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Abstract – We investigate three-dimensional nonparaxial linear accelerating beams arising from
the transverse Whittaker integral. These beams accelerate along a semicircular trajectory, with
almost invariant nondiffracting shapes. The transverse patterns of accelerating beams are de-
termined by their angular spectra, which are constructed from the Mathieu functions, Weber
functions, and Fresnel integrals. Our results not only enrich the understanding of multidimen-
sional nonparaxial accelerating beams, but also display their real applicative potential —owing
to the usefulness of Mathieu and Weber functions, and Fresnel integrals in describing a wealth of
wave phenomena in nature.

Copyright c© EPLA, 2014

Introduction. – Accelerating beams have attracted
a lot of attention in the photonics research community
in the last decade [1–10]. Being solutions of the linear
Schrödinger equation —which is equivalent to the parax-
ial wave equation in linear dielectric materials— Airy wave
packets from quantum mechanics have made a debut in
optics [11]. Paraxial accelerating beams propagating in
free space or in linear dielectric media are mostly related
but not limited to the Airy or Bessel functions [12–16].
Very recently, it was demonstrated that Fresnel diffrac-
tion patterns can also exhibit accelerating properties [9].
Interest in these beams stems from the fact that they
exhibit self-acceleration, self-healing, and nondiffraction
over many Rayleigh lengths [1,2,4,17]. To date, accelerat-
ing beams have been discovered in Kerr media [8,18,19],
Bose-Einstein condensates [20], on a metal surface [21–24],
in photonic crystals [25], and elsewhere. However, the
transverse acceleration of paraxial accelerating beams is
restricted to small angles.

To extend the theory to nonparaxial range, other kinds
of linear accelerating beams have been created and at-
tracted a lot of attention recently. These nonparaxial

(a)E-mail: zhangyiqi@mail.xjtu.edu.cn
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beams, for example Mathieu and Weber beams, are
found by solving the Helmholtz wave equation, and can
be quite involved —especially in the multidimensional
cases [26–31]. Since the solutions of the three-dimensional
(3D) Helmholtz equation can be represented by a reduced
form of the Whittaker integral [32], the 3D accelerating
beams with different angular spectra can be investigated
using this representation. If the angular spectrum can
be written in terms of the spherical harmonic functions,
parabolic, oblate and prolate spheroidal fields, the 3D ac-
celerating spherical fields with a semicircular trajectory
can be obtained [33,34]. In light of nonparaxial accel-
erating beams ability to bend sharply (∼ 90◦) or even
make U-turns, they are likely to find applications in micro-
particle manipulations. Thus, nonparaxial accelerating
beams deserve further scrutiny.

In this letter, we study the 3D nonparaxial accelerating
beams by considering different angular spectra introduced
into the transverse Whittaker integral. Since Mathieu and
Weber functions are the exact solutions of the Helmholtz
equation, it is meaningful to construct the corresponding
spectra by using the Mathieu and Weber angular func-
tions. In addition, since the Fresnel integrals are used to
describe diffracted waves, it makes sense to employ them
to produce nondiffracting nonparaxial Fresnel accelerat-
ing beams. Thus, in the following we also use the Fresnel
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integrals to compose an appropriate angular spectrum in
the Whittaker integral. Even though Mathieu, Weber, and
Fresnel waves are not fully rotationally symmetric, they
still propagate along part-circular trajectories and repre-
sent interesting linear wave systems in physics. There-
fore, here we will investigate novel 3D Mathieu, Weber,
and Fresnel nonparaxial accelerating beams together, from
the same standpoint. We should stress that although
we use Mathieu and Weber functions to construct an-
gular spectra, the Mathieu and Weber beams reported
here are different from the Mathieu and Weber beams re-
ported elsewhere. This is obvious from the fact that these
beams accelerate along elliptic and parabolic trajectories,
whereas our beams accelerate along circular trajectories.

Theoretical model. – The transverse Whittaker inte-
gral [32,34] can be written as

ψ(r) =

∫∫

sin θdθdφA(θ, φ)

× exp [ik(x sin θ sin φ + y cos θ + z sin θ cosφ)] , (1)

where A(θ, φ) is the angular spectrum function of the wave
ψ, with θ ∈ [0, π] and φ ∈ [−π/2, π/2]. In eq. (1), both
Cartesian and spherical coordinates are involved; to clar-
ify the notation used, the relation between coordinates
is displayed in fig. 1. Whittaker integral originates from
diffraction theory of electromagnetic waves and passes un-
der different names in different fields, for example as the
Debye-Wolf diffraction formula in the imaging theory [35].
Arbitrary spectra are allowed, but we will consider the
spectrum functions that can be separated in the variables,
A(θ, φ) = g(θ) exp(imφ), where g(θ) is a complex func-
tion and m is an integer. Such a form implies rotational
symmetry in the problem. In this case, eq. (1) can be
rewritten as

ψ(r) =

∫∫

sin θdθdφ[g(θ) exp(imφ)]

× exp [ik(x sin θ sin φ + y cos θ + z sin θ cosφ)] , (2)

which is still quite general. If we restrict ourselves to the
value of the colatitude angle θ = π/2, eq. (2) will reduce
to the two-dimensional case [33]. Utilizing eq. (2), we
can display the transverse intensity distributions of shape-
invariant beams in an arbitrary plane z = const and the
accelerating trajectory in an arbitrary plane y = const.

Although at this point g(θ) is an arbitrary function, it is
natural to assume that it is associated with the solutions of
the 2D Helmholtz equation. The procedure is that we first
specify solutions of the 2D Helmholtz equation in differ-
ent coordinates, and then construct an appropriate angu-
lar spectrum function g(θ). The corresponding Helmholtz
wave equation is of the form

(

∂2

∂z2
+

∂2

∂x2
+ k2

)

f(z, x) = 0, (3)

the solutions of which include many functions —the plane
wave functions, Bessel functions, Mathieu functions, and

Fig. 1: (Color online) Relation between Cartesian coordinates
(x, y, z) and spherical coordinates (r, θ, φ) used.

Weber functions that can be expressed in the Cartesian,
circular cylindrical, elliptic cylindrical, and parabolic
cylindrical coordinates [36–38], respectively. Here k2 is the
eignevalue of the corresponding Laplace operator’s bound-
ary value problem (connected with the wavenumber of the
corresponding solutions). In the following sections, we will
investigate the three cases for which the angular spectra
are given in forms of the Mathieu and Weber functions,
and the Fresnel integrals, respectively.

Mathieu beams. – In the elliptic cylindrical coor-
dinates z = h cosh ξ cos η and x = h sinh ξ sin η, with
ξ ∈ [0, +∞) and η ∈ [0, 2π), the solutions of the Helmholtz
equation are the Mathieu functions. By utilizing variable
separation, that is, by writing the solution of eq. (3) as
f(ξ, η) = R(ξ)Φ(η), Helmholtz equation separates into
two ordinary differential equations [36,38]

∂2R(ξ)

∂ξ2
− (a − 2q cosh 2ξ)R(ξ) = 0, (4a)

∂2Φ(η)

∂η2
+ (a − 2q cos 2η)Φ(η) = 0, (4b)

where a is the separation constant, q = k2h2/4 is a pa-
rameter related to the ellipticity of the coordinate sys-
tem, h is the interfocal separation, and k = 2π/λ is the
wave number (λ being the wavelength in the medium).
The solutions of eqs. (4a) and (4b) are the radial and an-
gular Mathieu functions. A number of such solutions is
known [38].

We utilize the angular Mathieu functions to construct
the corresponding spectral function g. Generally, there
are four categories of the angular Mathieu solutions of
eq. (4b), denoted as See, Seo, Soe, and Soo for the even-
even, even-odd, odd-even, and odd-odd cases, respectively.
They also carry an order m, which is suppressed here.
Thus, the term g(θ) in eq. (2) may be written as

g1(θ) = See(θ) + iSoo(θ), (5)

g2(θ) = Soe(θ) + iSeo(θ), (6)

and in this manner we introduce the novel Mathieu ac-
celerating beams, by utilizing the transverse Whittaker
integral. This is different from the Mathieu nonparaxial
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Fig. 2: (a) Angular spectrum function g1(θ). (b) Angular spec-
trum function g2(θ). The order of the Mathieu functions is 10,
and q = 4.

beams introduced elsewhere [29], where combinations of
the radial and angular Mathieu functions have been uti-
lized. Before going to details, we show the angular spec-
trum functions g1 and g2 in figs. 2(a) and (b). The order
of the involved Mathieu functions is 10, with q = 4.

Based on the spectral functions g1 and g2, we dis-
play the transverse |ψ(r)| distributions of the shape-
invariant Mathieu beams at z = 0 in figs. 3(a1)–(d1) and
figs. 3(a2)–(d2), respectively. It is seen that the amplitude
distributions |ψ(r)| of the beams in the z = 0 plane are
symmetric about y = 0, and that they become quite com-
plex as the order is increased. Different from the g1 case,
the amplitude |ψ(r)| at the y = 0 plane is always the small-
est for the g2 case. To observe the accelerating properties
as the beams propagate, we choose the 10th order Mathieu
functions as an example; numerical simulations are shown
in figs. 3(e1) and (e2), which correspond to the cases pre-
sented in figs. 3(d1) and (d2), respectively. It is seen
that the beams are almost invariant along the z-direction,
slowly expanding and accelerating along a quarter-circular
trajectory. Note that the beams mirror-extend below the
z = 0 plane, so that the beams in the y = const plane ac-
celerate along a semicircular trajectory. This comes from
the following argument.

As indicated in the section on the model, we set the
polar angle φ in the interval [−π/2, π/2]; that means
the beam propagates in the positive z-direction. If φ ∈
[π/2, 3π/2], the beam will propagate in the negative
z-direction and it will also accelerate along a quarter-
circular trajectory, which is symmetric about the plane
z = 0 to the positive quarter-circular trajectory. When
both the positively and negatively propagating beams are
considered together, one observes a beam accelerating
along a semicircular trajectory. For convenience, we only
consider the case of φ ∈ [−π/2, π/2] throughout the let-
ter. From the 3D plot of the acceleration process, we see
that the beams exhibit a nonparaxial accelerating prop-
erty during propagation —as they should.

Weber beams. – The solutions of the Helmholtz
equations in the parabolic cylindrical coordinates are the
Weber functions. The relation between the Cartesian and
parabolic cylindrical coordinates is z + ix = (ξ + iη)2/2,

Fig. 3: (Color online) Cross-section in the z = 0 plane of the
amplitude |ψ(r)| of the shape-invariant Mathieu beams with
q = 4 and m = 50. The 1st, 4th, 7th, and 10th order Mathieu
functions are displayed from left to right. (a1)–(d1) The case
of g1. (a2)–(d2) The case of g2. (e1), (e2) 3D plots of the
propagating 10th Mathieu beam, corresponding to g1 and g2.

with ξ ∈ [0, +∞) and η ∈ (−∞, +∞). When eq. (3) is ex-
pressed in the parabolic cylindrical coordinates, and the
method of separation of variables applied, the Helmholtz
equation transfers into a system of equations [29,37,38]

∂2R(ξ)

∂ξ2
+

(

k2ξ2 − 2ka
)

R(ξ) = 0, (7a)

∂2Φ(η)

∂η2
+

(

k2η2 + 2ka
)

Φ(η) = 0, (7b)

in which 2ka is the separation constant. If one sets√
2kξ = u and

√
2kη = v, eqs. (7a) and (7b) transform

into the two standard Weber’s differential equations

∂2R(u)

∂u2
+

(

u2

4
− a

)

R(u) = 0, (8a)

∂2Φ(v)

∂v2
+

(

v2

4
+ a

)

Φ(v) = 0. (8b)

Therefore, the solutions of eqs. (7a) and (7b) are the
Weber functions with different eigenvalues. If we denote
the even and odd solutions of eq. (7b) as Pe and Po, we can
define the angular spectrum function g(θ) as

g(θ) = Pe(θ, a) + iPo(θ, a), (9)

in which

Pe,o(θ, a) =

∞
∑

n=0

cn

θn

n!
, (10a)

and the coefficients cn satisfy the following recurrence
relation:

cn+2 = acn − n(n − 1)cn−2

4
. (10b)

To obtain Pe or Po, one sets the first two cn coefficients
to c0 = 1, c1 = 0 or to c0 = 0, c1 = 1, respectively [37].
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Fig. 4: (Color online) (a)–(f) Wave amplitude |ψ(r)| distribu-
tion at z = 0 of the shape-invariant Weber beams, for m = 120
and a = 1, 7, 10, 13, 16 and 19, respectively. (g) 3D plot of
the Weber beam with a = 1.

This choice for the angular spectrum functions is again
different from the choice made in [29], in which the com-
binations of solutions of both eqs. (7a) and (7b) are used to
construct the full angular spectrum of Weber accelerating
beams. These Weber beams accelerate along parabolic
trajectories and are different from the ones introduced
here.

To display our Weber beams, we repeat the same pro-
cedure as for the Mathieu beams; the only difference is
that now there are not two g functions but one, expressed
in terms of the even and odd Weber eigenfunctions. The
amplitude |ψ(r)| distribution of Weber beams at z = 0 for
m = 120 and different a, according to eqs. (9) and (10),
is shown in figs. 4(a)–(f). It is seen that |ψ(r)| changes
slightly with a increasing, especially around the point
(x = −m, y = 0). Regardless of what the |ψ(r)| distri-
bution at z = 0 plane is, the beam still accelerates along
a quarter-circular trajectory. As an example, fig. 4(g) de-
picts the accelerating process of the beam with a = 1,
which corresponds to fig. 4(a). It is clear that the shape
of the beam is nearly invariant as it propagates, and the
accelerating trajectory is a quarter of the full circle in
the plane y = 0 (the bending angle is approximately 90◦).
So, the acceleration is nonparaxial.

Fresnel integrals. – In optics, Fresnel integrals are
commonly used to describe Fresnel diffraction from a
straight edge or a rectangular aperture. The Fresnel cosine
and sine integrals are defined as [39]

C(t) =

∫ t

0

cos
(π

2
τ2

)

dτ, (11a)

S(t) =

∫ t

0

sin
(π

2
τ2

)

dτ, (11b)

or in the complex form:

F(t) = C(t) + iS(t). (12)

Fig. 5: (Color online) (a) Spectrum function g(θ) of Fresnel
integrals. (b) Transverse intensity distribution of the beam at
z = 0. (c) Same as (b) but at z = 40. (d) Circular trajectories
of the beam at the plane y = 0. (e) Panels (b), (c) and (d) put
together.

Thus, we define the new Fresnel nonparaxial accelerating
wave by introducing the spectrum function g(θ) as

g(θ) =

(

C(θ) +
1

2

)

+ i

(

S(θ) +
1

2

)

. (13)

These Fresnel waves are different from the ones introduced
in [9], which propagate paraxially along parabolic trajec-
tories. The spectral function g(θ) is shown in fig. 5(a),
which is the Cornu spiral [39]; the two branches of the
spiral approach points P1 and P2, with the coordinates
(1/

√
2, 1/

√
2) and (0, 0).

According to eq. (13) and the Whittaker integral, we can
now present the Fresnel nonparaxial accelerating beams.
We display intensity distributions of the accelerating beam
at z = 0 plane, z = 40 plane, and y = 0 plane in
figs. 5(b), (c), and (d), respectively. Concerning the in-
tensity at the z = 0 plane, it is similar to the ones shown
in figs. 3(a1) and 4(a), even though the angular spectra
are quite different. Comparing figs. 5(b) and (c), it is seen
that the beam accelerates —all the lobes move rightward
along the positive x-direction. In fig. 5(d) we can follow
the acceleration of the main lobe and other higher-order
lobes in the y = 0 plane. It is evident that the lobes accel-
erate along a quarter-circular trajectory, with a bending
angle ∼ 90◦, which demonstrates that the acceleration is
nonparaxial. As before, the beams in fig. 5(d) extend to
the region z ≤ 0, so that the acceleration actually proceeds
along semicircular trajectories. In order to see the acceler-
ating process more clearly, we put figs. 5(b)–(d) together
in fig. 5(e).

Conclusion. – Based on the transverse Whittaker in-
tegral, we have investigated the novel 3D nonparaxial
accelerating beams, by constructing the angular spectra
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using Mathieu functions, Weber functions, and Fresnel in-
tegrals. In the transverse plane, the intensity distribu-
tions of the accelerating beams are related to the angular
spectra. In the longitudinal direction, the beams acceler-
ate along a quarter-circular trajectory, with the bending
angle approximately 90◦. Even though the angular Math-
ieu functions, Weber functions, and Fresnel integrals used
here are not strictly rotationally symmetric, the study of
such 3D nonparaxial accelerating beams is still meaning-
ful and deserves appropriate attention. Since Mathieu and
Weber functions are the solutions of the Helmholtz equa-
tion, and the Fresnel integrals are used to describe optical
diffraction, which are all related to common wave phe-
nomena in the real world, we hope to have revealed the
importance of such beams for potential applications.
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