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We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear (NL) accel-
erating beams in Kerr and saturable NL media, in one transverse dimension. We find that bound and unbound
soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams
is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not
interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display
varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound
states, after shedding some radiation initially. In the out-of-phase case, they repel each other and, after an initial
interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton
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pairs generated from those beams do not.
OCIS codes:

(350.5500) Propagation; (190.3270) Kerr effect.
http://dx.doi.org/10.1364/0L.38.004585

In recent years, self-accelerating nondiffracting optical
beams have been extensively studied [1-11]. Special at-
tention has been focused on Airy [1,2] and Bessel
beams [12,13]. Analyses have been mostly confined to
linear media, due to the desire to observe minimally dif-
fracting beams in linear optics. According to the linear
Schrodinger equation (SE), the beam or the wave packet
in the form of Airy function evolves practically without
diffraction and accelerates along a parabolic trajectory
[lvg’ﬁ_ﬂl'

In comparison with the thorough investigation of dy-
namics of single accelerating beams and related proper-
ties, interactions between Airy beams have not attracted
much attention. Even though radially symmetric Airy
beams readily display self-focusing in a nonlinear (NL)
medium [5,18,19], the interaction of two Airy beams with
varying distance between them has not—but should
have—been investigated more deeply. Indeed, the dy-
namics of an Airy beam in a NL medium has already been
reported [20-24], but how will two Airy beams or two NL
accelerating beams behave if they propagate simultane-
ously in a NL medium? These questions are addressed in
this Letter. Thus, we investigate the dynamics of two in-
teracting Airy beams or accelerating NL beams along the
propagation direction, in one transverse dimension. We
study the beams that counterpropagate in different NL
media, in particular a Kerr and a saturable photorefrac-
tive medium. We vary the distance between the beams
and consider beams that are in-phase, as well as out-
of-phase.

In paraxial approximation, the normalized equation for
the evolution of a slowly varying envelope yw of the
beam’s electric field is of the NL SE form [25]:
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where on is the NL change in the index of refraction and x
and z are the dimensionless transverse coordinate and
the propagation distance, respectively, measured in units
of some typical transverse size x, and the corresponding
Rayleigh length kxZ. Without én in Eq. (1), the equation is
just the linear SE, one of whose exact solutions is the
well-known Airy wave [14] with the characteristic infinite
oscillatory tail. To make it finite-energy, this solution is
generalized into [1,5]

w(x,2) = Ai(x — 2% /4 + iaz) exp[i(6a’z — 12iax + 6iaz?
+6xz —2%)/12), &)

which contains an arbitrary real decay constant a > 0.
This solution is generated from an initial condition
w(x) = Ai(x) exp(ax) and represents a finite-energy Airy
beam. The solution of Eq. (1) without én will not be af-
fected if it is shifted along the transverse coordinate and
scaled in the amplitude. Thus, a more general form of an
incident Airy beam can be written as

w(x) = A - Ai[+(xFB)] exp[ta(xFB)], 3)

in which arbitrary real constants A and B are introduced,;
they stand for the amplitude and the interval factor,
respectively. In addition, a linear superposition of such
incident beams will also be a solution of the equation.

We assume in this Letter that the incident beam is com-
posed of two shifted counterpropagating Airy beams with
a relative phase between them,
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= A{Ai[(x - B)] expla(x - B)]
+ exp(ilr)Ai[-(x + B)]exp[-a(x + B)]}, ()

()

where [ is the parameter controlling the phase shift. If
!l =0, the two components are in-phase; if I = 1, they
are out-of-phase. Here, we restrict our attention to these
two values. Also, for simplicity, we take a = 0.2 and
A = 3 throughout; of the three beam parameters present,
we only vary B. We now address different cases.

Kerr case. We first consider the case with én = |y|?,
that is, the nonlinearity of the focusing Kerr type. We in-
vestigate the two cases of the incidence: in-phase and
out-of-phase. Since a large distance between Airy compo-
nents in the incidence leads to a weak interaction, we just
show results with a relatively small distance. The corre-
sponding results are shown in Fig. 1.

Immediately visible is the considerable interaction and
NL self-focusing and mutual focusing of the beams. The
major difference between the two cases is the attraction
of beams in the in-phase case and the repulsion in the
out-of-phase case. For B = -3 and 4 in the in-phase case,
the two Airy components form two parallel solitons
after shedding some radiation, as depicted in Figs. 1(al)
and 1(hl). With the decreasing interval, the attraction
between the two components increases and bound
breathing solitons are formed, with certain periods, as
shown in Figs. 1(b1)-1(gl). The smaller the interval,
the stronger the attraction and the smaller the period
of soliton breathing.

The maximum intensity versus the propagation dis-
tance, shown in Fig. 1(il), also demonstrates periodic
properties of the soliton. Curiously, the intensity image
shown in Fig. 1(el) has a smaller period than that in
Fig. 1(d1), even though B = 0 in that case. This can also
be seen from the thick solid curve and the dash-dotted
curve in Fig. 1(il). A smaller interval between beams
should produce a larger interaction, which should lead
to a smaller period. The reason is that the main lobe
of the Airy beam with B = 0 is located at about -1,
and there is still an interval between the two main lobes
in the incidence. So, the attraction is the biggest when
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B =1 and the period of the formed soliton is then the
smallest. It is also worth mentioning that the solitons
are generated from the main lobes and that the acceler-
ation property of the main lobes is now absent [20,22].
One can see in Fig. 1 that solitons, as well as shed radi-
ation, move along straight lines.

Concerning the out-of-phase case, the results are
shown in the bottom row in Figs. 1(a2)-1(h2), which
share the same numerical parameters as the in-phase
case. From the intensity images one can see that the sol-
iton pairs formed from the incidence actually repel each
other, and the maximum intensities for each case oscil-
late with propagation, as displayed in Fig. 1(i2). The
smaller the interval, the stronger the repulsion until
the beams overlap. However, when the beams strongly
overlap, as in Fig. 1(e2), the repulsion decreases as
the overlap increases. Considering that the two Airy com-
ponents are out-of-phase, the main lobes will balance
each other at B = 1, so that the distance between the
secondary lobes [Fig. 1(e2)] is larger than the dis-
tance between the main lobes for B =0 [Fig. 1(d2)].
In other words, the soliton pair shown in Fig. 1(e2) is gen-
erated from the secondary lobes, while the others are
generated from the main lobes. This is why the repulsion
of the soliton pair in Fig. 1(d2) is stronger than that in
Fig. 1(e2).

It is interesting to note that in Fig. 1(h2), two soliton
pairs are visible: one pair comes from the main lobes of
the Airy components and the other from the secondary
lobes. In all other figures only one pair is visible, in ad-
dition to the excess radiation emanating initially from the
interacting Airy beams. Because the energy is mainly
stored in the main lobes, the intensity of the inner soliton
pair is smaller than that of the outer pair, but early in the
propagation the two soliton pairs exchange energy at
about z = 2. In addition, the repulsion of the outer soli-
ton pair is stronger, which comes from the main lobes
possessing more energy. We should note that these re-
sults will be different when A is allowed to vary. For
small A (less than 1), there will be no solitons generated;
for large A(~10), multiple soliton pairs will be produced,
but the propagation may become unstable.
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Fig. 1.

Soliton formation in the interaction of two (al)-(hl) in-phase and (a2)-(h2) out-of-phase incident Airy beams, in Kerr

medium; (il), (i2) maximum intensities of beams in (b)-(f) versus propagation distance.



Saturable case. According to the standard theory of
photorefractive effect, we introduce the saturable
nonlinearity in the form én = |y|?/(r + |w|?), where 0 <
r <1 is a saturation parameter that we take to be 1. In
Figs. 2(al)-2(dl) and 2(a2)-2(d2) we display the evolu-
tion of the incidence with two Airy components, in-phase
and out-of-phase, respectively.

For the in-phase case, the two Airy components form
individual solitons, as well as soliton pairs with breather-
like behavior. In the evolution shown in Fig. 2(al), the
single soliton seen at x = 0 is formed from the main
lobes, while the soliton pairs shown in the same figure
come from the secondary lobes. In Figs. 2(b1) and 2(cl),
only single breathing solitons are formed; no soliton pairs
are visible. Since the two Airy components are rather
close then, the secondary lobes, together with the main
lobes, contribute to the formation of the central solitons.
In Fig. 2(d1), the solitons at x = 0 are formed from the
secondary and higher-order lobes, while the soliton pairs
come from the main lobes.

The out-of-phase case, as shown in Figs. 2(a2)-2(d2), is
quite similar to the Kerr medium, in that the superposi-
tion of two Airy components in the incidence leads to the
formation of repulsive soliton pairs. No individual soli-
tons are formed. But if we compare Fig. 2 with Fig. 1,
we note that the repulsion between soliton pairs in the
saturable NL medium is stronger than that in the Kerr
medium. We should mention that for small A, solitons
or soliton pairs cannot form in the interaction; however,
the propagation in the saturable NL medium is stable for
arbitrary A, which is different from the Kerr medium.

Nonlinear accelerating beams case. In addition to
linear, there also exist NL accelerating beams with para-
bolic trajectories; they are obtained from Eq. (1), when a
traveling variable x —2?/4 is introduced, to substitute
for - [20,21,24];

a a
i _GEY LSOV sy =0, )

We seek NL accelerating self-trapped solutions of Eq. (5)
in the form w(x,2) = u(x) expli(xz/2 + 2°/24)] [20,21];
this leads to the equation

2

37?; + 26nu - 2w = 0. (6)
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Fig. 2. Intensities of two interacting in-phase (top row) and
out-of-phase (bottom row) Airy beams in the medium with
saturable nonlinearity.
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We treat Eq. (6) as an initial value problem with the
asymptotic behavior u(x) = aAi(x) and u'(x) = aAi'(x)
for large enough x > 0; here a indicates the strength
of the nonlinearity induced by the potential solution.

In Fig. 3(a) we display numerically obtained Kerr, satu-
rable, and strong Kerr NL accelerating modes. Similar to
Airy modes, they exhibit long tails and possess infinite
energy. As seen in Figs. 3(b)-3(e), Kerr NL solutions
accelerate along parabolic trajectories. Because of the
infinite power, it is reasonable to cut off the oscillation
tails and study the truncated cases, as shown in Figs. 3(c)
and 3(e). One can see that the truncated “normal” Kerr
solutions (obtained for a = 10), as shown in Fig. 3(c),
shed radiation but form no solitons. However, the strong
Kerr solutions (obtained for a = 10%), shown in Figs. 3(d)
and 3(e), readily form solitons from the strong radiation
shedding.

Similar to the linear Airy beams from Eq. (4), we
now study the interaction of two truncated NL accel-
erating beams with opposite propagation directions.
Figures 3(f1)-3(il) show the interaction of two in-phase
Kerr beams and Figs. 3(f2)-3(i2) show the interaction
of two out-of-phase beams. Figures 3(f3)-3(i3) and
3(12)-3(12) repeat the situation for the two truncated
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Fig. 3. (a) Nonlinear accelerating modes, according to Eq. (6).
Kerr and saturable cases share the left and bottom axes, while
the strong Kerr case uses the top and right ones. (b) Propagating
Kerr and (c¢) truncated Kerr solutions, obtained for a = 10;
(d) propagating strong Kerr and (e) truncated strong Kerr
solutions, obtained for a = 108; (f1)—(il) interacting in-phase
truncated Kerr solutions, shifted by B = -2, -1, 0, and 1, respec-
tively; (f2)—(i2) same as (f1)-(il), but for the out-of-phase case;
(£3)-(i3) same as (f1)—(il1), but for the in-phase truncated strong
Kerr solutions; (f4)—(i4) same as (f3)—(i3), but for the out-of-
phase case.
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strong Kerr solutions. It is seen that the accelerating
beams easily generate single solitons and soliton pairs,
which do not accelerate. In comparison with the normal
Kerr solutions, more soliton pairs can be induced from
the strong Kerr solutions. At the same time, solitons or
soliton pairs cannot be formed if the intensity of the
NL accelerating beams is too small.

The behavior of the saturable NL accelerating modes is
quite similar to that of the Kerr NL modes, except that the
saturable NL medium endorses stable propagation of
beams with arbitrary high intensities.

In summary, we have demonstrated that soliton pairs
and even single solitons can be produced in the interac-
tion of both in-phase and out-of-phase Airy beams and NL
accelerating beams in Kerr and saturable NL media.
Since the production of Airy beams [2,3,26-28] and NL
accelerating beams [21,29] has been reported in experi-
ments, an experimental observation of interactions re-
ported in this Letter should be feasible. Still, a number
of interesting questions remain open, such as these:
Can accelerating beams emerge from the interactions de-
scribed in this Letter? Are these interactions elastic? Can
accelerating beams exchange momentum and energy
during interactions? How do we describe interactions
between accelerating beams and solitons in general?
We plan to address them in our future work.
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