

) 
)

+ I n +1 
n ( w i ) , (18)

where I n +1 
n ( w i ) is the numerical quadrature approximation to ∫ t n +1 

t n 
f (τ, w i (τ )) dτ. (19)

As long as the approximation of (19) is accurate, each iteration of the correction Eq. (18) will increase the accuracy of the

approximate solution for one order, as we use the first-order method to approximate the correction equation. 

In [17] , the comparisons with other existing methods, such as high-order linear multi-step method and Runge-Kutta

method, show that the higher-order SDC method is more accurate and easier to construct. Nevertheless, the SDC method

still has a disadvantage: the large computation cost. As mentioned earlier, the premise of the high-order SDC method is the

accuracy of the numerical approximation of (19) . While the more accuracy of the numerical quadrature approximation is

required, the more nodes and therefore more corrections are needed in each time step [ t n , t n +1 ] . Obviously, this leads to an

increase in the computational cost. An effective way to deal with the problem is the combination with the parareal method,

so that the computational cost can be distributed to a set of computational cores. This is also the motivation of the so-called

Para/SDC scheme to be constructed. 

3.2. The para/SDC algorithm 

For the parareal method, the time interval [0, T ] needs to be divided into N subintervals [ t n , t n +1 ] = [ t n , t n + �t] and

the subintervals are assigned to different processors. For simplicity, denote the processors P 1 through P N . Following [13,14] ,

we give two numerical approximation methods denoted by G and F propagator. For the sake of efficiency of the parareal

method, G is computationally less expensive than F . Futhermore, we denote by G(t n +1 , t n , ˆ w ) and F(t n +1 , t n , ˆ w ) the numer-

ical solutions at time t n +1 with the initial value ˆ w by using G and F respectively. 

In the parareal method, G is used to compute a provisional solution at all nodes sequentially, i.e., 

w 

n +1 
1 = G(t n +1 , t n , w 

n 
1 ) , n = 0 , . . . , N − 1 . 

As soon as each processor P n obtains the initial value w 

n 
1 
, they can compute a more accurate approximate solution

F(t n +1 , t n , w 

n 
1 
) in parallel. Then the serial correction step takes the form 

w 

n +1 
2 = G(t n +1 , t n , w 

n 
2 ) + F(t n +1 , t n , w 

n 
1 ) − G(t n +1 , t n , w 

n 
1 ) . (20)

After the discussion on the parareal method, we focus on the Para/SDC method in the remainder of this section. In [16] ,

the Para/SDC method selects some SDC sweeps as F propagator. In this paper, we apply the backward Euler method as G,

and a SDC sweep like (18) as F . 

In addition, in order to construct a second-order scheme, we apply the trapezoid formula to approximate (19) , i.e. 

I n +1 
n ( w 1 ) = 

1 

2 

�t 
(

f (t n +1 , w 

n +1 
1 ) + f (t n , w 

n 
1 ) 

)
, n = 0 , . . . , N − 1 . (21)

Therefore, we just use two quadrature points to approximate the integral (19) . Using (21) , we rewrite (18) with the initial

value w 

n 
1 

to get the approximation F(t n +1 , t n , w 

n 
1 
) in parallel, that is 

F(t n +1 , t n , w 

n 
1 ) := λn +1 = w 

n 
1 + �t 

(
f (t n +1 , λn +1 

) − f (t n +1 , w 

n +1 
1 

) 
)

+ I n +1 
n ( w 1 ) , 

= w 

n 
1 + �t f (t n +1 , λn +1 

) − �t 

2 

f (t n +1 , w 

n +1 
1 

) + 

�t 

2 

f (t n , w 

n 
1 ) . 

(22)

Next, we describe our Para/SDC algorithm for the system (14) . 

Algorithm 1. (The Para/SDC algorithm) 

1. Compute w 

n +1 
1 

by using the first-order backward Euler method G in serial 

w 

n +1 
1 = G(t n +1 , t n , w 

n 
1 ) = w 

n 
1 + �t f (t n +1 , w 

n +1 
1 ) , (23)

for n = 0 , . . . , N − 1 starting with w 

0 
1 

= w 

0 . 

2. The processors use (22) to compute F(t n +1 , t n , w 

n 
1 
) for n = 0 , . . . , N − 1 in parallel. 

3. Compute the final solution w 

n +1 
2 

by the following serial correction step { 

w 

n +1 
2 

= G(t n +1 , t n , w 

n 
2 ) + F(t n +1 , t n , w 

n 
1 ) − G(t n +1 , t n , w 

n 
1 ) , 

0 0 
(24)
w 2 = w . 
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In order to test the parallel efficiency of the parareal method, we define a parallel speedup, the ratio of the serial to

the parallel cost. In the Para/SDC algorithm (23) , (24) , both G and F use the same time step �t = T /N and we denote

the computational cost of G and F for one time step as ϒG and ϒF , respectively. What’s more, there are N processors to

compute F concurrently and there is only one iteration of the correction step. Generally, we omit the communication time

between the processors and assume that each processor is identical. Following [13] and [14] , the total computational cost

of the K iterations of the pipelined version of the Para/SDC method using N processors is NϒG + K(ϒF + ϒG ) . Furthermore,

for the serial SDC scheme, the total computational cost is N(KϒF + ϒG ) . Hence the speedup of the Para/SDC algorithm (23) ,

(24) is
N ϒG + N ϒF 

(N+1)ϒG +ϒF 
. 

Using the finite element method for the spatial discretization, we can obtain the full-discrete second-order scheme of

the Para/SDC algorithm for the non-stationary Stokes/Darcy model. 

Algorithm 2. (The Para/SDC algorithm for the Stokes/Darcy model) 

1. Using the backward Euler method to get G(t n +1 , t n , w 

n 
1 ,h 

) for n = 0 , . . . , N − 1 sequentially, which means that find

( w 

n +1 
1 ,h 

, p n +1 
1 ,h 

) ∈ W h × Q h such that for all z h ∈ W h and q h ∈ Q h , ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

[
w 

n +1 
1 ,h 

− w 

n 
1 ,h 

�t 
, z h 

]
+ a 

(
w 

n +1 
1 ,h 

, z h 
)

+ b 
(
z h , p 

n +1 
1 ,h 

)
= ( f n +1 

, z h ) , 

b( w 

n +1 
1 ,h 

, q h ) = 0 , 

w 

0 
1 ,h 

= P w 

h 
w 

0 . 

(25) 

2. Using (22) to compute F(t n +1 , t n , w 

n 
1 ,h 

) for n = 0 , . . . , N − 1 in parallel. Take processor P n for example: find ( λn +1 
h , p n +1 

λ,h 
) ∈

W h × Q h such that for all z h ∈ W h and q h ∈ Q h , ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

λn +1 
h − w 

n 
1 ,h 

�t 
, z h 

] 

+ a 

(
λn +1 

h , z h 

)
+ b 

(
z h , p 

n +1 
λ,h 

)

= a 

(
w 

n +1 
1 ,h 

− w 

n 
1 ,h 

2 

, z h 

)
+ b 

(
z h , 

p n +1 
1 ,h 

− p n 
1 ,h 

2 

)
+ 

(
f 

n +1 + f 
n 

2 

, z h 

)
, 

b 

(
λn +1 

h , q h 

)
= 0 . 

(26) 

3. Compute G(t n +1 , t n , w 

n 
2 ,h 

) for n = 0 , . . . , N − 1 sequentially as (25) : find ( w 

n +1 
h 

, p n +1 
h 

) ∈ W h × Q h such that for all z h ∈ W h

and q h ∈ Q h , ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[
w 

n +1 
h 

− w 

n 
2 ,h 

�t 
, z h 

]
+ a 

(
w 

n +1 
h 

, z h 
)

+ b 
(
z h , p 

n +1 
h 

)
= ( f 

n +1 
, z h ) , 

b( w 

n +1 
h 

, q h ) = 0 , 

w 

0 
h 

= P w 

h 
w 

0 . 

(27) 

Then we get the final approximate solution ( w 

n +1 
2 ,h 

, p n +1 
2 ,h 

) from (24) : { 

w 

n +1 
2 ,h 

= w 

n +1 
h 

+ λn +1 
h − w 

n +1 
1 ,h 

, 

p n +1 
2 ,h 

= p n +1 
h 

+ p n +1 
λ,h 

− p n +1 
1 ,h 

. 
(28) 

For later analysis, we rewrite (25) –(28) in the following compact form: find ( w 

n +1 
2 ,h 

, p n +1 
2 ,h 

) ∈ W h × Q h such that for all

z h ∈ W h and q h ∈ Q h , ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[
w 

n +1 
2 ,h 

− w 

n 
2 ,h 

�t 
, z h 

]
+ a 

(
w 

n +1 
2 ,h 

, z h 
)

+ b 
(
z h , p 

n +1 
2 ,h 

)
= 

1 

2 

a 
(
w 

n +1 
1 ,h 

, z h 
)

− 1 

2 

a 
(
w 

n 
1 ,h 

, z h 
)

+ 

1 

2 

b 
(
z h , p 

n +1 
1 ,h 

)
− 1 

2 

b 
(
z h , p 

n 
1 ,h 

)
+ 

(
f 

n +1 + f 
n 

2 

, z h 

)
, 

b 
(
w 

n +1 
2 ,h 

, q h 
)

= 0 , 

0 w 0 

(29) 
w 

2 ,h 
= P 

h 
w . 
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4. The stability of the para/SDC algorithm 

To derive the stability of the Para/SDC algorithm, we need the stability of the first-order scheme (25) . Since the uncon-

ditional stability of the scheme (25) has been proved in the previous work see [28] , we just quote the results. 

Lemma 4.1. For any 1 ≤ m ≤ N, the solution w 

m 

1 ,h 
= ( u 

m 

1 ,h 
, ϕ 

m 

1 ,h 
) to (25) satisfies 

‖ w 

m 

1 ,h ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ w 

n +1 
1 ,h 

‖ 

2 
W 

≤ ‖ w 

0 ‖ 

2 
0 + 

C 

ν
�t 

m −1 ∑ 

n =0 

‖ f 
n +1 
1 ‖ 

2 
� f 

+ 

Cg 

k min 

�t 

m −1 ∑ 

n =0 

‖ f n +1 
2 ‖ 

2 
�p 

. (30)

Next, we will use the result of Lemma 4.1 to present the stability for the Algorithm 2. 

Theorem 4.1. If w 

m 

2 ,h 
= ( u 

m 

2 ,h 
, ϕ 

m 

2 ,h 
) with 1 ≤ m ≤ N is the solution of Algorithm 2, it satisfies 

‖ w 

m 

2 ,h ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ w 

n +1 
2 ,h 

‖ 

2 
W 

≤ C 

( 

‖ w 

0 ‖ 

2 
0 + 

1 

ν
�t 

m ∑ 

n =0 

‖ f 
n 
1 ‖ 

2 
� f 

+ 

g 

k min 

�t 

m ∑ 

n =0 

‖ f n 2 ‖ 

2 
�p 

) 

. (31)

Proof. Setting z h = 2�t w 

n +1 
2 ,h 

and q h = p n +1 
2 ,h 

in (29) , we have 

(‖ w 

n +1 
2 ,h 

‖ 

2 
0 − ‖ w 

n 
2 ,h ‖ 

2 
0 + ‖ w 

n +1 
2 ,h 

− w 

n 
2 ,h ‖ 

2 
0 

)
+ 2�t‖ w 

n +1 
2 ,h 

‖ 

2 
W 

+ 2�t 

d−1 ∑ 

i =1 

α

√ 

νg 

tr ( K ) 
‖ w 

n +1 
2 ,h 

· τi ‖ 

2 
L 2 (�) 

= �t a 
(
w 

n +1 
1 ,h 

, w 

n +1 
2 ,h 

)
− �t a 

(
w 

n 
1 ,h , w 

n +1 
2 ,h 

)
+ 2�t 

(
f 

n +1 + f 
n 

2 

, w 

n +1 
2 ,h 

)
. (32)

We bound each term on the right hand side of (32) as follows. Using the Poincare, Young’s inequalities, (2) and (9) , we get 

I = �ta ( w 

n +1 
1 ,h 

, w 

n +1 
2 ,h 

) − �ta ( w 

n 
1 ,h , w 

n +1 
2 ,h 

) 

≤ 2 ε�t‖ w 

n +1 
2 ,h 

‖ 

2 
W 

+ �t 

d−1 ∑ 

i =1 

α

√ 

νg 

tr ( K ) 
‖ u 

n +1 
2 ,h 

· τi ‖ 

2 
L 2 (�) + 

C 

ε 
�t‖ w 

n +1 
1 ,h 

‖ 

2 
W 

+ 

C 

ε 
�t‖ w 

n 
1 ,h ‖ 

2 
W 

, 

II = 2�t 

(
f 

n +1 + f 
n 

2 

, w 

n +1 
2 ,h 

)
= 2�t 

(
f 

n +1 
1 + f 

n 
1 

2 

, u 

n +1 
2 ,h 

)
� f 

+ 2�tg 

(
f n +1 
2 

+ f n 2 

2 

, ϕ 

n +1 
2 ,h 

)
�p 

≤ ε �t‖ w 

n +1 
2 ,h 

‖ 

2 
W 

+ 

C 

ε ν
�t‖ 

f 
n +1 
1 + f 

n 
1 

2 

‖ 

2 
� f 

+ 

Cg 

ε k min 

�t‖ 

f n +1 
2 

+ f n 2 

2 

‖ 

2 
�p 

. 

Combining the above estimates with (32) and setting ε = 1 / 3 , we have 

‖ w 

n +1 
2 ,h 

‖ 

2 
0 − ‖ w 

n 
2 ,h ‖ 

2 
0 + ‖ w 

n +1 
2 ,h 

− w 

n 
2 ,h ‖ 

2 
0 + �t‖ w 

n +1 
2 ,h 

‖ 

2 
W 

≤ C �t‖ w 

n +1 
1 ,h 

‖ 

2 
W 

+ C �t‖ w 

n 
1 ,h ‖ 

2 
W 

+ 

C 

ν
�t 

∥∥∥∥ f 
n +1 
1 + f 

n 
1 

2 

∥∥∥∥
2 

� f 

+ 

C g 

k min 

�t 

∥∥∥∥ f n +1 
2 

+ f n 2 

2 

∥∥∥∥
2 

�p 

. (33)

Summing (33) from n = 0 to n = m − 1 yields 

‖ w 

m 

2 ,h ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ w 

n +1 
2 ,h 

‖ 

2 
W 

≤ ‖ w 

0 
2 ,h ‖ 

2 
0 + C�t 

m ∑ 

n =0 

‖ w 

n 
1 ,h ‖ 

2 
W 

+ 

C 

ν
�t 

m ∑ 

n =0 

‖ f 
n 
1 ‖ 

2 
� f 

+ 

Cg 

k min 

�t 

m ∑ 

n =0 

‖ f n 2 ‖ 

2 
�p 

. 

Combining ‖ w 

0 
2 ,h 

‖ 0 = ‖ P w 

h 
w 

0 ‖ 0 ≤ ‖ w 

0 ‖ 0 and (30) , we arrive at (31) . �

5. The error analysis of the para/SDC algorithm 

Firstly, the errors between the numerical solutions and the exact ones, can be decomposed into the numerical errors and

the approximation errors as follows: 

w 

m 

k,h 
− w 

m = w 

m 

k,h 
− ˜ w 

m − ( w 

m − ˜ w 

m ) := e m 

k 
− ξ

m 

, k = 1 , 2 , 

p m 

k,h 
− p m = (p m 

k,h 
− ˜ p m ) − (p m − ˜ p m ) := ε m 

k 
− ηm , k = 1 , 2 . 

(34)

Here ˜ w 

m = P w 

h 
w 

m and ˜ p m = P 
p 

h 
p m . Obviously, from (10) and (13) , we have 

‖ ξ
m ‖ 0 ≤ C(h 

k 1 +1 ‖ u 

m ‖ H k 1 +1 (� f ) 
+ h 

k 2 +1 ‖ ϕ 

m ‖ H k 2 +1 (�p ) 
) , 

‖ ξ
m ‖ V ≤ C(h 

k 1 ‖ u 

m ‖ H k 1 +1 (� f ) 
+ h 

k 2 ‖ ϕ 

m ‖ H k 2 +1 (�p ) 
) . 
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Let W 

′ be the dual space of W and let ‖ · ‖ W 

′ denote the dual norm. As usual, we denote by < ., . > the duality pair between

the space W and W 

′ . Similarly, one can define the dual spaces of V and V h . 

Lemma 5.1. Denote ξ
m = (I − P w 

h 
) w 

m := Q h w 

m , ∀ w 

m ∈ V . We have 

‖ ξ
m ‖ V ′ h ≤ Ch 

2 ‖ ξ
m ‖ V . (35) 

Proof. To prove (35) , we consider the following problem: for any given f ∈ V 

′ , find w ∈ W such that, 

a ( w , z ) = < f , z >, ∀ z ∈ V . 

The problem is well-posed since the bilinear form a ( · , · ) is continuous and elliptic on V . Furthermore, we can define a

bounded linear operator A : V 
→ U 

′ ⊂ V 

′ defined by 

a ( w , z ) = < w , A z >, ∀ w ∈ W , z ∈ V . 

In fact, A is a continuous and invertible operator from V to V 

′ and denote A 

−1 : V 

′ 
→ V . 

Let � be a bounded domain with ∂�∈ C 3 . Then for any given function f ∈ V h , we have 

‖ w ‖ H 3 (�) ≤ C‖ f ‖ V h , 

where ‖ w ‖ 2 
H 3 (�) 

= ‖ u ‖ 2 
H 3 (� f ) 

+ ‖ ϕ‖ 2 
H 3 (�p ) 

. That means 

‖ A 

−1 f ‖ H 3 (�) ≤ C‖ f ‖ V h , ∀ f ∈ V h . (36) 

From (12) , we have 

a (Q h w , z h ) = 0 , ∀ w ∈ V , z h ∈ V h . 

Considering (13) and (36) , we have 

‖ Q h A 

−1 z ‖ V ≤ Ch 

2 ‖ A 

−1 z ‖ H 3 (�) ≤ Ch 

2 ‖ z ‖ V h . 

From the definition of the dual norm, we obtain, for all w ∈ V , 

‖ Q h w ‖ V ′ h = sup 

z ∈ V h 

(Q h w , z ) 

‖ z ‖ V h 

= sup 

z ∈ V h 

(Q h w , AA 

−1 z ) 

‖ z ‖ V h 

= sup 

z ∈ V h 

a (Q h w , A 

−1 z ) 

‖ z ‖ V h 

= sup 

z ∈ V h 

a (Q h w , Q h A 

−1 z + P w 

h 
A 

−1 z ) 

‖ z ‖ V h 

= sup 

z ∈ V h 

a (Q h w , Q h A 

−1 z ) 

‖ z ‖ V h 

≤ C sup 

z ∈ V h 

‖ Q h w ‖ V ‖ Q h A 

−1 z ‖ V 

‖ z ‖ V h 

≤ C sup 

z ∈ V h 

h 

2 ‖ Q h w ‖ V ‖ z ‖ V h 

‖ z ‖ V h 

= Ch 

2 ‖ Q h w ‖ V . (37) 

Thus we complete the proof. �

In fact, the proof of the error estimate of the scheme (25) is similar to the process in [21,29,35] . To avoid repetition, we

omit the proof and only present the final results. 

Lemma 5.2. Let w 

m 

1 ,h 
= ( u 

m 

1 ,h 
, ϕ 

m 

1 ,h 
) with 1 ≤ m ≤ N be the solution of the first-order scheme (25) . Denote d t e 

m 

1 
= 

e m 
1 

−e m −1 
1 

�t 
. Under

the assumption (10) , we have, 

‖ e m 

1 ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ e n +1 
1 ‖ 

2 
W 

≤ C 
(
�t 2 + h 

2 k 1 +2 + h 

2 k 2 +2 ) , (38) 

‖ d t e 
m 

1 ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ d t e 
n +1 
1 ‖ 

2 
W 

≤ C(�t 2 + h 

2 k 1 + h 

2 k 2 
)
, (39) 

where C is a positive constant, which is independent of �t and h but dependent of the regularities of the weak solution, and it

has different values at different occasions. 

Theorem 5.1. Let w 

m 

2 ,h 
= ( u 

m 

2 ,h 
, ϕ 

m 

2 ,h 
) with 1 ≤ m ≤ N be the solution of the Para/SDC scheme (29) . Under the assumption (10) , we

have 

‖ w 

m 

2 ,h − w 

m ‖ 

2 
0 ≤ C(�t 4 + h 

2 k 1 +2 + h 

2 k 2 +2 ) . (40) 

where C is a positive constant, which is only dependent of the weak solution. 

Proof. Let ( w 

n +1 
1 ,h 

, p n +1 
1 ,h 

) satisfy (25) and ( w 

n +1 
2 ,h 

, p n +1 
2 ,h 

) satisfy (29) for n = 0 , . . . , N − 1 . Next we take the average of (6) at

time t = t n and t = t n +1 : for all z ∈ W , [
w 

n +1 
t + w 

n 
t 

2 

, z 

]
+ 

1 

2 

a ( w 

n +1 + w 

n , z ) + 

1 

2 

b( z , p n +1 + p n ) = 

(
f 

n +1 + f 
n 

2 

, z 

)
. 
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By taking z = z h ∈ W h in the above equations and q = q h ∈ Q h in the mass conservation equation, simple calculation leads

to ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[
w 

n +1 − w 

n 

�t 
, z h 

]
+ a 

(
w 

n +1 , z h 
)

+ b 
(
z h , p 

n +1 
)

= 

[
w 

n +1 − w 

n 

�t 
, z h 

]
−

[
w 

n +1 
t + w 

n 
t 

2 

, z h 

]

+ 

1 

2 

a 
(
w 

n +1 − w 

n , z h 
)

+ 

1 

2 

b 
(
z h , p 

n +1 − p n 
)

+ 

(
f 

n +1 + f 
n 

2 

, z h 

)
, 

b( w 

n +1 , q h ) = 0 . 

(41)

Subtracting (41) from (29) , we have, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[
e n +1 

2 
− e n 2 

�t 
, z h 

]
+ a 

(
e n +1 

2 
, z h ) + b( z h , ε 

n +1 
2 

)

= 

[ 

ξ
n +1 − ξ

n 

�t 
, z h 

] 

+ a 

(
ξ

n +1 
, z h 

)
+ b 

(
z h , η

n +1 
)

+ 

[
w 

n +1 
t + w 

n 
t 

2 

, z h 

]
−

[
w 

n +1 − w 

n 

�t 
, z h 

]

+ 

1 

2 

a 
(
w 

n +1 
1 ,h 

− w 

n +1 , z h 
)

− 1 

2 

a 
(
w 

n 
1 ,h 

− w 

n , z h 
)

+ 

1 

2 

b 
(
z h , p 

n +1 
1 ,h 

− p n +1 
)

− 1 

2 

b 
(
z h , p 

n 
1 ,h 

− p n 
)
, 

b( e n +1 
2 

, q h ) = b( ξ
n +1 

, q h ) = 0 . 

Take z h = 2�t e n +1 
2 

and q h = ε n +1 
2 

in the above equations. Notice that e n +1 
2 

∈ V h . Considering (12) and the decomposition

(34) , we get 

a ( ξ
n +1 

, e n +1 
2 ) = b( e n +1 

2 , ηn +1 ) = 0 , 

a ( w 

n +1 
1 ,h 

− w 

n +1 , e n +1 
2 

) − a ( w 

n 
1 ,h 

− w 

n , e n +1 
2 

) + b( e n +1 
2 

, p n +1 
1 ,h 

− p n +1 ) − b( e n +1 
2 

, p n 
1 ,h 

− p n ) 

= a ( e n +1 
1 

− e n 1 , e 
n +1 
2 

) − a ( ξ
n +1 − ξ

n 
, e n +1 

2 
) + b( e n +1 

2 
, ε n +1 

1 
− ε n 1 ) + b( e n +1 

2 
, ηn +1 − ηn ) 

= a ( e n +1 
1 

− e n 1 , e 
n +1 
2 

) + b( e n +1 
2 

, ε n +1 
1 

− ε n 1 ) . 

Hence, we can get 

(‖ e n +1 
2 ‖ 

2 
0 − ‖ e n 2 ‖ 

2 
0 + ‖ e n +1 

2 − e n 2 ‖ 

2 
0 ) + 2�t‖ e n +1 

2 ‖ 

2 
W 

+ 2�t 

d−1 ∑ 

i =1 

α

√ 

νg 

tr ( K ) 
‖ e n +1 

2 · τi ‖ 

2 
L 2 (�) 

≤ 2�t 

[ 

ξ
n +1 − ξ

n 

�t 
, e n +1 

2 

] 

+ 2�t 

[
w 

n +1 
t + w 

n 
t 

2 

− w 

n +1 − w 

n 

�t 
, e n +1 

2 

]
+ �t 2 a (d t e 

n +1 
1 , e n +1 

2 ) . (42)

By using the Poincare, Young’s inequalities and (9) , we get 

2�t 

[ 

ξ
n +1 − ξ

n 

�t 
, e n +1 

2 

] 

+ 2�t 

[
w 

n +1 
t + w 

n 
t 

2 

− w 

n +1 − w 

n 

�t 
, e n +1 

2 

]

≤ 2 ε�t ‖ e n +1 
2 ‖ 

2 
W 

+ 

C 

ε 
�t 

∥∥∥∥∥ξ
n +1 − ξ

n 

�t 

∥∥∥∥∥
2 

V ′ h 

+ 

C 

ε 
�t 

∥∥∥∥w 

n +1 
t + w 

n 
t 

2 

− w 

n +1 − w 

n 

�t 

∥∥∥∥
2 

W 

′ 
, 

�t 2 a (d t e 
n +1 
1 , e n +1 

2 ) ≤ ε�t‖ e n +1 
2 ‖ 

2 
W 

+ �t 

d−1 ∑ 

i =1 

α

√ 

νg 

tr ( K ) 
‖ e n +1 

2 · τi ‖ 

2 
L 2 (�) + C�t 3 ‖ d t e 

n +1 
1 ‖ 

2 
W 

. 

Combining the above estimates with (42) , choosing ε = 1 / 3 and summing the error equation (42) from n = 0 to n =
m − 1 , we obtain 

‖ e m 

2 ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ e n +1 
2 ‖ 

2 
W 

≤ ‖ e 0 2 ‖ 

2 
0 + C�t 3 

m −1 ∑ 

n =0 

‖ d t e 
n +1 
1 ‖ 

2 
W 

+ C�t 

m −1 ∑ 

n =0 

∥∥∥∥∥ξ
n +1 − ξ

n 

�t 

∥∥∥∥∥
2 

V ′ h 

+ C�t 

m −1 ∑ 

n =0 

∥∥∥∥w 

n +1 
t + w 

n 
t 

2 

− w 

n +1 − w 

n 

�t 

∥∥∥∥
2 

W 

′ 
. (43)

From (35) and (13) , we have 
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�t 

m −1 ∑ 

n =0 

∥∥∥∥∥ξ
n +1 

2 
− ξ

n 

2 

�t 

∥∥∥∥∥
2 

V ′ h 

≤ C h 

4 �t 

m −1 ∑ 

n =0 

∥∥∥∥∥ξ
n +1 

2 
− ξ

n 

2 

�t 

∥∥∥∥∥
2 

V 

≤ C h 

4 
m −1 ∑ 

n =0 

∫ t n +1 

t n 
‖ ( ξ

1 
) t ‖ 

2 
V dt 

≤ C(h 

2 k 1 +2 ‖ u t ‖ 

2 
L 2 (0 ,T ;H k 1 (� f )) 

+ h 

2 k 2 +2 ‖ ϕ t ‖ 

2 
L 2 (0 ,T ;H k 2 (�p )) 

) . 

From the Taylor expansion, we have, 

w 

n +1 
t + w 

n 
t 

2 

− w 

n +1 − w 

n 

�t 
= 

1 

8 

�t 2 w t t t (θ
n 
1 ) −

1 

24 

�t 2 w t t t (θ
n 
2 ) , 

where θn 
1 
, θn 

2 
∈ (t n , t n +1 ) . Then by using Young’s inequality and (10) , we obtain 

�t 

m −1 ∑ 

n =0 

∥∥∥∥w 

n +1 
t + w 

n 
t 

2 

− w 

n +1 − w 

n 

�t 

∥∥∥∥
2 

W 

′ 
≤ C�t 5 

m −1 ∑ 

n =0 

2 ∑ 

i =1 

‖ w t t t (θ
n 
i ) ‖ 

2 
W 

′ ≤ C�t 4 ‖ w t t t ‖ 

2 
L 2 (0 ,T ;W 

′ ) . 

Combining the above estimates, (39) and (10) with (43) , we get 

‖ e m 

2 ‖ 

2 
0 + �t 

m −1 ∑ 

n =0 

‖ e n +1 
2 ‖ 

2 
W 

≤ C 

(
h 

2 k 1 +2 ‖ u t ‖ 

2 
L 2 (0 ,T ;H k 1 (� f )) 

+ h 

2 k 2 +2 ‖ ϕ t ‖ 

2 
L 2 (0 ,T ;H k 2 (�p )) 

)
+ C �t 4 ‖ w t t t ‖ 

2 
L 2 (0 ,T ;W 

′ ) + C �t 2 (�t 2 + h 

2 k 1 + h 

2 k 2 ) 

≤ C(�t 4 + h 

2 k 1 +2 + h 

2 k 2 +2 ) . (44) 

Here we use the fact e 0 
2 

= 0 . Using the triangle inequality and combining the approximation properties (13) with (44) will

lead to the result (40) . �

6. Numerical experiments 

In this section, we present four numerical experiments to illustrate the accuracy and efficiency of the Para/SDC algorithm.

In the first experiment, we compute the convergence orders in time and space for our scheme. The second experiment can

illustrate the Para/SDC algorithm is more effective, compared with the serial SDC algorithm. In Experiment 3, we confirm the

influence of the errors based on different kinematic viscosity variables ν and hydraulic conductivity variables K . In the last

experiment, we change the porous media region �p . Let �p contain a circular region, which can be regarded as a barrier. 

The finite element spaces are constructed by using the Mini elements ( P 1 b − P 1 ) for the Stokes equations and the piece-

wise linear Lagrangian elements ( P 1 ) for the Darcy equations. The code was implemented using the software package

FreeFem ++ . 

To examine the orders of convergence with respect to the time step and the mesh size, we give a measure of the con-

vergency. If we assume that 

v �t 
h (x, t m 

) ≈ v (x, t m 

) + C 1 (x, t m 

)�t γ + C 2 (x, t m 

) h 

μ, 

the measures testing the convergence order of the time step �t and the mesh size h are defined as follows: 

ρv ,h, 0 = 

‖ v �t 
h 

(x, t m 

) − v �t 
h 
2 

(x, t m 

) ‖ 0 

‖ v �t 
h 
2 

(x, t m 

) − v �t 
h 
4 

(x, t m 

) ‖ 0 

≈ 4 

μ − 2 

μ

2 

μ − 1 

, 

ρv , �t, 0 = 

‖ v �t 
h 

(x, t m 

) − v 
�t 
2 

h 
(x, t m 

) ‖ 0 

‖ v 
�t 
2 

h 
(x, t m 

) − v 
�t 
4 

h 
(x, t m 

) ‖ 0 

≈ 4 

γ − 2 

γ

2 

γ − 1 

. (45) 

Here v can be u or ϕ. While ρv , �t , 0 and ρv, h , 0 approach 4.0, the convergence order will be 2.0. 

6.1. Experiment 1 

Let the computational domain be � f = [0 , 1] × [1 , 2] , �p = [0 , 1] × [0 , 1] and the interface � = (0 , 1) × { 1 } . The exact

solutions of the mixed Stokes/Darcy equations are given by 

u (x, y, t) = (x 2 (y − 1) 2 + y ) cos (t) , 
(
−2 

3 

x (y − 1) 3 + 2 − πsin (πx ) 
)

cos (t)) , 

p(x, y, t) = 

(
2 − πsin (πx ) 

)
sin 

(
π

2 

y 

)
cos (t) , 

ϕ(x, y, t) = 

(
2 − πsin (πx ) 

)(
1 − y − cos (πy ) 

)
cos (t) + 

1 

2 

(
1 + (2 − πsin (πx )) 2 

)(
(y − 1) 2 + 1 

)
cos 2 (t) . 

(46) 

In this experiments, we set the physical parameters ν = 1 , S 0 = 1 , g = 1 , α = 1 and the hydraulic conductivity tensor

K = K I , where the hydraulic conductivity variable K = 1 . We verify the convergence order of the time step �t by fixing
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Table 1 

The convergence orders of the Para/SDC scheme at time t m = 1 , with the fixed mesh h = 1 / 8 and varying time step �t . 

�t ‖ u m 
2 , �t 

− u m 
2 , �t 

2 

‖ L 2 (� f ) 
ρu , �t ,0 ‖ ϕ m 

2 , �t 
− ϕ m 

2 , �t 
2 

‖ L 2 (�p ) ρϕ, �t ,0 

1/20 7.16288e-6 3.93034 1.52583e-4 3.97619 

1/40 1.82246e-6 3.96607 3.83742e-5 3.99290 

1/80 4.59513e-7 3.98326 9.61062e-6 3.99760 

1/160 1.15361e-7 3.99167 2.40410e-6 3.99904 

1/320 2.89004e-8 6.01169e-7 

Table 2 

The convergence orders of the Para/SDC scheme at time t m = 1 , with the fixed time step �t = 1 / 20 and the varying 

mesh step h . 

h ‖ u m 
2 ,h 

− u m 
2 , h 2 

‖ L 2 (� f ) 
ρu , h ,0 ‖ ϕ m 

2 ,h 
− ϕ m 

2 , h 2 
‖ L 2 (�p ) ρϕ, h ,0 

1/2 2.08537e-1 3.96482 4.32668e-1 3.63797 

1/4 5.25969e-2 4.01515 1.18931e-1 3.96985 

1/8 1.30996e-2 4.03839 2.99586e-2 3.86706 

1/16 3.24377e-3 3.77312 7.74713e-3 4.17768 

1/32 8.59705e-4 1.85441e-3, 

Table 3 

The CPU time of the Para/SDC scheme and the serial SDC scheme with the fixed mesh h = 1 / 00 . 

Method 

CPU 

�t = 1 / 10 �t = 1 / 20 �t = 1 / 40 �t = 1 / 80 

SDC 80.263 161.841 321.787 649.848 

Para/SDC 37.487 98.233 128.146 250.343 

Table 4 

The convergence orders of the Para/SDC scheme at time t m = 1 , with the fixed mesh h = 1 / 8 and varying time step �t . 

�t 

ν = 10 −1 ν = 10 −5 

‖ e m u ‖ 0 , � f 
ρu , �t ,0 ‖ e m ϕ ‖ 0 , �p 

ρϕ, �t ,0 ‖ e m u ‖ 0 , � f 
ρu , �t ,0 ‖ e m ϕ ‖ 0 , �p 

ρϕ, �t ,0 

1/10 8.39097e-5 3.54240 5.95016e-4 3.91033 5.76385e-4 3.94825 5.64573e-4 3.89734 

1/20 2.36873e-5 3.74592 1.52165e-4 3.97398 1.45985e-4 3.96335 1.44861e-4 3.95650 

1/40 6.32350e-6 3.86583 3.82903e-5 3.99145 3.68337e-5 3.94290 3.66134e-5 3.95646 

1/80 1.63574e-6 3.91926 9.59307e-6 3.99641 9.34179e-6 3.81980 9.25407e-6 3.92574 

1/160 4.17359e-7 2.40042e-6 2.44562e-6 2.35728e-6 

 

 

 

 

 

 

 

 

 

 

the mesh size h = 1 / 8 and setting varying time steps �t = 1 / 20 , 1 / 40 , 1 / 80 , 1 / 160 , 1 / 320 . These results in Table 1 indi-

cate that the Para/SDC method is second-order accurate. A series of ρu , h ,0 and ρϕ, h ,0 are listed in Table 2 with fixed time

step �t = 1 / 20 and varying spacing h , which clearly suggests that the convergence order in space is optimal. All data in

Tables 1 and 2 are consistent with the theoretical analysis in Theorem 5.1 . 

6.2. Experiment 2 

In order to verify the effectiveness, we design an experiment to compare the CPU time of the Para/SDC algorithm with

that of the serial second-order SDC algorithm. We set the parameters the same as Experiment 1. The results are list in

Table 3 . Obviously, our scheme indeed costs less CPU time than the serial SDC algorithm. 

6.3. Experiment 3 

In this experiment, we confirm the influence of the errors based on different kinematic viscosity variables ν and hy-

draulic conductivity variables K . For simplicity, we denote that ‖ e m 

u ‖ 0 , � f 
= ‖ u 

m 

2 , �t 
− u 

m 

2 , �t 
2 

‖ L 2 (� f ) 
and ‖ e m 

ϕ ‖ 0 , �p 
= ‖ ϕ 

m 

2 , �t 
−

ϕ 

m 

2 , �t 
2 

‖ L 2 (�p ) 
. Firstly, we calculate the convergence order in time, showing that the numerical solutions still satisfy the sec-

ond order of convergence, see Tables 4 and 5 . Secondly, we compare the errors between the numerical solutions and the

exact solutions. The results of Table 6 show that the errors for the fluid velocity u increase as kinematic viscosity variables

ν decreases. In Table 7 , we choose different hydraulic conductivity variables K , the results suppose to show that the values

of hydraulic conductivity variables have a greater effect on the piezometric head ϕ. 
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Table 5 

The convergence orders of the Para/SDC scheme at time t m = 1 , with the fixed mesh h = 1 / 8 and varying time step �t . 

�t 

K = 0 . 1 K = 0 . 01 

‖ e m u ‖ 0 , � f 
ρu , �t ,0 ‖ e m ϕ ‖ 0 , �p 

ρϕ, �t ,0 ‖ e m u ‖ 0 , � f 
ρu , �t ,0 ‖ e m ϕ ‖ 0 , �p 

ρϕ, �t ,0 

1/10 3.61669e-4 4.41748 1.50600e-2 4.21788 1.62462e-4 3.86432 3.70852e-2 3.84365 

1/20 8.18722e-5 4.21630 3.57051e-3 4.06416 4.20416e-5 3.88580 9.64844e-3 3.90764 

1/40 1.94180e-5 4.09289 8.78536e-4 3.99649 1.08193e-5 3.86162 2.46912e-3 3.93833 

1/80 4.74433e-6 4.01871 2.19827e-4 3.94772 2.80175e-6 3.76683 6.26946e-4 3.94036 

1/160 1.18056e-6 5.56845e-5 7.43795e-7 1.59109e-4 

Table 6 

The error for the Para/SDC scheme at time t m = 1 , with fixed h = 1 / 100 , �t = 1 / 2 and K = 1 . 

�t ν = 1 ν = 10 −1 ν = 10 −3 ν = 10 −5 

‖ u m 
2 ,h 

− u m ‖ L 2 (�) 
1.26596e-3 1.51331e-2 5.00160e-1 8.12845e-1 

‖ ϕ m 
2 ,h 

− ϕ m ‖ L 2 (�p ) 1.33681e-2 1.36715e-2 5.19811e-2 7.97252e-2 

Table 7 

The error for the Para/SDC scheme at time t m = 1 , with fixed h = 1 / 100 , �t = 1 / 2 and ν = 1 . 

�t K = 1 K = 0 . 1 K = 0 . 01 K = 0 . 001 

‖ u m 
2 ,h 

− u m ‖ L 2 (�) 
1.26596e-3 7.41861e-2 2.24906e-1 3.29615e-1 

‖ ϕ m 
2 ,h 

− ϕ m ‖ L 2 (�p ) 1.33681e-2 1.16589e + 1 3.58247e + 1 5.71824e + 1 

Table 8 

The convergence orders of the Para/SDC scheme at time t m = 1 , with the fixed mesh h = 1 / 8 and varying time step �t . 

�t ‖ u m 
2 , �t 

− u m 
2 , �t 

2 

‖ L 2 (� f ) 
ρu , �t ,0 ‖ ϕ m 

2 , �t 
− ϕ m 

2 , �t 
2 

‖ L 2 (�p ) ρϕ, �t ,0 

1/10 2.92310e-5 3.85357 1.64231e-4 4.05235 

1/20 7.58544e-6 3.93131 4.05274e-5 4.04051 

1/40 1.92949e-6 3.96667 1.00303e-5 4.02387 

1/80 4.86426e-7 3.98359 2.49269e-6 4.01285 

1/160 1.22107e-7 6.21177e-7 

 

 

 

 

 

 

 

 

 

 

 

6.4. Experiment 4 

Set the porous region �p = �′ 
p /D where �p = [0 , 1] × [0 , 1] and D is the circle with the radiu 0.2cm and the dot (0.5,0.5).

The fluid domain still is � f = [0 , 1] × [1 , 2] and the interface � = (0 , 1) × { 1 } . Note again we set the physical parameters

ν = 1 , S 0 = 1 , g = 1 , α = 1 and K = K I with K = 1 . The results in Table 8 shows that the convergence order of the time

step is still second order. 

7. Conclusion 

In this paper, we present a second-order Para/SDC algorithm for the non-stationary mixed Stokes/Darcy equations with

the BJS interface condition. The numerical stability and the optimal error estimate are presented. And the numerical exper-

iments demonstrate the effectiveness of our scheme. 
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