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The topology of the infinite kagome lattice can be characterized by bulk polarization cal-
culated as

pj = =5 [y A 4%k, (S1)

where A; = —i(u| dk;j|u) is the Berry connection, k; determine duplicable directions of
the Brillouin zone (BZ), u the Bloch function, and S is the area of the first BZ. We use the
tight-binding approach (see Fig. 2 in the main text) to calculate the bulk polarization. We
introduce e;,3 that represent the vectors pointing toward neighboring array sites with
e; =(1/2,—V3/2)a, e, = (=1,0)a, and e; = (1/2,/3/2)a, where a is the lattice constant.
The corresponding tight-binding Hamiltonian of the array can be written as
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in which k = (ky, k), intra-cell coupling strength is v and intercell coupling strength is
w. For convenience, we set a = 1. The first band f; of the Hamiltonian in Eq. (S2) is de-
scribed by

B = %(U +w+ \/91}2 — 6vw + 9w? + 8vw [cos(k,) + 2cos (kz—") cos (ﬁ:;,)]) (S3)

The eigenvector corresponding to §; can be written as
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The dependence B;(ky, k,) is displayed in Fig. S1(a), where we also indicate lattice vec-
tors ki, inthe k-space. Since corresponding vectors are not orthogonal, that complicates
calculation of the bulk polarization (p,p,) along the lattice vectors k; and k, in
the k-space, we employ coordinate transformation from system (x,y) to (x’,y"), where
old and new coordinates are related by the expressions x = x" +y'/2 and y = v/3y'/2.
This is accompanied by the respective transformation of the Brillouin zone and corre-
sponding lattice vectors (kq,k;) = (ky, k;) in the k-space, so that in transformed system
the Brillouin zone becomes square, as shown in Fig. S1(b).

Fig. S1 Profile of f; before (a) and after (b) the transformation with corresponding lattice vectors in
the k-space. Dashed rhombus and square represent the first BZ.

Taking the band f; as an example, one can easily calculate corresponding bulk polariza-
tion components in the transformed coordinate system:



(P;.P;’;) _ {(1/3,1/3), forv<w(d, <a/2)

(0,0),forv >w (d, = a/2) (S5)

The system is in topological phase when polarization components are nonzero and in
trivial phase when polarization components are zero [1-4]. These results are in full agree-
ment with results of Fig. 1 of the manuscript, where for example in truncated triangular
array corner states emerge simultaneously in all three corners at d,/a < 0.5 that corre-
sponds to the v <w case.
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