
Optical cavity squeezing of multiwave mixing
via dark states

Yiqi Zhang, Xun Zhang, Haixia Chen, Peiying Li, Mengqin Gao, Zihai Jiang, and Yanpeng Zhang*

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of
Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China

*Corresponding author: ypzhang@mail.xjtu.edu.cn

Received August 4, 2014; revised September 11, 2014; accepted September 17, 2014;
posted September 18, 2014 (Doc. ID 217166); published October 22, 2014

We theoretically demonstrate the influence of dark states on single-mode and two-mode optical squeezing in a
four-level atomic–cavity coupling system through fifth- and third-order cascade nonlinearity. We first show
the cone emissions of self-diffraction and phase-conjugate spontaneous parametric (SP) four-wave mixing
processes. Then, we inject a coherent or Einstein–Podolsky–Rosen field into the SP-MWM channels to
investigate the corresponding squeezing. The investigations have potential applications in quantum information
processing. © 2014 Optical Society of America

OCIS codes: (270.6570) Squeezed states; (190.4223) Nonlinear wave mixing; (190.4380) Nonlinear optics,
four-wave mixing; (190.4410) Nonlinear optics, parametric processes.
http://dx.doi.org/10.1364/JOSAB.31.002792

1. INTRODUCTION
The squeezed state of light is a typical nonclassical field,
which can be generated by nonlinear optical processes such
as multiwave mixing (MWM) [1] or parametric interaction [2].
Due to its intriguing quantum features, optical squeezing at-
tracts many researchers’ interest. To the best of our knowl-
edge, entangled images from four-wave mixing (FWM) can
be implemented by using two-mode quadrature squeezing
in free space [3], and the tunable delay of Einstein–
Podolsky–Rosen (EPR) entanglement can be achieved by
FWM squeezing [4]. The degree of squeezing between ampli-
tude and phase quadratures of EPR beams can be enhanced if
there is injection [5]. In experiment, quantum interference
phenomena in the phase-sensitive optical parametric amplifi-
cation (OPA) system inside an optical cavity with an injected
squeezed vacuum state was demonstrated [6], and quantum
fluctuation spectra in two coupled optical cavities with an in-
jected squeezed vacuum state was also observed [7].

In addition, as a result of atomic coherence, electromag-
netically induced transparency (EIT) [8,9] and dressed
MWM [10,11] also attract a lot of attention. Especially the en-
hancement and suppression [12], that can be used to control
the probe and MWM signals, are quite involved. It is worth
mentioning that the enhancement and suppression can be
multiparametrically controlled, including the frequency detun-
ings and powers. Recently, our group has observed Autler–
Towns (AT) splitting and dressed FWM [13,14] in multilevel
atomic vapors. Also, we have demonstrated the existence
of the cascade nonlinear process by injecting classical
FWM or six-wave mixing (SWM) to the parametric FWM or
SWM channels [15].

In this paper, we apply the suppression and enhancement
theory to the spontaneous parametric (SP) MWM process to
study single-mode and two-mode squeezing in detail. We suc-
cessfully manipulate quantum squeezing through dark states.

The paper is organized as follows: in Section 2, we briefly in-
troduce the basic theory, and in Sections 3 and 4, we study
single-mode and two-mode squeezing in detail. In Section 5,
we conclude the paper.

2. SP-MWM PROCESSES AND SPATIAL
PROPERTIES
A. SP-MWM Processes
An inverted-Y-type energy level system as shown in Fig. 1 is
constructed by four energy levels j0i, j1i, j2i, and j3i. Three
laser beams k1, k2, and k3 drive j0i↔j1i, j1i↔j2i, and j1i↔j3i,
respectively. In this energy level system, we discuss three
kinds of subsystems in which three kinds of optical SP-
MWM processes are generated. First, a Λ-type subsystem
j0i − j1i − j3i can generate two SP-FWM processes kF1 and kF3
satisfying phase-matching conditions kF1 � k1 − kF3 � k3 and
kF3 � k3 − kF1 � k1, respectively. Here, k2 serves as a dressing
field. Second, a ladder-type subsystem j0i − j1i − j2i can gener-
ate another two SP-FWM processes kF10 and kF2 satisfying
kF10 � k1 − kF2 � k2 and kF2 � k2 − kF4 � k1, respectively.
Now, k3 is the dressing field. Third, three SP-SWM processes
kS1, kS2, and kS3, respectively, satisfying kS1 � k1�
k2 − kS2 � k3 − kS3, kS2 � k2 � k1 − kS1 � k3 − kS3, and kS3 �
k3 � k1 − kS1 � k2 − kS2 can be generated in this inverted-
Y-type energy level system. Here, we would like to name the
two SP-FWM processes self-diffraction and phase-
conjugate FWM processes, which generate kF1 & kF3 and
kF10 & kF2, respectively.

B. Spatial Properties of SP-MWM Processes

1. Self-Diffraction SP-FWM Cone Emission
Under undepleted pump approximation, we can get the
coupling equations for the two space-dependent correlated
photons [âF1�z� & âF3�z� and âF10 �z� & âF2�z�] [16]
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dâF1;F10 �z�
dz

� �κF1;F10 � iκ0F1;F10 �

× exp�i�Δkz� φ1 � φ3;2��â�F3;F2�z�; (1a)

dâF3;F2�z�
dz

� �κF3;F2 � iκ0F3;F2�

× exp�i�Δkz� φ1 � φ3;2��â�F1;F10 �z�; (1b)

where

κF1;F10 � Re��−iϖF1;F10∕2c�χ�3�F1;F10E1E3;2�

and

κ0F1;F10 � Im��−iϖF1;F10∕2c�χ�3�F1;F10E1E3;2�

are the nonlinear coefficients for kF1;F10 ,

κF3;F2 � Re��−iϖF3;F2∕2c�χ�3�F3;F2E1E3;2�

and

κ0F3;F2 � Im��−iϖF3;F2∕2c�χ�3�F3;F2E1E3;2�

for kF3;F2. ϕ1;2;3 is the phase of k1;2;3, z is the propagation
distance of the waves, and Δk � Δkz (Δkx � Δky � 0) is
the phase mismatching. ϖF1 � Ω10 − Δ3, ϖF3 � Ω13 − Δ1,
ϖF10 � Ω10 − Δ2, and ϖF2 � Ω21 − Δ1 are the central frequen-
cies of generated photons. Furthermore, the third-order
nonlinear susceptibility χ�3� in the nonlinear coefficients can
be obtained from the corresponding density matrix elements

as χ�3�F1;F3 � �Nμ210μ
2
13ρ

�3�
F1;F3�∕�ε0ℏ3G1G3GF3;F1� and χ�3�F10 ;F2 �

�Nμ210μ
2
21ρ

�3�
F10 ;F2�∕�ε0ℏ3G1G2GF2;F10 �, where N is the density

of atoms, ε0 is permittivity, μij is the transition dipole moment
between the levels jii and jji, and Gi � μijEi∕ℏ is the Rabi
frequency for the laser ki.

For computation convenience, we assume κF1;F10 � κF3;F2,
κF1;F10 ≫ κ0F1;F10 , and κF3;F2 ≫ κ0F3;F2 [17]. Therefore, we obtain

âF1;F10 �z� � ei
Δk
2 z

�
C − i

Δk
2K

S
�
âF1;F10 �0�

� ei�Δk2 z�2ϕ�
�
g
K
S
�
â�F3;F2�0�; (2a)

âF3;F2�z� � ei�Δk2 z�2ϕ�
�
g
K
S
�
â�F1;F10 �0�

� ei
Δk
2 z

�
C − i

Δk
2K

S
�
âF3;F2�0�; (2b)

where C � cosh�Kz�, S � sinh�Kz�, K �
���������������������������
κ2 − �Δk∕2�2

p
in

case κ2 > �Δk∕2�2, and C � cos�Kz�, S � sin�Kz�, K ����������������������������
�Δk∕2�2 − κ2

p
in case κ2 ≤ �Δk∕2�2, ϕ � ϕ1 � ϕ2;3 − ϕF1;F10 −

ϕF3;F2 is the relative phase among k1, k3;2, and the seeding
beams at kF1;F10 and kF3;F2 channels.

When there is no seeding in this SP-FWM process, the out-
put states are two-mode squeezed vacuum states [18–21]. Via
the pathway ρ�0�00 !

ω1
ρ�1�10 !−ωF3

ρ�2�30 !
ω3
ρ�3�10F1 and considering the

dressing effect of k2, the density matrix element for kF1 is

ρ�3�F1 � −iG1G�
F3G3

�d10 � jG2j2∕d20�d03��d13 � jG2j2∕d020�
; (3)

where Γij is the transverse decay rate between levels jii and
jji, d10 � Γ10 � iΔ1, d20 � Γ20 � i�Δ1 � Δ2�, d03� � Γ03 � iδ,
d13 � Γ13 � i�Δ1 � δ�, and d020 � Γ20 � i�Δ3 � δ� Δ2�. The
detuning is defined as Δi � Ωi − ωi withΩi being the resonant
frequency between the levels that Ei connects, and
δ � ωF −ϖF . Similarly, we can obtain the density matrix

element via ρ�0�00 − ωF1 → ρ�1�01 ω3 → ρ�2�03 ω1 → ρ�3�13F3 for kF3,

ρ�3�F3 � −iG�
F1G3G1

�d01 � jG2j2∕d02�d03−�d130 � jG2j2∕d23�
; (4)

where d01 � Γ01 − i�Δ3 � δ�, d02 � Γ02 − i�Δ3 � δ� Δ2�,
d03− � Γ03 − iδ, d013 � Γ13 � i�Δ1 − δ�, and d23 � Γ23 �
i�Δ1 � Δ2 − δ�.

The geometric distribution of k1, k3, kF1, and kF3 is shown
in Fig. 2(a). According to the geometric relation, we obtain the
phase mismatching conditions

ΔkF1 � k1 � k3 − kF1 cos�φF1� −
���������������������������������������������������
k2F3 − k2F1�1 − cos2�φF1��

q
;

(5a)

ΔkF3 � k1 � k3 − kF3 cos�φF3� −
���������������������������������������������������
k2F1 − k2F3�1 − cos2�φF3��

q
(5b)

for kF1 and kF3, respectively. Without taking the dark state
into consideration, we can obtain the cone emissions of
kF1 and kF3 based on Eqs. (3) and (4) as displayed in
Fig. 2(b), in which the outer and inner cones represent kF1
and kF3, respectively. According to Eqs. (5a) and (5b), we dis-
play the phase mismatching ΔkF1;F3�z � 10 cm� versus trans-
verse coordinates x and y in Fig. 2(c). As is well known,
ΔkF1;F3 � 0 (corresponding to the optimal phase-matching an-
gle) means that the beams are completely phase matched,
which leads to the largest efficiency to generate the SP-FWMs.
According to Fig. 2(c), it is clear to see that ΔkF1;F3 � 0 cor-
responds two rings (one for kF1 and the other for kF3), which
can be called phase-matching rings. The generation coeffi-
cient will reduce greatly if ΔkF1;F3 ≠ 0, so the intensities of
kF1 and kF3 are the largest on the phase-matching ring and

′

2

Δ1 Δ3

Fig. 1. Scheme of an inverted-Y-type energy level system.
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decrease sharply when deviating from this ring. To make this
problem clear, we display the normalized intensities of kF1
and kF3 in Fig. 2(d). It can be seen that the peaks of the
normalized gains are on the phase-matching rings that corre-
spond to ΔkF1;F3 � 0 in Fig. 2(c). With increasing propagation
distance, the radii of the phase-matching rings also increase
monotonically, so we can obtain the cone emissions shown
in Fig. 2(b).

2. Phase-Conjugate FWM Cone Emission
In the ladder-type subsystem j0i − j1i − j2i (Fig. 1), two high
intensity “pump” beams k1 and k2 drive two off-resonant tran-
sitions and induce two phase-conjugate FWMs kF10 and kF2.
The corresponding phase-matching configuration is shown
in Fig. 3(a), according to which the phase mismatching con-
ditions for kF10 and kF2 can be obtained as

ΔkF10 � k2 − k1 − kF10 cos�φF10 � −
�����������������������������������������������������
k2F2 − k2F10 �1 − cos2�φF10 ��

q
;

(6a)

ΔkF2 � k2 − k1 − kF2 cos�φF2� −
����������������������������������������������������
k2F10 − k2F2�1 − cos2�φF2��

q
:

(6b)

Via the pathway ρ�0�00 !
ω1
ρ�1�10 !

ω2
ρ�2�20 !−ωF2

ρ�3�10F1 and considering
the dressing effect of k3, the density matrix element for
kF10 can be written as

ρ�3�F10 �
−iG1G2G�

F2

�d10 � jG3j2∕d030�d20�d0010 � jG3j2∕d0030�
; (7)

where d030 � Γ30 � i�Δ1 − Δ3�, d0010 � Γ10 � i�Δ1 − δ�, and
d0030 � Γ30 � i�Δ1 − Δ3 − δ�. Similarly, the density matrix
element for kF2 can be also obtained as

ρ�3�F2 � −iG1G2G�
F4

�d10 � jG3j2∕d30�d20�d21 � jG3j2∕d23�
; (8)

where d21 � Γ21 � i�δ� Δ2� and d23 � Γ23 � i�Δ2 	 Δ3 � δ�.
Based on Eqs. (6)–(8), we display the cone emission of kF10

and kF2 in Fig. 3(b), phase mismatching ΔkF10 ;F2�z � 40 μm�
in Fig. 3(c), and the corresponding normalized intensities of
kF10 and kF2 in Fig. 3(d). Different from the self-diffraction
FWM cone emission in Fig. 2(b), the phase-conjugate FWM
cone emissions propagate along the opposite directions which
are in accordance with the geometric distribution shown in
Fig. 3(a). However, the phase mismatching and normalized
intensities shown in Figs. 3(c) and 3(d) are similar to those
of the self-diffraction case. The FWM generation efficiency
will be the largest at the phase-matching rings ΔkF10 ;F2 � 0,
which can be also illustrated from Figs. 3(c) and 3(d). And
the radii of the rings increase along the increment of
the propagation distance, which make the kF10 and kF2 cones
form along the positive and negative propagation directions,
respectively.

3. SINGLE-MODE SQUEEZING
In the above section, we have discussed the spatial properties
of SP-FWM processes without injection. The conical emission
disappears in a cavity, but if paired fields can be quantized, the
squeezing between them still exists. So we can apply the basic
theory about single-mode squeezing of twin beams in free
space to intracavity theory. Furthermore, the parametric proc-
esses indicated in Section 2 will generate two spatial modes
with certain directions (two signal channels), along which we
launch the injections [15,22].

A. Amplitude and Phase
We study optical squeezing MWM in an atom–cavity coupling
system consisting of atomic vapors confined in the four-
mirror-formed mode volume with a length of Lc � 17 cm, as
shown in Fig. 4. The mirrors M3 and M1 are input and output
mirrors with a radius of 50 mm, the reflectance r3 (r1) and
transmittance t3 (t1) of which fulfill the condition r2i � t2i �
1 (i � 1, 3), while M2 and M4 are high-reflection mirrors. Cav-
ity frequency scanning and locking can be implemented by a
piezoelectric transducer (PZT) behind M4. The length of the
rubidium vapor cell including the Brewster windows is
La � 7 cm. The cell is wrapped in μ-metal sheets to shield
from external magnetic fields, and a heat tape is placed
outside the sheets for controlling the temperature to influence

Fig. 2. (a) Geometric distribution of k1, k3, kF1, and kF3. (b) Cone
emissions of kF1 (outer) and kF3 (inner). (c) Phase mismatching
ΔkF1;F3 (x, y, z � 10 μm). (d) Normalized intensity corresponding
to (c).

Fig. 3. Figure setup is as Fig. 2 but for phase-conjugate FWM proc-
esses. In (c), z � 40 μm.
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the atomic density. Since we do not consider Doppler effects
in this paper, our analysis is also suitable for ring or standing-
wave cavities [23].

In the cavity shown as Fig. 4, due to the assumption that the
pump beams are undepleted, the intensities of the pump
beams will be much larger than those of the SP-FWM signals.
Thus, we can regard the pump beams as classical fields and
quantize the two SP-FWM signals as âF1 and âF3. Owing to the
same output direction and polarization, we regard âF1 and âF3
as one mode and use âF1 to represent both of them. Even
though the self-diffraction FWM signals and their cavity
modes are generated along the same direction, the polariza-
tions of the two modes are perpendicular, so one can record
them separately by putting a polarizer before the photodiode
detectors.

Here, we introduce the nonlinear coefficient κ, which is pro-
portional to the nonlinear optical susceptibility and amplitude
of pump fields, to describe the nonlinear gain in the MWM
process. We denote γ as the decay rate of the single-mode sig-
nal due to transmission of the input–output coupler mirror M1,
γc due to all other intracavity losses, and ĉ as the vacuum
mode that is coupled into the single-mode signal through
γc. So the motion equation can be obtained as [24]

dâF1
dt

� −iΔâF1 − �γ � γc�âF1 � κâ�F1 exp�iθp�

�
�����
2γ

p
âinF1 �

�������
2γc

p
ĉ; (9)

where θp is the relative phase between pump lights and the
seeding lights, Δ is the cavity detuning, and âinF1 is the injected
field. With the steady-state approximation and Fourier trans-
formation (Ω is the analysis frequency), we can get âF1 with
θp � 0 as

âF1 �
�γ � γc − iΩ − iΔ�

� �����
2γ

p
âinF1 �

�������
2γc

p
ĉ
�

�γ � γc�2 � �Δ� Ω�2 − κ2

�
κ
� �����

2γ
p

âin�F1 �
�������
2γc

p
ĉ�

�
�γ � γc�2 � �Δ�Ω�2 − κ2

: (10)

We can write the mean value of âF1 as hâF1i � a1 � ia2, in
which a1 and a2 are the real and imaginary parts, respectively.
The amplitude and phase of the output field kF1 are

αin �
�����������������
a21 � a22

q
; φ � atan

�
a2
a1

�
: (11)

The mean values of âinF1 and coupling vacuum field ĉ can be
written as hâinF1i � αin exp�−iϕin

F1�, hĉ�i � 1 and hĉi � 0, in
which αin and ϕin

F1 are the amplitude and phase, respectively.
Now, we begin to investigate the intensity and phase of the

output field, which can be well controlled by the frequency
detunings of the dressing fields (k2 can be viewed as a dress-
ing field if it is strong enough [12]) as well as the nonlinear
coefficient κ. Here, we would like to emphasize that κ is pro-
portional to the density matrix element. Therefore, the chang-
ing trend of κ reflects the changing trend of the density matrix
element.

We study the dressing influences of k2 on the theoretical
intensity and phase of the single-mode versusΔ at differentΔ1

when ϕin
F1 � 0, which can be obtained based on Eqs. (9)–(11),

and the results are illustrated by the solid curves in Fig. 5. The
baseline of the intensities at Δ � 0 is represented by the
dashed curves in Figs. 5(a) and 5(b), which is the same with
κ versus Δ1.

When the power of k2 is strong enough, the baseline shows
an AT splitting [Fig. 5(a)] due to its dressing effect. Based on
the properties of κ, the output intensities (solid curves) show
that the peak becomes higher and two dips shallower with κ
increased. Each output spectrum has one peak and two dips,
which is resulted from the constructive interference between
the injected field and the pump fields [6]. One can control κ
with AT splitting induced by the dressing effect of the k2,
which results in the evolution of the output intensity at
Δ � 0 shown in Fig. 5(a). However, when the power of k2
is weak so that its dressing effect can be neglected, κ exhibits
a single peak, and the evolution of the output at Δ � 0 is
shown in Fig. 5(b).

As for the phase of the single-mode, the distance of splitting
share the same law with the intensity, which indicates a very
steep variation of the anomalous dispersive profile and can
result in fast light around Δ � 0, which is opposite to the ex-
perimental results in Ref. [25] because of the different relative
phase ϕin

F1. The phase of the output field shows that the gra-
dient increases with a decrease in κ, as shown in Figs. 5(c)
and 5(d). The variations in Fig. 5(c) are not very obvious
because the influence of the dark state is relatively weak.

Then we study the influences of the dressing field k2 on the
output intensity and phase of the single-mode at different Δ2

PZT
PBS

FWMˆ ˆ1 3
in in
F Fa &a

ˆ ˆ1 3
o o
F Fa &a

(3)

M4M3

M2M1

k1&k3

k2

Fig. 4. Experimental scheme of single-mode squeezing. âoF1 and âoF3
are the amplified output FWM cavity modes; âinF1 and âinF3 are injected
fields.
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Fig. 5. Solid curves, (a) and (b) theoretical intensity and (c) and
(d) phase of the single-mode versus Δ∕�γ � γc� ∈ �−1010� at different
Δ1 (a) and (c) with and (b) and (d) without the dressing effect of k2.
Parameters: ϕin

F1 � 0, Δ2 � 0, and Δ1∕�γ � γc� � −40;−20; 0; 20; 40,
respectively, from left to right. Dashed curves, intensities at Δ � 0
versus Δ1.
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with ϕin
F1 � 0 and Δ1∕�γ � γc� � −15. The results are illus-

trated in Fig. 6. When Δ1∕�γ � γc� � −15, the baselines of
the intensities at Δ � 0 are same with κ versus Δ2, which
are shown by the dashed curves in Fig. 6(a). The satisfied
enhancement and suppression conditions in Fig. 6(a) are

Δ1 �
�
Δ2 �

���������������������
Δ2

2 � 4G2
2

q �
∕2 � 0 and Δ1 � Δ2 � 0 [26,27], re-

spectively, and the evolution of the output at Δ � 0 is shown
by the solid curves shown in Fig. 6(a). Without the dressing
effect of k2, the intensities at Δ � 0 do not change versus Δ2,
as shown in Fig. 6(b). For the phase shown in Figs. 6(c) and
6(d), we can obtain almost the same results as in Fig. 5.

B. Control Single-Mode Squeezing
Since the amplitude and phase of the SP-FWM can be adjusted
by the dark state, we wonder whether the fluctuations of the
SP-FWMs can be controlled or not. Therefore, we would like
to discuss phase-sensitive squeezing, such that we define the
amplitude quadrature X̂ and phase quadrature Ŷ as X̂

θp
F1 �

âF1e−iθp � â�F1e
iθp and Ŷ

θp
F1 � −i�âF1e−iθp − â�F1e

iθp �.
Considering the Fourier transform of the operators,

the steady-state approximation dX̂
θp
F1∕dt � dŶ

θp
F1∕dt � 0 and

boundary condition âoF1�Ω� �
�����
2γ

p
âF1�Ω� − âinF1�Ω�, we can

obtain the amplitude and phase variances at θp � 0 or
θp � π as

hδ2X̂o
F1�Ω�i � �f��γ 	 κ�2 − γ2c �Ω2

− Δ2�2 � 4γ2cΩ2ghδ2X̂ in
F1�Ω�i

� 4γγc��γ � γc 	 κ�2 �Ω2�hδ2X̂c�Ω�i
� 4γ2Δ2hδ2Ŷ in

F1�Ω�i � 4Δ2γγchδ2Ŷ c�Ω�i�
∕f��γ � γc�2 � Δ2

− Ω2
− κ2�2 � 4Ω2�γ � γc�2g;

(12a)

hδ2Ŷ o
F1�Ω�i � �f��γ ∓ κ�2 − γ2c �Ω2

− Δ2�2 � 4γ2cΩ2ghδ2Ŷ in
F1�Ω�i

� 4γγc��γ � γc ∓ κ�2 � Ω2�hδ2Ŷ c�Ω�i
� 4γ2Δ2hδ2X̂ in

F1�Ω�i � 4Δ2γγchδ2X̂c�Ω�i�
∕f��γ � γc�2 � Δ2

−Ω2
− κ2�2 � 4Ω2�γ � γc�2g;

(12b)

where the plus and minus symbols correspond to θp � 0 and
θp � π, respectively.

We first investigate the quantum noise variances of the
quadrature components of the output cavity mode by scan-
ning Δ∕�γ � γc� at different Δ1 when the squeezed states
are injected. Comparing the results with the shot-noise limit
(SNL) [28,29] and the results obtained without pump lights,
we can find the influence of κ with and without the dressing
effect of k2 obviously. When one of the pump fields is blocked,
the nonlinear process is not active. The quantum noise varian-
ces of the quadrature components are shown by the dotted-
line in Fig. 7, and the injected squeezed vacuum states are
shown by the first solid curve in each panel, which can be
used as a reference to examine the nonlinear process inside
the cavity of the input states.

Figures 7(a) and 7(b) illustrate the quantum noise variances
of amplitudes and phases at θp � 0 with the dressing effect of
k2. While Figs. 7(c) and 7(d) correspond to the case without
the dressing effect. We find that the quantum noise variance of
phase quadrature is squeezed more at the resonance due to
the nonlinear process, while the variance of amplitude quad-
rature becomes noisier than the input squeezed states. This
phenomenon is in line with the Heisenberg uncertainty rela-
tionship [30,31]. It is clear that both the squeezing degree and
the noise degree at Δ � 0 can be modulated by Δ1. Due to the
dressing effect of k2, there are AT splittings for both the am-
plitude and phase quadrature noise variances, as shown in
Figs. 7(a) and 7(b) rather than in Figs. 7(c) and 7(d).

When the nonlinear process is operated at θp � π, the quan-
tum noise variances of amplitudes and phases with (or with-
out) the dressing effect of k2 are shown in Fig. 7(e) [or
Fig. 7(g)] and Fig. 7(f) [or Fig. 7(h)]. The amplitude quadrature
noise variances are changed from very noise to squeezed at
resonance, as shown in Figs. 7(e) and 7(g). The squeezing de-
gree of the corresponding phase quadrature noise variances
at resonance decreases (even to noise), as shown in Figs. 7(f)
and 7(h). Meanwhile, the profiles of the quadrature noise
variance at resonance are opposite to those shown in
Figs. 7(a)–7(d).
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Now, we fix Δ1 � 0 and set different Δ2 to investigate the
quantum noise variances of the output quadrature compo-
nents, as shown in Fig. 8. When θp � 0, the increased noise
degree of the amplitude quadrature variances at resonance
shows a pure suppression with k2 dressed and a line without
k2 dressed, which are the same with κ versus Δ2, as displayed
by the dashed curves in Figs. 8(a) and 8(c). The corresponding
suppression condition satisfies Δ1 � Δ2 � 0. While the in-
creased squeezing degree of the phase quadrature variances
at resonance shows a pure enhancement and a line consider-
ing and not considering the dressing effect of k2, which are
opposite to κ versus Δ2, and shown in Figs. 8(b) and 8(d).
When θp � π, the phenomena shown in Figs. 8(e)–8(h) are
totally opposite to those in Figs. 8(a)–8(d).

The results exhibited in Figs. 7 and 8 demonstrate that the
squeezing degree can be adjusted by κ or the corresponding
density matrix element. In other words, the squeezing degree
can be controlled by the dark state. In addition, the squeezing
can be converted via manipulating θp.

C. Intensity and Squeezing in Coupled Cavities
As coupled cavities would introduce more interesting squeez-
ing processes and results [7], we study the reflection intensity
and squeezing of the reflected field from the coupled cavities
with the squeezed state injected.

The squeezed state generated by optical parametric oscilla-
tion (the configuration in Fig. 5 with the vacuum state injected,
described as âF1) is injected into the coupled cavities shown in
Fig. 9(a) through an optical isolator, which is used to separate
the reflection field of the coupled cavities from the injected
squeezed field. The coupled cavities are constructed by two
directly coupled cavities C1 and C2. The complex reflectivity
from the coupled cavities and the first cavity can be given
as R1 � �r1 − r0eiϕ1�∕�1 − r0r1eiϕ1� and R2 � �r2 − R1eiφ2 �∕
�1 − R1r2eiϕ2�, where φj are the round trip phase-shifts, rj
are the reflection indices of cavity mirrors, and j � 1, 2 spec-
ifies the first or second cavity. If we rewrite R2 �
ρ�φ1;φ2�eiθ�φ1 ;φ2� with ρ�φ1;φ2� and θ�φ1;φ2� being the ampli-
tude and phase, respectively, the output field âout�Ω�, which
is reflected from the coupled cavities, can be expressed as

âout�Ω� � ρ�ϖF1 � Ω�eiθ�ϖF1�Ω�âF1�Ω�

�
������������������������������������
1 − ρ2�ϖF1 � Ω�

q
ĉ�Ω�; (13)

where ĉ is the coupled vacuum field due to cavity loss. So, the
photon number of the reflected field in the frequency domain
can be obtained by

hâ�out�−Ω�âout�Ω�i � ρ�ϖF1 −Ω�ρ�ϖF1 �Ω�e−i�θ�ϖF1−Ω�−θ�ϖF1�Ω��

× hâ�F1�−Ω�âF1�Ω�i: (14)

The intensity of the reflected field is proportional to the
photon number, so we study the photon number instead of
intensity.

Similar to the method used above for single-mode squeez-
ing, the variances of the amplitude and phase quadratures for
the coupled cavities can be obtained as

hδ2X̂out�Ω�i

� 1
4
jρ�ϖF1 � Ω� exp�iθ�ϖF1 � Ω��

� ρ�ϖF1 − Ω� exp�−iθ�ϖF1 − Ω��j2hδ2X̂F1�Ω�i

� 1
4
jρ�ϖF1 �Ω� exp�iθ�ϖF1 � Ω��

− ρ�ϖF1 − Ω� exp�−iθ�ϖF1 − Ω��j2hδ2Ŷ F1�Ω�i

� 1
4

����
������������������������������������
1 − ρ2�ϖF1 � Ω�

q
�

����������������������������������
1 − ρ2�ϖF1 −Ω�

q ����
2
hδ2X̂c�Ω�i

� 1
4

����
������������������������������������
1 − ρ2�ϖF1 � Ω�

q
−

����������������������������������
1 − ρ2�ϖF1 −Ω�

q ����
2
hδ2Ŷ c�Ω�i;

(15a)
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Fig. 9. (a) Coupled cavities constructed by mirrors M0, M1, and M2,
which form two standing wave cavities C1 and C2. The cavity length of
C1 and C2 can be controlled by PZT 1 and 2, respectively. (b) Solid
curves, theoretical reflection intensity of the coupled cavities with the
squeezed signal beam injected, versus the round trip phase-shift
φ � φ1 � φ2 with Ω � 0, r0 > 99%, r1 � 99.8%, and r2 � 96.8%.
(b1) With Δ1∕�γ � γc� � −40;−20; 0; 20; 40, respectively, from left to
right, Δ2 � Δ � 0 under the dressing effect of k2. (b2) with
Δ2∕�γ � γc� � −50;−25; 0; 25; 50, respectively, from left to right,
Δ1∕�γ � γc� � −15 and Δ � 0. (b3) With Δ∕�γ � γc� � −5;−2.5;
0; 2.5; 5, respectively, from left to right, Δ1∕�γ � γc� � −20 and
Δ2 � 0. Dashed curves, baselines. (c1)–(c3) 3D simulations corre-
sponding to (b1)–(b3).
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hδ2Ŷout�Ω�i

� 1
4
j − ρ�ϖF1 �Ω� exp�iθ�ϖF1 �Ω��

� ρ�ϖF1 −Ω� exp�−iθ�ϖF1 −Ω��j2hδ2X̂F1�Ω�i

� 1
4
jρ�ϖF1 �Ω� exp�iθ�ϖF1 �Ω��

� ρ�ϖF1 −Ω� exp�−iθ�ϖF1 −Ω��j2hδ2Ŷ F1�Ω�i

� 1
4

���� −
������������������������������������
1 − ρ2�ϖF1 � Ω�

q
�

����������������������������������
1 − ρ2�ϖF1 − Ω�

q ����
2
hδ2X̂c�Ω�i

� 1
4

����
������������������������������������
1 − ρ2�ϖF1 �Ω�

q
�

����������������������������������
1 − ρ2�ϖF1 − Ω�

q ����
2
hδ2Ŷ c�Ω�i:

(15b)

We first show the dressing influences of k2 on the reflection
intensity of the coupled cavities versus the round trip phase-
shift φ based on Eq. (14). The term hâ�F1�−Ω�âF1�Ω�i in
Eq. (14) expresses the output intensity with the vacuum state
injected from the cavity configuration in Fig. 4, which is same
as the results displayed in Figs. 5 and 6. The baselines of the
intensity, as the dashed curves illustrated in Figs. 9(b1) and
9(b2), show AT splitting versus Δ1∕�γ � γc� and left-
enhancement-right-suppression versus Δ2∕�γ � γc�, respec-
tively, because of the dressing effect of k2. However, the
baseline, as the dashed curve shown in Fig. 9(b3), displays a
single peak versus Δ∕�γ � γc�, which can be obtained obvi-
ously by the curve at Δ1∕�γ � γc� � −20 in Fig. 5(a). The func-
tion of the coupled cavities split the original one mode
into two modes [7], as shown by the solid curves in
Figs. 9(b1)–9(b3). The corresponding three-dimensional sim-
ulations are shown in Figs. 9(c1)–9(c3).

Then we illustrate the quantum noise variances of the am-
plitude quadrature Eq. (15a) for the reflection signal of the
coupled cavities with the squeezed state injected, as shown
in Fig. 10. We can obtain the splitting of the original squeezed
signal (see Fig. 5), which is induced by the coupled cavities
and similar to the reflection intensity. The profile of the base-
lines of each variance at different Δ1, shown as the dashed
curve in Fig. 10, is an AT splitting versus Δ1, because the noise
degree of the amplitude quadrature of the squeezed state gen-
erated from the cavity (Fig. 4) at Δ � 0 is proportional to κ,
which is induced by the dressing effect of k2. Therefore, the
squeezing degree for the reflection signal of the coupled
cavities can be controlled by the dark state.

4. TWO-MODE SQUEEZING
In the phase-conjugate SP-FWM process, the generated SP-
FWM fields (kF10 and kF2) are treated as two quantum fields
(described as âF10 and âF2). As depicted in Fig. 11(a), k1 and k2
are generated along different directions, so we can treat the
two SP-FWMs as two modes (âoF10 and âoF2), which can be de-
tected by two photodiode detectors. To measure the quadra-
ture components, one needs to use the balanced homodyne
detectors. Here, it is worth mentioning that there also can ex-
ist another kind of two FWM cavity modes that are along the
same direction but with different polarizations. The corre-
sponding diagram is similar to that shown in Fig. 4, in which
the two fields (k1 and k3) with different polarizations are along
the same direction.

The two SP-FWMs can be both amplified by injecting pump
fields in the same intracavity FWM channel, which is de-
scribed by the nonlinear coefficient κ. So the motion equations
for kF10 and kF2 can be written as [24]

dâF10

dt
� −iΔâF10 − �γ � γc�âF10 � κâ�F2 exp�iθp�

�
�����
2γ

p
âinF10 �

�������
2γc

p
ĉ1; (16a)

dâF2
dt

� −iΔâF2 − �γ � γc�âF2 � κâ�F10 exp�iθp�

�
�����
2γ

p
âinF2 �

�������
2γc

p
ĉ2; (16b)

where ĉ1 and ĉ2 are the vacuum modes.
As shown by the energy level system in Fig. 11(b), if all the

coupling beams are open, we can get two FWM signals (k0F2
and k0F3) and two SWM signals (k0S2 and k0S3), which satisfy
k0F2 � k1 � k2 − k02, k0F3 � k1 � k3 − k03, k0S2 � k1 � k2−
k02 − k3 � k3, and k0S3 � k1 � k3 − k03 − k2 � k2, respectively.
If we use the generated MWM signals as the injected fields
which are injected into the FWM cavity mode channels shown
in Fig. 11(a), we can get the χ�3�-χ�3� cascade nonlinear process
(inject k0F2 and k0F3) or the χ�5�-χ�3� cascade nonlinear process
(inject k0S2 and k0S3) to make the conjugate FWM cavity modes
obtain optical parametric amplification [15]. Considering that
we just use SWM signals as the injected fields to get the
χ�5�-χ�3� cascade nonlinear process, we only show the density
matrix elements for SWM signals as

ρ�5�inS2 � −iG1G2G0�
2 G3G�

3

d310d20d30
; ρ�5�inS3 � −iG1G3G0�

3 G2G�
2

d310d30d20
; (17)
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Fig. 10. Solid curves, theoretical squeezing of the amplitude quadra-
ture for the reflection signal of the coupled cavities with an injected
squeezed beam versus the round trip phase-shift φ � φ1 � φ2 ∈
�−0.2 0.2 �withΩ � 0, Δ1∕�γ � γc� � −40;−20; 0; 20; 40, respectively,
from left to right, Δ2 � Δ � 0 under the dressing effect of k2. Dashed
curve, the roughly changing trend of the baseline/squeezing
versus Δ1.

Fig. 11. (a) Schematics of two-mode squeezing with fields k1 and k2
passing through the atomic vapor along opposite directions. âoF10 and
âoF2 are the amplified output FWM cavity modes; âinF10 and âinF2 corre-
spond to the injected k0S3 and k0S2, respectively. (b) Inverted-Y-type
energy level to produce MWM signals.
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from the pathways

ρ�0�00 !ω1
ρ�1�10 !ω2

ρ�2�20 !−ω2
ρ�3�10 !−ω3

ρ�4�30 !ω3
ρ�5�in10S2;

ρ�0�00 !ω1
ρ�1�10 !−ω3

ρ�2�30 !ω3
ρ�3�10 !ω2

ρ�4�20 !−ω2
ρ�5�in10S3:

As for the quantum noise variance of the amplitude quad-
rature summation, phase quadrature summation, amplitude
quadrature difference, and phase quadrature difference of
the two SP-FWM beams can be deduced as following:

hδ2X̂o
F10�F2�Ω�i� �f��γ	κ�2 −γ2c �Ω2

−Δ2�2

�4γ2cΩ2ghδ2X̂ in
F10�F2�Ω�i�4γ2Δ2hδ2Ŷ in

F10�F2�Ω�i
�4γγc��γ� γc	κ�2�Ω2�hδ2X̂ in

c1�c2�Ω�i
�4Δ2γγchδ2Ŷ in

c1�c2�Ω�i�
∕f��γ�γc�2�Δ2

−Ω2
−κ2�2�4Ω2�γ�γc�2g;

(18a)

hδ2Ŷ o
F10�F2�Ω�i��f��γ∓κ�2−γ2c�Ω2

−Δ2�2

�4γ2cΩ2ghδ2Ŷ in
F10�F2�Ω�i�4γ2Δ2hδ2X̂ in

F10�F2�Ω�i
�4γγc��γ�γc ∓ κ�2�Ω2�hδ2Ŷ in

c1�c2�Ω�i
�4Δ2γγchδ2X̂ in

c1�c2�Ω�i�
∕f��γ�γc�2�Δ2

−Ω2
−κ2�2�4Ω2�γ�γc�2g;

(18b)

hδ2X̂o
F10−F2�Ω�i � �f��γ ∓ κ�2 − γ2c �Ω2

−Δ2�2

� 4γ2cΩ2ghδ2X̂ in
F10−F2�Ω�i� 4γ2Δ2hδ2Ŷ in

F10−F2�Ω�i
� 4γγc��γ� γc ∓ κ�2 �Ω2�hδ2X̂ in

c1−c2�Ω�i
� 4Δ2γγchδ2Ŷ in

c1−c2�Ω�i�
∕f��γ� γc�2 �Δ2

−Ω2
− κ2�2 � 4Ω2�γ� γc�2g;

(18c)

hδ2Ŷ o
F10−F2�Ω�i � �f��γ	 κ�2 − γ2c �Ω2

−Δ2�2

� 4γ2cΩ2ghδ2Ŷ in
F10−F2�Ω�i� 4γ2Δ2hδ2X̂ in

F10−F2�Ω�i
� 4γγc��γ� γc 	 κ�2 �Ω2�hδ2Ŷ in

c1−c2�Ω�i
� 4Δ2γγchδ2X̂ in

c1−c2�Ω�i�
∕f��γ� γc�2 �Δ2

−Ω2
− κ2�2 � 4Ω2�γ� γc�2g:

(18d)

The amplitude quadrature summation is same as the phase
quadrature difference, and the amplitude quadrature differ-
ence is same as the phase quadrature summation [24], so only
two parts of Eq. (18) are independent. Therefore, we can just
use Eqs. (18a) and (18b) to exhibit the amplification or squeez-
ing of the summation and difference of the quadratures. For
the injected fields, we adopt coherent fields and Einstein–
Podolsky–Rosen (EPR) fields, respectively.

The curves in Figs. 12(a)–12(d) illustrate the quantum noise
variances of the amplitude and phase quadrature summation
of two SP-FWM modes versus Δ with Δ1∕�γ � γc� �
−40;−20; 0; 20, and 40, respectively, from left to right. The

dashed curves show the corresponding quantum noise varian-
ces versus Δ1 with Δ � 0. Comparing the squeezing results
with SNL, which is shown by the first curve in each panel,
the influence of the coupling coefficient on the squeezing is
obvious. According to the Heisenberg uncertainty relation-
ship, when the quantum noise variance of the amplitude quad-
rature [Fig. 12(a)] becomes noisier and shows an AT splitting
profile, the variance of the phase quadrature [Fig. 12(b)] will
be squeezed and exhibits a reverse AT splitting shape. The re-
sults in Figs. 12(c) and 12(d) are under the same conditions as
those in Figs. 12(a) and 12(b), except without the dressing ef-
fect from k3. Clearly, the AT splitting in amplitude quadrature
as well as the reverse AT splitting in phase quadrature disap-
pears, however, the quantum noise variances of the amplitude
and phase quadratures still will become noisier and be
squeezed, respectively. In comparison with the cases with
and without the dressing effect, we can see that the dark state
can effectively control the squeezing process.

Then we study the influence of the dark state induced by
the dressing effect of k3 on the squeezing degree with
Δ1∕�γ � γc� � 15 and Δ1 � 0, as shown in Figs. 13(a)–13(d)
and Figs. 13(e)–13(h), respectively. The first curve in each
panel displays the result of blocking one pump field, while
the following five curves correspond to the results obtained
at Δ3∕�γ � γc� � −50;−15; 0; 15, and 50 by injecting coherent
fields. The profiles of quantum noise variances of the ampli-
tude quadrature summation and phase quadrature summation
at Δ � 0 are depicted by the dashed curves, which are the cor-
responding variances versus Δ3∕�γ � γc�, are the same as κ,
and can be controlled by the dark state.

When Δ1∕�γ � γc� � 15 [Fig. 13(a)], the quantum noise vari-
ance of the amplitude quadrature becomes noisier and shows
enhancement in the region Δ3 < 0 and suppression in Δ3 > 0.
The corresponding enhancement and suppression conditions

are Δ1 −

�
Δ3 �

���������������������
Δ2

3 � 4G2
3

q �
∕2 � 0 and Δ1 � Δ3, respec-

tively. As mentioned above, the quantum noise variance of
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Fig. 12. Solid curves, theoretically calculated two-mode squeezing
based on Eqs. (18a) and (18b) versusΔ∕�γ � γc� ∈ �−15 15 � at differ-
ent Δ1 when injecting coherent fields k0S3 and k0S2, (a) and (b) with and
(c) and (d) without the dressing effect of k3. The first curve is the
noise power spectrum with one of the pump fields blocked and the
following five curves from left to right are the noise power spectra
with Δ3 � 0 and Δ1∕�γ � γc� � −40;−20; 0; 20; 40, respectively.
Dashed curves, noise variances versus Δ1.
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the phase quadrature shown in Fig. 13(b) is squeezed and
shows suppression in Δ3 < 0 and enhancement in Δ3 > 0,
which is opposite to that shown in Fig. 13(a). The results in-
dicate that the squeezing degree is proportional to κ. When the
power of k3 is relatively weak, the dressing effect can be ne-
glected, so it does not change the quantum noise variances of
the amplitude and phase quadratures [Figs. 13(c) and 13(d)].

For the case Δ1 � 0, we take the same method to study the
influence of the dark state on the intensity of the two-mode.
As shown in Figs. 13(e) and 13(f), the quantum noise varian-
ces of the amplitude and phase quadratures exhibit a pure
suppression and a pure enhancement, respectively. It is worth
mentioning that the suppression condition is also Δ1 � Δ3. If
the dressing effect of k3 can be neglected, the quantum noise
variances are also not affected, as shown in Figs. 13(g) and
13(h). Comparing the results shown in Figs. 13(a)–13(h), it
is clear to see that the squeezing can be controlled by the dark
state.

If an EPR fields is injected, the results are shown in Fig. 14,
from which we find that the squeezing can be also controlled
by the dressing effect of k3; by adjusting θp from 0 to π, the
quantum noise variances of amplitude (phase) quadrature
summation can be also converted from noise (squeezing) to
squeezing (noise).

5. CONCLUSION
In summary, we have theoretically investigated the single-
mode and two-mode quantum noise squeezing of MWM
signals in a cavity filled with rubidium vapors. The cone emis-
sions of the self-diffraction and phase-conjugate SP-FWM sig-
nals are studied without injected fields. When a coherent field
and an EPR field are injected into the SP-MWM channels, they
will undergo the χ�5�-χ�3� cascade optical parametric amplifica-
tion process and form cavity modes if the amplified MWM sig-
nals can be resonant with the cavity. It is found that the
quantum noise of the cavity MWM modes may not only be
squeezed but also amplified, and this kind of quantum process
can be manipulated (enhanced or suppressed) by the dark
state through the introduction of dressing effects. It is also
demonstrated that if the quantum noise variance of the ampli-
tude quadrature is squeezed, that of the phase quadrature
will be amplified, and vice versa. The investigations have po-
tential applications in quantum communications and signal
processing.
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Fig. 13. Figure setup is as Fig. 12 but with different Δ3 and Δ1∕�γ �
γc� � 15 in (a)–(d) [Δ1 � 0 in (e)–(h)]. The right five solid curves cor-
respond to Δ3∕�γ � γc� � −50;−15; 0; 15; 50, respectively.
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Fig. 14. Figure setup is as Fig. 13 but with EPR fields injected
and Δ1∕�γ � γc� � 15 for all the cases. θp � 0 in (a)–(d) and θp � π
in (e)–(h).
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