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We address the inhibition of tunneling in polariton condensates confined in a potential
landscape created by a honeycomb array of microcavity pillars in the presence of spin-
orbit coupling and Zeeman splitting in the external magnetic field. The coupling rate
between the microcavity pillars can be strongly impacted even by weak out-of-phase
temporal modulations of the depths of the corresponding potential wells. When such
a modulation is implemented in truncated honeycomb arrays that realize a polari-
ton topological insulator, which supports unidirectional edge states in the presence
of spin-orbit coupling and Zeeman splitting, it allows controlling the velocity of the
states. The origin of the phenomenon is the dynamical modulation with a proper fre-
quency, which notably changes the dispersion of the system and the group velocity of
edge states. We show that such a control is possible for modulation frequencies close
to resonances for the inhibition of tunneling in a two-well configuration. Edge states
considerably slow down, and even stop completely, when the modulation frequency
approaches a resonant value, while above such a frequency, splitting of the edge
states into wavepackets moving with different velocities occurs. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5043486

Topological insulators are a topic of highest interest currently. One of their most representative
features, which distinguishes them from conventional insulators, is the existence of unidirectional
in-gap edge states that emerge when the topological insulator is placed in contact with a material of
distinct topology.1,2 Due to their topological nature and the absence of states into which scattering
can occur, edge states survive in the presence of disorder and can bypass structural defects. Topo-
logical insulators, first studied in the context of the quantum Hall effect,1–4 represent nowadays an
interdisciplinary concept that has been demonstrated in diverse areas of physics, including acous-
tics,5,6 mechanics,7 physics of cold atoms,8–11 and photonics,12–35 to name a few. Demonstrations
in photonic systems include gyromagnetic photonic crystals,12,13 semiconductor quantum wells,14

arrays of coupled resonators,15,16 metamaterial superlattices17 and periodic structures,18,19 helical
waveguide arrays,20–23 parity-time symmetric systems,24 polaritons in microcavities,25–31 as well as
various dissipative structures allowing lasing in topological states.32–35 Combination of topological
and nonlinear material properties enables the formation of unidirectional topological quasi-solitons,
as predicted in waveguide arrays36–38 and polaritonic systems.29,30,39,40
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The uncommon dispersion of the edge states, whose unidirectional motion becomes apparent
when wavepackets with a localized envelope are used for edge state excitation, is determined by
the physical factors leading to opening of the topological gap and, most importantly, by the internal
structure (symmetry) of the insulator. Thus, photonic Floquet20–22 and polariton25,29 insulators are
most frequently constructed using honeycomb arrays of waveguides or microcavity pillars, respec-
tively. The symmetry of the underlying array determines the momentum intervals where edge states
can appear for a particular truncation type. Elucidation of new mechanisms that allow controlling the
dispersion of the topological edge states, hence the transport properties of the system, is an important
problem from both fundamental and practical points of view.

Here we expose one such mechanism that keeps the internal structure of the topological insulator
unchanged and that is based on shallow periodic temporal modulations of the depths of the potential
wells in the honeycomb array. It relies on the phenomenon of the inhibition of tunneling that was
introduced in quantum mechanics and that leads to a considerable suppression of tunneling for certain
modulation frequencies in time-modulated potentials.41,42 Nowadays, the control of tunneling by
periodic forces is routinely used in non-topological systems.43,44 In photonics, this phenomenon has
been observed in waveguide arrays modulated in the direction of light propagation45,46 (see also the
recent review47). Honeycomb structures frequently used for the construction of topological insulators
are especially suitable for the observation of the inhibition of tunneling since this effect requires out-
of-phase modulation of the depths of all neighbouring potential wells,48 a property that is easily
realizable in honeycomb array.

We consider a polariton topological insulator built as a honeycomb array of microcavity pillars
that can be readily fabricated experimentally and that has been already used for the demonstration of
nontopological polaritonic edge states.49,50 Existence of topological edge states in such a system relies
on the combination of polarization-dependent tunneling between neighbouring pillars, analogous to
spin-orbit coupling effect,51,52 and Zeeman splitting in a magnetic field through the excitonic compo-
nent of the polariton condensate. We show that the group velocity of the edge states can be controlled
by a weak periodic out-of-phase temporal modulation of the neighbouring microcavity pillars, which
can be realized, e.g., using electro-optic,53 acoustic,54 free-carrier based,55 and other56,57 techniques.
When the modulation frequency approaches one of the resonant values, the group velocity of the
edge states can be decreased practically to zero, thus leading to a decreasing displacement along the
edge for states with a localized envelope. The phenomenon takes places with a suppressed emission
into the bulk due to the topological protection, which ensures motion of the wavepacket only along
the edge with a velocity controlled by the modulation.

The evolution of a spinor wavefunction Ψ= (ψ+,ψ−)T describing a polariton condensate in a
time-modulated and spatially truncated honeycomb array of microcavity pillars is governed by the
system of the dimensionless coupled Schrödinger equations,25,29
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We adopt a circular polarization basis, where the relation between the wavefunctions of the spin-
positive and spin-negative components and wavefunctions of conventional TE (subscript y) and TM
(subscript x) polarizations reads as ψ± = (ψx ∓ iψy)/21/2; the parameter 2β = (mx − my)/(mx + my)
accounts for spin-orbit coupling;51,52 mx,y are the effective masses of the TM and TE polaritons,
respectively; the term ∼Ω is the Zeeman energy splitting in the external magnetic field; we also
assume linear small-density regime. Time-dependent potential landscape produced by microcavity
pillars is described by the function R= [1 + µ sin(ωt)]RA(x, y) + [1− µ sin(ωt)]RB(x, y), where RA

and RB describe two standard sublattices36 of the honeycomb structure that exhibit weak (µ � 1)
out-of-phase modulation with frequencyω. Each sublatticeRA,B =−p

∑
n,m Q(x − xn, y − ym) is com-

posed of Gaussian potential wells Q= exp[−(x2 + y2)/d2] with the width d and depth p, and the
separation between neighbouring potential wells in the resulting array R is given by a. Each poten-
tial well in R oscillates in time out-of-phase with its three nearest neighbours, which is a crucial
ingredient for tunneling inhibition. Here we assume that the array is truncated along the x-axis and
that it is periodic along the y-axis so that two zigzag edges appear for −R profile, as depicted in
Fig. 1(a). Results that we obtained for the case of bearded edges are qualitatively similar; thus,
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FIG. 1. (a) Potential created by an array of microcavity pillars with zigzag-zigzag edges. (b) Band structure corresponding
to an array with 44 pillars per unit cell. Red and blue lines are associated with the edge states; dots are located at k = 0.55 K.
[(c)–(f)] Spatial distributions |ψ± | corresponding to dots in (b). The domain shown in (a) and (c)–(f) is x ∈ [−28, +28] and
y ∈ [−2T , +2T ].

they are not shown here. The y period of the structure is T = 31/2a. In Eq. (1), all spatial coordi-
nates are normalized to the characteristic length L, all energy parameters (including potential depth
and Zeeman splitting) are normalized to the characteristic energy ε0 = ~

2/mL2, where m = 2mxmy/
(mx + my) is the effective polariton mass, while time is normalized to ~ε−1

0 . For the calculations, we
set a = 1.5, d = 0.5, p = 8, which for a characteristic length of L = 1 µm corresponds to 1 µm-wide
potential wells with a centre-to-centre separation of 1.4 µm and depths of 5.6 meV. In these estimates,
the effective polariton mass m∼10−34 kg was used, which gives ε0∼0.7 meV.

Topological edge states appear due to simultaneous action of spin-orbit coupling and Zeeman
splitting. These two effects, acting together, break the time-reversal invariance in Eq. (1) that, accord-
ing to Ref. 3, should lead to opening of the topological gap between the former Dirac points in the
spectrum of the honeycomb array.25,29 To illustrate the effect for the truncated array from Fig. 1(a), we
first switch off the temporal modulation by setting µ = 0 and search for eigenmodes of the structure in
the form of Bloch waves ψ±(x, y, t)= u±(x, y) exp(iky + iε t), which are periodic u±(x, y)= u±(x, y + T )
along the y-axis and localized u±(x→±∞, y)= 0 along the x-axis. Such Bloch modes are charac-
terized by the dependence of their energy ε on Bloch momentum k, which should be periodic with
a period K = 2π/T according to the Floquet theorem. Such dependence is found from the linear
eigenvalue problem,

εu± = (1/2)[∂2/∂x2 + (∂/∂y + ik)2]u± −R(x, y)u± − β[∂/∂x ∓ i(∂/∂y + ik)]2u∓ ∓Ωu±, (2)

and presented in Fig. 1(b), which shows a zoom of the dispersion relation between Dirac points. We
studied a structure containing 44 microcavity pillars per unit cell (one y-period of the array): four
such periods are shown in Fig. 1(a). The presence of the topological gap with unidirectional edge
states in it (red and blue lines between the remnants of Dirac points at k = K/3 and k = 2K/3) is
readily visible. Since our system is spinor and transforms at β = 0 into two independent equations,
there are always two similar groups of bands shifted by 2Ω and characterized by the dominance of
different components, ψ+ or ψ−, in spinor wavefunction.29 We deliberately selected a sufficiently
large Zeeman splittingΩ = 2.35 to have two upper bands from one of these groups well isolated from
the rest of the spectrum [Fig. 1(b)]. The wavefunctions emerging from these bands have a dominating
ψ− component. The width of the topological gap generally increases with the increase in the spin-orbit
coupling strength β. From now on, we set β = 0.3.

The topological mode associated with the red branch (superscript r) resides on the right edge
of the insulator, with a group velocity 3 = −∂ε/∂k at k = 0.55 K that is negative. Therefore, the
mode moves along the negative direction of the y-axis. By contrast, the mode from the blue branch
(superscript b) resides on the left edge of the insulator and at k = 0.55 K moves in the positive direction
of the y-axis. One observes the appearance of charge-2 vortices in each well in the ψ+ component,
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FIG. 2. Snapshots illustrating the evolution of topological edge states with an envelope in the unmodulated array. [(a)–(c)]
Spin-positive component and [(d)–(f)] spin-negative component. The |ψ± | distributions are shown within −28 ≤ x ≤ 28 and
−130 ≤ y ≤ 60 windows.

a phenomenon that is a consequence of the spin-orbit coupling specific for polaritons. As the group
velocity of the edge states is defined by ∂ε/∂k, their dispersion is defined by ∂2ε/∂k2. The motion of
the edge state becomes apparent in the presence of a broad localized envelope along the y-axis. An
illustrative example of the evolution of the edge state from the right edge [red dot in Fig. 1(b)] with
the Gaussian envelope exp[−(y − yin)2/42

in] with yin = 20 and 4in = 6T in the unmodulated array is
shown in Fig. 2. As shown in Fig. 1(b), the velocity of such a state is 3 ≈−0.1; therefore, it traverses
about 60 periods of the structure and notably broadens over the time interval shown. Notice that
due to topological protection, the wavepacket moves along the edge and does not penetrate into the
bulk.

Our main goal here is showing that the velocity of the wavepacket along the edge can be efficiently
controlled, while its broadening can be practically canceled, by a suitable weak temporal modulation
of the potential (microcavity pillars). To gain insight into the physics underlying this mechanism, we
first address the impact on tunneling of the out-of-phase modulation of potential wells in a simple two-
pillar structure. Note that we take into account all physical effects that are included into model (1), i.e.,
Zeeman splitting and spin-orbit coupling. The latter dictates that the mode of a single potential well
exhibits a bell-shaped profile in the ψ− component and carries a charge-2 vortex in the substantially
less localizedψ+ component, as visible in the insets of Fig. 3(a). When the pillars are brought in contact
with each other, one observes Josephson oscillations, namely, periodic switching between the pillars.
For selected parameters of the structure (that we optimized to get sufficiently large velocity 3 of the
edge states), the period of oscillations at µ = 0 is Tb ≈ 13.15. If an out-of-phase temporal modulation
of the potential wells is imposed, the evolution of the t-periodic system is governed by quasi-energies,
rather than by usual energy ε as in the static system. The solutions in this case can be found in the
form ψ±(t)= u±(t) exp(iε t), where ε is the quasi-energy defined moduloω and u±(t)= u±(t +2π/ω) is
the time-periodic function whose period is defined by the period of the temporal modulation. As we
found numerically, in a modulated two-pillar system, quasi-energies ε of localized modes practically
(but not exactly) coincide at a set of resonance frequencies ω that depend on the system parameters,
such as depths of potential wells, separation between them, and spin-orbit coupling strength. At these
frequencies, the modes of the system do not experience dephasing,41,45,46 and therefore, the input
wavepacket that may excite an arbitrary combination of such modes remains practically unchanged
upon evolution, i.e., tunneling is practically arrested. For the parameters studied in this paper, the
largest modulation frequency at which quasi-energies coincide in a two-pillar system is ω ≈ 0.75.

To illustrate the above-described effect using a single-pillar excitation, we calculate the time-
averaged norm in the excited (right) potential well defined as

Uav =
1

4TbU0

∫ 4Tb

0
dt
∫ +∞

−∞

dy
∫ +∞

0
Ψ†(x, y, t)Ψ(x, y, t)dx, (3)

where U0 is the norm in the excited well in the initial moment of time t = 0, and averaging is performed
over t = 4Tb. The dependence Uav(ω) is shown in Fig. 3(a). Maxima in this dependence are indicators



120801-5 Zhang et al. APL Photonics 3, 120801 (2018)

FIG. 3. (a) Time-averaged norm Uav versus modulation frequency ω in a two-pillar system. Insets show the ψ+ and ψ−
components in a mode of single pillar for −8 ≤ x, y ≤ 8. Evolution dynamics (ψ− component in y = 0 cross section) in a
modulated two-pillar system at (b)ω = 0.65 [blue dot in (a)] and (c)ω = 0.75 [red dot in (a)]. In (b) and (c), we show dynamics
within windows 0 ≤ t ≤ 8Tb and −8 ≤ y ≤ 8. [(d)–(g)] Quasi-energy bands ε (k) of the modulated topological insulator for
µ = 0.2 and different modulation frequencies indicated in each panel. We use the same vertical scale in panels (d)–(g).

of inhibited tunneling—as one can see, there are multiple resonances, each of which corresponds
to a minimum of the difference between quasi-energies. Inhibition is not complete because in the
system under study, the quasi-energies do not coincide exactly (otherwise one would have Uav = 1
at the maxima), but coupling is delayed drastically in resonances. The phenomenon is visible in the
evolution dynamics in y = 0 cross sections for ω = 0.65 [out of resonance, blue dot in Fig. 3(a)]
and for ω = 0.75 [primary resonance, red dot in Fig. 3(a)], in Figs. 3(b) and 3(c), respectively. At
resonance [Fig. 3(c)], the excitation remains in the excited well at all times and the fraction of norm
switching to neighbouring well is negligible. The same picture is observed in secondary resonances,
but quality of the tunneling inhibition reduces with the decrease in the resonant frequency. In Fig. 3,
we use optimal modulation depth µ = 0.2 because too shallow modulations cannot inhibit coupling,
while too deep modulations result in strong radiation. We observed that resonance frequencies grow
almost linearly with µ. Notice that the inhibition of tunneling persists even in the presence of a phase
shift between the modulations of depths of the two potential wells. However, its efficiency is maximal
when the modulation is out-of-phase. This is the case for both, the two-pillar system and the extended
topological insulator.

Since tunneling between potential wells determines the evolution of the excitations also in com-
plex extended systems, one expects that a similar resonant phenomenon may occur in the topological
insulator in the presence of out-of-phase modulation of the potential wells. However, importantly, in
that case, the modes of the system are extended edge states having nonzero transverse momentum k.
To study the impact of the potential modulation on their evolution, we use the same input conditions
as in Fig. 2 (edge state with a broad envelope), vary the modulation frequency ω, and follow the
evolution of the centre of mass of the wavepacket given by the expression

yc(t)=
∫∫

yΨ†Ψdxdy/
∫∫
Ψ†Ψdxdy. (4)

Our calculations reveal a strongly nonmonotonic dependence of the wavepacket centre displace-
ment δyc = yc − yin on the modulation frequency [Fig. 4(a)], which becomes apparent already for
relatively short evolution times, in the range t ∼ 100. The typical dependence |δyc(ω)| at fixed time
t = 1500 is displayed in Fig. 4(b). There is a clear correlation between the frequencies at which
the displacement is minimal (practically zero around ω = 0.75) and the resonances for tunneling
inhibition in Fig. 3(a). For frequencies between the resonant ones, the edge states traverse consid-
erable distances (∼60 periods) along the edge. The displacement is practically zero in the principal



120801-6 Zhang et al. APL Photonics 3, 120801 (2018)

FIG. 4. (a) Displacement |δyc | of the edge state along the edge in the topological insulator versus evolution time t and
modulation frequencyω. (b) Displacement |δyc | as a function ofω at t = 1500. The inverse form-factor χ−1 of the edge state
versus modulation frequency and evolution time (c) and versus modulation frequency at t = 1500 (d). In all cases, µ = 0.2.

(i.e., right) resonance and in the second (next to principal) resonance. It is also relevant to show the
expansion rate of the edge states during evolution, and to quantify it, we introduced the form-factor,
which is defined as58

χ2 =

∫∫
(Ψ†Ψ)

2
dxdy

/ (∫∫
Ψ†Ψdxdy

)2

. (5)

The quantity χ−1 characterizes the width of the wavepacket. In Figs. 4(c) and 4(d), the dependence
χ−1(ω) is shown during evolution and in the final moment of time t = 1500, respectively. There is a
clear correlation between the width and the displacement. For example, the minimal width is achieved
close to the resonance frequencies, where displacement is also minimal.

Figure 5 shows the output |ψ− | distributions at t = 1500 for modulation frequencies around the
principal resonance. Remarkably, already for frequenciesω ≈ 0.59, the broadening of the wavepacket
is notably reduced in comparison with the case of the unmodulated topological insulators. The
displacement along the edge monotonically decreases (the interval of variation of wavepacket position
is enormous and can be further increased for longer evolution times) when the modulation frequency
approaches the primary resonance (ω = 0.59–0.68). This constitutes the central result of our paper,
i.e., the possibility to control displacements in the topological system by a weak modulation of the
structure. To gain further insight, we calculated the quasi-energy bands of the modulated topological
insulator for different modulation frequencies ω. Examples of quasi-energy bands are presented
in the bottom row of Fig. 3. In the y-periodic topological insulator, quasi-energies ε are functions
of the Bloch momentum k. One can see that the topological gap with edge states in it persists even

FIG. 5. Output |ψ− | distributions at t = 1500 for modulation frequencies around the principal resonance. Frequency values
are indicated in each panel. In all cases, µ = 0.2 and k = 0.55 K.
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FIG. 6. Same as in Fig. 5 but for modulation frequencies around secondary resonance. Left panel shows input wavepacket.
Distributions are shown within x ∈ [−14, 42] and y ∈ [−90, 100] windows. The initial edge state is launched at yin = 80.

for the modulation amplitude µ= 0.2 used here. However, the width of the gap notably decreases when
the modulation frequency approaches the resonant values. Because the width of the gap decreases,
the derivatives ∂ε/∂k and ∂2ε/∂k2 for topological branches determining the velocity and effective
dispersion of the corresponding topological edge states decrease too, hence the reduced displacement
and dispersion close to resonant frequencies. Figure 3(g) shows that the topological gap shrinks at
ω ≈ 0.70 (it should be stressed that in a periodic system, the resonant frequency may depart from
the resonant frequency of a two-pillar system). This is consistent with a strong expansion of the
wavepacket into the bulk of the array observed in direct simulations shown in Fig. 5. Thus, in
resonances, the topological properties of the system degrade and as a result, in a narrow range of
frequencies, one observes radiation into the bulk. When the modulation frequency increases above
the resonant value, the wavepacket splits into two wavepackets that may move in opposite directions,
while radiation into the bulk cancels (ω = 0.78). The amplitude of one of these wavepackets gradually
decreases, and for high frequencies, one again observes considerable shifts in the negative direction
of the y-axis (ω = 0.84).

Similar dynamics was observed for other transverse momenta k and not only around principal
but also around secondary resonances in ω. Figure 6 shows transformation of the output state with
an increase in the modulation frequency, when it approaches the second resonance. Just as in the
primary resonance, the displacement of the wavepacket monotonically decreases with ω, until the
wavepacket experiences an abrupt destruction around the resonance at ω = 0.304.

Summarizing, we studied the inhibition of tunneling of topological edge states by introducing
out-of-phase modulations in microcavity pillars constituting a polariton topological insulator. The
modulation was found to drastically affect the displacement of the states, without destroying their
internal structure. Also, we showed that efficient control of the displacement is possible for modulation
frequencies close to frequencies at which inhibition of tunneling occurs in a two-pillar system. Our
findings are relevant to optoelectronic devices based on topologically protected edge states. The
concept may be also relevant in the case of nonlinear excitations and gap solitons.59,60
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