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Abstract
The pioneering paper ‘Optical rogue waves’ by Solli et al (2007 Nature 450 1054) started the
new subfield in optics. This work launched a great deal of activity on this novel subject. As a
result, the initial concept has expanded and has been enriched by new ideas. Various approaches
have been suggested since then. A fresh look at the older results and new discoveries has been
undertaken, stimulated by the concept of ‘optical rogue waves’. Presently, there may not by a
unique view on how this new scientific term should be used and developed. There is nothing
surprising when the opinion of the experts diverge in any new field of research. After all, rogue
waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not
only in the process of supercontinuum generation. We know by now that rogue waves may be
generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical
systems. Theorists, in turn, have suggested many other situations when rogue waves may be
observed. The strict definition of a rogue wave is still an open question. For example, it has been
suggested that it is defined as ‘an optical pulse whose amplitude or intensity is much higher than
that of the surrounding pulses’. This definition (as suggested by a peer reviewer) is clear at the
intuitive level and can be easily extended to the case of spatial beams although additional
clarifications are still needed. An extended definition has been presented earlier by N Akhmediev
and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1–4). Discussions along these lines are
always useful and all new approaches stimulate research and encourage discoveries of new
phenomena. Despite the potentially existing disagreements, the scientific terms ‘optical rogue
waves’ and ‘extreme events’ do exist. Therefore coordination of our efforts in either unifying the
concept or in introducing alternative definitions must be continued. From this point of view, a
number of the scientists who work in this area of research have come together to present their
research in a single review article that will greatly benefit all interested parties of this research
direction. Whether the authors of this ‘roadmap’ have similar views or different from the original
concept, the potential reader of the review will enrich their knowledge by encountering most of
the existing views on the subject. Previously, a special issue on optical rogue waves (2013 J.
Opt. 15 060201) was successful in achieving this goal but over two years have passed and more
material has been published in this quickly emerging subject. Thus, it is time for a roadmap that
may stimulate and encourage further research.
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1. Foreword

Nail Akhmediev

The Australian National University

This ‘Roadmap on optical rogue waves and extreme
events’ brings together scientists who work in this area of
research who would greatly benefit if their efforts are pre-
sented in a single review article written by the parties who
were able to take part in this adventure. Since the pioneering
paper ‘Optical rogue waves’ by Solli et al [1] started the new
field in optics, a great deal of activity on this novel subject has
been launched (see, for example [2]), thus, it is time for a
roadmap that may stimulate and encourage further research.

Principally the new approach in this roadmap is that the
authors of each contribution are allowed to write only two
pages on a particular topic. This approach allows us to
express succinctly our views on the subject without actually
entering unnecessary lengthy details. Another advantage is
that it allows the experts to save time in writing their valuable
contribution and readers to pick up quickly the new ideas.

While the view of publishing a ‘roadmap’ was kindly
suggested by the Publisher of Journal of Optics, I found the
idea exciting and agreed to be the editor. I sincerely hope that
this publication will serve as another milestone in developing
the concept. The fact that this roadmap will be published in
celebration of the International Year of Light 2015 adds to the
excitement of this collective endeavor.

We received 14 sections for this article, all written by top
experts. Contributions in the roadmap are structured

exclusively in the order of their arrival. There is no preference
in their arrangement within the article itself. They have been
open to each participant of this project in order to review the
content. All comments both, open and anonymous, have been
taken into account by the authors. This way, the quality of the
presentation is kept at the same high level as usual peer
reviewed manuscripts submitted to the journal.

I enjoyed reading every single one of them. I hope, the
reader will also find it very useful to have many new ideas
presented in one place. This innovative way of creating an
exciting collective review may become common in future.

Clearly, the roadmap is not a complete review of pub-
lished papers on rogue waves. However, having a list of such
publications may be handy and help the reader in case he/she
is interested in a wider range of existing works on the subject.
I hope that such a list will be useful and represent the
contribution of the authors who for one or another reason
could not take part in contributing to the roadmap. I am
presenting such a list that covers the years 2014–2015 as the
previous literature has been well represented in [2]. These
references [3–93] are for short information only and do not
have any extended comments on each work. I also hope that
the reader will not be harsh on judging the quality of the
roadmap if any of the relevant references are unintentionally
missing. I stress that the works related to the ocean rogue
waves and purely mathematical papers are excluded from this
list. It covers only optics and closely related subfields.

With best wishes to all readers,
Nail Akhmediev
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2. Optical rogue waves as nonlinear Schrödinger
breathers: experiments in optical fibers

Bertrand Kibler

CNRS—Université de Bourgogne Franche-Comté

Status
In nonlinear dispersive wave systems driven by the 1+1D
focusing nonlinear Schrödinger (NLS) equation, one can
address the issue of rogue waves in terms of NLS breathers
whose entire space-time evolution is analytically described
[94]. For that reason and their ‘pulsating’ and localization
properties, these unstable wave structures were originally
considered as the simplest nonlinear prototypes of famous
hydrodynamic rogue waves [95, 96]. But they have remained
untested experimentally during almost 30 years. They also
provide support to the nonlinear stage of the universal
modulation (Benjamin-Feir) instability phenomenon, known
as precursor of highly localized wave structures through
amplification of perturbations (or noise) of (quasi-)
continuous/plane waves. Is modelling rogue waves using
NLS breathers still a realistic approach?

In confirming their existence and showing that breather
dynamics appear even with controlled initial conditions that
do not correspond to the mathematical ideal, recent optical
studies [97–99] have also extended in some way breather
validity towards nonlinear wave systems driven by noise (or
with a partial degree of coherence). In such cases, both
competition and interaction between many unstable modes
take place, so that rogue breathers may appear intermittently
or randomly in space and time with associated long-tailed
statistics [3, 100]. The latter is a general feature of optical
rogue waves identified for rogue solitons in the pioneering
work by Solli et al [1]. However, experiments on breathers
have been restricted so far to an essentially reduced class of
solutions and in the absence of complex dynamics. To go
beyond the frontier in terms of testing breathers to model
rogue waves, present and future experimental challenges
mainly rely on the simultaneous development of ultrafast
optical arbitrary wave generation and characterization, and
the design of optical systems with controllable complexity,
noise and dissipation (i.e., multicomponent and inhomoge-
neous propagation, as well as integrable turbulence and
generalized NLS-based systems, e.g. see sections 3–4, 7, 9,
15). Recent observations of NLS breathers in hydrodynamics
[101] have confirmed the direct analogy drawn within the
narrowband approximation of NLS model between water
waves and light wave propagation in optical fibers, thus
making this research area very challenging for both funda-
mental and applied aspects.

Contribution by the author
Our pioneering studies in optics have shown that breather
characteristics are clearly observed even with non-ideal initial
perturbations. Indeed, one can check both growth and
localization of single breathers that propagate along the
optical fiber by using simple initial sideband perturbation to

seed the modulation instability process, which corresponds to
a time-periodic sinusoidal modulation of the continuous wave
[97, 98]. These works concern the simplest first-order
solutions that are either periodic in space and localized in
time or periodic in time and localized in space; they are
referred to as Kuznetsov-Ma breathers and Akhmediev
breathers, respectively. By taking the period of both
solutions towards infinity, it is possible to approach the
limit of the doubly localized Peregrine breather. Note that the
standard NLS soliton is also a limiting case of NLS breathers.
But this simple experimental technique can lead to the
generation of complex behaviors that differ from the expected
breather [102]. This gives rise to the higher order modulation
instability [103, 104] and stimulation of multiple unstable
modes (i.e., nonlinear superposition of breathers that can
collide). Theoretically, arrangement in space and time of the
nonlinear superposition can be controlled through multiple
shifting parameters, which allows generation of an infinite
number of possible patterns. Such higher-order breathers are
of great interest since they provide higher energy
concentration in space and time, and thus localized waves
with giant amplitudes.

Consequently, the sensitivity of breather dynamics to
initial perturbations depends on the complexity or order of the
NLS solution (i.e., the order of energy localization). It is
worth mentioning that ideal excitation of breathers in optics
are nontrivial to directly synthesize in the temporal domain by
means of the usual intensity modulators at gigahertz levels.
Note that such GHz-THz frequency bandwidths correspond to
the typical instability domain for continuous waves in
nonlinear optical waveguides. In this context, we have
recently proposed to introduce the advantages of ultrafast
optics technology and programmable optical pulse shaping
that allow the generation of nearly arbitrarily shaped ultrafast
optical wave forms. It is based on spectral line-by-line
shaping of a home-made frequency comb generator. Such
investigations directly benefit from high-speed telecommuni-
cations-grade components. The optical processing based on
Fourier-transform pulse shaping provides the ultimate control
in terms of phase and amplitude for achieving the ideal
excitation of breathers in optical fibers (see figure 1 and [64]).
Relative amplitude and phase differences of 25 comb lines are
defined from exact conditions given by theory. In general,
fiber characteristics (here a standard single-mode fiber) are
chosen in accordance with both spectral bandwidth and peak
power of the wave evolving into the fiber in order to satisfy
the unperturbed NLS model. Either the destructive cutback
method or an original approach based on short propagation
sequences can be used for reconstructing the full wave
longitudinal evolution. Experimental measurements of the
synchronized nonlinear superposition of two Akhmediev
breathers are in excellent agreement with the theoretical
solution, as reported in figure 1. Specific characteristics are
revealed such as the time-periodic high-amplitude central
peak due to the merging of the two breathers and its
associated typical X-shape signature. Note that the growth-
decay of the giant peak occurs over less than half of the
nonlinear length.
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Nonlinear coherent structures are also known to emerge
or interact from noise, or a ‘turbulent’ environment with
inherent phase randomization (i.e., incoherent waves) in the
NLS system [100, 105]. It then appears of fundamental
importance to still consider the coherent and deterministic
approach to the understanding of rogue-wave phenomena in
association with the essential statistical approach of random
waves. To that purpose, one has to mention our recent
experimental observation of collision between Akhmediev
breathers [99], obtained from simple and non-ideal initial
perturbations and using a short propagation distance (about 3
nonlinear lengths); this can corroborate the fact that nonlinear
coherent structures may emerge locally (i.e., over a few
nonlinear lengths) in a turbulent environment. We assume
that certain excitation may rarely appear during propagation
of chaotic states, which seed the fast nonlinear growth of
localized wave structures exhibiting properties reminiscent of
NLS breather solutions. In that respect, this experimental
work has demonstrated that specific initial conditions are
required to lead, with certainty, to efficient collision between
breathers at an arbitrary point in space and time, and the
appearance of a giant-amplitude wave. In particular, both
group velocity and phase differences between breathers
govern their mutual interaction, so that the collision event
and related giant wave can be easily cancelled. Figure 2
reports the synchronized collision, the qualitative character-
istics of the extreme wave are well described by the ideal
analytical solution (see also [99]).

Concluding remarks
These experimental studies in optical fibers have reported the
first complete proof of existence and control of the untested
class of nonlinear waves called NLS breathers [64, 97–
99, 102, 104]. Such waves are of fundamental importance
since they contribute to fully describe the growth-decay cycle
of extreme localized waves emerging from modulation
instability. Note that the physics behind rogue waves
discussed here is closely related to the extreme
concentration of wave energy compared to the average
through nonlinearity and specific local properties of
coherence. These parameters are known to play a crucial
role in the yet-unresolved challenge of predictability of rogue
waves [16, 106, 107].

Acknowledgments and funding information

I gratefully acknowledge past and present collaborators on
these experimental works: B Frisquet, K Hammani, J Fatome,
C Finot, A Chabchoub, G Millot and J M Dudley, as well as
funding from the French National Research Agency and the
Conseil Régional de Bourgogne.

I point out that there are numerous papers in wave
physics focused on NLS breathers and modulation instability,
but only a limited number of references could be inclu-
ded here.

Figure 1. Evolution of two synchronized Akhmediev breathers (i.e.,
a special case of second-order breather) in both temporal and
frequency domains, respectively, as a function of propagation
distance and using exact initial excitation. (a)-(b) Experiment. (c)-(d)
Theory. Note that dimensional physical parameters are normalized
for comparison with theory. (Adapted from [64]).

Figure 2. Collision of two Akhmediev breathers with non-ideal
initial conditions. (a) Theory (i.e., ideal condition). (b) NLSE
simulation using experimental conditions. (c) Temporal intensity
profile at collision point obtained in experiment and compared to (a)
& (b). The main discrepancy observed for the maximal peak
intensity is due to propagation loss. (Adapted from [99]).
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3. Rogue waves in nonlinear multi-component
systems

Fabio Baronio

University of Brescia

Status
Nonlinear dynamics is one of the theoretical frameworks that
has been successful in predicting the basic features of rogue
waves [108]. So far, the focusing nonlinear Schrödinger
equation (NLSE) has played a pivotal role as a universal
model for rogue wave solutions (e.g. see sections 2, 4). The
Peregrine soliton, predicted 30 years ago, is the simplest
rational solution of the focusing NLSE with the property of
describing localized events in time and space. After decades
of debate, the Peregrine soliton has been recently observed in
optical fibers, water-wave tanks, and plasmas. Experiments
have also shown that breathers and higher-order rational
solutions of the focusing NLSE can well mimic extreme wave
dynamics (e.g. see section 2).

While rogue-wave investigations are flourishing in
several fields of science, moving beyond the standard
focusing NLSE description in order to model more general
and important classes of physical systems is both relevant and
necessary. In this direction, recent developments consist in
including higher-order perturbation terms (e.g. see sections 5,
14), because of the high amplitude or great steepness of a
rogue wave, in including dissipative terms (e.g. see section 6),
since a substantial supply of energy is generally required to
drive rogue-wave formation, or in considering wave propaga-
tion in higher dimensions.

The study of rogue wave solutions in multi-component
wave systems is another hot topic where several advances
have been recently reported. Indeed, numerous physical
phenomena require modeling waves with two or more
components, in order to account for different modes,
frequencies, or polarizations. When compared to scalar
dynamical systems, vector systems may allow for energy
transfer between their different degrees of freedom, which
potentially yields rich and significant new families of vector
rogue-wave solutions. Rogue wave families have been
recently found as solutions of fundamental physical nonlinear
models: the vector NLSE (VNLSE) or Manakov system
[51, 86, 109–111], the three-wave resonant interaction
(TWRI) equations [46, 112], the long-wave-short-wave
resonance (LWSW) equations [113], the coupled Hirota
equations, the massive Thirring model (MTM) [7]. Multi-
component systems have shown to cause wave behaviors that
could not be predicted by the scalar NLSE. The existence and
properties of rogue waves in multi-component systems is
likely to be a crucial step in the understanding and forecasting
of extreme wave events in fluid dynamics, optics, plasmas
and Bose–Einstein Condensates.

Contribution by the author
Here, we highlight recent original contributions on the
existence and properties of rogue waves in fundamental

multi-component models, in particular in the VNLSE, TWRI,
LWSW, and MTM models.

Over years, the VNLSE has constituted a universal
essential vector model for the exploration and description of
physical phenomena in several different disciplines. In the
context of nonlinear optics, it has been derived for the
description of pulse propagation in birefringent fibers, and
coupled beam propagation in photorefractive media. In
oceanography, the VNLSE describes the interaction of
crossing sea currents. Rogue wave solutions of the focusing
VNLSE have been recently reported: the vector bright-bright
generalization of the Peregrine solution of the focusing NLSE
[109], and moreover novel bright-dark rogue structures
[110, 111]. Surprisingly, rogue wave solutions of the
defocusing VNLSE have also been reported, unattainable in
the scalar defocusing NLSE: vector bright-dark and dark-dark
rogue waves [86]. Figure 3 reports a typical dark-dark rogue
wave in the defocusing VNSLE regime. In addition, recent
research activity has also considered higher order rogue
waves dynamics in VNLSE, similarly to what was done in
scalar NLSE, in order to describe complex high amplitudes
extreme dynamics [51].

The TWRI model has been extensively studied alongside
with the development of nonlinear optics, since it applies to
parametric amplification, frequency conversion, stimulated
Raman and Brillouin scattering. In the context of fluid
dynamics, TWRI applies to capillary-gravity waves, internal
gravity waves, and surface and internal waves. In plasma
physics, TWRI describes laser-plasma interactions, radio
frequency heating, and plasma instabilities. Other important
domains of application of TWRI are light-acoustic interac-
tions and wave-wave scattering in solid state physics.
Actually, TWRI equations admit families of localized rogue
wave solutions. Bright-bright-bright, dark-bright-dark, dark-
dark-dark and four-petaled rogue waves structures have been

Figure 3. Dark rogue wave distributions E(1) and E(2) of the
defocusing VNLSE [5].
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discovered in TWRI equations [112]. Intriguing dynamics of
watch-hand like super rogue waves have been also demon-
strated [46].

The LWSW equations describe the interaction between a
rapidly varying waves and a quasi-continuous one. In fluid
dynamics, LWSW resonance results from the interaction
between capillary and gravity waves. In optics, the LWSW
resonance rules wave propagation in negative index media, or
the optical-microwave interactions. Rogue waves have been
discovered in LWSW resonance: bright-bright and bright-
dark structures have been highlighted [113].

The last model we consider in this survey is the classical
MTM, a two-component nonlinear wave evolution model.
The MTM is a particular case of the coupled mode equations
that describe pulse propagation in periodic or Bragg nonlinear
optical media. Furthermore, the coupled mode equations also
appear in other physical settings. In particular coupled mode
equations describe ocean waves in deep water for a periodic
bottom. The fundamental bright-bright rogue wave solution
of the MTM has been very recently reported [7]. As such, the
search for novel solution forms of these equations, including
rogue waves, should provide understanding of unpredictable
nonlinear phenomena.

The study of rogue wave solutions in these different
multi-component systems contributed to evince peculiar
aspects and common features of rogue wave manifestations.
It’s a well-established fact that, for the scalar NLSE, the
focusing regime is a prerequisite for the emergence of regular
or random rogue waves. To the contrary, in the scalar case the
defocusing regime does not allow for rogue-wave solutions,
even of a dark nature. In coupled-wave systems, the focusing
regime is not a prerequisite for rogue wave’s existence; rogue
waves exist also in defocusing regimes [51, 86]. Actually, as
far as rogue-wave excitation is concerned, the modulation
instability (MI) plays the pivotal role [1, 108]. The conditions
under which MI may produce an extreme wave event are
subject of intense theoretical and experimental efforts. A
rogue wave may be the result of MI (e.g. see section 2), but
conversely MI does not necessarily lead to rogue-wave
generation. Studies in multi-component systems have shown
that the condition for the existence of rogue-wave solutions,
in different nonlinear wave models, coincides with the
condition of baseband MI [25, 114]. Baseband MI is defined
as the condition where a cw background is unstable with
respect to perturbations having infinitesimally small frequen-
cies. Conversely, passband MI is defined as the situation
where the perturbation experiences gain in a spectral region
not including the zero frequency as a limiting case. Figure 4
shows a numerically computed nonlinear evolution, obtained
in the case of baseband MI, leading to rogue-wave generation.
In the case of passband MI, a train of nonlinear oscillations
can be excited, but no rogue waves [25].

Concluding remarks
The study of rogue wave solutions in multi-component wave
systems is a hot topic of research where several advances
have been recently reported. Here, we have highlighted some
recent original theoretical contributions on the existence and
properties of rogue waves in fundamental multi-component
models, in particular we considered the Manakov system, the
TWRI equations, the LWSW equations, and the MTM.
Moreover, the studies of rogue wave solutions in multi-
component systems contributed to evince the regime of
baseband MI, as the condition for rogue wave existence.
These results shall stimulate the experimental investigations
aimed at observing such extreme wave events. The existence
and properties of rogue waves in multi-component systems is
likely to be a crucial step in the understanding and forecasting
of complex wave events in fluid dynamics, optics, plasmas
and Bose–Einstein Condensates.

Acknowledgments and funding information

F B acknowledges Shihua Chen for fruitful discussions. F B
is supported by the Italian Ministry of University and
Research (MIUR, Project No.2012BFNWZ2).

Figure 4. Color plot of (a) E(1) and (b) E(2) from the numerical
solution of the defocusing VNLSE [25]. The initial condition is a
perturbed plane-wave. A dark-bright rogue wave is highlighted by a
surrounding box.
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4. Predictable rogue waves

Milivoj Belić1, Wei-Ping Zhong2 and Yiqi Zhang3

1Texas A&M University at Qatar
2Shunde Polytechnic
3Xi’an Jiaotong University

Status
A common understanding is that rogue waves (RWs) are rare
extreme localized waves that suddenly appear and disappear
in oceans, water tanks, and optical systems [1, 55, 115].
Concerning optical systems, an especially relevant model for
describing RWs is the nonlinear Schrödinger equation
(NLSE) in various forms. Crucial in the appearance of RWs
in NLSE is the modulation instability (MI)—a complex
nonlinear optical process that captures the emergence of big
waves from small perturbations in initial conditions. MI is
very efficient when the waves ride on a finite background. In
that respect, very relevant for the generation of RWs appear to
be the solutions of NLSE found long ago and appropriately
named after the discoverers the Peregrine solitons (PSs)
[116], Kuznetsov-Ma [117, 118] and Akhmediev breathers
(KMBs, ABs) [119].

It is also believed that statistical analysis, exemplified by
the existence of long-tail probability distributions of wave
maxima, is necessary for the proper description of RWs. In
numerical simulations, RWs emerge from a perturbed back-
ground through MI [55], which are then conveniently
statistically analyzed. However, we believe that one is not
always compelled to perform a statistical analysis of the
interfering breathers, to determine which can be considered as
RWs. In some models, they may be described analytically and
appear at exactly prescribed positions and times. Thus, the
emergence of true RWs, towering above the surrounding
waves, may be explicitly displayed in analytical solutions that
describe nonlinearly interfering solitons and breathers. None-
theless, one should keep in mind that such RWs are just exact
periodic solutions of specific models that do not set the
general rules of how to find or describe RWs. In the
nonintegrable NLSE models—and most are such—once
integration commences from some initial and boundary
conditions and the MI sets in, the most appropriate
description is statistical.

Still, predictable RWs have been extensively studied
[16, 120–122]; check also section 10 of this roadmap paper
for a method that, if not predicting at least is anticipating the
occurrence of RWs. For example, the management of RWs in
inhomogeneous nonlinear media was investigated when the
dispersion (diffraction) and nonlinearity were functions of the
propagation distance; see also section 15 for a similar
treatment. In the general anisotropic inhomogeneous non-
linear media, a more complete treatment takes into account
the transverse inhomogeneity of optical media, which is
commonly connected with the perturbation in the external
potential. This necessitates the inclusion of space-dependent
coefficients in the appropriate evolution equation and the
treatment by the similarity transformation method.

Contribution by the authors
The model described here, displaying controllable and
predictable RWs, is based on the exact second-order
breather solutions of the NLSE with spatially-modulated
coefficients and an external potential that comes from the
change in the index of refraction. Our search for predictable
RWs is realized by utilizing the NLSE with a quadratic
potential modulated by the diffraction coefficient [120],
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Explicit analytic solutions obtained enable an easier
understanding of the formation of RWs. The general solution
we find contains two modulation frequencies (the complex
eigenvalues) and a modal parameter m, as variable parameters
of the second-order breathers, thus allowing one to consider a
variety of particular cases with various patterns of such
waves. The method is inspired by the paper of Kedziora et al
[121], which used a Taylor expansion to study degenerate
solutions in the dimensionless standard NLSE without any
potential. Another method for finding 3D RWs in parabolic
potentials has been advanced in [122]. A method without
external potential in 1D is introduced in section 15.

The model we utilize contains variable diffraction and
nonlinearity coefficients in the NLSE with a modulated
quadratic potential –x 2/4+m +1/2, in which m is a positive
integer [120]. Note that such a ‘potential’ appears in the
parabolic-cylinder differential equation, which will allow the
appearance of parabolic-cylinder functions in the solution,
once the similarity method is applied. With constant
coefficients, the model reduces to Gross-Pitaevskii equation
in the harmonic potential, but with variable coefficients and a
specific choice of similarity variables it offers hybrid
solutions that in addition to the parabolic-cylinder functions
contain the solutions of the standard NLSE. By choosing
second-order rational breather solutions that ride on a
constant background, one discovers the solutions that
represent nonlinearly interacting KMBs, PSs, and ABs.

According to the model, there exist four interesting
families of the second-order breathers: the nonlinear super-
position of two ABs, or an AB and a PS along the x-direction;
the superposition of two KMBs, or of a KMB and a PS along
the z-direction; the superposition of PSs; and the collisions of
KMBs and ABs. Some of those cases are displayed in
figures 5 and 6. These cases naturally depend on the values of
spatial frequencies and on the modal parameter m. The
influence of m is to increase the spread and the number of
modes.

An interesting feature of these waves is that the
interacting solitons and breathers can be shifted in the
transverse direction, so that one can discern strong effects of
nonlinear superposition when the beams strongly overlap.
This is evident in figure 5. When the constituent beams
interact strongly, the emergence of giant waves is observed,
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as in the upper panel of figure 5. When the constituent beams
are shifted transversely, as in the lower panel of figure 5, they
interact less and one sees a resulting wave composed of two
pairs of superposed KMB and a train of PSs. No rogue waves
are visible. Thus, by changing one parameter, it is possible to
observe the appearance of giant waves which otherwise are
not seen or expected in the model.

An interesting structure when several KMBs cross an AB
is presented in figure 6. Such a second-order rogue wave
solution appears when one spatial frequency is imaginary and
the other complex. If one chooses m=2, the wave packet is
formed by three KMBs crossing one AB, as displayed in
figure 6. In the most general case with complex modulation
frequencies, the profiles of second-order breathers are very
complex, involving a number of crossing KMBs and ABs but
with relatively few RWs towering above the other. Concep-
tually, our solutions are not much different from the
numerical simulation in [55], except that here they are
analytic and there chaotic but showing signatures of analytic
solutions. Then, a relevant question is, what will a numerical
simulation show if one starts the simulation at z=0 using the
exact solution supplied here. Will the exact solution be
recovered? The answer is—only partially. Depending on the
boundary conditions and the accuracy of the simulation, the
exact solution will be followed for a while, but eventually MI
will take over and the simulation will resemble the one in

[55]. Thus, the existence of periodic solutions does not
guarantee their stability or observability.

Concluding remarks
In summary, we have demonstrated predictable rogue waves
in the NLSE with a simple quadratic potential modulated by a
spatial diffraction coefficient in an inhomogeneous nonlinear
medium. The second-order breather solutions, which
sporadically but at exactly prescribed positions generate
giant localized waves, are constructed by the similarity
transformation. Different nonlinear superpositions of KMBs,
ABs, and Peregrine solitons are presented by selecting two
modulation frequencies and the modal parameter. The
controllable behavior of KMBs, ABs, and Peregrine solitons
forming second-order breather solutions that contain rogue
peaks is displayed.

An important message is that RWs can arise in the
analytic interacting breather solutions of NLSE with a
modulated quadratic potential. Nevertheless, the importance
of modulation instability and statistical description of RWs in
the general case should not be underestimated. Our aim was
to point out a way to find predictable and controllable RWs
that can serve as an appropriate initial point in a more general
analysis.
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Figure 5. Intensities of rogue waves as second-order breathers,
viewed as nonlinear superpositions of Kuznetsov-Ma breathers and
trains of Peregrine solitons (a) without, and (b) with transverse shifts
of the beams.

Figure 6. Rogue waves generated when trains of Kuzne-tsov-Ma
breathers cross an Akhmediev breather. Note differing intensities of
wave trains, with 3 giant peaks towering above the other, when
waves strongly interact.

10

J. Opt. 18 (2016) 063001 Roadmap



5. Rogue waves in passively mode-locked lasers
with normal dispersion

Wonkeun Chang1, Jose M. Soto-Crespo2, Peter Vouzas1 and
Nail Akhmediev1

1The Australian National University
2Instituto de Optica, C.S.I.C.

Status
Generation of stable pulse trains is important for numerous
laser applications where ultrashort optical pulses are needed.
Yet, increasing demand for pulses with more extreme
characteristics has shifted the focus towards highly
nonlinear, non-stationary regimes of laser operation. Of
particular interest is the study of the chaotic pulses
generated by passively mode-locked lasers. Being an
interesting object of nonlinear chaotic dynamics, they may
also have important practical applications such as for
generating supercontinua without the use of special
fibers [123].

One particular type of chaotic pulses that have been
reported in various experiments is the so-called noise-like
pulses (NLPs), which were first observed in a fiber ring laser
[124], and thereafter in various mode-locked laser configura-
tions [125–127]. Experimentally, this regime of laser
operation is characterized by its broad and smooth spectrum
accompanied by the auto-correlation trace which has a sharp
peak sitting on top of a broad pedestal. These features may
indicate that there are multiple incoherent pulses that are
bunched and traveling together in the laser cavity. However,
the chaotic nature of the ultrashort structures in NLPs makes
it difficult to experimentally resolve the fine details of the
pulse and their shot-to-shot characteristics. Besides, it is not
always clear if all reported NLPs refer to the same type of
pulses. Thus, more studies are needed in this area.

Relying on numerical simulations is often a more viable
approach for investigating these pulses. One of the main
techniques used in the modeling of passively mode-locked
lasers is the master equation approach [128]. This method
averages the effect of the components comprising the cavity,
allowing one to study passively mode-locked lasers using a
single partial differential equation. It essentially leads to a
complex cubic-quintic Ginzburg–Landau equation (CGLE),
which admits stable pulse-like solutions.

Contribution by the authors
In its normalized form, the CGLE is given by:
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where y is the complex envelope of the optical field, t is the
time in a frame of reference moving with the pulse and z is the
propagation distance along the unfolded cavity. The subscripts
denote the derivatives with respect to the corresponding

variable. On the left-hand side, D denotes the cavity dispersion,
being anomalous when D>0 and normal if D<0, and ν is
the quintic refractive index coefficient. Dissipative terms are
written on the right-hand side where δ denotes linear gain/loss,
β is the gain bandwidth coefficient, and ε and μ are the cubic
and quintic gain/loss coefficients, respectively. The correspon-
dence between these parameters with those of a mode-locked
laser system depends on the particular design of the cavity and
the mode-locking mechanism [129].

We solved the CGLE numerically for the set of
parameters given in the caption of figure 7 using the periodic
boundary condition. We obtained a chaotic dissipative soliton
with noise-like features as shown in figure 7. Any localized
initial condition that is sufficiently close to the solution
converged to it after the transient had decayed. This particular
soliton consists of a localized background with chaotically
appearing spikes on top of it. Only the tails of the solution
have a regular exponential decay. The tails do not change
much along z. The false color plot of the field amplitude y|
in the (t, z)-plane shown in figure 7(a) clearly demonstrates
that spikes appear irregularly across the pulse. These spikes
are exceptionally narrow both in t and z direction in
comparison to the width of the whole soliton.

The pulse profiles are plotted in figure 7(b) at two
different locations in z, one showing a typical pulse without
the spike (blue), and another slice captured when the spike is
present (red). The amplitude of the spike is ∼80. This is 5
times higher than the average amplitude of the pulse, which
amounts to the intensity amplification factor of 25.

The spikes shown in figure 7 have the main features of
dissipative rogue waves studied earlier in [38, 61, 130–133].

Figure 7. Chaotic soliton obtained for the CGLE para-meters
D=−2.7, ν=−0.002, δ=−0.08, β=0.18, ε=0.04 and
μ=−0.000 025. (a) Pulse amplitude evolution along z. The
amplitude of the spikes exceeds the maximum color scale which is
set to 40 for the sake of clarity of the whole pattern. (b) Pulse profiles
at two different z, labeled ‘b’ and ‘r’ in (a) for blue and red profiles,
respectively.
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Figure 8 presents a probability density function (PDF) of the
peak amplitudes in logarithmic scale calculated for the same
set of CGLE parameters as in figure 7. The PDF is obtained
using the following approach. Firstly, the consecutive profiles
separated by the z-interval of 0.02 are found to be completely
uncorrelated. As a second step, all local maxima appearing in
the chaotic region on top of each pulse profile separated by
Δz=0.02 for 50 different realizations are recorded. Finally,
the density of probability was calculated for each value of the
amplitude after collecting the data of millions of local
maxima. The amplitude slots have been chosen sufficiently
small for the curve to be smooth but large enough to have
adequate number of data within each slot.

The maximum probability is at around the amplitude of
the soliton and decreases at each side of this maximum. The
data with very small amplitudes have been removed, and the
significant wave-height (SWH) is calculated as the mean
amplitude of the highest third of the recorded amplitudes,

which is 20.8. Using the definition of rogue waves as the
waves that have an amplitude exceeding 2.2 times the
significant wave-height, its threshold amplitude is at 45.8.
This indicates that all spikes that appear and disappear in this
solution are dissipative optical rogue waves.

The elevated tail of the PDF is clearly seen in figure 8.
This region corresponds to the chaotically appearing spikes.
The probability here is several orders of magnitude higher
than that of a simple exponential fit to the main part of the
PDF (dashed black line). The total probability of appearance
of rogue waves is calculated as an integral of the area below
the PDF curve above the rogue wave threshold (shaded in red
in figure 8). This probability is found to be 0.003 for the data
presented here.

Concluding remarks
A chaotic dissipative soliton with extremely short spikes that
appear randomly on its top is an unusual solution of the
CGLE. It is very likely that this solution can be found only for
normal average cavity dispersion. The PDF of the peak
amplitude shows that these spikes have an elevated
probability of occurrence, and can be classified as
dissipative rogue waves. The whole structure has common
features with NLPs but is unique in that the noise-like features
are defined by the spikes on top of the soliton.

There may be multiplicity of other types of NLPs in
passively mode-locked lasers. One type of them has been
presented here. These numerical findings may stimulate
experimental observations of such pulses. In the past, many
discoveries obtained by solving the CGLE have been
observed experimentally. The new solutions presented here
can be considered as a first step in the detailed study of a new
phenomenon.
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Figure 8. Probability density function (PDF) of the peak amplitudes
in logarithmic scale calculated for the same set of CGLE parameters
as in figure 7. The black dashed line represents the best fit for the
exponential tail of the PDF. The red area corresponds to rogue wave
events.
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6. Dissipative rogue waves in ultrafast lasers

Philippe Grelu1, Caroline Lecaplain2, and Jose M Soto-
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Status
Optical rogue waves (RWs) are attracting considerable
attention, as the possible tabletop counterpart of oceanic
rogue waves (see [1] of section 1). While most of the
investigations have considered so far the formation of RWs in
conservative and integrable systems, there is a recent surge of
interest to unveil these extreme wave events in a variety of
active dissipative systems, such as in laser cavities [134].
Indeed, active dissipative systems include a sustained supply
of energy, which, as the wind for deep-water rogue waves
generation, is decisive in the formation of extreme waves.
Subsequently, as it has been known for a long time,
nonlinearity and high-dimensionality are conducive to the
manifestation of chaotic dynamics for certain ranges of laser
cavity parameters. The most peculiar chaotic laser dynamics
are associated with ultrafast pulse generation (namely, pulses
shorter than the response time of fast electronics, below the
10–100 ps range), and can surprisingly be found in the
vicinity of the robust and stable mode locked laser dynamics
that is the workhorse of ultrashort optical pulse generation
[135]. Extreme fluctuations of the pulse energy in a Ti:
Sapphire laser were reported in 2011 [130]. On the other
hand, several dramatic chaotic dynamics associated with the
propagation of transient ultrashort pulses in the laser cavity
had already been identified several years ago, see also
sections 5 and 12. They include noise-like pulse emission
[124], exploding dissipative solitons [136], and soliton rain
[137]. With today’s hindsight about the ubiquity of extreme
wave manifestation among chaotic nonlinear highly
dimensional systems, it can be anticipated that subdomains
of these dynamical regimes where RWs manifest should
be found. However, the real-time characterization that is
required to experimentally identify optical RWs among the
ultrafast dynamics of chaotic pulses is extremely challenging.
Only in the last few years, by using advanced real-time
characterization, could optical RWs be singled out in complex
ultrafast laser dynamics, see also section 12. It is also
remarkable that the important progress made in the
characterization of several complex ultrafast laser dynamics
not only allowed to deepen their understanding, but also
bridged gaps between them.

Contribution by the authors
Starting from single pulse mode-locked laser operation,
complex dynamics can appear through bifurcations, which
can lead to pulsating and chaotic dynamics [135]. Complexity
is also exacerbated by the transition from single to multiple
pulse dynamics, which brings a myriad of dynamical
possibilities owing to the various scenarios of pulse-to-pulse

interaction, from pulse bunching, which comprises stationary
dissipative soliton molecules, to pulsating and vibrating
molecules, and to erratic and chaotic relative pulse motions
[135]. In the course of erratic pulse motions inside the laser
cavity, nonlinear pulse collisions will take place, which
represents a possible route to the generation of transient
waves of extreme amplitude. The rate of collisions is likely to
be higher when the pulses are confined into a tight packet that
propagates round the cavity. Indeed, the experimental
existence of a fluctuating bunch comprising tens of pulses
—dubbed a liquid soliton phase—was identified as an
essential component of the soliton rain dynamics [137]. It
was then conceivable that, by a suitable shift of the cavity
parameters, bunches of pulses behaving much more
chaotically would manifest. To investigate the possibility of
rogue wave formation during the propagation of a chaotic
bunch of pulses, a detailed numerical study was undertaken,
based on a lumped fiber laser ring cavity model [131]. This
study predicted that extreme waves should indeed manifest,
satisfying the three practical rogue wave criteria, namely (i)
their unpredictable appearance and swift disappearance, (ii)
their amplitude larger than twice the significant wave height
(SWH)—the latter being the mean of the higher one third of
the wave events, and (iii) their occurrence exceeding classical
distributions. In this case, the route taken to predict RWs went
through multiple pulsing, which is favored in an anomalously
dispersive laser cavity under intense pumping power, then
pulse bunching, a widely represented multiple-pulse behavior,
and finally, the destabilization of the pulse bunch that
becomes highly chaotic. The related experimental
observation faced the major challenge of real-time
characterization of ultrafast dynamics. However, some
experimental conditions could be found so that the pulse
bunch structure could be partially resolved, highlighting in a
convincing way the nonlinear pulse collisions that create
transient waves of extreme amplitude, which in turn were

Figure 9. Experimental stroboscopic recording of a dissipative rogue
wave event at the output of a fibre laser. The laser operated in a
chaotic multiple-pulse regime, in the vicinity of mode locking, and
its output was analysed with a 45 GHz photodiode connected to a
20 GHz, 40 GSa/s real time oscilloscope. From [133].
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found to oblige the three main RW criteria [133, 138].
Figure 9 illustrates the detection of one such RW event, in a
chaotic bunch whose temporal extent is of the order of a
nanosecond. Naturally, the rate of RW detection in the
experimental system is highly dependent on the detection
bandwidth, as was precisely shown in a detailed subsequent
investigation [138]. The reader may also note that another
independent prediction of dissipative RW arose from the
numerical study of a laser cavity in the normal dispersion
regime, starting from the destabilization of high-energy single
pulse mode locking [132], see also section 5. Unstable short-
pulse propagation in fiber lasers, dubbed noise-like pulse
(NLP) regime, has been known for almost two decades [124],
but long remained quite mysterious due to the lack of real-
time characterization. NLPs generally feature a much shorter
temporal extent than the chaotic bunch of pulse illustrated in
figure 9, for instance in the range of tens of picoseconds, so
that similar characterization is not currently available.
However, the similarity between the two dynamical regimes
is striking. Consequently, it was recently anticipated that RWs
should be found in NLP regimes too [85]. As a matter of fact,
real-time spectral measurements were used to reveal the

detailed single-shot features of NLP dynamics. In the frame of
the dispersive Fourier-transform technique (see section 12),
NLPs are considerably stretched using a long dispersive line,
so that the spectrum of each pulse becomes mapped into a
temporal waveform that is long enough to be resolved by a
photodiode connected to a fast real-time oscilloscope. These
measurements, illustrated by figure 10, reveal the highly
distorted single-shot NLP spectra (see figure 10(a)) that also
highly fluctuate from one roundtrip to the next (see
figure 10(b)). The probability distribution function of the
spectral peak intensity clearly displays extreme spectral
events appearing with a rate exceeding that of classical
distributions (figure 10(c)). Hence, spectral rogue waves have
been recently unveiled within NLP dynamics [85]. Spectral
RWs occur in both anomalous and normal dispersion regimes,
albeit more prominent in the anomalous ones. It is
conjectured that these spectral RWs are the signature of
temporal RWs that would manifest in the same dynamical
regime, provided that enough real-time temporal resolution
would be available for their detection [85]. If correct, it would
deepen the connection between NLP and RW dynamics.

Concluding remarks
From these investigations, using the ultrafast fiber laser as an
efficient workbench, a universal class of RWs in dissipative
nonlinear systems has emerged. It results from the evolution
of a chaotic bunch of pulses or sub-pulses, subjected to
numerous collisions. In the near future, it can be foreseen that
even more complex RW dynamics will be investigated,
involving higher-order dissipative and dispersive physical
effects, as well as the polarization degree of freedom into full
extent (see section 3 concerning the latter).
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Figure 10. Spectral rogue waves unveiled from noise-like pulse
operation of a fibre laser, using the dispersive Fourier-transform
technique for real time spectral measurements. (a) Comparison of
single-shot and averaged spectra, (b) evolution of consecutive
spectra, and (c) probability distribution histogram of spectral
maxima. Adapted from [85].
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7. Rogue waves as natural large fluctuations of the
transition to soliton condensation?
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Status
The dynamics of turbulent waves can be characterized by the
spontaneous emergence of short-lived high-amplitude waves.
Extreme wave events also called rogue, killer or freak waves
have been the subject of a tremendous interest in these last
years in different physical contexts [1–4, 16, 55, 108]. A
variety of mechanisms underlying the emergence of RWs
have been identified in the literature, e.g., noise-like pulses in
mode-locked lasers (sections 5, 6), or the triggering of RWs
from background radiation (section 10), while their control
and predictability of occurrence have been analyzed, e.g., in
delayed feedback optical cavity schemes (section 8), or
through the inhomogeneities of the nonlinear propagating
medium (sections 4, 9). In different circumstances, RWs have
been also interpreted in the light of exact analytical breather
solutions of the integrable 1D nonlinear Schrödinger equation
(NLSE), see sections 2–4 and [2, 4, 55, 108]. Breather
solutions provide a description of the emergence of individual
RW events from a coherent ordered state of the system. On
the other hand, RWs are known to spontaneously emerge
from an incoherent turbulent state [2, 3, 16, 55, 108, 139–
141]. This raises a significant problem, since the description
of the turbulent system requires a statistical approach based
on the wave turbulence (WT) theory [139], whereas breather
solutions describe the emergence of RWs from a coherent
environment.

This problem was addressed in the optical context in
[140, 141] by considering a specific NLSE model that
exhibits a quasi-soliton turbulence scenario, which can be
interpreted in analogy with wave condensation: As the
amount of incoherence in the system increases, a transition
occurs from the purely coherent quasi-soliton regime towards
the fully incoherent turbulent regime described by the WT
theory [139]. In this context, it was shown that the coherent
description of rogue wave events in terms of breather
solutions is not inconsistent with the corresponding statistical
WT description of the turbulent system [141]. It is important
to notice that the emergence of RW events was shown
to solely occur near to the transition to (quasi-)soliton
condensation. Our aim in this Roadmap communication is
therefore to address a possible alternative point of view on the
question of the spontaneous emergence of rogue waves from
a conservative turbulent environment: Is it possible to
interpret such sporadic emergence of RW events as the
natural large fluctuations inherent to the phase transition to
soliton condensation?

Contribution by the authors
(Quasi-)soliton condensation. We briefly summarize the
results reported in [140], in which the phenomenon of

quasi-soliton turbulence was studied by considering the
representative example of non-integrable NLSE with third-
order dispersion effects. From the general perspective
of ‘(quasi-)soliton turbulence’ [139], a nonintegrable
Hamiltonian system exhibits a thermalization process
characterized by an irreversible evolution of the random
wave towards an equilibrium state, in which a (quasi-)soliton
structure remains immersed in a sea of small scale
fluctuations. From the ‘microscopic’ point of view, this
process results from the inelastic collisions among
nonintegrable solitons. This eventually leads to the
formation of a giant (quasi-)soliton that remains immersed
in a sea of small-scale fluctuations which exhibit energy
equipartition among the modes. However, in general, the
formation of such a large scale coherent structure is only
possible if the amount of incoherence in the system is not too
large. This aspect has been studied in detail in the context of
wave condensation, where the emergence of a large-scale
coherent plane wave only occurs below some critical ‘energy’
[139, 142–144]. The ‘energy’ refers here to the Hamiltonian,
H, which plays a role analogous to the temperature for the
microcanonical statistical ensemble considered here. On the
basis of these general ideas, [140] reported numerically a
‘quasi-soliton condensation’ phenomenon characterized by a
transition from the coherent quasi-soliton regime toward the
fully turbulent regime by increasing the energy H of the
system.

As illustrated in figure 11, three different turbulent
regimes were identified. For small H, coherent and persistent
quasi-soliton structures are generated. For intermediate values
of H, non-persistent intermittent-like rogue waves emerge and
disappear erratically. For higher values of H, the system

Figure 11. Maximum intensity peak in the simulations of the non-
integrable NLSE (with third-order dispersion) by varying the
Hamiltonian (‘temperature’), H, keeping fixed the power N=∫ I dt,
where I=|Ψ|2. At small H, regime (QS), a persistent quasi-soliton is
generated; at high H, regime (WT), the turbulent system exhibits
quasi-Gaussian statistics: short-lived RWs events are essentially
generated nearby the transition to quasi-soliton condensation,
H=Hc~12 [140].
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exhibits essentially a weakly nonlinear turbulent dynamics
characterized by a quasi-Gaussian statistics, so that high
amplitude events become extremely rare. The analysis then
reveals that the emergence of extreme events occurs
essentially in the vicinity of the transition to quasi-soliton
condensation, i.e., for H~Hc in figure 11. The study also
revealed that, because RWs are inherently short and rare
events, their coherent description provided by breather
solutions is compatible with the WT description of the
turbulent wave system [141].

Wave condensation in the defocusing regime. There is some
correspondence between the mechanisms underlying the
formation of a soliton in the focusing regime and the
phenomenon of wave condensation in the defocusing regime.
The analogy relies on the fact that both phenomena are driven
by the natural thermalization of the system toward the most
disordered state: it is thermodynamically advantageous for
the system to generate a large scale coherent structure (a
soliton or a plane-wave) in order to increase the amount of
disorder in the form of small scale fluctuations. Actually, the
thermodynamic properties of wave condensation are identical
to those of an ideal quantum Bose gas, despite the classical
nature of the wave system [139, 142]. Wave condensation
originates in the thermalization toward the thermodynamic
Rayleigh-Jeans equilibrium distribution, whose divergence
is responsible for the macroscopic occupation of the
fundamental mode of the system.

Large fluctuations. Classical wave condensation is
characterized by a ‘condensation curve’, i.e., the condensate
fraction condensed in the fundamental mode versus
Hamiltonian. Mathematical expressions for the condensation

curve have been derived in explicit analytical form, in both
the weakly and strongly (Bogoliubov) nonlinear regimes
[142–144]. More recently, the amount of fluctuations of the
condensate amplitude at equilibrium has been calculated in
both weak and strong turbulence regimes versus the
Hamiltonian, see figure 12. The main key result is that the
condensate fraction exhibits large fluctuations near by the
transition to condensation, i.e., for H~Hc, while the
fluctuations are significantly quenched in the strongly
condensed Bogoliubov regime (small H), and almost
completely suppressed in the weakly nonlinear turbulent
regime for large H. This result is consistent with the general
idea that nearby second-order phase-transitions, physical
systems are inherently sensitive to perturbations and thus
exhibit large fluctuations. More specifically, it can be shown
that, while for H>Hc, the coherence length (λc) at
equilibrium remains finite, for H<Hc, it diverges to
infinity [λc∝1/(−μ)1/2, where the chemical potential
μ→0− at the transition]. In this case the correlation
function does not vanish at large distances, but instead
approaches a finite value, lim|r-r′|→∞〈Ψ(r) Ψ*(r′)〉→
const, which means that the system exhibits long range
order and coherence. For H~Hc in 2D there is also some
evidence of a Berezinskii-Kosterlitz-Thouless transition with
an algebraic decay, 〈Ψ(r) Ψ*(r′)〉~|r-r′|−1/4 [145].

Concluding remarks
Numerical simulations of a representative non-integrable
NLSE model indicate that extreme events spontaneously
emerge from a turbulent state of the system solely in the
neighbor of the transition to (quasi) soliton condensation.
The coherent description of such short-lived RW events in
terms of breather soliton solutions is consistent with the
statistical WT description of the turbulent state of the
system. On the other hand, the phenomenon of classical
wave condensation in the defocusing regime has been
shown to be characterized by large amplitude fluctuations of
the condensate fraction in the vicinity of the phase transition
to condensation. These independent observations indicate
that the emergence of RW events can be interpreted as being
inherently associated to the natural large fluctuations of the
transition to soliton condensation. This may pave the way
for a statistical mechanics approach based on the idea of
scaling and universal theory of critical phenomena to the
description of RWs.
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Figure 12. Condensation in the defocusing 2D NLSE: Fraction of
power condensed in the fundamental mode, N0/N versus Hamilto-
nian H — in the weak condensation regime (dashed green), and
strong Bogoliubov condensation regime (dashed red). Corresp-
onding amount of fluctuations of the condensate fraction, ΔN0

2/N2:
Nearby the transition to condensation, H=Hc ~ 2.4, the system
exhibits large fluctuations [139, 144].
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Status
The study of formation of rogue waves in nonlinear optics
witnessed a sudden acceleration in 2007. This coincides with
the experimental evidence of this phenomenon in fiber optics
[1]. The explosive growth of this field of research, can be
witnessed by recent review papers [2, 55, 108]. Rogue waves
are rare events, giant pulses. Often, the long tail probability
distribution is the fundamental characteristics accounting for
the generation of rogue waves. Note that rogue waves are also
called freak waves, killer waves, abnormal waves or extreme
events, depending on the authors.

The number of systems in which rogues waves appear is
gigantic. Therefore, we have limited the scope of this
contribution to transverse nonlinear optics where spatial
rogue waves have been observed experimentally
[59, 108, 146]. They correspond to large intensity pulses in
the transverse directions of a resonant cavity. Various
mechanisms have been proven to be responsible for the
generation of rogue waves in spatially extended systems. In
this paper, we propose a new mechanism based on the optical
delay feedback control. For this purpose, we consider a well-
known Lugiato-Lefever model equation [147] with delayed
feedback. Extreme events induced by optical feedback are
discussed in section 10 of this roadmap. In this case, rogue
waves appear in the time domain where diffraction is
neglected (small area semiconductor laser). Control (suppres-
sion) of rogue waves by properly timed seed pulse during
supercontinuum generation has been realized in [148].

We demonstrate a way to control rogue waves of light in
the transverse section of a broad area nonlinear optical system
by means of delay optical feedback. The delayed feedback is
found to induce a spontaneous formation of rogue waves. In
the absence of delayed feedback, spatial pulses are stationary.
The rogue waves are exited and controlled by the feedback.
We characterize their formation by computing the probability
distribution of the pulse height. Indeed, the long-tailed
statistical contribution which is often considered as a
signature of the presence of rogue waves appears for
sufficiently strong feedback.

The generality of our analysis suggests that the instability
leading to the spontaneous formation of rogue waves in a
controllable way is a universal phenomenon. Therefore, our
mechanism should be applicable to modern high speed
semiconductor lasers.

Contribution by the authors
We study theoretically the influence of the delayed optical
feedback on the properties of rogue waves formation. We
consider a passive cavity filled by a Kerr medium and driven
by a coherent radiation beam. The delayed feedback is

introduced by an external mirror located at a large distance
from the right facet of the Fabry–Perot cavity. The delay time
corresponds to the round-trip time in the external cavity. We
assume a single-longitudinal mode operation and the reflected
field is sufficiently attenuated that it can be modeled by a
single delay term. Under these approximations, the dynamics
obeys the following well known Lugiato-Lefever model [147]
with delayed feedback
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This model equation includes the effect of diffraction in
two dimensions described by the transverse laplacian. E is the
normalized slowly-varying envelope of the electric field
circulating in the optical cavity. θ is the detuning parameter,
and Ei is the input field which is assumed to be real, positive
and independent of the transverse coordinates. The delayed
feedback parameters are the feedback strength η, the phase f,
and the delay time τ. Space coordinates are normalized to the
diffraction length and diffraction in the external cavity is
compensated by a self-imaging feedback configuration.

It is well known that the Lugiato-Lefever equation admits
stationary localized structures in one and two-dimensional
settings [149] in the absence of delay feedback, i.e., η=0. The
delay feedback allows for the motion of stationary localized
structure when the product η τ reaches the value of +1 for
f=π [150]. In lasers with saturable absorber localized
structures can undergo a period doubling route to chaos [151].

We fix all the parameters and we vary only the strength
of the delay feedback. In the absence of delay feedback, i.e.,
η=0, single or multipeak stationary localized structures are
formed. When increasing the value of η above 1/τ, localized
structures exhibit a regular drift with a constant velocity.
When further increasing the value of η, rogue waves are

Figure 13. Space-time map showing the evolution of optical
intensity. Triangles indicate pulses with intensity 5–10 times larger
than the stationary localized structures without delay feedback.
Parameters are θ=1.7, Ei=1.2, η=0.7, t=100, and f=π.
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formed as shown in the space-time map of figure 13. A
statistical analysis shows that their height is more than twice
the significant wave height (SWH) as shown in figure 14.
This figure shows a non-Gaussian statistics of the wave
intensity, with a long tail of the probability distribution typical
for rogue waves formation.

Concluding remarks
In this contribution we have studied the formation of
transverse localized structures and rogue waves in a
nonlinear cavity filled by a Kerr medium and driven by an
external coherent beam. This simple and at the same time
robust device is described by the Lugiato Lefever equation.
We propose a mechanism of rogue waves formation based on
the time delayed feedback control scheme. We show that the
delayed feedback from an external mirror allows the spatial
rogue waves to form in the transverse plane of the nonlinear
cavity. We have shown that depending on the strength of the
delay feedback, localized structures become unstable and
rogue waves are formed. We provide a statistical analysis
showing a non-Gaussian profile of the probability distribution
with a long tail and pulse intensity height well beyond two
times the significant wave height.

Our mechanism is rather general and can be applied to
modern high speed semiconductor lasers.
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Figure 14. Number of events as a function of the intensity of pulses
in a semi-logathmic scale. Parameters are the same as in figure 13.
The SWH denotes the significant wave height. The dashed line
indicates 2 x SWH.
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Status
Rogue waves (RWs) have been observed in many physical
systems ranging from hydrodynamics, nonlinear optics or
plasma physics to name a few [55]. Since the early
experimental observation of RWs in nonlinear fiber systems
by Solli et al [1], fiber optics turned out to be an excellent test
bed for RW experiments. Indeed, it allows tuning quite easily
values of the linear and nonlinear coefficients by simply
adjusting the fiber parameters relatively to those of the light
sources. For example, the first experimental observations of
breather type solutions of the nonlinear Schrödinger equation,
widely referred to as RW solutions [55, 108, 152], have been
reported in fiber optics. They are generally termed ‘Akmediev
breathers’ (ABs), and constitute a general class of solutions
encompassing, the Peregrin or the Kusnetsov-Ma solitons
[97, 98]. In most of these studies, linear and nonlinear
coefficients are considered to be constant along the
propagation axis while it has been theoretically predicted
that longitudinal variations of these parameters strongly
affects the dynamics of ABs, and thus of RWs [55, 152].
For specific values, it has even been shown that ABs can be
annihilated or sustained [154]. As it has already been shown
in the context of supercontinuum generation, this new degree
of freedom provides a great improvement of their
performances [155–158]. In the special context of RWs, it
should further contribute to a better understanding/illustration
of potential analogies with hydrodynamic RWs as it
corresponds to inhomogeneous currents in oceans
[108, 153]. A new time, taking advantage of the versatility
of fiber optics experiments should improve the understanding
of RW formation in the broad sense.

Contribution by the authors
In this work, we show experimentally in an optical fiber
system with a tailored longitudinally varying profile that the
evolution of ABs can be quasi-stabilized along the
propagation direction at their point of maximal
compression. This constitutes a first step to show that
dispersion managed optical fibers, we called topographic
optical fibers [158], can be used to perform such kind of
experiments aiming at mimicking very realistic ocean
behaviors. Here we demonstrate that ABs can be sustained
but other specific dynamics should be observed in our fiber
optical system by simply tuning the parameters. Our approach
is based on the similarity between compressed ABs and
fundamental solitons such that by adjusting the dispersion of
the fiber at the point of maximal compression to fulfil the
solution area theorem, the evolution can be quasi-stabilized.

Figure 15(b) shows an example of the temporal evolution of a
theoretical AB in a fiber with uniform dispersion (dashed line
in figure 15(a)), displaying the formation of a periodic pulse
train at the point of maximal compression (zC=109 m)
before the field recovers its initial state. This single growth-
decay cycle with length is a typical signature of theoretical
ABs. Spectrally, this dynamic corresponds to a cycle of
exponential amplification of harmonics around the pump until
zC and their subsequent decay, sometimes interpreted as a
manifestation of the Fermi-Pasta-Ulam recurrence [160].

It is worth noting that, at the point of maximal
compression zC, individual pulses forming the AB are very
close to solitons which are known to be stable time-localized
structures. However, since the soliton number associated to
the pulses is less then unity [161], the AB keeps evolving
after zC and reaches its initial state after further propagation.
Our aim being to freeze the longitudinal evolution of the AB,
we propose here to adapt the fiber dispersion from zC in order
to convert the nearly solitonic AB train into a train of stable
solitons evolving independently. As a consequence, we
expect to sustain the AB at its point of maximal compression.
This soliton conversion is expressed through the soliton
number which must equal one. Figures 15(d) and (e) illustrate
the possibility of freezing an AB at its point of maximal
compression through numerical simulations. They display
respectively the temporal and spectral dynamics of an AB in a
fiber with an axially varying dispersion coefficient β2 (profile
shown in red solid line in figure 15(a)). In this case, the value
of β2 at the point of maximal compression zC has been
increased to fulfil the fundamental soliton condition [161]. As
it can be seen, this simple change of dispersion topography
allows to sustain the temporal shape of the AB at its maximal
compression state with only a residual modulation of 8%
remaining upon propagation. Spectrally, the energy exchange
between the different harmonics is significantly affected, as

Figure 15. (a) Longitudinal dispersion profiles used in simulations.
(b), (d) Simulation of the spatio-temporal representation of ABs in
the uniform fiber and in the dispersion-varying fiber, respectively.
(c), (e) Corresponding spectral dynamics. Parameters used for
simulations: γ=2W−1.km−1, a=0.1, amod=0.05,
ωmod=−2π×400 rad.s−1.
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the flow of the energy back to the pump is not observed, i.e.
the spectral dynamics is also frozen, on the contrary to what
happens in the uniform fiber (figure 15(c)).

We designed and fabricated the uniform and the tapered
fibers depicted in figure 15(a), in order to experimentally
validate this phenomenon of AB stabilization (see [162] for
more details). Our experimental setup has been validated by
recording the longitudinal evolution of the spectrum in the
uniform fiber (3D plot in figure 16(a)). Black squares in
figures 16(c) and (d) show the measured evolution of the
power of two input spectral components (the pump and the
signal) with fiber length. These results show the progressive
depletion of the pump (of 39% of its initial value) and the
simultaneous generation of up to six sideband pairs until
zC=107 m. After this point, the energy starts to flow back to
the pump as expected from the theoretical AB spectral
evolution [55] and from the FPU recurrence [160] in uniform
fibers, thus validating our experimental procedure. In a
second set of experiments, we investigated the dynamics of
ABs in the presence of a longitudinal dispersion step, using
the dispersion-varying fiber described above. Figure 16(b)
represents a 3D plot evolution of the spectrum along
the dispersion-varying fiber obtained from a cutback
measurement. Red squares in figures 16(c) and (d) show the

measured evolution of the power of the two input spectral
components (the pump and the signal) with fiber length in the
dispersion-varying fiber. In the first section (within the first
102 m), we observe an excellent agreement with the uniform
fiber case. But in the second section (i.e. after the dispersion
step), the behavior is now completely different. The energy
exchange between the pump and the harmonics is strongly
reduced and their respective powers vary much less than in
the uniform fiber in the remaining 200 m-long fiber section.
However, the AB stabilization observed experimentally is less
efficient than the ideal case of figures 15(d) and (e) probably
due to small uncertainties on the dispersion step of the
fabricated fiber. These results have been compared to
numerical simulation of the generalized Schrödinger equation
(GNLSE) using the experimental parameters. They are
superimposed in figures 16(c) and (d) in solid lines and, as
can be seen, a relatively good agreement is achieved that
confirmed our experimental measurements.

Concluding remarks
In conclusion, through an illustrative example of frozen
evolution of an Akhmediev breather, we showed that
topographic optical fibers can be a fantastic experimental
test bed to investigate rogue wave formation in complex
systems where one of the parameters evolves longitudinally
[162]. We do believe that this new degree of freedom should
contribute to another illustration of potential analogies
existing between nonlinear fiber optics and hydrodynamics
[153], and more generally, to provide a better understanding
of rogue waves formation.
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Figure 16. (a), (b) Cutback measurement of the spectral dynamics of
sideband formation in the uniform fiber (a) and in the dispersion-
varying fiber (b). (c), (d) Longitudinal evolution of the pump power
(black squares) and of the seed (red squares) in the uniform fiber (c)
and in the dispersion-varying fiber (d). Solid lines depict GNLSE
simulation results (see text for details).
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Status
The first observation of extreme events in soliton-fission
induced supercontinuum generation in nonlinear fibers
initiated an ever growing number of publications on optical
rogue waves [1], forming a research topic of its own [2]. In
fact, extreme event dynamics seems to be much wider spread
than originally thought, with similar behavior being observed
or suggested in a number of completely different physical
phenomena, including various types of water waves and
matter waves. Compared to the scarce report of their ocean
counterpart, a large number of extreme optical waves can be
observed in a fraction of a second. Conditions identified for
rogue-wave supporting systems include generic dispersive
and nonlinear contributions to the wave velocity, as described
by perturbative contributions to the nonlinear Schrödinger
equation (NSE), e.g., third-order dispersion. Therefore closed
solutions of the NSE given by solitons or Akhmediev-
breathers are regarded as building blocks for the generation of
rogue events. These events appear due to the inherent
modulation instability, which manifests itself in the
anomalous dispersion regime of a nonlinear optical fiber.
Depending on the propagation dynamics during
supercontinuum generation, high-amplitude structures may
occasionally be observed at the end of the fiber, with
prototypical statistics of rogue waves. Fundamental solitons
represent robust solutions of the NSE and extreme events are
attributed to extraordinary solitons which have extracted
energy within the highly complex propagation dynamics from
the system. Collisions between solitons are regarded one of
the main mechanisms for the emergence of such a ‘champion
soliton’. In this scenario, two questions immediately arise: (1)
Are there other possible mechanisms leading to the
emergence of champion solitons? (2) As the trajectory of
the fundamental soliton still appears highly predictable in the
overall complex system, how can such solitons be attributed
to rogue waves in an unpredictable fashion, especially as
solitons are not expected to disappear?

Contribution by the authors
In our investigations, we focus on an interaction phenomenon
that has originally been discussed in fluid dynamics as wave
blocking between opposing currents [163]. In the optical
analogy, a blocking horizon is established by a refractive
index barrier by means of the familiar cross-phase modulation
(XPM) between two group-velocity matched optical pulses.
This kind of interaction builds the basis for the optical push
broom effect [164], the soliton trapping phenomenon [165],
and the optical event horizon [166–170]. In a fiber with one

zero-dispersion wavelength, group-velocity matching
(figure 17(a)) can always be realized between a dispersive
wave in the normal dispersion regime and a soliton in the
anomalous dispersion regime [168]. The basic idea behind
this interaction process is creation of a propagating front in
the vicinity of an intense soliton traveling in a nonlinear
optical fiber. At this front, the propagation velocity of the
dispersive waves also changes abruptly. When a co-
propagating dispersive wave with nearly identical group
velocity approaches that front, this wave cannot pass the
soliton front, but is actually thrown back, i.e., a process that
has been referred to as reflection of the dispersive wave. An
exemplary reflection process at the leading edge of the soliton
is shown in figures 17 (b)-(d).

In supercontinuum generation by soliton fission, pre-
conditions for such a reflection process are naturally granted
between the ejected solitons and the accompanying generated
resonant radiation [167, 168, 169]. A typical example of
supercontinuum generation in the time domain is shown in
figure 18. The dynamics are described by the nonlinear
Schrödinger equation, including the higher-order dispersion
as a perturbation. The interaction of the background radiation,
relating to phased-matched radiation generated at the fission
process, with the first ejected soliton results in a reflection
process, as the one shown in figure 17. It is important that
dispersive radiation as well as the solitons are strongly
affected in this interaction process. Both pulses experience a
mutual frequency shift, which manifests itself in the temporal
evolution as a change of the group-velocity. In the shown
example, the soliton is shifted toward higher frequencies. Any
such frequency shift results in adiabatic soliton re-shaping
due to a change of the underlying dispersion value. A shift
along the dispersion profile towards lower values of the
group-velocity dispersion leads to a strong increase of its peak
intensity for the soliton. As long as the soliton is accelerated,

Figure 17. (a) Exemplary group-velocity matching between a soliton
(right pulse) and a dispersive wave (left pulse). (b)-(d) Reflection
process between the two pulses for a set-up where the dispersive
wave approaches the soliton at the leading edge. (b)The soliton is in
this case initially slightly faster than the dispersive wave. (c) The
dispersive wave cannot penetrate the refraction index barrier. (d)
After the collision the dispersive wave is faster than the soliton.
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its intensity continuously increases (red arrow in figure 18). In
turn, a strong increase of its peak intensity is induced, which
is eventually followed by pulse collapse. This collapse is
ultimately unavoidable, given the main preconditions
imposed by soliton-fission induced supercontinuum genera-
tion, namely the separation of an anomalous and normal
dispersion regime. When the soliton spectrum overlaps with
the normal dispersion regime, the soliton quickly loses energy
to resonant radiation. The faster and stronger the peak
intensity increases, the faster a collapse will result. The peak
intensity of the giant soliton may achieve intensities more
than ten times higher than the solitons that do not interact
with the background. In this sense, an accelerated soliton with
an extreme intensity fulfills the unpredictability criterion as
‘appearing from nowhere and disappearing without any
trace’. Compiling the statistics from a total of 4000
realizations of supercontinua using different noise seeds, a
heavy-tailed figure-L distribution emerges, as it is

characteristic for rare but extreme events. These extreme
events therefore exhibit all signatures of rogue waves [167].
In order to investigate the difference to other nonlinear
interaction types and energy transferring scenarios given by
the optical fiber supercontinuum, the influence of higher-order
effects, including the Raman effect, has been studied as well
as different possible supercontinuum generation processes
[80]. It has been verified that the interaction of a soliton with
background radiation may lead to giant solitons, without any
soliton-soliton or other interaction mechanism. Finally, in
[170], yet another possibility to generate rogue waves by
interaction with background radiation is presented. Here an
attracting force between two solitons is realized by the
interaction with dispersive waves, leading to a fusion of the
solitons.

Concluding remarks
In the original optical rogue wave paper [1], rogue events
were attributed to solitons at the end of the fiber. An
unpredictability of the extreme events appears due to input
shot-to-shot perturbations, leading to different realizations of
the supercontinuum generation. However, fundamental
solitons may exist over wide propagation distances, and in
the measured saturated state no disappearance of solitons is
expected. Here, we demonstrate a mechanism to create a
‘champion soliton’ triggered by background radiation, which
is followed directly by its destruction. The concept directly
links the presented mechanism to other fields in physics,
where analogue systems have been discussed, such as,
filamentation matter waves, or hydrodynamics.
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Figure 18. Temporal evolution of supercontinuum generation by
soliton fission exhibiting the emergence of an accelerated rogue
soliton indicated by an arrow.
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11. Extreme optical pulses in semiconductor lasers
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Status
Semiconductor lasers emit a stable output unless they are
optically perturbed. When they are under the influence of
continuous-wave (cw) optical injection or under the influence
of optical feedback from an external reflector, they can
display a rich variety of dynamical behaviors, including
periodic oscillations, chaos, excitability, mode competition,
etc. Besides the practical interest for applications, the laser
dynamics is relevant from the nonlinear perspective and has
been intensively studied, both, experimentally and by model
simulations. While a lot of effort has focused on the chaotic
and excitable regimes, less attention has been paid to regimes
where the laser intensity displays rare and extreme pulses [1].

Contribution by the author
In the last few years we have investigated extreme optical
pulses in the output of semiconductor lasers under cw optical
injection [49, 69, 134, 171] or under optical feedback [172].
We have used a simple rate-equation model that, in the case
of feedback, includes a time-delayed term representing optical
feedback. In the case of an injected semiconductor laser, we
have shown that in narrow parameter regions (within the
chaotic region) the laser intensity occasionally displays ultra-
high, extreme pulses (i.e., pulses which belong to the tail of
an l-shaped distribution of pulse heights), which were
identified as deterministic optical rogue waves (RWs) [134].
In the feedback case, we have also identified narrow
parameter regions where the intensity displays extreme
pulses [172].

Several mechanisms are capable of explaining the
emergence of such extreme pulses [90, 108]. In the case of
optical injection, we found that the mechanism generating
extreme intensity pulses is a process that resembles an
external crisis, in the form of a crossing of the chaotic
attractor generated from one fixed point with the stable
manifold of a saddle point (this stable manifold acts as a
‘barrier’) [171]. After crossing the barrier, the trajectory can
approach the region of the phase space where the stable
manifold of a third unstable fixed point is located, and each
time the trajectory closely reaches this narrow channel, an
ultra-high pulse is triggered (thus, we refer to this region of
the phase space as the ‘rogue wave door’).

A similar mechanism for the generation of extreme
events has been reported in a system of coupled excitable
units [173], where there is a narrow channel-like structure in
phase space that is occasionally entered by the system, and
that when entered leads to a long excursion in phase space,
which constitutes the extreme event.

A comparison of the behavior induced by self-optical
feedback with that induced by cw injection from a master
laser suggests that, despite the differences in both situations,
the extreme pulses in the feedback case, figure 19, occur

through a similar mechanism: the presence of a narrow
channel in the phase space.

Moreover, both, in the injection case and in the feedback
case, a clear pattern of oscillations anticipate the most extreme
pulses (see figure 20). We have recently demonstrated that
advanced tools of symbolic time-series analysis can be used
to anticipate abrupt stochastic switchings, and specifically, the

Figure 19. Simulated time series of the intensity of a semiconductor
laser with optical feedback and phase portrait displaying the
superposition of several sections of the trajectory that contain
extreme pulses. Adapted from [175].

Figure 20. Superposition of several simulated extreme optical pulses
generated by an optically injected semiconductor laser (top; adapted
from [171]) and by a semiconductor laser with optical feedback
(bottom; time is units of the feedback delay time, adapted
from [172]).
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polarization-switching of vertical cavity surface emitting
lasers (VCSEL) [174]. We speculate that this symbolic
analysis tool could also be useful for providing an early-
warning indication of the occurrence of an extreme pulse.

Besides the prediction of extreme optical pulses, a
relevant challenge is to identify key parameters that are able
to increase or to decrease their likelihood of occurrence, i.e.,
to control them. In the optically injected laser, our model
simulations suggest that one crucial parameter is the noise
strength: for parameter regions where deterministic RWs
occur, the inclusion of noise in the simulations significantly
decreased the number of RWs [69]. This is due to the fact that
noise tends to drive the trajectory away from the phase-space
region where RWs can be triggered (i.e., where the RW door
is). On the other hand, for parameters such that there are no
deterministic RWs, but close to the region where they occur,
then, the inclusion of noise in the simulations anticipates the
RWs. This is due to the fact that noise allows the trajectory to
cross over the ‘barrier’ and thus, noise allows the trajectory to
access the phase space region where the RW door is,
therefore, occasionally extreme pulses are triggered.

As is well known from chaos control theory, the periodic
modulation of an appropriate control parameter can stabilize
unstable periodic orbits and thus, suppress chaos. We have
investigated via model simulations if external modulation can
also be an effective way to suppress extreme pulses. We have
focused in current modulation, as this is straightforward to
implement experimentally. In injected lasers our model
simulations suggest that RWs can be fully suppressed by
current modulation of appropriated amplitude and frequency
[69]. When the pump current is modulated at a frequency,
fmod, close to the laser natural resonance frequency (the
relaxation oscillation frequency, fro, of the free-running laser),
then, the modulation is capable of fully suppressing the
extreme pulses. This is due to the fact that weak modulation
increases the regularity of the amplitude of the pulses: the

number of large pulses in the time series increases, but at the
same time, the pulses are less extreme.

If the modulation is slower than the resonance frequency
(fmod<fro), the RWs occur within a well-defined interval of
values of the modulation phase, i.e., there is a ‘safe’ window
of modulation phases where no RWs occur [49]. The most
extreme RWs occur for modulation phases that are at the
boundary of the safe window. When the modulation is fast
(fmod>fro), there is no safe phase window; however, the
extreme pulses are likely to occur at specific values of the
modulation phase [49].

The role of current modulation in the feedback case is
now being investigated, and we speculate that modulation of
appropriated frequency will also be able to suppress the
extreme pulses.

Concluding Remarks

A relevant question is whether these observations can be
exported to other systems, i.e., if our results could be relevant
to the study of real-world high-dimensional complex systems
that generate extreme fluctuations in their output signals. In
particular, our findings on the role of noise and periodic
current modulation for suppressing extreme pulses could be
of interest for the control of extreme events in other systems,
where a similar response to noise or modulation could be
observed. We also hope that our numerical results will
motivate experimental investigations to confirm the numerical
prediction regarding the role of current modulation in
providing ‘safe phase windows’ where the likelihood of
RWs is very small.
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Status
The investigation of extreme events in optics, or optical rogue
waves, is of interest for both fundamental and applied studies.
In the fundamental arena, rogue waves represent new
solutions to old equations, and they have applications
across many areas of science. It is then the hope that, once
the events are better understood, they can be harnessed and
used. Crucial to elucidating the underlying physics is the
ability to perform real time single shot measurements. This is
because rogue events are by definition transient and
statistically rare; conventional time-averaged measurement
techniques cannot reveal their full details.

Contribution by the authors
Our investigations into extreme events in optics was
motivated by the observations of instabilities in passively
mode-locked fibre lasers [175, 176]. Specifically, we
observed instabilities in both Yb- and Er-doped fibre lasers
that displayed qualitative similarities, despite the laser devices
possessing opposite signs of the cavity dispersion. When
diagnosed with a conventional optical spectrum analyser, the
unstable pulse sequences exhibited a smooth, broad spectrum,
whereas when operating in the stable regime the spectrum
was highly structured (e.g. strong Kelly sidebands in the
soliton regime). These unstable modes of operation
correspond to the ‘noise-like’ pulse regime as originally
identified by Horowiz et al in 1997 [124], and subsequently
found by many other researchers.

Noise-like pulses can display rogue wave –like char-
acteristics. Indeed, in 2011 two research groups indepen-
dently demonstrated, using numerical simulations, that
chaotic dynamics in passively mode-locked laser can give
rise to ‘dissipative optical rogue waves’ [131, 132]. Later that
same year, Kovalsky et al considered a solid-state Ti:Sapphire
laser, and reported the first experimental observation of
extreme value events in a mode-locked laser [130]. In 2012,
Lecaplain et al reported experimental observations of
dissipative rogue waves in a passively mode-locked fibre
laser [133].

In prior experimental studies [130, 133], dissipative laser
rogue waves were analysed predominantly in the time-
domain. However, it is well-known that frequency-domain
analyses are important for the full characterization of rogue
events [1]. Therefore, to examine dissipative rogue waves in
the frequency-domain, we have developed and applied single
shot spectral measurement techniques. In particular, conven-
tional spectral measurement techniques are much slower than
the repetition rate of ultrafast lasers. As a consequence, results
from such measurements correspond to ensemble averages
over thousands of pulses. It should be clear that these

measurements cannot properly measure transient effects, such
as rogue waves, and therefore new measurement techniques
are called for.

In our laboratory, we have made extensive use of the
dispersive Fourier transform (DFT) [177] in order to measure
shot-to-shot spectra of pulses emitted by ultrafast lasers. The
DFT makes use of the fact that, after a sufficiently long
propagation distance in a dispersive medium, the temporal
shape of a pulse evolves into a copy of its spectral shape. This
occurs because every frequency travels at a different speed
thanks to group-velocity dispersion. Thus, all that is needed
for real time spectral measurements is a long length of fibre
and a comparatively fast photo-diode, connected to a real-
time fast oscilloscope. Adopting this tehnique has allowed us
to demonstrate that the smooth spectrum characteristic to
noise like pulses results from the averaging effects and that
each individual spectrum is, in contrast, highly structured
[175, 176]. Most recently we have used this technique to
study soliton explosions [136] (see figure 21) and other
transient effects in fibre mode-locked lasers.

Our single shot measurements [61] (see for example
figure 22) and the work of others have also confirmed that
rogue waves can ‘hide’ inside otherwise noisy data
[133, 178]. In our laser, the presence or absence of extreme
fluctuations can depend on where in the cavity the output
coupler is located, and what spectral region is investigated.
These results thus show that, in these dynamic devices the
pulse and indeed its statistics change dramatically during

Figure 21. Example of a Soliton Explosion, at different roundtrip
numbers, recovered via single shot spectral measurements (see, for
example, [136]).
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propagation around the cavity. This is not surprising given the
highly nonlinear nature of light propagation in a fibre laser
and highlights the unique potential of fibre lasers as a testbed
for a wide range of nonlinear effects.

While the DFT can illuminate many aspects of extreme
fluctuations in fibre lasers, it cannot tell the whole story. In
particular, we lose phase information when measuring the

spectrum using a photodiode and so cannot reconstruct the
temporal shape of the pulses. To gain further insight into their
temporal coherence characteristics, we interfered two con-
secutive pulses in a Michelson interferometer and observed
no sign of any coherence [176]. These measurements imply
that the pulses vary completely from one round trip to
another, providing additional impetus for future single-shot
measurements.

Concluding remarks
Unlike most pulse formation processes in optics, the
generation of optical rogue waves results in a series of
unique events. Their study has resulted in a surge of interest
in real time measurement techniques. The continual
development of both measurement techniques and
theoretical models of pulse formation is sure to lead to new
advances in photonics in years to come. We note that already
at least one company is selling instruments designed to look
at optical rogue waves based on real time spectral
measurements [179]. Although our work has focused on
pulse formation in fibre lasers, the obtained result may also be
applicable to other systems, such as supercontinuum
generation [1] or Raman amplification [178], where optical
rogue waves can also occur. This work also highlights the
potential of passively mode-locked fibre lasers to serve as a
model nonlinear system whose output can mimic many other
systems of interest.
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Figure 22. Statistics of Raman Rogue waves in our fibre laser (see
[61] for details).
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13. Rogue waves in multimode optical systems
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Status
‘Rogue waves’, considered as part of maritime folklore, was
the name given to the erratic giant waves spontaneously
occurring on the ocean surface, as the sudden appearances of a
vertical wall of water preceded by a trough so deep like a ‘hole
in the sea’. Despite the extremely dangerous character of these
phenomena, the scientific community remained mostly silent
until the first ‘measurement’ was unequivocally reported
during the famous rogue wave of 1 January 1995 at the
Draupner platform off the coast of Norway. Since then, rogue
waves, previously considered near-mythical, were recognized
as real physical phenomena and the field of investigation has
been constantly growing, not only in oceanography but in
many different contexts, wherever waves are concerned
independently of their physical origin. The burst of
investigations has, then, involved hydrodynamics, optics,
plasmas, acoustics, superfluids, Bose-Einstein condensates, to
cite a few, and the basic physical concepts have grown on a
multidisciplinary ground, promoted by laboratory-scale
experiments and by the development of general models and
mathematical tools [108, 176, 180]. In optics, the concept of
rogue waves was proposed in the seminal work of Jalali group
for the peaks appearing in the supercontinuum generated by a
photonic crystal fiber [1]. Optical rogue waves constitute now a
subject of investigation on its own and have been reported in a
variety of optical systems. Besides, the analogies and links
between optics and water waves are particularly favored
because the two domains have in common the Nonlinear
Schrödinger equation, NLSE, one of the fundamental equations
in nonlinear physics. Numerical simulations also play an
important role in shedding light on basically involved
mechanisms, as Benjamin-Feir instability, emergence of large
breathers, large filaments in wave turbulence. Some common
features of these wave phenomena, as the large deviations from
the Gaussian statistics of the amplitude, the existence of many
uncorrelated ‘grains’ of activity and their clustering in
inhomogeneous spatial domains, are now well established.
As for a universal definition or a general classification in terms
of different statistics and nature of the involved waves, this still
constitutes an ongoing process continuing to stimulate an
increasing number of new investigations.

Contribution by the authors
Optical rogue waves have been analyzed in the context of
different multimode systems, characterized by different
degrees of nonlinearity and having in common the
excitation of many spatial modes. The first experiment
consists of a unidirectional ring oscillator with a liquid
crystal light-valve, LCLV, acting as the gain medium.
Photons are injected in the cavity through a wave-mixing
process occurring in the liquid crystal pumped by an

incoming laser beam. While for low pump intensity the
amplitude of the cavity field follows a Gaussian statistics, for
high pump we observe the emergence of spatiotemporal
pulses with much higher amplitude with respect to the
background, that develop erratically in time and in space and
live for a typical time of the same order of the response time
of the LCLV [182]. The optical rogue wave phenomenon is
characterized by measuring the probability density functions,
PDF, of the light intensity (figure 23). Because an exponential
statistics for the intensity corresponds to a Gaussian statistics
for the field amplitude, an exponential PDF of the intensity is
characteristic of a speckle pattern, where each point receives
the uncorrelated contributions of many uncoupled modes. At
low nonlinearity, indeed, this is the behavior displayed by
the cavity field. However, because of the geometry of the
resonator, the modes are nonlocally coupled and when the
intensity of the pump laser increases the nonlinear coupling
leads to a complex space-time dynamics with extreme events
populating the tails of the PDF and providing large deviations
from Gaussianity [183]. The PDF are well fitted by a
stretched exponential function with the amount of stretching
increasing when increasing the pump intensity, hence, the
nonlinearity. If the nonlocality is removed by changing the
geometrical configuration of the resonator, the statistics
becomes Gaussian again, demonstrating the importance of
the nonlocal coupling in the generation of the optical rogue
waves [108, 183]. In a second experiment, we feed a
multimode optical fiber with light focused on the entrance by
a large numerical aperture lens [184]. Here, the minimal size
of the optical grains is due to the diffraction limit of the input

Figure 23. Probability distribution function (PDF) of the cavity field
intensity; the nonlinearity is increased from the steepest to the
shallowest distribution; inset: instantaneous profile of the cavity field
intensity. From [182].
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beam, while nonlocal coupling is provided by an asymmetric
mask provided by a spatial light modulator that selects
asymmetrically the wave vectors coupled inside the fiber
(figure 24). A time dependent mechanical perturbation n(t) is
applied to the fiber in order to induce a dynamical behavior.
The intensity of the light distribution at the exit of the fiber
exhibits a stretched exponential statistics depending on the
degree of inhomogeneity introduced by the SLM. Rogue
waves in the absence of nonlinearity have also been reported
in microwave experiments [185]. The emergence of high
amplitude filaments has, then, been studied in a one-
dimensional liquid crystal experiment, in which an optical
wave turbulence [186] regime has been realized [187]. The

laser beam is shaped as a laminar beam and propagates
longitudinally inside the liquid crystal layer. By using a SLM,
spatially random phases are imposed as the initial condition.
Large amplitude filaments are formed after the inverse
cascade, when modulation instability of the wave
condensate sets in [187, 188]. The results of all the above
investigations show that nonlinearity and nonlocal coupling
play a key role in originating rogue waves. In this context, the
linear experiment has the role of highlighting the essential
role of granularity, that is, the fragmentation of the optical
field in fundamental grains of activity. It must be stressed that
in all the considered systems rogue waves are the result of the
dispersive properties of ensembles of many waves. In these
systems, the nonlinearity needs not necessarily to be strong,
provided that the nonlocal coupling plays its role of mixing-
up the individual grains of activity [108].

Concluding remarks
Optical rogue waves appear as genuine space-time
phenomena in multimode optical systems. A wide aperture
cavity and a multimode fiber have been presented as
prototype experiments. In both systems the optical field is
characterized by stretched exponential statistics of the
intensity, emergence of individual grains of activity and
grain clustering in inhomogeneous spatial domains. In
between the cavity and the multimode fiber a weakly
nonlinear wave turbulence regime has been studied for light
propagating in a liquid crystal medium. Non-Gaussian
statistics of the amplitude and the formation of large
amplitude filaments have been observed in the wave
condensation regime [188]. All these results suggest that in
presence of a large number of nonlocally coupled waves the
nonlinearity does not have to be necessarily large in order to
provide rogue wave phenomena.
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Figure 24. (a) Multimode fiber setup. (b) Spatial light modulator
(SLM) transmission mask, (c) speckle patterns and (d) corresp-
onding intensity distributions at a selected y-coordinate. (e) PDF of
the intensity; inset: Gaussian PDF of the perturbation n(t). Adapted
from [108, 184].
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14. Guided wave optics testbed for exploring
extreme weather events and power grid stability
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Status
There are many phenomena in physical and social sciences that
are described in terms of the same universal statistical
distributions, and which are characterized by the presence of
extreme events, associated with the properties of the tail end of
these distributions. Consider for example hydrodynamics
(turbulence, hurricanes, tsunamis), geosciences (earthquakes,
floods, landslides), economics (financial markets), social
sciences (distributions of populations), medical sciences
(neuronal avalanches, epileptic seizure), material failures,
power grid and computer networks (black-outs), environment
and climate sciences (forest fires, evolution and competition of
animal and plant species). There is an ongoing philosophical
debate as to consider these extreme events as essentially
unpredictable, as stated by the so-called black swan theory,
which can be seen as an out spring of the concept of self-
organized criticality.

Such a viewpoint is inherently pessimistic, as the lack of
predictability entails a lack of accountability for the scientist
who was unable to predict the occurrence of the extreme
event. On the other hand, there is an emerging theory of
extreme events that associates their presence to the generation
of coherent wave structures, such as for example nonlinear
waves or solitons, which do not belong to the same
population of random linear waves. Hence the appearance
of extreme events in the form of solitons is subject to their
own ‘dragon-king’ statistical distribution [189]. The impor-
tant consequence of this point of view is the predictability of
the occurrence of the extreme event, based on the observation
of a suitable precursor. This entails even the possibility or
controlling or even suppressing the emergence of the extreme
event [148], if the observation of precursors was able to
trigger a proper feedback signal.

Of great interest today is the study of the mechanism of
extreme or rogue waves in oceanography in the regime of
shallow waters, where catastrophic damages may be produced
by the on-shore arrival of a tsunami. Another hot topic that is
the subject of extensive investigations is the emergence of
irregular and extreme events in coupled nonlinear oscillator
systems such as the power grid distribution network [190]. In
this case, it has been recently proposed the use of the
Ginzburg-Landau equation to describe coupling among the
grid of nonlinear oscillators [191].

Contribution by the author
The purpose of this contribution is to highlight the use of
optical fiber and waveguide experiments, where optical pulse
propagation can be modelled by simple, and yet universal
nonlinear evolution equations (e.g., the nonlinear Schrödinger
equation (NLSE), the nonlinear shallow water equation
(NLSWE), the Ginzburg Landau equation (GLE), as a

simply accessible test bed for exploring, in a well
controlled manner, the dynamics of complex phenomena
that exhibit extreme events. Thus nonlinear guided wave
optics provides a practical platform for the accessible
statistical study of extreme event generation in the diverse
domains of science and applications such as discussed in the
status sub-section (as first proposed in [1]).

Among these, let us discuss at first the possibility of
exploring, by means of fiber optics experiments, the dynamics
and the control of extreme weather events such as ocean
tsunamis. In the case of normal group velocity dispersion, and
whenever the input pulse is such that the associated nonlinear
length is much smaller than the dispersion length, it is
possible to reduce the description of pulse propagation from
the NLSE to the NLSWE [192]. Let us recall that in
hydrodynamics the NLSWE describes the propagation of
water waves in shallow water, which is the regime were the
wavelength of the waves is much longer than the depth of
water. A typical and well-known example of shallow water
wave with catastrophic consequences is the tsunami. The
optical pulse intensity corresponds to the height of the water
wave, and the optical frequency corresponds to the wave
velocity. Therefore one may study by means of a suitably
prepared input optical pulse, and a properly engineered
optical fiber, the phenomenon of the run-up of a tsunami
towards the beach [192].

The NLSWE possesses several exact solutions, among
which of particular interest are the so-called Riemann waves,
which describe unidirectional propagation and reshaping until
a vertical profile is reached (shoaling) of a wave possessing an

Figure 25. F Shoaling of optical Riemann wave (top); rogue pulse
generation in a fiber loop (bottom). Reproduced from [192].
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initial velocity profile that is proportional to its amplitude. In
fiber optics, the propagation of a Riemann pulse with an
initial hyperbolic secant shape is depicted in figure 25 (top
plots). Here we compare the initial intensity (red dashed
curves) with the intensities resulting from the exact solution
of the NLSWE (green traces) and the numerical solution of
the NLSE (blue traces). Note that the NLSE predicts the
appearance of a shock wave (high frequency temporal
oscillations) after the shoaling point.

It is very interesting to consider pulse propagation in the
shallow water regimein a fiber loop, in the presence of a
modulator that imposes a continuous frequency shift of the
carrier frequency. In this case the frequency shifting is
analogous to the presence of a sloping beach for ocean waves.
This situation may lead to the appearance of high intensity
and temporally compressed extreme pulses (see figure 25,
bottom picture) [192]. This leads to the intriguing possibility
of mapping the depth of the shoreline into an appropriately
designed modulator driving, for mimicking the emergence of
catastrophic wave events by means of harmless laser optics
experiments.

In shallow waters, giant waves (also known as sneaker
waves) may suddenly appear near the beach as the result of
the collision of oppositely directed currents. In fiber optics,
the analogous phenomenon results by launching into the fiber
a CW with a periodic modulation of the initial frequency (or
phase) [193]. The experiment has led to the observation of the
generation of giant pulses with a flat-top intensity profile, or
optical flaticons [194].

Another intriguing example of complex physical
dynamics, which is readily accessible via the fiber optics
platform, is the analysis and control of chaotic coupled
nonlinear oscillators. A typical example is provided by the
nonlinear dynamics of coupled polarizations in fiber lasers.
Based on the common mathematical description provided by
the coupled GLEs, these studies may suggest for example
novel routes for achieving the robust stabilization against
blackouts in the power grid.

The spatio-temporal analysis of fiber laser emission has
very recently unveiled the presence of intermittence phenom-
ena that separate laminar or regular pulse emission states from
chaotic pulsations [195]. A universal description of the
transition from mode locked regime into space-time laser
turbulence may be obtained in the frame of the GLE [196]. In
vector fiber lasers, nonlinear polarization coupling may lead
to synchronization of the irregular, uncorrelated intermittent
emission (see an example in the top panels of figure 26) into
regular domains of alternating states of polarization, or
polarization domains, separated by polarization domain wall
solitons [197].

Moreover, coupled GLEs describe extreme events that
emerge from the nonlinear coupling between a Stokes and a
pump wave in fiber Raman lasers [198]: e.g., the polarization
rogue wave in the bottom plot of figure 26.

Concluding remarks
Nonlinear optics experiments provide a powerful means to
mimic and explore the nonlinear dynamics of coherent
structures that may be generated as extreme events from the
propagation of laser pulses in the presence of a noisy
background. One remarkable property of optical fibers is the
possibility of engineering their parameters (e.g., dispersion,
nonlinearity) along the longitudinal dimension, whereas the
amplitude and phase of the input pulse may also be precisely
tailored. Moreover, the continuous monitoring with advanced
data processing techniques of the re-circulating output of fiber
lasers permits nowadays the extraction of an unprecedented
amount of statistical properties that characterize the extreme
dynamics of extended nonlinear coupled oscillator systems.
The new frontier of nonlinear optical guided waves for the
study of extreme events is going to be the extension beyond
1-dimensional propagation, e.g., waveguide arrays,
multimode fibers, and transverse spatio-temporal effects.
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Figure 26. Spatio-temporal intermittency (top) and polarization
rogue waves in a fiber laser (bottom).
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15. Generation of multiple compression points for
Akhmediev breather with periodic coefficients
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Status
Rogue waves (RW) are short-lived phenomena appearing
suddenly out of normal waves and with a small probability.
These are extraordinarily high amplitude localized wavelets,
whose height exceeds many times the height of surrounding
waves. There has been growing interest in studying RW in
many dispersive media e.g. nonlinear fibre optics, Bose-
Einstein condensations, super fluids, space plasma etc [1, 55].
It was shown at a very early stage that exact breather-type
solutions of the nonlinear Schrödinger equation (NLSE), well
known to govern the nonlinear propagation of modulated
wavepackets in various physical contexts [199], reproduced
the qualitative characteristics of freak waves to a highly
satisfactory extent. The pioneering works by Peregrine [116],
Kuznetsov [117], Ma [118] and Akhmediev [199],
succeeding to construct an analytical toolbox for freak
waves whose relevance was later established experimentally
in different frameworks [97]. Akhmediev Breathers (ABs) are
coherent structures that oscillate in space or time and have the
peculiarity of changing their amplitude as they propagate.
They have been considered in various fields of physics as a
plausible object that describes the formation of RW [152]. It
is well known that the dynamics of ABs is strongly affected in
the presence of varying dispersion and/or nonlinearity
[153, 200]. Recently, the experimental observations of ABs
have been reported in optical fibers and it was shown that
their evolution can be quasi-stabilized in space at their point
of maximal compression for a properly designed fiber with
longitudinally varying profile [162]. However, RW are
elusive and intrinsically difficult to monitor, thus a full
understanding of them is far from having been achieved and
deserves further careful study. In particular, important
questions arise when investigating the formation of RW
under periodic modulations in parameters. How to control the
generation of RW in presence of periodic coefficients? How
the size and the compression points of the breathers are
affected by the modulation? In the attempt to answer these
important questions, we present the analytical solution of the
AB in the presence of periodic modulation of the parameters
and analyse how the RW profiles get modified by the
variations of the distributed coefficients.

Contribution by the authors
We consider the NLSE in the form
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The parameter a is the growth rate of modulation
instability. It is obvious from the analytical solution that the
essential characteristics of RW like excitations, namely their
magnitude and their periodicity in time, will depend on the
values of h, e, and k .m Considering two representative values
of h, we have depicted the spatio-temporal evolution of the
AB with periodic coefficients in figure 27. As can be seen in
the figure, the solution (2) exhibits the typical time-periodicity

of a breather with period p h= -/T 1 ,2 but it is aperiodic
in space. The time periodicity and the amplitude of those
solutions gradually increase as h approaches 1. In that limit,
the AB converges to the Peregrine soliton. It is also clear that
due to the presence of the periodic modulation e, the spatial
profile in z exhibits multiple peaks, a feature that distin-
guishes it from the standard AB with constant coefficients.
Our results reveal that, in general, when  e <0 1, the
solution has the same characteristics as in the case of constant
coefficients, i.e., the AB is localized in only one point of
space and is periodic in time. On the other hand, when

Figure 27. Spatio-temporal evolution of Akhmediev breather with
periodic coefficients. e w p= = = /k3, 0, 4.m h =a 0.65,( )

h =b 0.85( ) .
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e > 1, the AB presents now many compression points in
space, and the number of these compression points increases
as e increases. The existence of several compression points in
space is due to the fact that because of the modulation, there is
an energy exchange between the AB and the finite back-
ground that changes with the spatial behaviour of the
dispersion. At each zero of dispersion, the energy that was
smoothly decreasing (increasing) reaches its minimum
(maximum), and then increases (decreases) again until it
reaches its maximum (minimum) value. The spacing between
the multiple compression points is directly determined by the
spatial frequency km of the modulation. These are the most
striking new features of RW with periodic coefficients. Thus,
one can control the number and the position of the excited
RW by suitably choosing the amplitude of the modulation e
and its spatial frequency k .m However, an increased value of e
does not affect the amplitude of the solution. Finally, we also
perform direct numerical simulation of equation (1) by the
split-step Fourier method with initial condition given by the
exact solution (2) at = -z 4.0 It is well known that the
dynamics of the AB without modulation exhibits only one
ideal growth-return cycle in propagation distance [162].

However, in the presence of the periodic coefficients, we do
not observe in figure 28(a) a single cycle of evolution of the
breather, but rather a series of compression-decompression
points in space, which are periodic in time. We clearly note in
figure 28(b) that increasing the amplitude of periodic
modulation e allows us to generate the maximally compressed
AB over a shorter propagation distance. One can also see that
the increase of e did not influence the maximal amplitude of
the AB. Considering the experiments on RW in nonlinear
fibers which show the existence of a strongly localized spatio-
temporal peak [97], we expect that these multiple compres-
sion points could be observed in nonlinear fibers with
periodic coefficients.

Concluding remarks
In summary, we present an exact Akhmediev breather
solution of the nonlinear Schrödinger equation with periodic
coefficients. Our study reveals that it is possible to generate
multiple compression points of the Akhmediev breather
solution in many points of the space, by using periodic
coefficients. The number of the compression points increases
with the amplitude of modulation, while the maximum
amplitude of the breather remains unaffected.

Moreover, the numerical simulations of the nonlinear
Schrödinger equation with periodic coefficients are performed
by the split-step Fourier method, which agree with the
analytical results. These results could be of great interest in
realizing rogue wave with multiple compression points.
Similar studies can be extended to multi-components system.
Also the position of the maximum compression points as
function of the modulation parameters can be controlled, and
work is under progress and will be reported elsewhere.
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Figure 28. Numerical profile of the Akhmediev breather with
periodic coefficients. p h= =/k 4, 0.77.m e =a 3,( ) e =b 5.( )
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