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We investigate Rabi-like oscillations of topological valley
Hall edge states by introducing two zigzag domain walls
in an inversion-symmetry-breaking honeycomb photonic
lattice. Such resonant oscillations are stimulated by weak
periodic modulation of the lattice depth along the propaga-
tion direction that does not affect the overall symmetry and
the band topology of the lattice. Oscillations are accompa-
nied by periodic switching between edge states with the same
Bloch momentum but located at different domain walls.
Switching period and efficiency are the non-monotonic
functions of the Bloch momentum in the Brillouin zone.
We discuss how the efficiency of this resonant process de-
pends on the detuning of modulation frequency from the
resonant value. Switching of nonlinear edge states is also
briefly discussed. Our work brings about an effective ap-
proach to accomplish resonant oscillations of the valley
Hall edge states in time-reversal-invariant topological
insulators. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.003342

Photonic topological insulators and topological lasers have
attracted global attention nowadays [1–8]. In photonics and
related areas, topological insulators have been constructed by
breaking either the time-reversal symmetry [4,9–13] or the spa-
tial inversion symmetry [14,15]. In the latter case, since the
time-reversal symmetry is not broken, it is more convenient
to realize a feasible topological system that offers topological
protection against certain classes of disorder. Among numerous
optical lattice structures, the graphene-like honeycomb lattice
(HCL) offers a very convenient platform for topological
photonics. The HCL has a pair of degenerated but inequivalent
Dirac points K and K 0 at the corners of the first Brillouin
zone, as has been employed for demonstration of valley pseu-
dospin and valley Landau–Zener–Bloch oscillations [16,17].

The HCL consists of two sublattices, and its inversion sym-
metry can be broken by setting different refractive indices or
different site sizes in two sublattices [14,15]. Breakup of inver-
sion symmetry opens the gap at the Dirac points, leading to a
host of fundamental phenomena due to the intriguing valley
degree of freedom [18,19]. For instance, the Berry curvature
has opposite signs at the K and K 0 valleys that can be attributed
to the effective magnetic field leading to the well-known valley
Hall effect [20]. It has been proven both theoretically and ex-
perimentally that at the domain walls [14,21,22], there exist
robust valley Hall edge states (VHES) topologically protected
by symmetry, so they can circumvent sharp corners or obstacles
[15] without back-reflection or radiation into the bulk.
Inspired by the discoveries in topological electronic systems,
a variety of valley-mediated effects including valley polarization,
valley pseudospin and vortex states, and valley topological
transport have been investigated in photonic and phononic
crystals [15,16,23–30], among other systems.

Since the internal scattering of the VHES is inhibited due to
topological protection, the energy typically cannot be routed to
other locations away from the domain wall. As such, the appli-
cation of the VHES in switching-based optical devices is lim-
ited. Is there a way to overcome this limitation and meanwhile
preserve the topological protection? In this Letter, we construct
two zigzag domain walls in an inversion-symmetry-breaking
HCL, and investigate Rabi-like oscillations of the topological
VHES residing at these domain walls. The domain walls are
introduced by tuning the refractive index difference in different
sublattices. Rabi-like oscillations are induced by weak and peri-
odic longitudinal modulation of the HCL [31–33], and they
are manifested in periodic switching of the edge states between
different domain walls, akin to the Rabi oscillations previously
studied with non-topological waveguide arrays [31,34]. We
emphasize that our method of imposing a weak modulation
along the propagation direction does not affect the topological
property or symmetry of the HCL. It is also different from
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temporal-modulation-based edge-state switching previously
proposed for polariton topological insulators [33], where
the time-reversal symmetry is broken due to the spin-orbit
coupling while the inversion symmetry is retained.

The paraxial equation for amplitude ψ of a light beam
propagating along the z axis of a longitudinally modulated
lattice can be written as

i
∂ψ
∂z

� −
1

2
�∂2x � ∂2y �ψ −R�x, y��1� μ sin�ωz��ψ − gjψ j2ψ :

(1)

Here, the transverse �x, y� and longitudinal �z� coordinates are
normalized to the characteristic transverse scale r0 and the dif-
fraction length Ldif � kr20, respectively; k � 2πn0∕λ is the
wavenumber; n0 is the background refractive index; the last term
describes a focusing cubic nonlinearity with strength g > 0;
μ is the depth of the longitudinal modulation, and ω is the
modulation frequency. The HCL is described by the function
R�x, y� � RA�x, y� �RB�x, y�, where RA and RB describe
two standard sublattices of the HCL. Each sublattice
RA,B�x, y� � pA,B

P
n,mQ�x − xn, y − ym� is composed of

Gaussian waveguides Q � exp�−x2∕a2x − y2∕a2y � with pA,B
being the depths of two sublattices and ax,y being waveguide
widths. The HCL is truncated in the y direction but extends
periodically along the x direction with a periodicity X �
31∕2d (d being the lattice constant). We presume that the HCL
with two domain walls can be prepared by using, for instance,
the femtosecond laser writing technique [4,5] and use the
following parameters: λ � 1045 nm, d � 18.5 μm, ax �
4.9 μm, ay � 3.2 μm. For transverse scale r0 � 4.9 μm, the
diffraction length Ldif ∼ 0.2 mm. The sublattice depths pA �
0.94 and pB � 1.56 correspond to refractive index changes
of 7.5 × 10−4 and 12.4 × 10−4 in a real physical system,
respectively [4,5].

First, we consider a linear system without modulation (i.e.,
g � 0 and μ � 0). Corresponding linear modes are the Bloch
states, which are periodic along x and localized along y; they
can be written as ψ�x, y, z� � u�x, y� exp�iβz � ikxx�, where
u�x, y� � u�x � X , y�, u�x, y → �∞� � 0, kx is the Bloch
momentum, and β is the propagation constant, which is a
periodic function of Bloch momentum kx with a period
K � 2π∕X . Plugging the linear mode into Eq. (1), one obtains
the eigenproblem βu � ��∂x � ikx�2 � ∂2y �u∕2�Ru, which
can be solved numerically for the β�kx� spectrum by using
the plane-wave expansion method. This spectrum is displayed
in Fig. 1(a). The corresponding configuration with two zigzag
domain walls (marked by two dashed lines) is shown in
Fig. 1(b). Clearly, there are two topological valley edge states
as indicated by the red and blue curves in Fig. 1(a), which local-
ize at the bottom and top domain walls in Fig. 1(b), respec-
tively. In Fig. 1(b), the sublattice Ra �Rb� is marked by
blue (red) color. In Figs. 1(c)–1(f ), we display topological
VHES at two different Bloch momenta. One can observe that
depending on Bloch momentum value, the edge state may be
strongly localized on one domain wall, or it may show appre-
ciable coupling into the other domain wall [Figs. 1(c) and 1(d)].
If the Bloch momentum increases, the overlap of the edge states
on different domain walls decreases [Figs. 1(e) and 1(f )]. It is
apparent that the overlap between different edge states is
determined by separation between two domain walls. Since

smaller separation allows to achieve faster switching, here we
design the lattice such as to have minimal separation between
domain walls; see dashed lines in Fig. 1(b).

In order to verify the effect of weak modulation on evolution
of edge states, we use the VHES at the bottom domain wall [red
curve in Fig. 1(a)] as the input for Eq. (1) at μ ≠ 0. We con-
sider weak modulation, with amplitude μ ≪ 1, whose average
over one z period Z � 2π∕ω is zero hsin�ωz�iZ � 0, and
analyze the impact of such modulation on the initial modes
of the unmodulated system. The period Z of modulation is
much smaller than actual switching distance, so such fast
and weak z modulation should be considered as perturbation
that couples different modes only in the initial basis, without
notably altering their propagation constants. The modulation
frequency is chosen as ω � βr − βb � δ with δ being modula-
tion frequency detuning and βr,b being propagation constants
of the edge states [here the subscript r (b) means red (blue)
color in accordance with color of branches in Fig. 1(a)]. δ �
0 corresponds to the resonant case when modulation frequency
ω0 � βr − βb amounts to propagation constant difference.
Note that we use the following normalizations hur, uri �
hub, ubi � 1 and orthogonality hur, ubi � 0. According to the
coupled mode theory [31], longitudinal refractive index modu-
lation with near-resonant frequency can couple edge states at
two domain walls. The evolution of their amplitudes (that be-
come z dependent) is governed by the equations ∂cr�b�∕∂z �
	μκcb�r� exp��iδz�∕2, where cr�b� are slowly varying complex
amplitudes of the interface states on different domain walls, and
the coupling coefficient can be written as

κ � hur,Rubi �
Z

X

0

dx
Z �∞

−∞
u
r Rubdy: (2)

The corresponding switching distance is defined as zs �
2π∕μjκj at δ � 0. At z � zs∕2, the VHES completes one tran-
sition from one domain wall to the other during the Rabi-like
oscillation process. Since switching distance is inversely propor-
tional to modulation depth μ and coupling coefficient jκj, as
dictated by coupled-mode equations, the fastest switching oc-
curs at the largest jκj. In Fig. 2(a), we show the dependencies of
the coupling coefficient on Bloch momentum. This depend-
ence is symmetric with respect to kx � 0, where jκj acquires
maximal value. One also finds that this dependence is
non-monotonous in the first Brillouin zone: for jkxj < 0.43K
coupling coefficient decreases with increase of jkxj, but for

Fig. 1. (a) Band structure and (b) corresponding geometry of the
honeycomb lattice. (c)–(f ) Stationary valley Hall edge states obtained
without longitudinal modulation at (c), (d) kx � 0, corresponding to
the solid circles in (a), and (e), (f ) kx � 0.22K, corresponding to the
open circles in (a). Dashed lines in (b)–(f ) represent the positions of
the two domain walls.
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jkx j > 0.43K, it increases with jkx j. Remarkably, near the
points kx � �0.43K, the coupling coefficient vanishes. In
Fig. 2(b), we show the corresponding switching distance, with
the open circles and solid curve being numerical results ob-
tained by direct integration of Eq. (1) and predictions of
coupled-mode theory, respectively. One finds that the switch-
ing distance predicted by theory perfectly matches switching
distance obtained in direct simulations practically for all kx val-
ues, except for points where coupling constant vanishes. By
comparing Figs. 2(a) and 2(b), one finds that the switching
distance is indeed inversely proportional to the coupling coef-
ficient (i.e., switching is fastest at kx � 0), and that it diverges
when jκj vanishes. The particular value of momentum, where
the coupling coefficient vanishes, depends exclusively on the
mode shapes ur and ub, which are in turn defined by the shape
and depth of the lattice R.

To illustrate the process of switching, in Fig. 3, we plot
the evolution of weights of two edge states during propagation.
These weights can be calculated from projections of the
field amplitude ψ on the initial stationary edge states:
νr,b � jcr,bj2 � jhur,beikxx ,ψij2. Because radiation into bulk
is negligible, the conservation law νr � νb � 1 holds, as it is
apparent from the coupled-mode equations for amplitudes
cr,b. The dependencies νr,b�z� are displayed in Fig. 3 for both

resonant [Fig. 3(a)] and non-resonant [Fig. 3(b)] cases in the
linear system at kx � 0.22K [see the red dot in Fig. 2(b)].
Notice that fast small-amplitude oscillations in νr,b are exactly
due to the periodic modulation of the potential with period
Z � 2π∕ω. We would like to mention that it is straightforward
to use the maximum value of νb, labeled as νmax

b , to characterize
the efficiency of switching. In Fig. 3(a), the VHES on the bot-
tom domain wall is set as the input. At z � z1, the edge states
on the top and bottom domain walls have practically the same
weights. Later, at z � z2, the power of the edge state on the top
domain wall reaches its maximum—half of the Rabi oscillation
cycle is completed. After that, the reverse energy exchange starts
leading to recovery of the initial state of the system at a com-
plete cycle, z � z4. The intensity distributions of the VHES at
these representative distances during the switching process are
illustrated in Fig. 4. One can see that the beam initially con-
centrated on the bottom domain wall [Fig. 4(a)] switches to the
upper domain wall [Fig. 4(c)], and finally returns to the initial
position [Fig. 4(e)]. In addition to exact resonance, switching
can also occur under non-resonant conditions, e.g., at
δ � 0.005, as shown in Fig. 3(b). In comparison with the res-
onant case, the switching distance zs in the non-resonant case is
smaller, but the efficiency decreases too, akin to incomplete
Rabi oscillations. It should be stressed that since diffraction
length is about 0.2 mm for our parameters, the real-world
switching distance constitutes about 17.5 cm for the edge state
at kx � 0.22K, and it can be even smaller for smaller momen-
tum values, as Fig. 2(b) shows. This confirms feasibility of the
experimental observation of this effect in standard samples.

Since the detuning strongly affects the switching process, as
shown in Fig. 3(b), we display in Figs. 5(a) and 5(b) the
dependence of switching distance and switching efficiency
on detuning δ. Both of them are symmetric about δ � 0.
The switching distance is largest in exact resonance.

Last, we consider switching for nonlinear edge states with
g � 1 in Eq. (1). Such states can be found from the nonlinear
problem ϵu � ��∂x � ikx�2 � ∂2y �u∕2�Ru� juj2u, where
ϵ is the propagation constant of nonlinear VHES, which
can be written as ψ�x, y, z� � u�x, y, z� exp�iϵz � ikxx�.
This problem was solved using Newton’s iterative method.
In Fig. 6(a) we display norm per period N � R�∞

−∞ dyR�X ∕2
−X∕2 jψ j2dx for the nonlinear edge states at two domain walls
at kx � 0.22K. Nonlinear edge states bifurcate from their
linear counterparts (dashed lines). Their norm grows with ϵ
until the propagation constant reaches the border of the
gap. We found that the difference in nonlinear propagation
constants of two nonlinear edge states with the same norm from
Fig. 6(a) gives a very good approximation to the frequency of

Fig. 2. Coupling coefficient (a) and corresponding switching dis-
tance (b) of the two VHESs versus Bloch momentum. Solid curves
and open circles in (b) are analytical and numerical results, respectively.

Fig. 3. Evolution of modal weights νr,b of the VHES at kx � 0.22K
illustrating Rabi-like oscillations. (a) Resonant case, δ � 0. Distances
zl � l zs∕4, l � 1,…, 4. (b) Non-resonant case, δ � 0.005.
In both cases, the modulation depth is μ � 0.07. The colors of
the curves are in accordance with the colors of the VHES in Fig. 1(a).

Fig. 4. Transverse intensity patterns of the VHES at representative
propagation distances marked in Fig. 3(a) for kx � 0.22K, at μ �
0.07 and δ � 0.
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periodic modulation that causes resonant switching between
such nonlinear VHES. This resonant frequency is depicted
in Fig. 6(b). In focusing nonlinear medium with g � 1, this
frequency increases with increase in norm N , because the dif-
ference in propagation constants of two states increases with
increase in the nonlinearity strength.

In summary, we have theoretically studied the resonant
switching of valley Hall edge states. Two domain walls are con-
structed in an inversion-symmetry-breaking HCL by making
the two sublattices with different refractive indices. The associ-
ated topologically protected VHES are obtained, and switching
between them is realized when periodic weak modulation is im-
posed on the HCL along the propagation direction. The pro-
posed switching method is highly selective due to its resonant
nature; it does not change topology of the lattice and is supposed
to be robust to weak disorder and inhomogeneities in the array.
Our results not only have potential applications for fabrication of
switching devices, but also provide a new viewpoint for inves-
tigating the valley-Hall-effect-related topological phenomena.
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Fig. 5. Switching distance (a) and efficiency (b) of the VHES at
kx � 0.22K versus the detuning δ in the linear system (i.e., the non-
linear coefficient g � 0) with μ � 0.07.

Fig. 6. (a) Norm of nonlinear edge states versus nonlinear propa-
gation constant ϵ. The colors of the curves are in accordance with
the colors of the VHES in Fig. 1(a). Dashed lines indicate propagation
constants of the linear edge states. (b) Dependence of resonant modu-
lation frequency ω on norm N of the nonlinear edge states.
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