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Manipulation of Airy Beams in Dynamic Parabolic Potentials

Feng Liu, Jingwen Zhang, Wei-Ping Zhong, Milivoj R. Belíc, Yu Zhang, Yanpeng Zhang,
Fuli Li, and Yiqi Zhang*

The propagation of finite energy Airy beams in dynamic parabolic potentials,
including uniformly moving, accelerating, and oscillating potentials, is
investigated. The propagation trajectories of Airy beams are strongly affected
by the dynamic potentials, but the periodic inversion of the beam remains
invariant. The results may broaden the potential applications of Airy beams,
and also enlighten ideas on Airy beam manipulation in nonlinear regimes.

1. Introduction

The Airy beam, which originated from the Airy wavepacket in
quantum mechanics,[1] was introduced into optics by superpos-
ing an exponential function to an Airy function, to obtain a
finite-energy beam.[2,3] The finite energy Airy beam possesses
some unique properties including self-acceleration, nondiffrac-
tion, and self-healing.[4] It is demonstrated that Airy beams
can be used for superresolution fluorescence imaging, plas-
mons generation, material processing, filamentation, to manip-
ulate micro-particles, and so on.[5–8] Until now, investigations of
Airy beams have been reported in nonlinear media,[9–15] Bose–
Einstein condensates,[16] on the surface of a metal,[17–20] in opti-
cal fibers,[21–24] and other systems. In a word, Airy beams have at-
tracted a lot of attention all over the world in the past few decades,
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and a large quantity of related literature
has sprouted out. Among multitudinous
research results that are about manipula-
tion of the Airy beam behavior, external
potentials feature prominently, such
as the parabolic potential,[25–29] linear
potential,[30] and dynamic potentials in
general.[31,32]

A dynamic potential means that the
potential changes with the evolution

or propagation distance,[31–33] so that it can modulate the beam
behavior simultaneously. A dynamic potential could be changed
by the propagating beam itself, which is common occurrence
in the nonlinear regime. Even though Airy beams in dynamic
potentials have been reported,[31,32] their behavior in a dynamic
parabolic potential has not been explored yet, to the best of our
knowledge. A parabolic potential is important, because it natu-
rally arises when strongly nonlocal nonlinearity is treated,[14,34]

which conveniently reduces a nonlinear problem into a lin-
ear one. In addition, the parabolic potential plays a role of
Fourier transform operator during propagation, and based on
this serendipitous effect, new kinds of self-Fourier beams have
been discovered.[26,27]

In this paper, we investigate the propagation behavior of Airy
beams in dynamic parabolic potentials. We will tackle the follow-
ing problems. As it is well known, an Airy beam will undergo
periodic inversion and phase transition during propagation in a
parabolic potential. The first task is to investigate whether these
properties are preserved in dynamic parabolic potentials and how
they are affected by the potentials. Also, wewill look into the prop-
erties of trajectories of Airy beams during propagation and how
they are affected by the concrete type of dynamics coming from
the potentials.We believe that the results of our investigationmay
not only provide effective and diverse methods for linear manip-
ulation of Airy beams, but also have enlightening ideas on the
nonlinear control of such beams.

2. Theoretical Analysis

The paraxial propagation of a beam in a dynamic parabolic poten-
tial, is described by the dimensionless Schrödinger equation

i
𝜕𝜓(x, z)
𝜕z

= −1
2
𝜕2𝜓(x, z)
𝜕x2

+ 1
2
𝛼2[x − t(z)]2𝜓(x, z) (1)

where x and z are the normalized transverse coordinate and
the propagation distance, respectively.[12,13] Parameter 𝛼 scales
the width of the potential. The function t(z) in Equation (1) de-
termines the dynamic behavior of the parabolic potential. Such
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modulated potential can be achieved by appropriately changing
the refractive index of the material.
We first perform Fourier transform (FT) of Equation (1), to ob-

tain

i
𝜕𝜓̂(k, z)
𝜕z

= − 1
2
𝛼2
𝜕2𝜓̂(k, z)
𝜕k2

− i𝛼2t(z)
𝜕𝜓̂(k, z)
𝜕k

+ 1
2
[k2 + 𝛼2t2(z)]𝜓̂(k, z) (2)

where the FT is defined as

𝜓̂ = ∫
+∞

−∞
𝜓 exp(−ikx)dx, 𝜓 = 1

2𝜋 ∫
+∞

−∞
𝜓̂ exp(ikx)dk

If the dynamic function t(z) is zero (corresponding to a static
parabolic potential), then Equation (2) has exactly the same form
as Equation (1), when 𝛼 = 1. But when t(z) ≠ 0, the second term
and 𝛼2t(z) in the third term on the right-hand side of Equation (2)
lead to different scenarios.
To change the dynamic potential into a static potential, we do

a coordinate transform operation through the relations X = x −
t(z) and Z = z, and now Equation (1) is written as

i
𝜕𝜓(X,Z)
𝜕Z

= − 1
2
𝜕2𝜓(X,Z)
𝜕X2

+ i
dt(Z)
dZ

𝜕𝜓(X,Z)
𝜕X

+ 1
2
𝛼2X2𝜓(X,Z) (3)

As expected, the propagation trajectory of beams in such a static
potential will not be affected by the dynamic function, because
the “external force” in Equation (1) becomes an “inertial force”
in this transformed frame, which only stretches or suppresses
the beams along the transverse coordinate. Making a comparison
between the second terms on the right-hand side of Equations (2)
and (3), one finds that the major difference is that Equation (2)
contains t(z) but Equation (3) contains dt∕dz. Therefore, if the
beam behavior is not affected much by the dynamic function in
Equation (3), it will be definitely affected in Equation (2).
Again, we perform FT of Equation (3), to find

i
𝜕𝜓̃(K,Z)
𝜕Z

= −1
2
𝛼2
𝜕2𝜓̃(K,Z)
𝜕K2

+
(
1
2
K2 − K

dt(Z)
dZ

)
𝜓̃(K,Z) (4)

where now

𝜓̃ = ∫
+∞

−∞
𝜓 exp(−iKX)dX, 𝜓 = 1

2𝜋 ∫
+∞

−∞
𝜓̃ exp(iKX)dK

Clearly, the dynamic function plays an “external force” in
Equation (4). If one introduces K ′ = K − dt(Z)∕dZ and h(Z) =
[dt(Z)∕dZ]2, then Equation (4) can be rewritten as

i
𝜕𝜓̃(K ′, Z)

𝜕Z
= −1

2
𝛼2
𝜕2𝜓̃(K ′, Z)
𝜕K ′2 + 1

2

[
K ′2 − h(Z)

]
𝜓̃(K ′, Z) (5)

If one further sets 𝜓̃ = 𝜙̃ exp[i ∫ 1
2
h(Z)dZ] and K ′ = 𝛼𝜅, Equa-

tion (5) is recast into

i
𝜕𝜙̃(𝜅, Z)
𝜕Z

= −1
2
𝜕2𝜙̃(𝜅, Z)
𝜕𝜅2

+ 1
2
𝛼2𝜅2𝜙̃(𝜅, Z) (6)

Obviously, Equation (6) has the same form as Equation (1), ex-
cept for the form of the dynamic function. Both equations can
have similar solutions but expressed in different spaces, real and
Fourier. Also, Equations (1) and (6) indicate that localized light
beams in real and Fourier spaces may share similar dynamics
from amathematical point of view, but along different paths. The
solution of Equation (6) can be written as[26–28]

𝜙̃(𝜅, Z) = 𝜏(𝜅, Z)∫
+∞

−∞

[
𝜙̃(𝜉, 0) exp

(
i𝒫𝜉2

)]
exp(−i𝒬𝜉)d𝜉 (7)

where𝒫 = 𝛼

2
cot(𝛼Z), 𝒬 = 𝛼𝜅 csc(𝛼Z), and

𝜏(𝜅, Z) =
√

− i
2𝜋

𝒬
𝜅
exp

(
i𝒫𝜅2

)
Based on Equation (7), one can obtain the solution of Equa-
tion (2), and finally the solution of Equation (1). According to
Equation (7), one finds that the propagation of the beam 𝜙̃(𝜅, Z)
is equivalent to a Fourier transform (with 𝒬 being the frequency)
of the modified beam 𝜙̃(𝜉, 0) exp(i𝒫𝜉2) at each Z.
Theoretical analysis indicates that the beam behavior in a dy-

namic parabolic potential can still be understood in terms of
the behavior in a static parabolic potential, but with appropriate
changes in the form of solutions. The propagation properties in
a dynamic parabolic potential may be connected with those in
a static parabolic potential, provided proper changes are intro-
duced in the solutions in the Fourier and transformed coordinate
spaces. For example, the “center ofmass” of the finite energy Airy
beammight follow a straight line or a parabolic curve or perform
a harmonic oscillation in the transformed coordinate. But, the
concrete profile of the dynamic parabolic potential will modulate
the trajectory and the dynamics of the beam during propagation.
Since Airy beams have some unique properties, such as being

nondiffracting, self-accelerating, and self-healing, and are of high
current interest in optics, we will take Airy beams as our inves-
tigating objects. Note that the discussion can be easily extended
to two-dimensional (2D) cases,[28] and also other beams,[35] for
example, beams with orbital angular momentum (e.g., Hermite–
Gaussian or Laguerre–Gaussian beams).
In the following text, we will investigate the propagation dy-

namics of Airy beams in three typical dynamic parabolic poten-
tials.We consider the quantities dt∕dz and d2t∕dz2 which indicate
the velocity and acceleration of the dynamic potential.[36] If dt∕dz
is a constant, then the potentialmoves uniformly during propaga-
tion. While if d2t∕dz2 is constant along the propagation distance,
then the potential is uniformly accelerating.Wewill start with the
two simple cases, then discuss the oscillating case and finally, the
2D case. For uniformity in the treatment, we set 𝛼 = 0.5 through-
out.

3. Uniformly Moving Parabolic Potential

We set the dynamic function as a general linear function t(z) =
𝜇z + 𝜈, and pick 𝜇 = 3 and 𝜈 = 0. So, dt∕dz = 3 and d2t∕dz2 = 0,
and the potential moves uniformly with velocity dt∕dz = 3 dur-
ing propagation.
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We first solve for the analytical solution with the general linear
function based on the equations in Section 2, and then numer-
ically investigate the propagation dynamics of the input beams.
Although the input beams can be arbitrary, our attention here is
focused only on finite-energy Airy beams, 𝜓(x) = Ai(x) exp(ax)
with a = 0.1. We would like to emphasize again that our analyti-
cal method is generally applicable to any input beam. While the
finite-energy Airy beam is the input in Equation (1), the input in
Equation (7) should be

𝜙̃(𝜅) = exp
[
−a(𝛼𝜅 + 𝜇)2

]
× exp

{
a3

3
+ i
3

[
(𝛼𝜅 + 𝜇)3 − 3a2(𝛼𝜅 + 𝜇)

]}

which is the Fourier transform of the finite-energy Airy beam.
Inserting this input into Equation (7), one obtains

𝜙̃(𝜅, Z) =𝜏(𝜅, Z)∫
+∞

−∞
d𝜉 exp(−i𝒬𝜉)

× exp
[
−a(𝛼𝜉 + 𝜇)2

]
exp

(
i𝒫𝜉2

)
× exp

{
a3

3
+ i
3

[
(𝛼𝜉 + 𝜇)3 − 3a2(𝛼𝜉 + 𝜇)

]}

Considering that

∫
+∞

−∞
exp(i𝒫𝜉2) exp(−i𝒬𝜉)d𝜉 =

√
i 𝜋
𝒫

exp
(
−i 𝒬

2

4𝒫

)

and

∫
+∞

−∞
exp(−i𝒬𝜉)d𝜉 exp

[
−a(𝛼𝜉 + 𝜇)2

]
× exp

{
a3

3
+ i
3

[
(𝛼𝜉 + 𝜇)3 − 3a2(𝛼𝜉 + 𝜇)

]}

=2𝜋
𝛼
Ai
(
−𝒬
𝛼

)
exp

(
−(a − i𝜇)𝒬

𝛼

)
the solution of Equation (6) can be written as a convolution

𝜙̃(𝜅, Z) =
𝜏(𝜅, Z)
𝛼

√
i 𝜋
𝒫

exp
(
−i 𝒬

2

4𝒫

)
⊛

[
Ai
(
−𝒬
𝛼

)
exp

(
−(a − i𝜇)𝒬

𝛼

)]
where⊛ represents the convolution operation. Therefore, the so-
lution of Equation (4) is

𝜓̃(K,Z) =
𝜏(K,Z)
𝛼

exp
(
i
𝜇2

2
Z
)√

i 𝜋
𝒫

exp
(
−i 𝒬

2

4𝒫

)
⊛

[
Ai
(
−𝒬
𝛼

)
exp

(
−(a − i𝜇)𝒬

𝛼

)]

To find the solution of Equation (3), one takes the inverse Fourier
transform of this solution,

𝜓(X,Z) = 1
2𝜋 ∫

+∞

−∞
𝜓̃(K,Z) exp(iKX )dK

which turns out to be

𝜓(X,Z) =
Ai(A2 + B)√
cos(𝛼Z)

exp
[1
3

(
2A3 + 3AB + C3

)]

× exp
[
i
2

(
−
𝛼 sin(𝛼Z)
cos(𝛼Z)

X2 + 2𝜇X + 𝜇2Z
)]

(8)

where A = i sin(𝛼Z)

2𝛼 cos(𝛼Z)
+ C, B = X

cos(𝛼Z)
− C2, and C = a − i𝜇. By re-

placing X with x − 𝜇z − 𝜈 and Z with z, one finally obtains
the general solution of Equation (1) with the uniformly moving
parabolic potential,

𝜓(x, z) =
Ai(A2 + B)√
cos(𝛼z)

exp
[1
3

(
2A3 + 3AB + C3

)]

× exp
[
i
2

(
−
𝛼 sin(𝛼z)
cos(𝛼z)

(x − 𝜇z − 𝜈)2
)]

× exp
[
i
2
(2𝜇x − 𝜇2z − 2𝜇𝜈)

]
(9)

According to Equation (9), there are singular points at z =
(2n + 1) 𝜋

2𝛼
with n being natural numbers, at which the “phase

transition” happens. Obviously, the singular points are indepen-
dent of the dynamic function. Since Equation (9) is invalid at
z = (2n + 1) 𝜋

2𝛼
, one has to solve for the solution at these points,

which is

𝜓

(
x, z = (2n + 1) 𝜋

2𝛼

)
= −

√
−i s𝛼
2𝜋

exp
(
i
𝜇2

2
z + C3

3

)

× exp
[
i
3
s3𝛼3(x − 𝜇z − 𝜈)3

]
× exp

[
−C𝛼2(x − 𝜇z − 𝜈)2

]
× exp

[
is
(
𝜇 − 𝛼C2

)
(x − 𝜇z − 𝜈)

]
(10)

where s = 1 if n is even and s = −1 if n is odd. In Figure 1a, we
display the propagation dynamics of the input finite-energy Airy
beam based on the analytical results.
Now, we investigate the beam behavior numerically by solv-

ing Equations (1)–(3) successively, and the results are displayed
in Figures 1b–d, respectively. In Figure 1b, the trajectory of the
dynamic function t = 3z is displayed by the dashed line. It is ob-
vious that the analytical and numerical results completely agree
with each other. One finds that the Airy beam propagates along
a step-wise trajectory, with the center of mass following the
straight dashed line. One also notes that the periodic inversion
and “phase transition” (i.e., a mutual transformation between an
Airy beam and aGaussian beam) performed by the Airy beam are
there, as indicated by the analytical solutions. However, the pro-
files of the beam in the first and second stages are different. In

Ann. Phys. (Berlin) 2020, 532, 1900584 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900584 (3 of 7)



www.advancedsciencenews.com www.ann-phys.org

1st
st

ag
e

2nd
st

ag
e

(a)

(b)

(c)

(d)

Figure 1. Propagation of a finite energy Airy beam in a uniformly mov-
ing parabolic potential t(z) = 3z [represent by the dashed curve in (b)]. (a)
Analytical result according to Equations (9) and (10). b–d) Numerical re-
sult in the real space, in the inverse space, and in the transformed frame,
respectively. For discussion convenience, the red dashed vertical lines sep-
arate the two propagation stages.

the second stage, the barycenter of the beam remains on a quite
stable level, but in the first stage the process changes sharply. The
two stages do not obey centro-symmetry about the dashed line.
The reason for such a phenomenon can be attributed to the parity
asymmetry of the finite Airy beam. If one uses a Gaussian beam
as the input in such a dynamic potential, one would find that the
process is centro-symmetric about the dashed line.
It is also interesting to note that the inversion period projected

onto the z coordinate does not change, which is 5𝜋∕4𝛼. Such an
invariance can be demonstrated from the corresponding propa-
gation displayed in the Fourier space [Figure 1c] and in the trans-
formed frame [Figure 1d], in which the propagation trajectories
are not affected by the dynamic function. It is worth mention-
ing that in the transformed frame, the beam dynamics exhibits
centro-symmetry about X = 0, which is expected.

4. Accelerating Parabolic Potential

If the dynamic potential is written as a general quadratic func-
tion, t(z) = 𝜇z2 + 𝜈z + 𝓁 with, say, 𝜇 = 0.1 and 𝜈 = 𝓁 = 0, one
finds d2t∕dz2 = 0.2, which is constant. Therefore, this is an ac-
celerating parabolic potential.
Following the same procedure as in Section 3, the analytical

solution with the general quadratic function can be obtained as

𝜓(x, z) =
Ai(A2 + B)√
cos(𝛼z)

exp
[1
3

(
2A3 + 3AB + C3

)]

× exp
[
i
2

(
−
𝛼 sin(𝛼z)
cos(𝛼z)

(
x − 𝜇z2 − 𝜈z − 𝓁

)2)]

1st
st

ag
e

2nd
st

ag
e

(a)

(b)

(c)

(d)

Figure 2. Propagation of a finite energy Airy beam in an accelerating
parabolic potential t(z) = 0.1z2. The setup is as in Figure 1.

× exp
[
i(2𝜇z + 𝜈)

(
x − 𝜇z2 − 𝜈z − 𝓁

)]
× exp

[
i
2

(4
3
𝜇2z3 + 2𝜇𝜈z2 + 𝜈2z

)]
(11)

withA = i sin(𝛼z)

2𝛼 cos(𝛼z)
+ C,B = x−𝜇z2−𝜈z−𝓁

cos(𝛼z)
− C2, andC = a − i𝜈. At the

critical points, the solution is

𝜓

(
x, z = (2n + 1) 𝜋

2𝛼

)
= −

√
−i s𝛼
2𝜋

exp
(
C3

3

)

× exp
[
i
2

(4
3
𝜇2z3 + 2𝜇𝜈z2 + 𝜈2z

)]

× exp
[
i
3
s3𝛼3(x − 𝜇z2 − 𝜈z − 𝓁)3

]
× exp

[
−C𝛼2(x − 𝜇z2 − 𝜈z − 𝓁)2

]
× exp

[
is
(
2𝜇z + 𝜈 − 𝛼C2

)
(x − 𝜇z2 − 𝜈z − 𝓁)

]
(12)

As a check on the solution, if one sets 𝜇 = 0, Equation (11) re-
duces to Equation (9), and Equation (12) reduces to Equation (10).
The propagation dynamics based on the analytical solution is dis-
played Figure 2a. And the corresponding numerical simulations
are exhibited in Figure 2b–d. In Figure 2b, the center of mass of
the Airy beam propagates along an accelerating dynamic poten-
tial, which is indicated by the parabolic dashed curve. Different
from the uniformly moving parabolic potential in Figure 1, the
Airy beam does not exhibit explicitly the difference in the stages,
except that the beam is elongated along the dashed curve. The rea-
son is quite obvious—the inversion period projected onto the z
coordinate is invariant, but the slope of the subsequent stages in-
creases.
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In the Fourier space, as shown in Figure 2c, the beam prop-
agates along the trajectory dt∕dz = 0.2z (the dashed line), which
is a linear function of the propagation distance z. Recall that in
Figure 1c, the beam is seemingly not affected by the dynamic
function in the Fourier space, because dt∕dz is constant, which
is invariant with the propagation distance z. As elucidated before,
the beam propagation is related to t(z) in the Fourier space, but
is connected with dt∕dz in the transformed space. Since in the
transformed space, as exhibited in Figure 2d, the trajectory of the
beam is affected by the dynamic function, the trajectory in the
Fourier space must also be modulated by the dynamic function.
One can infer that if the dynamic function obeys a cubic power
law t(z) = az3, then the beam in the Fourier space will propagate
along a parabolic trajectory dt∕dz = 3az2. Numerical simulations
and theoretical results confirm such a prediction (not shown). In
principle, one can surely obtainmathematical verification on this
prediction by doing Fourier transform on the analytical solution
in Equation (13), which includes the term dt∕dz.
In Section 3 and this section, the dynamic functions are poly-

nomials, and corresponding analytical solutions are obtained. Ac-
tually, for polynomial functions, a general analytical solution can
also be obtained. One can demonstrate that the corresponding
solution can be written as

𝜓(x, z) =
Ai(A2 + B)√
cos(𝛼z)

exp
[1
3

(
2A3 + 3AB + C3

)]

× exp
[
i
dt(z)
dz

[
x − t(z)

]]
exp

[
i
2 ∫

(
dt(z)
dz

)2

dz

]

× exp
[
i
2

(
−
𝛼 sin(𝛼z)
cos(𝛼z)

[
x − t(z)

]2)]
(13)

where t(z) is the polynomial function, and A = i sin(𝛼z)

2𝛼 cos(𝛼z)
+ C, B =

x−t(z)
cos(𝛼z)

− C2, and C = a − i dt(z)
dz

|z=0. At the critical points, the gen-
eral solution turns out to be

𝜓

(
x, z = (2n + 1) 𝜋

2𝛼

)
= −

√
−i s𝛼
2𝜋

exp
(
C3

3

)

× exp

[
i
2 ∫

(
dt(z)
dz

)2

dz

]

× exp
[
i
3
s3𝛼3[x − t(z)]3 − C𝛼2[x − t(z)]2

]

× exp
[
is
(
dt(z)
dz

− 𝛼C2

)
[x − t(z)]

]
(14)

5. Oscillating Parabolic Potential

In this Section, we use a complex dynamic potential of the form
t(z) = 𝜇 sin(𝜈z) with 𝜇 = 4𝜋2 and 𝜈 = 4, which harmonically os-
cillates during propagation. A relevant question to ask is whether
then there exists an analytical solution for such a dynamic func-
tion. Unfortunately, the answer is no. The reason is that the dy-
namic function will automatically connect with the term sin(𝛼z)

1st
st

ag
e 2nd

st
ag

e(a)

(b)

(c)

Figure 3. Propagation of a finite energy Airy beam in an oscillating
parabolic potential t(z) = 4𝜋2 sin(4z). The setup is as in Figures 1b–d.

in the integral, which makes it difficult to evaluate, owing to the
complex relation between sin(𝛼z) and sin(𝜈z). While one can still
denote a solution given up to an integral as an analytical solu-
tion, we prefer to refer to it as a numerical solution, since it can
be fully investigated only numerically. The numerical results are
displayed in Figure 3.
One can see in Figure 3a that the periodic inversion and “phase

transition” are not affectedmuch by the dynamic potential, except
for small oscillations of the beam profile. In the Fourier space
(Figure 3b) and in the transformed frame (Figure 3c), the mod-
ulation coming from the dynamic potential becomes more pro-
nounced.
Similar to the dynamic polynomial functions used in Figures 1

and 2, the trajectory of the beam in the Fourier space still obeys
the dt∕dz rule for the oscillating dynamic function, but now there
are two oscillations present: one coming from the parabolic po-
tential and the other coming from the oscillating dynamic func-
tion t(z), as seen in the top panel. There is also the oscillation
coming from dt∕dz, visible in the middle panel, but that one
is just the phase-shifted dynamic oscillation. The bottom panel
clearly displays the two superposed oscillations. Here, we have
chosen b = 4 to make the period 2𝜋∕b = 𝜋∕2 of the dynamic po-
tential commensurate with the inversion period 2𝜋∕𝛼 = 4𝜋. In
the complete inversion period (both the first and second stages),
there will be then eight oscillation periods, which can be seen
from the middle and bottom panels in Figure 3. One may choose
other values for the parameter b, and the results will remain sim-
ilar. In comparison with the modulation mechanisms shown in
Figures 1 and 2, the oscillating dynamic potential in Figure 3 ex-
hibits more complex behavior, and therefore points to more pos-
sibilities for manipulating Airy beams by pickingmore varied dy-
namic potentials.

6. Two-dimensional Case

Last but not least, we extend the analysis to the 2D case. The
Schrödinger-like equation that governs the propagation of the

Ann. Phys. (Berlin) 2020, 532, 1900584 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900584 (5 of 7)
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beam can be written as

i
𝜕𝜓(x, y, z)

𝜕z
= − 1

2

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2

)
𝜓(x, y, z)

+ 1
2
𝛼2
{
[x − t1(z)]

2 + [y − t2(z)]
2
}
𝜓(x, y, z)

(15)

Since this problem is linear, we may solve it by the separation of
variables and write the solution of Equation (15) as 𝜓(x, y, z) =
X(x, z)Y(y, z), so that Equation (15) can be recast into

i𝜕X
𝜕z

+ 1
2
𝜕2X
𝜕x2

− 1
2
𝛼2[x − t1(z)]

2X −mX = 0 (16)

i𝜕Y
𝜕z

+ 1
2
𝜕2Y
𝜕y2

− 1
2
𝛼2[y − t2(z)]

2Y +mY = 0 (17)

in which m is the separation constant. If we introduce X(x, z) =
f (x, z) exp(−imz) and Y(y, z) = g(y, z) exp(imz), Equations (16)
and (17) can be rewritten as

i
𝜕f
𝜕z

+ 1
2
𝜕2f
𝜕x2

− 1
2
𝛼2[x − t1(z)]

2f = 0 (18)

i
𝜕g
𝜕z

+ 1
2
𝜕2g
𝜕y2

− 1
2
𝛼2[y − t2(z)]

2g = 0 (19)

which are two independent 1D cases, as described in Equa-
tion (1). As a result, the 2D case can be reduced to the product
of two independent 1D cases, which makes the physical picture
of the 2D case quite clear, and we do not discuss it further here.

7. Conclusion

Summarizing, we have investigated the propagation of Airy
beams in dynamic parabolic potentials. In the polynomial dy-
namic parabolic potentials, the propagation trajectory of the Airy
beams in the real space is determined by the dynamic potential,
while in the Fourier space, the propagation trajectory is deter-
mined by the derivative of the dynamic potential. Likewise in the
oscillating parabolic potentials, the propagation trajectory in real
space is not affected much by the dynamic potential, but exhibits
superposed oscillations. The dynamic parabolic potentials pro-
vide more varied manipulation possibilities for Airy beams, and
therefore may broaden their potential applications.
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