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Nonlinear Talbot effect of rogue waves
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Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation
(NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the
nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in
a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent
behavior, but only at the TE length and at the half-TE length with a π -phase shift; the fractional TE is absent.
The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related
to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the
shorter the TE length.
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I. INTRODUCTION

Talbot effect (TE) is a recurrent self-imaging phenomenon
in the near-field diffraction of plane waves from a grating, first
observed in 1836 by Talbot [1] and theoretically explained in
1881 by Lord Rayleigh [2]. In the past decade TE has attracted
a lot of attention, owing to its potential applications in image
preprocessing and synthesis, photolithography, spectrometry,
optical computing, and elsewhere. Until now, TE has been
reported in, but not confined to, the following areas of physics:
atomic optics [3], quantum optics [4], waveguide arrays [5],
photonic lattices [6], Bose-Einstein condensates [7], x-ray
imaging [8], and in the interferometer for C70 fullerene
molecules [9]. Very recently, a nonlinear (NL) TE was reported
in Ref. [10]. It is different from the NL TE reported here, in
that it refers to the linear TE from a NL wave. For a more
thorough introduction, one may consult the review paper in
[11]. However, all these investigations do not report TE in NL
media, not even the so-called NL TE in Refs. [10,11]. This
task is accomplished in this paper.

As a phenomenon first spotted in oceans, the rogue wave
is now commonly observed in NL optics [12,13]. Today,
it is accepted that rogue waves are adequately described
by the nonlinear Schrödinger equation (NLSE); they come
in a variety of forms that include Peregrine solitons [14],
Kuznetsov-Ma breathers (KMBs) [15], Ahkmediev breathers
(ABs) [16], and higher-order rogue wave solutions [17]. To
observe TE it is necessary that the diffracting pattern is
periodic in the transverse direction. Hence we study the TE
of rogue wave breathers that are periodically modulated in the
transverse coordinate. However, different from the linear TE,
the diffracting patterns propagate in the NL medium and are
the eigenmodes of NLSE.

Again, the nonlinear TE reported in this paper is in stark
contrast to the linear one, which needs real gratings or periodic
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diffracting structures, forms in linear homogenous media, and
can be generally explained by the Fresnel diffraction theory. In
this paper, we demonstrate the nonlinear TE from propagating
ABs and other rogue wave eigenmodes of the system that
exhibit TE in a bulk NL medium.

II. MATHEMATICAL MODELING

The commonly used model to generate a soliton, a rogue
wave, or a breather solution in one dimension is the scaled
cubic NL Schrödinger equation (SE),

i
∂ψ

∂z
+ 1

2

∂2ψ

∂x2
+ |ψ |2ψ = 0. (1)

A soliton solution is easily found by using the inverse
scattering transform [18]. Among the rogue wave solutions
of NLSE, AB was first reported by Akhmediev in the 1980s
[16]; it can be written as

ψ(z,x) = (1 − 4q) cosh(az) + √
2q cos(�x) + ia sinh(az)√

2q cos(�x) − cosh(az)

× exp(iz), (2)

where � is the modulation parameter, q = (1 − �2/4)/2 and
a = √

8q(1 − 2q), with q < 1/2. The period of ψ(z,x) along
x is Dx = π/

√
1 − 2q. Specially, Eq. (2) will transform into

ψ(z,x) = cos(
√

2x) + i
√

2 sinh(z)

cos(
√

2x) − √
2 cosh(z)

exp(iz), (3)

when q = 1/4. If q > 1/2, the rogue wave solution of Eq. (1)
is the KMB, which can be written as

ψ(z,x) = (1 − 4q) cos(az) + √
2q cosh(�x) − ia sin(az)√

2q cosh(�x) − cos(az)

× exp(iz), (4)

where now q = (1 + �2/4)/2 and a = √
8q(2q − 1). Differ-

ent from AB, the KMB is periodic along the z axis, with the
period Dz = π/

√
2q(2q − 1). When q = 1/2, the solutions in
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FIG. 1. (Color online) (a) AB with q = 1/4. (b) Peregrine soliton. (c) KMB with q = 3/4. Top panels present the intensity distributions;
bottom panels present the view from the above.

Eqs. (2) and (4) degenerate into the fractional form

ψ(z,x) =
[

1 − 4 + 8iz

1 + 4x2 + 4z2

]
exp(iz), (5)

which is known as the Peregrine soliton [13,14]. In Fig. 1
we display three specific solutions of Eq. (1), corresponding
to Eqs. (3), (5), and (4), respectively. It is seen that the AB
transforms into the Peregrine soliton as q approaches 1/2,
which then transforms into the KMB as q further increases.
The common characteristic of all breathers is that they ride on
a finite background.

ABs are periodic along the transverse coordinate x, as
exhibited in Fig. 1(a), so their intensity is infinite along the
x axis. KMBs are periodic along the z axis, so they can be
viewed as higher-order soliton solutions (the basic soliton
solution being the hyperbolic secant function). One should
bear in mind that the energy of KMB, as well as of the Peregrine
soliton, is also infinite along the x axis. All these solutions are
exact analytical solutions of the cubic NLSE. The question is
what happens when one propagates, as an input to Eq. (1), the
solution which is not exactly the exact solution.

III. NUMERICAL SIMULATION AND DISCUSSION

Numerical simulations in this paper are obtained by
utilizing the fourth-order split-step fast Fourier transform
(FFT) method [18] in double precision. To make beams of
finite energy and prevent FFT spill-over effects, we utilize an
aperture (filter) with a diameter large enough to enforce fast
convergence of beam intensity to zero when |x| → ∞. Starting
from Eq. (5), we construct an input to Eq. (1) with a finite
energy of 2π , by using the profile subtracted from the uniform
background in Eq. (5) at z = 0, ψ0(z = 0,x) = 4/(1 + 4x2).
The evolution of this profile is displayed in Fig. 2(a); it looks
very much like a stable breather [19]. However, if one uses
the whole transverse cross section of the Peregrine soliton at
z = 0 as an input, which is the same as AB for q = 1/2, the
evolution looks very different; it is shown in Fig. 2(b).

Curiously, instead of forming a breather or exhibiting a
continuous diffraction in bulk media, the beam undergoes a
“discrete” parabolic diffraction, quite similar to the evolution
of a discrete system [20]. It is also evident that the beam in each
of the “channels” behaves like a breather during propagation.
The explanation of the phenomenon is that actually the
input wave is not an exact Peregrine soliton, but a slightly

modulated wave, owing to the finite numerical accuracy at
which the Peregrine profile is determined and to its finite
energy. This modulated wave shows the tendency to diffract
into an AB-like wave upon propagation. Thus the cause of the
phenomenon is the transverse modulational instability during
the NL propagation.

We recall that there exists a more general Akhmediev
solution of NLSE from Eq. (1), expressed in terms of Jacobi
elliptic functions [16],

ψ(x,z) =k
A(x)dn

(
kz, 1

k

) + i
k
sn

(
kz, 1

k

)
1 − A(x)cn

(
kz, 1

k

) exp(iz), (6)

in which

A(x) =
√

1

1 + k
cn

(√
2kx,

√
k − 1

2k

)
,

with k > 1. When k → 1, Eq. (6) reduces to Eq. (3). Because
sn(x,m), cn(x,m), and dn(x,m) are all periodic and the
corresponding periods are 4K , 4K , and 2K [21], respectively,
with Km = ∫ π/2

0 dθ/
√

1 − m2 sin2 θ, the solutions described
by Eq. (6) are all periodic in both x and z directions. The
corresponding periods can be deduced as

Dx = 4√
2k

Km=√
(k−1)/(2k), Dz = 4

k
Km=1/k,

respectively. Corresponding to Eq. (6) there exists another an-
alytical solution of NLSE with k < 1 [16], but this eigenmode
does not exhibit TE. The doubly periodic Akhmediev solution
from Eq. (6) does.
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FIG. 2. (Color online) Propagation of ψ0 (a) and Peregrine soli-
ton (b).
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FIG. 3. (Color online) (a) Intensity of the solution in Eq. (6) for k = 1.2. (b) Periods Dx and Dz versus k. Insets show intensities of the
solution with k = 3, 5, 7, and 9, respectively. The dot on the Dz curve corresponds to (a).

The intensity distribution of the solution with k = 1.2 is
displayed in Fig. 3(a), with the result Dx ≈ 4.4 and Dz ≈ 7.8.
It is clearly seen that the solution exhibits the self-imaging TE-
like property—the periodic incident wave exactly reappears at
certain distances (an integer multiple of Dz) and its π -phase
shifted image appears at the distances halfway in between
(an odd multiple of Dz/2). Thus the self-imaging can be
viewed as a TE with the TE length zT = Dz. Different
from the previous literature, such TE is completely nonlinear,
because it originates from the eigenmodes of NLSE and
propagates in a NL medium. In Fig. 3(b), we display the TE
length zT (viz., Dz), as well as the transverse period Dx of the
solution, as functions of k; they both monotonously decrease
with increasing k.

To display the changing nonlinear TE with k more clearly,
we show in the inset of Fig. 3(b) four special cases correspond-
ing to k = 3, 5, 7, and 9, respectively. When k = 2, Dx = Dz,
and Dx and Dz will have a crossing point, as shown in Fig. 3(b).
When k → 1, Dx → √

2π and zT → +∞, as is visible in
Fig. 3(b). Then the solution indicated by Eq. (6) reduces to the
AB solution described by Eq. (3) and illustrated by Fig. 1(a).
Since Eq. (6) is an eigenmode solution of the NLSE in Eq. (1),
the general AB can be viewed as the nonlinear TE eigenmode.

AB for q = 1/4 is a limiting case of the TE eigenmode.
Therefore, we investigate evolution of the beam with the same
profile as the AB at z = 0 plane, obtained at high but finite
precision. Thus we launch AB from Eq. (2) at z = 0 into
the NL medium and follow its evolution; the result is shown
in Fig. 4(a). It corresponds to the case given in Fig. 1(a)
(Dx = √

2π ), evolving on a torus. It is clearly seen that AB
displays the nonlinear TE during propagation. Owing to the
modulational instability, it shows the tendency to diffract as the
doubly periodic Akhmediev solution from Fig. 3. In Fig. 4(b)
the intensities of the beam during evolution are presented at the
initial place (z = 0), half TE length (z = zT /2), and the full
TE length (z = zT ), respectively. The intensity distributions
at zT are the same as the launched ones, while those at
zT /2 display a π -phase shift. Thus the NL Talbot carpet
looks simple—only the primary and secondary images appear;
the fractional images are absent. This may be a blessing in
applications, because—e.g., for optical switching—fractional
images are harmful.

To exemplify the difference between linear and nonlinear
TE, we remove the NL term in Eq. (1) and follow the linear

diffraction of the input AB; one obtains the evolution carpet
shown in Fig. 4(c). This corresponds to the “NL TE”mentioned
in Refs. [10,11]. The usual Talbot carpet is revealed, displaying
the fractional TE images as well [11]. Similar to Fig. 4(b), we
exhibit the intensities of the linear TE at z = 0, z = zT /4,
z = zT /2, and z = zT in Fig. 4(d). For the fractional linear
TE at z = zT /4, the period of the beam is halved, which
is in accordance with the previous literature [3,11]. In the
linear case, the diffraction pattern (the input AB) undergoes
the usual superposition and interference as it propagates.
In the nonlinear case the superposition does not hold and
the interference is strongly influenced by the diffractionless
propagation of the input AB, which is an eigenmode of Eq. (1).
The result is the NL TE.

Different from the TE of the eigenmode shown in Fig. 3,
the TE here directly follows from the transversely periodic
wave and it cannot be analytically explained by Eq. (6).
Without an analytical expression for zT in this case, we
numerically estimate zT for different q in Eq. (2); the results
are shown in Fig. 4(e). Corresponding to Fig. 4(a), the value
of zT is approximately 18.3, as shown by the green star ∗
in Fig. 4(e). In the same figure we also exhibit the period
Dx , the maximum intensity max{|ψ |2}, and the full width
at half maximum (FWHM) of the peak intensity of AB
versus q. It is seen that the TE length zT first decreases and
then increases with q increasing. At the same time, Dx and
max{|ψ |2} monotonously increase with the increasing q, while
the FWHM monotonously decreases. It is worth mentioning
that when q > 3/8, the self-imaging at half TE length is
becoming less perfect (not shown).

The NL TE effect in Fig. 4 can be understood as a result
of the interaction—the NL interference—among the smooth
breather lobes. With q increasing, the period Dx increases
and the FWHM decreases, so that the interaction among
the peaks weakens. Therefore, each peak tends to evolve in
a manner similar to Fig. 2(b), which leads to the imaging
getting worse and the TE getting diminished. When Dx is
not too big, the interaction among the lobes results in the
clearly visible TE. Phenomenologically, the change in zT is
in accordance with the changing trends of Dx and max{|ψ |2}.
During interaction, Dx and max{|ψ |2} can be viewed as a
distance and a mass, according to the analogy with classical
mechanics. The larger the mass and the shorter the distance,
the stronger the interaction and the shorter the zT . Thus
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FIG. 4. (Color online) (a) NL TE carpet of the AB with q = 1/4. (b) Intensity profiles at certain distances. (c), (d) Same as (a) and (b)
but for the linear TE. (e) Spatial period Dx , the maximum intensity of the wave, FWMH of one peak intensity, and NL TE length zT , all as
functions of q. The green star ∗ corresponds to (a).

the interaction can be explained according to the behavior
of Dx/ max{|ψ |2}. When q is small, Dx is relatively big
and max{|ψ |2} is relatively small; thus zT is large. With q

increasing, the increase in Dx is smaller than that in max{|ψ |2},
so zT decreases. However, when q → 1/2, Dx increases
fast and approaches +∞, while max{|ψ |2} tends to the
maximum intensity of Eq. (5); therefore, zT starts to increase
again.

IV. CONCLUSION

We have demonstrated the NL TE in the cubic NL medium,
coming from ABs and other rogue waves. It is a genuine
NL optical effect, arising from the transverse modulational

instability and the NL interference of AB lobes. Its defining
feature is the presence of only primary and secondary images;
no fractional images are seen. We have shown that the TE
length of the NL TE is determined by the intensity and the
period of ABs. Owing to the simple Talbot carpet, the NL TE
can find potential applications in all-optical communications.
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