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Observation of edge solitons in photonic graphene
Zhaoyang Zhang 1, Rong Wang1, Yiqi Zhang 1,2✉, Yaroslav V. Kartashov3, Feng Li1, Hua Zhong1, Hua Guan4,

Kelin Gao4, Fuli Li2, Yanpeng Zhang 1✉ & Min Xiao 5,6✉

Edge states emerge in diverse areas of science, offering promising opportunities for the

development of future electronic or optoelectronic devices, sound and light propagation

control in acoustics and photonics. Previous experiments on edge states in photonics were

carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more

striking features into physics of edge states, leading to the formation of edge solitons, optical

isolation, making possible stable lasing in such states, to name a few. Here we report the

observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice

created via the effect of electromagnetically induced transparency in an atomic vapor cell

with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to com-

pensate strong absorption experienced by the edge state during propagation. Our observa-

tions may open the way for future experimental exploration of topological photonics on this

nonlinear, reconfigurable platform.
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Edge states offer an efficient avenue for manipulation of the
behavior of classical waves in engineered materials and play
the important role in the design of desired optoelectronic

devices1–5 that demands dynamic tunability6. One feasible way to
achieve tunable devices is adopting nonlinearity that can be easily
introduced into photonic systems7–11, in contrast to electronic
ones. This advantage has stimulated investigations on nonlinear
edge states, both topological and nontopological ones, in various
structures, including photonic graphene12,13, where such effects
as modulational instability3,14, solitons3,4,15,16, optical isolation5,
and bistability17 were predicted that do not occur in pure elec-
tronic systems. Despite common expectations that nonlinear
effects open fascinating prospects for control and manipulation of
the edge states, the experimental demonstration of nonlinear edge
states and edge solitons was not accomplished until now on
photonic platforms.

On the other hand, recently introduced electromagnetically
induced photonic lattices based on electromagnetically induced
transparency (EIT)18 in multilevel atomic systems can mold the
flow of light in a periodic manner and, in particular, allow
induction of photonic graphene structures19–23. Based on the
tunable atomic coherence, the absorption, dispersion, Raman
gain24, and nonlinearity can all be easily controlled in such
coherent atomic media25–28. The profiles of such lattices can be
reconfigured dynamically20, so that edge states can be created or
destroyed in them on demand. As to nonlinearity, its amplitude
and nature can be easily changed by adjusting the laser frequency
detuning under EIT conditions25,26. Therefore, coherently pre-
pared atomic medium provides an ideal and powerful platform
for the exploration of the edge states in strongly nonlinear regime.

In this article, by taking advantages of the controllable linear
and nonlinear susceptibilities in an EIT medium, we experimen-
tally demonstrate the formation and investigate propagation
dynamics of the edge solitons in a reconfigurable photonic gra-
phene constructed in an atomic vapor cell. The observation of
edge solitons and such compact nonlinear edge excitations exhibit
great significance. First, in contrast to localized linear edge states,
edge solitons can travel along the edge over considerable distances
without broadening and without noticeable radiation into the
bulk, despite the fact that nonlinearity of the system tends to
couple different modes. This ability to maintain localized shapes
and peak intensity is supposed to be central for design of edge-
state-based switching and routing devices. Second, nonlinear edge
solitons, being authentic two-dimensional structures, are hybrids
localized due to two different physical mechanisms. Their con-
finement in the direction perpendicular to the interface is inher-
ited from the linear edge state from which edge solitons bifurcate
with increase of the peak power, i.e., this confinement is of geo-
metrical origin and it requires the lattice with specific symmetry,
spectral properties, and proper truncation allowing existence of
the linear edge states. In contrast, the confinement in the direction
along the interface is due to nonlinear self-action in periodic
refractive index landscape. The current work provides the effective
illustration of the existence of such hybrid localization mechan-
isms and will certainly open broad prospects for investigation of
interactions of nonlinear edge states. Third, the experimental
system adopted here dramatically differs from conventional
atomic lattices generally established with ultracold atoms and
using very complicated laser cooling setups. Our edge solitons are
formed in photonic lattices induced optically in a thermal atomic
vapor cell that can be much closer to practical applications.

Results
Scheme for excitation of the edge states based on EIT. To
demonstrate the formation of edge solitons in reconfigurable

photonic graphene lattice, we employ the EIT effect. In our
experiment, the probe field E1 (frequency ω1) co-propagates with
coupling field E2 (ω2) along the z direction of the atomic cell to
drive a three-level Λ-type 85Rb atomic configuration schemati-
cally shown in Fig. 1a. The coupling field E2 possesses a hex-
agonal structure in the ðx; yÞ plane created by the interference
of three tilted beams derived from the same diode laser. The
propagation dynamics of the probe field E1 is defined by
the susceptibility, χ ¼ χð1Þ þ 3χð3Þ ψj j225, where χð1Þ and χð3Þ are
the linear and third-order susceptibilities, and ψ is the envelope of
the probe field E1. For appropriate detuning values Δ1 � Δ2 ¼ 0,
the EIT window appears in the transmission spectrum of the
probe field E1 (Fig. 1b). The magnitude and sign of the nonlinear
coefficient n2 ¼ 12π2χð3Þ=n20c25 (here n0 ¼ 1 is the background
refractive index) within the EIT window can be easily controlled
by the detuning of the probe beam Δ1 [(Fig. 1c) and “Methods”].
Since for jE1j � jE2j the linear susceptibility χ(1)~|Ω2|−2, where
Ω2 is the Rabi frequency of the coupling field E2, the hexagonal
|Ω2|2 distribution, when inverted, creates a honeycomb lattice
for the probe field19—the photonic analogue of graphene lattice.
Proper truncation of such a lattice (for example by an adjustable
rectangular slit) creates a ribbon, periodic in x and having
zigzag-bearded boundaries in y, whose theoretical refractive index
profile ½1þ χ 1ð Þ�1=2 is shown in Fig. 1e. Linear modes of such a
ribbon are Bloch waves ψ ¼ w x; yð Þeiβzþikx (see “Methods” for

Fig. 1 Atomic energy levels, linear bandgap structure, and edge states.
a The driven 85Rb atomic transitions involve two hyperfine states F ¼ 2
(level j1i) and F ¼ 3 (j2i) of the ground state 5S1=2 and one excited state
5P1=2 (j3i). E1 and E2 are the probe and the coupling fields, respectively.
b The transmission spectrum for the probe beam. c Calculated nonlinear
coefficient n2 versus probe detuning Δ1. d Band structure of the photonic
graphene in an EIT window calculated for Δ1 ¼ 135MHz and
Δ2 ¼ 100MHz. β is the propagation constant, and k is the Bloch
momentum normalized to the width K of the first Brillouin zone.
e Simulated honeycomb lattice with zigzag-bearded edges in the y
direction. The structure is periodic in the x direction, and we show six
periods of the structure. f Simulated unconventional edge state located on
the bearded edge corresponding to the red circle in (d). g Simulated edge
state on the zigzag edge corresponding to the green circle in (d).
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dimensionless equation governing probe-field propagation and
ref. 15), where w is periodic in x with lattice period X and loca-
lized in y, β is the dimensionless propagation constant, and k is
the Bloch momentum along the x-axis. The spectrum βðkÞ
(Fig. 1d) reveals the formation of linear edge states at bearded
(red and blue curves, Fig. 1f) and zigzag (green curve, Fig. 1g)
boundaries, while black curves correspond to bulk modes. These
edge states are of geometrical origin: they only form for proper
truncation of the lattice with specific degeneracies (Dirac points
in our case) in the spectrum (in tight-binding models they are
known as zero-energy edge states21). Edge-state localization in y
is controlled by k.

Experimentally created lattice (E2 field) was truncated with a
slit to form zigzag boundary (dotted line) in honeycomb
refractive index distribution as shown in Fig. 2a (see also
“Methods”). By properly setting the incident angle α of the stripe
probe beam (Fig. 2b) along the boundary to match the
momentum of the edge state from the range of K=3≤ k≤ 2K=3
[Fig. 1(d)], where K ¼ 2π=X is the width of the Brillouin zone,
one can achieve efficient edge-state excitation. The depth of our
lattice can be easily changed by changing frequency detuning, so
first we illustrate the creation and destruction of the edge states by
varying Δ1, while keeping Δ2 ¼ 100MHz fixed. We achieve
efficient excitation of the edge state (Fig. 2c) at Δ1 ¼ 135MHz
(corresponding susceptibility created by the coupling beam is
χð1Þ � 3:4 ´ 10�4) at the angle of incidence α � 0:8�. The
interference between the output probe and reference beam
(derived from the same laser as the probe beam) reveals staggered
phase distribution along the x-axis in probe beam (Fig. 2e) in
agreement with the numerical results (Fig. 2f), which is a
signature of the edge-state formation21. In contrast, when
detuning is set to Δ1 ¼ 105MHz for the same angle of incidence
α, the induced susceptibility χ 1ð Þ � 4:5´ 10�5 is insufficient to
support edge state formation on the cell length ð7:5 cmÞ and one
observes diffraction into the bulk (see Fig. 2d; Supplementary
Fig. 1). This illustrates suitability of the setting for all-optical
manipulation of the edge states. Another advantage of the system
is that the increase of the atomic density (controlled by the
temperature of the atomic ensemble) is effectively translated into
the increase of propagation path of the probe beam in the

lattice29. Thus, increasing temperature of the medium from 80oC
to 140oC at Δ1 ¼ 135MHz allows us to detect clear displacement
of the edge state along the zigzag boundary (Fig. 2g, h) due to its
small, but nonzero group velocity β0 ¼ dβ=dk (see green state in
Fig. 1c and the corresponding β0ðkÞ curve in Fig. 3a). Notice that
the probe beam gets attenuated even within the EIT window,
since this effect only suppresses rather than completely eliminates
the absorption, so at higher temperatures (resulting in stronger
absorption), we had to adjust the CCD camera gain g as indicated
in experimental images, where it is appropriate (g ¼ 0 means no
gain).

Properties of the edge solitons. As numerical simulations
(conducted in ideal lossless case) show, the formation of edge
solitons is tightly connected with the phenomenon of modulation
instability (MI) of periodic nonlinear edge states that for positive
n2 can only occur in the range of momentum k values that meet
β00 ¼ d2β=dk2 < 0 (Fig. 3a) (see ref. 15). Representative theoretical
family of nonlinear edge states at k ¼ 0:48K (dotted line in
Fig. 3a) is shown in Fig. 3b (“Methods“). Nonlinear edge state
bifurcates from linear one with increase of propagation constant

β: its peak amplitude a ¼ max ψj j and norm per x-period P ¼Rþ1
�1 dy

RþX=2
�X=2 ψj j2dx increase away from bifurcation point

(Fig. 3b). Notice that the ribbon is finite in the y direction, so the
integration in y in definition of power can be performed just over
the region well exceeding the y-width of the ribbon. For a given k,
we consider only nonlinear edge states in the gap β≤ 18:1ð Þ to
prevent coupling with bulk modes. We choose a slightly per-
turbed nonlinear edge state at β ¼ 16:573 (dotted line in Fig. 3b)
as an input in Fig. 3e to check its propagation (this can always be
done, since β parameterizes the family of the nonlinear edge
states). The dependence a zð Þ (Fig. 3c) and breakup of the state
into sets of bright spots (precursors to quasi-solitons) upon
propagation (Fig. 3e) clearly indicate the development of MI of
nonlinear edge state. We then isolate one bright spot from MI
pattern marked with green circle in Fig. 3e [the MI pattern was
taken at the distance z ¼ 195 and it corresponds to the green dot
in Fig. 3c) and let it propagate in nonlinear (Fig. 3f) and linear
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Fig. 2 Experimental demonstration of the edge state at the zigzag edge. a Interference pattern of three coupling beams creating the lattice with a lattice
constant of 112 μm. This hexagonal lattice induces the honeycomb lattice in Fig. 1e under EIT conditions. The edge marked by the dotted line corresponds to
zigzag edge. b The incident stripe probe beam. Scale bar: 200 μm. c The edge state excited by the probe beam at Δ1 ¼ 135MHz with the probe power
being 100 μW. d Diffraction of the probe beam into the bulk of the lattice at Δ1 ¼ 105MHz. e Interference pattern of the output probe beam from panel
c with a reference beam illustrating staggered phase of the edge state. a–e share the same scale bar defined in (b). f Theoretical interference pattern
calculated for extended linear edge state. g, h Output probe beams for different temperatures (effectively corresponding to different propagation distances)
at Δ1 ¼ 135MHz revealing motion of the edge state. White lines at the bottom show intensity profiles of the probe beam along the dashed lines.
Considering the absorptive nature of atomic medium, the linear gain g (which only affects the visibility, but not the profile of the beams) of the CCD camera
is used to improve the appearance of figures. The CCD gain for (g) and (h) are g ¼ 0 (no gain) and g ¼ 8, respectively. Scale bar: 200 μm.
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(Fig. 3g) media. In other words, Fig. 3f, g show propagation of the
same input state in the EIT system with the third-order Kerr
nonlinearity switched on and off, respectively. In the former case,
one clearly observes the formation of slowly moving quasi-soliton
(akin to solitons predicted in topological systems15), whose
velocity is determined by the group velocity β′ of the linear edge
state on which soliton is constructed, and whose peak amplitude
anlin zð Þ only slightly oscillates, while center xc changes linearly
with z (Fig. 3d). Intensity distributions at different distances
corresponding to dots in anlin zð Þ dependence confirm invariable
shape over distances greatly exceeding cell length and the absence
of radiation into the bulk. In contrast, in the linear case the same
input rapidly spreads along the boundary, while corresponding
peak amplitude alin zð Þ decreases (Fig. 3d). Notice that even
though edge solitons obtained here are not topological, they are
robust entities. In the presence of localized edge defects in the
form of missing channel, they typically bounce back and keep
moving along the edge in the opposite direction (see Supple-
mentary Figs. 8 and 9 and Supplementary Note 6). Their
amplitude and width remain practically unchanged after collision
with a defect, indicating on the possibility of practically 100%
defect-mediated coupling of power into state moving in the
opposite direction along the edge, without radiative losses into
bulk. The robustness of the edge solitons was also verified by
propagating them in the presence of initial random perturbations,
or by increasing or decreasing the input soliton amplitude by
10%, as displayed in Fig. 3h. One finds that even such con-
siderable perturbation leads to small oscillations in soliton
amplitude that self-adjusts quickly to new input power level. In

addition, to prove the absence of resonant scattering into linear
bulk modes, we calculated radiative losses from moving edge
soliton during propagation by projecting field distribution at
different distances on all bulk Bloch modes of the system:
p ¼ hψsoliton;ψbulki=hψbulk;ψbulki, as shown in Fig. 3i. The pro-
jections remain negligibly small over all distances (<0:3%), which
means that the efficiency of excitation of the bulk modes is
extremely low, it is nonresonant, and cannot lead to soliton decay.

Experimental observation of the edge solitons. In experiment,
once the system is tuned into the regime with focusing or defo-
cusing nonlinearity by adjusting Δ1 (Fig. 1c), one can observe
considerable nonlinearity-induced reshaping of the edge states
that is enhanced at higher temperatures (Fig. 4). In addition to
two-dimensional intensity distributions, at the bottom of each
panel we show one-dimensional profiles at the boundary along
the dotted white lines. First row of Fig. 4a illustrates clear self-
focusing of the edge state down to several lattice periods with
increasing temperature for n2 > 0 (Δ1= 140MHz). Figure 4b
illustrates self-defocusing of the edge state in the region n2 < 0
(Δ1= 125MHz) and appearance of the dip marked by the arrows
in the beam profile that becomes more pronounced at higher
temperatures. When Δ1 is set such as to make n2 slightly
exceeding 0, the edge states also experience diffraction, which is
somewhat slower than diffraction in the case of n2 < 0 (see Sup-
plementary Fig. 7), because nonlinearity for small positive n2 only
partially compensates diffractive broadening. Finally we set (Δ1=
135MHz) that corresponds to strong focusing nonlinearity n2 > 0
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Fig. 3 Numerical simulations of edge quasi-solitons. a First β0 and second-order β00 derivatives for green branch of edge states from Fig. 1c. Vertical dotted line
indicates the Bloch momentum k ¼ 0:48 K. b Nonlinear edge state family at k ¼ 0:48K. Solid and dashed curves show peak amplitude a and norm P versus β.
c Peak amplitude of the nonlinear edge state with β ¼ 16:573 (corresponding to the red dot in (b)) versus distance illustrating the development of modulation
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medium is shown too. e Nonlinear edge state intensity distributions at different propagating distances corresponding to the dots in (c). f Quasi-soliton intensity
distributions at different propagation distances corresponding to the dots in anlin curve in (e). g Diffraction in linear medium, distributions shown correspond to
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decreased (bottom curve) by 10%. i Projection p of the soliton field distribution at different distances on bulk Bloch modes of the system.
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to compensate the beam diffraction, so that the confined edge
state experiences neither noticeable defocusing nor focusing with
increasing temperature (the ratio of amplitudes of different peaks
remain basically the same) as shown in Fig. 4c, which illustrates
the nonlinear behavior with apparent formation of soliton-like
profiles and their dynamical self-adjustment with account of
power losses for a wide range of temperatures. We attribute this
important regime to dynamical balance between diffraction in the
lattice and nonlinear self-action, which would provide the proper
condition for the potential formation of edge solitons. Even
though attenuation is unavoidable in our setting (in the absence
of Raman gain), the total power losses upon propagation over
atomic cell are not very high, and the nonlinear edge states
excited with sufficiently high input powers can still dynamically
accommodate their shapes in accordance with slowly decaying
power without entering the regime of linear diffraction (at least
on the atomic cell length). The patterns shown in Fig. 4c should
therefore be treated as such dynamical self-sustained states (albeit
they are not exact conservative solitons due to the presence of
losses) slowly self-adjusting with z in accordance with gradually
decreasing peak amplitude. Clear transition between linear dif-
fraction and formation of such self-sustained nonlinear states can
be also achieved by increasing input power at fixed temperature
and detuning, as shown in Supplementary Fig. 10.

To demonstrate the formation of edge solitons under practically
ideal loss-free conditions, we further add an extra Gaussian-profile
pump field (see “Methods“) that provides a Raman gain for the
probe field compensating intrinsic absorption16. Figure 5a, b
shows, respectively, the incident stripe probe beam and the formed
edge soliton at T ¼ 95oC and Δ1 ¼ 380MHz, where the Raman
gain peak lies (Fig. 5d–f). Dependence of the Raman gain peak
(Δ1 ¼ 380MHz) on the temperature (Fig. 5c) demonstrates that
the output distributions are very robust and practically not
affected by temperature variation due to Raman gain. To illustrate
Raman gain clearly, Fig. 5d–f displays probe spectra versus Δ1 at
three different temperatures. One finds that the height of the
Raman gain peak basically does not change even when the
absorption grows (the notch deepens and the background gets

close to 0) with temperature. The fact that Raman gain effectively
balances the absorption and helps formation of edge solitons is
further confirmed by comparison of very similar output patterns
at 110oC and 125oC (Fig. 5g, i). The staggered phase (Fig. 5h)
confirms that the edge state is excited.

Discussion
In conclusion, we have experimentally demonstrated edge soli-
tons in a photonic graphene lattice induced in a multilevel atomic
system. This reconfigurable atomic system opens promising
prospects for all-optical control of the formation and propagation
of the edge states in different nonlinear regimes and for different
lattice configurations. The possibility to implement Raman gain
in the system allows to compensate for intrinsic losses, and study
physics of nonlinear edge states under practically ideal loss-free
conditions. Our work opens the door for experimental explora-
tion of nonlinear dynamics of edge states not only in non-
topological but also in various topological systems3,4, including
those based on valley Hall effect30. Moreover, the current setting
with Raman gain and loss is promising for exploration of non-
Hermitian edge states and edge state lasers in two-dimensional
geometries.

It is also worth mentioning that edge solitons reported here
are qualitatively different from usual bulk and surface two-
dimensional solitons. Due to different localization mechanisms
involved, edge solitons do not feature power threshold for their
existence. This is in complete contrast to conventional surface
solitons31–36 whose most representative feature in both one- and
two-dimensional settings is the existence of the power threshold
required for their excitation—a manifestation of the fact that
surface solitons do not bifurcate from linear localized modes and
that it is only nonlinearity that leads to the confinement of such
states in both transverse directions in the two-dimensional case.
The same argument in two-dimensional settings applies to bulk
lattice solitons bifurcating from delocalized Bloch waves, that still
feature the same localization mechanism in two dimensions and
also exist above energy flow threshold37. Besides the atomic
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with increase of temperature. Scale bar: 200 μm. b Self-defocusing of the edge state at n2 <0 (Δ1= 125MHz) with increase of the temperature.
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medium adopted in this work, we believe that nonlinear two-
dimensional generalizations of the edge states can be also
potentially observed (even though they are not reported yet) in
photorefractive crystals38.

Methods
Experimental setup. Our lattice is induced by three coupling beams (wavelength
λ2 ¼ 794:975 nm, vertical polarization, 20 mW) derived from the same
continuous-wave single-mode tunable external cavity diode laser (ECDL), that
intersect in the center of the atomic vapor cell. These broad Gaussian coupling
beams are symmetrically arranged with respect to the z direction (with the same
small angle of � 0:4o between any two of them), inducing a hexagonal lattice in the
ðx; yÞ plane. Due to small angle between the beams, the lattice pattern remains
practically unchanged in the z direction over the distance of 10 cm that exceeds the
length of 7:5 cm atomic cell. The lattice is truncated by using an adjustable rec-
tangular slit (with a maximum opening window of 1 cm) resulting in the formation
of the structure with zigzag edge, as shown in Fig. 2a. The probe beam E1
(λ1 ¼ 794:981 nm, horizontal polarization) from another ECDL is transformed
into a stripe beam (0:4mW) by another adjustable rectangular slit, and its Fourier
transform is imaged into the zigzag edge of the lattice. The 7:5 cm long cell is
wrapped with μ-metal sheets and heated by a heat tape to control the temperature
(and, therefore, the atomic density) of the medium. At the output of the cell, a
polarization beam splitter (PBS) is applied to filter out the coupling field, so that
only the probe field can reach the CCD camera. The phase of the output probe
beam confined at the zigzag edge is measured by interfering it with a reference
beam (introduced into the optical path via a 50=50 beam splitter) from the same
diode laser as the probe beam. To introduce Raman gain, a Gaussian-profile pump
field (wavelength λ3 ¼ 780:24 nm, vertical polarization, 10mW) is injected into the
atomic cell with the same direction as one of the coupling beams to drive a four-
level N-type atomic configuration, see Supplementary Fig. 2 and Supplementary
Note 2 for details.

The dynamic propagation equation and susceptibilities in an EIT window.
Propagation of light in the atomic vapor is described by the Schrödinger-like
paraxial wave equation,

i
∂

∂z
ψ x; y; zð Þ ¼ � 1

2k0

∂2

∂x2
þ ∂2

∂y2

� �
ψ x; y; zð Þ � k0

n0
Δn x; yð Þψ x; y; zð Þ; ð1Þ

where ψ is the envelope of the probe field E1, z is the propagation distance,
k0 ¼ ð2n0πÞ=λ1 is the wavenumber in the medium, n0 ¼ 1 is the background
refractive index, and Δn � 1

2 ðχ 1ð Þ þ 3χ 3ð Þ ψj j2Þ is the refractive index change that
exhibits a honeycomb profile. Within EIT window the susceptibilities are given by

χð1Þ ¼ iN μ31
�� ��2 �hϵ0Fð Þ�1 1� 2γ21= 2γþ γ31

� �� �
, with F ¼ ðγ� iΔ1Þ þ Ω2j j2½γ21 �

iðΔ1 � Δ2Þ��1 and γ ¼ ðγ21 þ γ31 þ γ32Þ=2, and by χð3Þ ¼ �iN μ31
�� ��2 �hϵ0Fð Þ�1

� Ω2j j2=ð2γþ γ31Þ
� � ðF þ F*Þ=jFj2� �

. Here, Δ1 (Δ2) is the detuning between the
resonant transition frequency j1i ! j3i (j2i ! j3i) and the frequency of field E1
(E2); Ω2 ¼ μ32jE2j=�h is the Rabi frequency for the coupling field; μmn is the dipole
momentum for transition jmi ! jni; γ31 and γ32 are the spontaneous decay rates
of the excited state j3i to the ground states j1i and j2i, respectively; γ21 is the
nonradiative decay rate between two ground states; and N is the atomic density at
the ground state j1i. By replacing ðx; y; zÞ with ðx=r0; y=r0; z=k0r20Þ, the normalized
governing equation can be written as

i
∂

∂z
ψ x; y; zð Þ ¼ � 1

2
∂2

∂x2
þ ∂2

∂y2

� �
ψ x; y; zð Þ � k20r

2
0

n0
Δn x; yð Þψ x; y; zð Þ; ð2Þ

where r0 is related to the probe width. When only linear susceptibility is con-
sidered, we solve the equation with the ansatz ψ ¼ w x; yð Þeiβzþikx by adopting the
plane-wave expansion method, and obtain the band structure (Fig. 1c) as well as
linear edge states (Fig. 1e, f), see Supplementary Note 4 for details.
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Fig. 5 Formation of edge solitons in the presence of Raman gain. a Input probe beam. Scale bar: 200 μm. b Output probe beam in the presence of Raman
gain at T ¼ 95oC. The cross-section of the incident beam shown in both panels a and b enables comparison with the output profile that confirms
suppression of losses by Raman gain. a, b share the same scale bar. c Output probe intensity with Raman gain versus different temperatures (atomic
density). Each black dot represents the peak intensity of the probe beam with Δ1 ¼ 380MHz, where the Raman gain locates. The error bars indicate the
standard deviation for three measurements. d–f Output probe spectra versus Δ1. The peak heights correspond to the dots in (c). Profiles of the output
probe beams in the presence of Raman gain at T ¼ 110oC (g) and T ¼ 125oC (i). Scale bar: 200 μm. h Interference pattern with reference beam
corresponding to (g). h, i share the same scale bar as (g).
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Code availability
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