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In a numerical investigation, we demonstrate the existence and curious evolution of vortices in a ladder-type three-
level nonlinear atomic vapor with linear, cubic, and quintic susceptibilities considered simultaneously with the
dressing effect. We find that the number of beads and topological charge of the incident beam, as well as its size,
greatly affect the formation and evolution of vortices. To determine the number of induced vortices and the corre-
sponding rotation direction, we give common rules associated with the initial conditions coming from various
incident beams. © 2012 Optical Society of America
OCIS codes: 190.4420, 350.2660, 190.6135.

An optical vortex is an interesting structure that pos-
sesses a phase defect at a point (called the vortex core)
and a rotational energy flow around it. In recent decades,
optical vortices and vortex solitons attracted a lot of at-
tention from research groups all over the world for their
potential applications in optical data storage [1], distribu-
tion [2], and processing [3] as well as in the study of op-
tical tweezers [4], trapping and guiding of cold atoms [5],
and entanglement states of photons [6]. To date, research
on optical vortices in many kinds of media, such as bulk
nonlinear media [7], discrete systems [8], atomic vapors
[9], dissipative optical systems [10], and Bose–Einstein
condensates [11], has been reported. In [12], the authors
discussed the properties of multidimensional beams via
atomic coherence. Still, there are many interesting topics
to be researched.
In this Letter, we consider paraxial propagation of

probe vortex beams in a ladder-type three-level atomic
system formed by 3S1∕2, 3P1∕2, and 5S1∕2 levels of
sodium. The model is described by the nonlinear
Schrödinger equation (NLSE) of the form [10,12]

i∂zψ � 1 − iβ
2k

∇2
⊥
ψ � k

2
χψ � 0; (1)

where∇2
⊥
� ∂xx � ∂yy is the transverse Laplacian, k is the

wave number, ψ is the amplitude of the beam, β is the dif-
fusion coefficient, and χ is the total susceptibility of the
atomic vapor system. We consider a cubic-quintic NLSE
as the underlying propagation model that adequately
describes the physics of atomic vapor systems. The
total susceptibility can be obtained through the Liouville
pathways using perturbation theory [13]: χ � η∕K −

�η∕K2��jG1j2∕d1 � jG2j2∕d2� � �η∕K3��jG1j4∕d21 � jG2j4∕
d22 �jG1j2jG2j2∕d22�, with η � iNμ210∕�ℏε0�, d1 � Γ20�
iΔ1, d2 � Γ20 � i�Δ1 �Δ2�, and K � �Γ10 � iΔ1��
jG2j2∕d2, where G1 � μ10ψ∕ℏ is the Rabi frequency of
the probe field, G2 is the Rabi frequency of the coupled
field, N is the atomic density, and Δ1;2 is the detuning
of the probe (coupled) field. Γij denotes the population

decay rate between the corresponding energy levels jii
and jji, and μ10 is the electric dipole moment. The second
and third terms in χ represent the cubic and quintic con-
tributions to the total susceptibility. Equation (1) is similar
to the complex Ginzburg–Landau equation, with the diffu-
sion coefficient β coming from the models of laser cav-
ities. We launch an incident beam in Eq. (1) of the form
(in polar coordinates)

ψ�z � 0; r; θ� � A sech��r − R0�∕r0�
× �cos�nθ� � iB sin�nθ�� exp�ilθ�; (2)

with B � 0, n ≠ 0 for a necklace, B ≠ 0, n ≠ 0 for an azimu-
thon [14], and B � 1 or n � 0 for a vortex. Here R0 is the
mean radius, r0 is the width, A is the amplitude, B is the
modulation coefficient (1 − B is themodulation depth), l is
the input topological charge, and 2n is thenumber of neck-
lace beads. The beam in Eq. (2) can be viewed as a super-
position of two vortices with net topological charges
(NTCs) [15] l� n and l − n, respectively. The vortex with
a larger magnitude of NTC will dissipate faster during
propagation, due to the diffusion term inEq. (1) [16]. Thus,
the vortexwith a smallerNTCwill remain stable for longer
during propagation, and the overall NTC will correspond
to that charge.

First of all, we set the parameters to be N � 1013 cm−3,
μ10 � 3 × 10−29 Cm, Δ1 � 1 MHz, Δ2 � −1 MHz, G2 �
40 MHz, Γ10 � 2π × 4.86 MHz, Γ20 � 2π × 0.485 MHz,
λ � 600 nm, r0 � 100 μm, R0 � 200 μm, and β � 0.5 in
our numerics for convenience without special statement
[17]. The evolution of a vortex with l � 0 is shown in
the insets in Fig. 1(a). The input notch of the vortex
soon disappears, and the vortex changes into a super-
Gaussian-like pulse during propagation, with the width
and amplitude growing dramatically. For comparison,
if we set l � 1 and redo the evolution, the width and
the amplitude still grow, but the notch at the origin
remains, as shown in the insets in Fig. 1(b). Even though
the amplitude increases during propagation, there exists
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a saturable maximum at ∼10 V∕m, as seen from the
radial intensity profiles in Figs. 1(a) and 1(b); these re-
sults are quite similar to the results from [7] and [12].
The saturation phenomenon can be explained by the
competition between the cubic and the quintic nonlinear-
ity [18]. The nonlinearity is defocusing, and as such can
support stable vortices [7]. The beam spreads during pro-
pagation, because the nonlinearity is too weak to balance
diffraction and form a soliton. If l is set to 3 and 6, there
will be 3 and 6 notches around the origin, as shown in
Figs. 1(c) and 1(d). The right panels there present the
corresponding phases that demonstrate that every notch
is a vortex.
If we set n � 0.5, we can investigate the evolution of

a unique “necklace” with a crescent shape. In Fig. 2 we
exhibit a series of evolution snapshots corresponding to
different values of l. By comparing Fig. 2(b) with 2(e),
and 2(c) with 2(d), one can conclude that the number
of notches that appear in the beam is determined by
minfjl� njg, which is also the absolute value of the
NTC of the surviving vortex component. Even though
Figs. 2(a) and 2(f) have the same number of vortices, they
rotate in opposite directions, because the corresponding
NTCs are −5 and 5, respectively. The common rule on
how to calculate the number of vortices and how to
determine their rotation directions is presented in
Table 1, where the circular arrows represent rotation
senses of the vortices.

Numerical experiments indicate that there are two cri-
tical values rcr1 ≈ 42.5 μm and rcr2 ≈ 36.1 μm for the
beam width r0. The evolution of quadrupole azimuthons
with n � 2 and different l values corresponding to r0 >
rcr1 are shown in Fig. 3. Following the rule from above,
the number of notches at the origin is determined
by NTC; so, from Figs. 3(a)–3(f), the number of
notches is 4, 0, 1, 1, 0, and 4, respectively. However, in
Figs. 3(d)–3(f), there are four additional notches around
the origin, which equal the number of beads. The expla-
nation is that there is energy flow around the phase sin-
gularities, and at the same time the beads fuse due to the
diffusion term β; therefore, when the speed of energy
flow is greater than the fusion speed of beads, at the twist
of the beads new vortices form. It is worth mentioning
that the vortices around the origin appear as vortex pairs
(with charges of �1 and −1), so the NTC of the beam is
still conserved. The common rule for this case is also
shown in Table 1, under the “Azimuthon Inputs When
r0 > rcr1” case.

A hexapole azimuthon with l > n is presented in
Figs. 4(a)–4(c); its r0 � 40 μm is chosen to fall in-
between rcr2 and rcr1. According to the rule from Table 1,
the total number of induced vortices should equal
n� l � 12. However, from Fig. 4 we see that there are
more and more vortices appearing during propagation.
The reason is that the speed of energy flow is the largest,
as compared to those of fusion and spreading. From the
phases at different propagation distances, we see that
the energy flow brought by the vortices around the origin
of the fused beam is always faster than that at the edge of
the beam; therefore, the asynchrony preferably forms
new phase singularities at the edge of the beam, and

Fig. 1. (Color online) (a), (b) Evolution of vortex incidences
for several propagation distances and for l � 0 and l � 1, re-
spectively; (c), (d) output intensities (left panels) and phases
(right panels) of vortices with l � 3 and l � 6, respectively.
The color bars and physical scales of the transverse plane
shown here are the same in all other figures.

(a) (b) (c) (d) (e) (f)

Fig. 2. (Color online) (a)–(f) Evolution outputs at z � 15 cm,
from a crescent input (n � 0.5) corresponding to l � −5.5, −1.5,
−0.5, 0.5, 1.5, and 5.5, respectively. The top and bottom insets
present the input and output phases, respectively.

Table 1. Properties of the Induced Vortices from Necklace and Azimuthon Incidences
with Different l and n Values

(1) Necklace inputs

l < −n l � −n −n < l < 0 l � 0 0 < l < n l � n l > n

↻ — ↺ — ↻ — ↺
No. −n − l 0 n� l 0 n − l 0 −n� l

(2) Azimuthon inputs when r0 > rcr1

l < −n l � −n −n < l < 0 l � 0 0 < l < n l � n l > n

Outer — — — — ↺ ↺ ↺
Inner ↻ — ↺ ↺ ↻ — ↺
No. −n − l 0 n� l n 3n − l 2n n� l

(3) Azimuthon inputs when r0 < rcr2 with l > n

n � 1 n � 2�l ≤ 5jl > 5� n ≥ 3

Outer ↺ ↺j↺ —

Inner ↺ ↺j↺ ↺
No. l� n l� njl − n l − n
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new vortices are induced correspondingly. But we can-
not give a certain rule for this case, because the number
of induced vortices is greatly affected by the beam width.
What one sees in Fig. 4(c) is 6 vortices at the core plus 12
pairs of �1 vortices induced at the rim of the beam.
If we set r0 � 30 μm, which fulfills the condition

r0 < rcr2, and redo the propagation of the beam used
in Figs. 4(a)–4(c), we find that the number of induced
vortices is 6, which can be calculated from l − n � 6,
as shown by the output intensities and phases in
Fig. 4(d). The common rule for this case is exhibited
in Table 1 under “Azimuthon Inputs When r0 < rcr2
with l > n” (other cases are the same as those under
“Azimuthon Inputs When r0 > rcr1”). The lower the num-
ber of beads, the more energy in each of the beads, which
will strengthen the energy flow. That is why the number
of induced vortices is l� n if n � 1. However, the exact
rule for n � 2 is not certain, because the energy flow is
weakened, and whether it can produce more vortices or
not is up to the value of l set for the initial beam. If l is
bigger, the fusion will be accelerated, so the production
of new vortices will be limited. Here, l � 5 is a boundary
for this case; the rule is l − n for l > 5 and l� n for l ≤ 5.
Figures 4(e) and 4(f) display two numerical experiments
corresponding to l � 9 and l � 4, in which the number of
vortices are l − n � 7 and l� n � 6, respectively.
In conclusion, we have demonstrated that optical

vortices can form from vortex, necklace, and azimuthon
incidences with different topological charges in multile-
vel atomic vapors when linear, cubic, and quintic
susceptibilities are considered simultaneously. The ap-
pearance of vortices results from a combined action of
the number of topological charges, the beam width of
incidences, the diffusion effect, cubic-quintic nonlineari-
ties, and the loss/gain in the medium, simultaneously. We
have formulated common rules of finding the number as
well as the rotation direction of the induced vortices. The
effects can be observed in sodium as well as other atomic
vapors with incident beams produced by using multi-
wave interference [19] or phase mask [20] methods in

a similar experimental setup as that in [21]. Our findings
open a new venue and introduce a new method
for studying vortices and may broaden the field of their
applications.
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Fig. 3. (Color online) Evolutions of azimuthon incidences with
n � 2 and B � 0.5 for (a) l � −6, (b) −2, (c) −1, (d) 1, (e) 2, and
(f) 6, respectively. The figure setup is as in Fig. 2.
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Fig. 4. (Color online) (a)–(c) Evolution of an azimuthon with
l � 9, n � 3, B � 0.5, r0 � 40 μm at different propagation
distances. (d)–(f) azimuthons with r0 � 30 μm at 30 cm with
(l � 9, n � 3), (l � 9, n � 2), and (l � 4, n � 2), respectively.
The top row is the intensities; the bottom row is the phases.
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