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Abstract: We investigate numerically interactions between two in-phase

or out-of-phase Airy beams and nonlinear accelerating beams in Kerr

and saturable nonlinear media in one transverse dimension. We discuss

different cases in which the beams with different intensities are launched

into the medium, but accelerate in opposite directions. Since both the Airy

beams and nonlinear accelerating beams possess infinite oscillating tails,

we discuss interactions between truncated beams, with finite energies.

During interactions we see solitons and soliton pairs generated that are not

accelerating. In general, the higher the intensities of interacting beams,

the easier to form solitons; when the intensities are small enough, no

solitons are generated. Upon adjusting the interval between the launched

beams, their interaction exhibits different properties. If the interval is large

relative to the width of the first lobes, the generated soliton pairs just

propagate individually and do not interact much. However, if the interval is

comparable to the widths of the maximum lobes, the pairs strongly interact

and display varied behavior.
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OCIS codes: (190.4420) Nonlinear optics, transverse effects in; (190.6135) Spatial solitons;

(050.1940) Diffraction; (350.5500) Propagation; (190.3270) Kerr effect.

References and links

1. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981

(2007).

2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,”

Phys. Rev. Lett. 99, 213901 (2007).

3. M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett. 33, 1678–1680 (2008).

4. M. A. Bandres, “Accelerating beams,” Opt. Lett. 34, 3791–3793 (2009).

#203845 - $15.00 USD Received 27 Dec 2013; revised 25 Feb 2014; accepted 2 Mar 2014; published 19 Mar 2014
(C) 2014 OSA 24 March 2014 | Vol. 22,  No. 6 | DOI:10.1364/OE.22.007160 | OPTICS EXPRESS  7160



5. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of

Airy beams,” Nat. Photonics 3, 395–398 (2009).

6. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear

light bullets,” Nat. Photonics 4, 103–106 (2010).

7. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4047 (2010).

8. M. A. Alonso and M. A. Bandres, “Spherical fields as nonparaxial accelerating waves,” Opt. Lett. 37, 5175–5177

(2012).

9. I. Kaminer, J. Nemirovsky, and M. Segev, “Self-accelerating self-trapped nonlinear beams of Maxwell’s equa-

tions,” Opt. Express 20, 18827–18835 (2012).

10. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting accelerating wave packets of Maxwell’s

equations,” Phys. Rev. Lett. 108, 163901 (2012).

11. P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accel-

erating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).

12. M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic

waves,” Opt. Express 21, 13917–13929 (2013).

13. M. A. Bandres and B. M. Rodrı́guez-Lara, “Nondiffracting accelerating waves: Weber waves and parabolic

momentum,” New J. Phys. 15, 013054 (2013).

14. Y. Hu, S. Huang, P. Zhang, C. Lou, J. Xu, and Z. Chen, “Persistence and breakdown of Airy beams driven by an

initial nonlinearity,” Opt. Lett. 35, 3952–3954 (2010).

15. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-accelerating self-trapped optical beams,” Phys. Rev. Lett.

106, 213903 (2011).

16. N. K. Efremidis, V. Paltoglou, and W. von Klitzing, “Accelerating and abruptly autofocusing matter waves,”

Phys. Rev. A 87, 043637 (2013).

17. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–

2084 (2010).

18. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically

controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).

19. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field

imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).

20. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,”

Phys. Rev. Lett. 107, 126804 (2011).

21. L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating

surface plasmons,” Nano Lett. 11, 4357–4361 (2011).

22. F. Zhuang, J. Shen, X. Du, and D. Zhao, “Propagation and modulation of Airy beams through a four-level

electromagnetic induced transparency atomic vapor,” Opt. Lett. 37, 3054–3056 (2012).

23. F. Zhuang, X. Du, Y. Ye, and D. Zhao, “Evolution of Airy beams in a chiral medium,” Opt. Lett. 37, 1871–1873

(2012).

24. I. Kaminer, J. Nemirovsky, K. G. Makris, and M. Segev, “Self-accelerating beams in photonic crystals,” Opt.

Express 21, 8886–8896 (2013).

25. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).

26. P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear

and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37, 2820–2822 (2012).

27. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and

Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

28. S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,”

Opt. Lett. 38, 2416–2418 (2013).

29. C. Ament, P. Polynkin, and J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy

pulses,” Phys. Rev. Lett. 107, 243901 (2011).

30. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams

in quadratic nonlinear media,” Phys. Rev. Lett. 108, 113903 (2012).

31. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express 19,

17298–17307 (2011).

32. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N -soliton fission

to soliton chains,” Phys. Rev. A 87, 063808 (2013).
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1. Introduction

Self-accelerating nondiffracting optical beams are special wavepackets that exhibit self-

accelerating, nondiffracting, and self-healing properties during propagation [1, 2]. In the last

decade such optical beams have been extensively studied [3–13], mostly in optically linear

media. In the past few years, the involved media also included nonlinear dielectrics [14, 15],

Bose-Einstein condensates [16], the surface of a metal [17–21], atomic vapors with electro-

magnetically induced transparency [22], chiral media [23], photonic crystals [24], and so on.

All along, special attention has been focused on Airy [1, 2] and Bessel beams [25]. Analyses

have been confined to linear media, for the reason of wanting to observe minimally diffracting

beams in linear optics. According to the linear Schrödinger equation (SE), the beam or the wave

packet in the form of Airy function evolves practically without diffraction and accelerates along

a parabolic trajectory [1, 2]. In addition to the paraxial accelerating beams, nonparaxial beams

have also attracted a lot of attention [9–11, 26, 27], their analysis being based on Maxwell’s

equations.

Thus far single accelerating beams have been thoroughly investigated, including their dy-

namics and properties in propagation. Compared to that, interactions between Airy beams have

attracted little attention. Although radially symmetric Airy beams display self-focusing in a

nonlinear (NL) medium [7, 16, 28], the interaction between two Airy beams with varying dis-

tance between them has not been studied much. Until now, the experimental observation of Airy

beams [2], Airy beams in NL materials [5, 14], and accelerating nonlinear beams [26, 29, 30]

in NL materials has been reported. In theory, the splitting of Airy waves into solitons in a Kerr

medium was analyzed in [31] and related to this, the splitting of higher-order solitons into a

chain of fundamental solitons under the action of third-order dispersion was reported in [32].

But, the interaction of two Airy beams or two nonlinear accelerating beams is barely discussed.

In a recent paper we have investigated the interactions of Airy beams and accelerating nonlinear

beams in a Kerr and a saturable photorefractive medium [33]. Still, many interesting questions

remain unanswered, such as: Can accelerating beams emerge from the interactions? Are these

interactions elastic? How about interactions between accelerating beams and solitons? In this

paper we try to answer these questions through a systematic study of the interactions of Airy

beams and nonlinear accelerating beams in Kerr and saturable media.

The organization of the paper is as follows. We briefly introduce the theoretical model in

Sec. 2; in Sec. 3, we investigate the interactions of two Airy beams; in Sec. 4 we discuss the

interactions of nonlinear accelerating beams; and in Sec. 5 we study the interactions of different

accelerating beams in more detail. Section 6 concludes the paper.

2. Basic theory

The scaled equation for the propagation of a slowly-varying envelope ψ of the optical electric

field in one transverse dimension in the paraxial approximation is of the NLSE form:

i
∂ψ

∂ z
+

1

2

∂ 2ψ

∂x2
+δnψ = 0, (1)

where δn – a function of the intensity |ψ(x)|2 in a NL medium – represents the change in the in-

dex of refraction, and x and z are the dimensionless transverse and the propagation coordinates,

respectively. They are measured in units of some typical transverse size x0 and the correspond-

ing Rayleigh range kx2
0. Without δn in Eq. (1), the equation is just the linear SE, allowing many

particular solutions. One of the well-known exact solutions is the Airy wave [34]

ψ(x,z) = Ai

(

x−
z2

4

)

exp

[

i

(

xz

2
−

z3

12

)]

,
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with a characteristic infinite oscillatory tail. The tail makes the wave of infinite energy. To make

it finite-energy, the solution is generalized into [1]

ψ(x,z) = Ai

(

x−
z2

4
+ iaz

)

exp

[

i

12
(6a2z−12iax+6iaz2 +6xz− z3)

]

, (2)

with an arbitrary real decay constant a ≥ 0. This solution is generated from an initial condition

ψ(x) = Ai(x)exp(ax) and represents a finite-energy Airy wave. This wave was the first of the

peculiar solutions to the linear SE, observed to display transverse self-acceleration [34].

More interesting accelerating solutions to the NLSE – the nonlinear accelerating beams – are

constructed from Eq. (1), by introducing a traveling variable x− z2/4 to substitute for x [15]:

i
∂ψ

∂ z
− i

z

2

∂ψ

∂x
+

1

2

∂ 2ψ

∂x2
+δnψ = 0. (3)

We seek NL self-trapped solutions of Eq. (3) in the form ψ(x,z) = u(x)exp [i(xz/2+ z3/24)]
that accelerate along a parabolic trajectory; this leads to the equation

∂ 2u

∂x2
+2δnu− xu = 0. (4)

We treat Eq. (4) as an initial value problem with the asymptotic behavior u(x) = αAi(x) and

u′(x)=αAi′(x) for large enough x> 0; here α indicates the strength of the nonlinearity induced

by the potential solution.

In this paper the nonlinearity of the medium is assumed to be of the Kerr type or of the

saturable type only, so that the nonlinearity is δn ∝ |ψ|2 or δn ∝ |ψ|2/(r + |ψ|2); these are

even functions of the transverse coordinate x. As a result, the solution of Eq. (1) with, as well

as without, δn will not be affected if it is reversed about x = 0 and shifted along the transverse

coordinate. Here 0 < r ≤ 1 is the saturation parameter, for which, without loss of generality, we

assume r = 1. The saturation parameter is connected with the dark current or the background

illumination in the medium, so that the strength of the nonlinearity becomes smaller with bigger

r, but the interaction remains quite similar.

To set the stage, in Fig. 1(a) we compare the intensities of the linear Airy function 5Ai(x) and

various nonlinear accelerating solutions at z = 0. The strongly NL Kerr solution is obtained for

α = 1012, while the “normal” Kerr and saturable cases are obtained for α = 30. The propagation

properties of the four beams shown in Fig. 1(a) are displayed in Figs. 1(b)–1(e), from which

one can see that the beams accelerate along a parabolic (that is, a square-root) trajectory. In

comparison with the linear Airy beam, the main lobes of the nonlinear solutions accelerate more

strongly in the positive transverse direction. As is well known, the beams with high intensity

may not be stable in the focusing Kerr media, so the propagation of the strong Kerr accelerating

beams is not stable, as is visible in Figs. 1(b) and 1(f) – some energy is shed from the lobes

during propagation.

For the nonlinear accelerating beams, to obtain finite-energy beams we truncate them directly

after 10 lobes, at the appropriate value of x; their propagation properties are shown in Figs.

1(f)–1(h), which correspond to Figs. 1(b)–1(d), respectively. Corresponding to Fig. 1(e), the

propagation of 5Ai(x)exp(ax) is shown in Fig. 1(i). It is seen that the main lobes can stably

accelerate for quite a long propagation distance. It is also evident that the individual solitons

can be produced from the main lobe of the truncated strong Kerr nonlinear solution during

propagation, while the other two NL solutions cannot generate solitons. However, all the shed

radiation and soliton-like beams tend to propagate along the straight lines. Thus, the solitons,

once formed, do not accelerate, but travel along straight trajectories.
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Now that we have obtained the single-beam solutions of Eq. (1) and Eq. (4), we want to

investigate their interactions. To this end, we construct more complex incident beams, made up

of two shifted single beams, launched in parallel but accelerating in opposite directions. We

will first investigate the interactions of two Airy beams, so the incident beam will be composed

of two shifted linear Airy solutions with a fixed relative phase between them,

ψ(x) = A1Ai[(x−B)]exp[a(x−B)]+ exp(ilπ)A2Ai[−(x+B)]exp[−a(x+B)]. (5)

Here B is the transverse position shift and l controls the phase shift. If l = 0, the two components

are in-phase; if l = 1, they are out-of-phase. Here, we restrict our attention to these two values.

Also, we take a = 0.2 throughout.

Fig. 1. (a) Intensities of an Airy beam and nonlinear accelerating solutions at z = 0. (b)-

(e) Propagations of the strong Kerr, the Kerr, the saturable accelerating solution, and the

Airy beam as shown in (a), respectively. (f)-(h) Propagation of the truncated nonlinear

accelerating solutions that correspond to (b)-(d). Note the tendency of the shed radiation to

move along the straight lines. (i) Propagation of a finite Airy beam that corresponds to (e).

In addition, we will study the interactions of two NL solutions. Because the nonlinear accel-

erating beams also possess infinite oscillating tails, as shown in Fig. 1(a), we will truncate them

at a certain x to keep only a certain number of lobes. The incident beam is written as

ψ(x) = ψ1[(x−B)]+ exp(ilπ)ψ2[−(x+B)], (6)

where ψ1 and ψ2 are the two truncated NL solutions.

3. Interactions of Airy beams

3.1. Linear medium

Beam interaction takes place in NL media, so in a linear medium, with δn = 0 in Eq. (1), the

“interaction” is actually a linear interference. We display the evolution of the incidence from Eq.

(5), for different B; the intensities are shown in Fig. 2, in which the in-phase and out-of-phase
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cases correspond to l = 0 and l = 1, respectively. The behavior shown in Figs. 2(a1)–2(g1)

and 2(a2)–2(g2) is quite similar, the major difference being that the central interference fringe

in the in-phase case is bright, whereas in the out-of-phase case it is dark, as it should be for

a constructive and destructive interference. It is seen that some mutual-focusing is observed

in the central region, as the beams get closer. It is caused by the interference of the curved

accelerating beams. The two Airy beams behave similar to that in Fig. 2(a) of Ref. [1]. They

diffract, superpose, and interfere as they propagate. Of course, no solitons can form.

Fig. 2. Interference of two incident Airy beams in the linear medium, with A1 = A2 = 4 and

different B. (a1)-(g1) In-phase case. (a2)-(g2) Out-of-phase case.

For an Airy beam, the energy is mainly stored in the main lobe; hence, if the interval between

the two main lobes of the incidence is large, there will be no mutual-focusing in the central

region. If the interval is small enough, the overlap of the main lobes will be considerable,

leading to an apparent mutual-focusing. This feature develops differently for the in-phase and

out-of-phase beams; in the first case, it happens in the central bright interference fringe, while

in the second case, it happens in the two first maxima.

3.2. Kerr medium

When δn= |ψ(x)|2, the nonlinearity is of the focusing Kerr-type. Since a large interval between

Airy components in the incidence leads to a weak interaction, we just show the results with a

relatively small interval. We display the interactions of two in-phase and out-of-phase counter-

accelerating Airy beams with A1 = A2 = 3 in Figs. 3(a1)–3(h1) and 3(a2)–3(h2), respectively.

Immediately visible is the considerable interaction and NL self- and mutual-focusing of the

beams. The major difference between the two cases is the attraction of beams in the in-phase

case and the repulsion in the out-of-phase case. Also visible is the breathing or filamentation

of the beams when they strongly interact. For B =−3 and 4 in the in-phase case, the two Airy

components form two parallel solitons, after shedding some radiation, as depicted in Figs. 3(a1)

and 3(h1). With the decreasing interval, the attraction between the two components increases

and bound breathing solitons are formed, with certain periods, as shown in Figs. 3(b1)–3(g1).

The smaller the interval, the stronger the attraction and the smaller the period of soliton breath-

ing. Curiously, the intensity image shown in Fig. 3(e1) has a smaller period than that in Fig.

3(d1), even though B = 0 in that case. A smaller interval between beams should produce larger

interaction, which should lead to a smaller period. The reason is that the main lobe of the Airy

beam with B = 0 is located at about −1, and there is still an interval between the two main

lobes in the incidence. So, the attraction is the biggest when B = 1 and the period of the formed

soliton is then the smallest. It is also worth mentioning that the solitons are generated from the

main lobes and that the acceleration property of the main lobes, as well as of the solitons, is
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absent [15, 31]. No accelerating beams as a result of interaction are seen (unless one considers

the wiggling breathers as “accelerating” beams.)

The results for the out-of-phase case are shown in Figs. 3(a2)–3(h2), which share the same

numerical parameters as the in-phase case. From the intensity images one can see that the

soliton pairs formed from the incidence actually repel each other. The smaller the interval, the

stronger the repulsion, until the beams start overlapping. However, when the beams strongly

overlap, like in Fig. 3(e2), the repulsion decreases as the overlap increases. Considering that

the two Airy components are out-of-phase, the main lobes will balance each other out at B = 1,

so that the distance between the secondary lobes (Fig. 3(e2)) is larger than the distance between

the main lobes for B = 0 (Fig. 3(d2)). In other words, the soliton pair shown in Fig. 3(e2) is

generated from the secondary lobes, while the other are generated from the main lobes. This is

why the repulsion of the soliton pair in Fig. 3(d2) is stronger than that in Fig. 3(e2).

It is interesting to note that in Fig. 3(h2), two soliton pairs are visible: one pair comes from

the main lobes of the Airy components and the other from the secondary lobes. In all other

figures only one pair is visible, in addition to the excess radiation emanating initially from the

interacting Airy beams. Because the energy is mainly stored in the main lobes, the intensity

of the inner soliton pair is smaller than that of the outer pair, but early in the propagation the

two soliton pairs exchange energy at about z = 2. In addition, the repulsion of the outer soliton

pair is stronger, which comes from the main lobes possessing more energy. We should note

that these results will be different if A is allowed to vary. For small A (less than 1), there will

be no solitons generated; for large A (∼ 10), multiple soliton pairs will be produced, but the

propagation may become unstable because of the strong self-focusing effect.

(a1) (b1) (c1) (d1) (e1) (f1) (g1) (h1)

(a2) (b2) (c2) (d2) (e2) (f2) (g2) (h2)

(a3) (b3) (c3) (d3) (e3) (f3) (g3) (h3)

Fig. 3. Soliton formation in the interaction of two in-phase ((a1)-(h1)) and out-of-phase

((a2)-(h2)) incident Airy beams with A1 = A2 = 3, in the Kerr medium. (a3)-(h3) The same

as (a1)-(h1), but with A1 = A2 = 4.

When one sets A1 = A2 = 4, the corresponding results are shown in Figs. 3(a3)–3(h3) (only

the in-phase cases are shown here, because the out-of-phase cases are similar to those with

A1 = A2 = 3, shown in Figs. 3(a2)–3(h2)). Interestingly, we find that the repulsion between the

two solitons may appear in the in-phase case, especially for the cases B= 0 and B= 1, as shown

in Figs. 3(d3) and 3(e3). When B = 1, the intensity of the superposed main lobes is enhanced,

while the width is suppressed, in comparison with the case in Fig. 3(d3). Thus, the two solitons

generated from the splitting of the superposed main lobes will experience a smaller repulsion

force than that of Fig. 3(d3). The refractive index change will make the solitons attract each
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other, and the attraction is quite strong over a long distance, but eventually the repulsion will

overtake the attraction, as shown in Fig. 3(e3). When B is further increased, the main lobe

of one component will superpose with the high-order lobes of the other component, so the

solitons come from the superposed main and high-order lobes, as shown in Fig. 3(h3). When

the interval between the two solitons is large, the interaction between them becomes weak, and

they propagate parallelly, as in Figs. 3(a) and 3(h).

For the case when the two interacting Airy beams are of different amplitudes, the energy

distribution about x = 0 will be asymmetric, so the generated solitons will be of different inten-

sities, propagating at different angles or breathing asymmetrically (not shown).

To accentuate more clearly the generation of solitons from the lobes of Airy beams as they

interact, we replot Fig. 3, but for shorter propagation distance and with an overlay of the ideal

accelerating trajectories of the main lobes of the Airy beams (Fig. 4). One can see that the ac-

celerating property of the main lobes is gone; the solitons generated (or even the plain radiation)

are emitted tangentially from the main lobes. The solitons, as well as the radiation shed, tend

to travel along straight lines. Their interaction during subsequent propagation also depends on

the amplitude and the phase of the incident beams. This would answer some of the questions

raised in the introduction, whether there are accelerating beams emerging from the interactions

and whether the interaction is elastic. The short answers would be “no”, and the interaction is

“plastic”.

1

5

Fig. 4. Same as Fig. 3, but for shorter propagation distance. The black solid and dashed

curves present the ideal accelerating trajectories of the main lobes of the input Airy beams.

3.3. Saturable medium

As mentioned above, the saturable nonlinearity is of the form δn = |ψ|2/(1+ |ψ|2). The nu-

merical results are shown in Fig. 5. Similar to the cases of Kerr medium, the interactions can

generate individual solitons and the soliton pairs with breather-like behavior. As a rule, the in-

phase cases generate the central individual solitons, whereas the out-of-phase cases do not. For

small A1 and A2, the solitons or soliton pairs cannot form in the interaction. Importantly, the

propagation in a saturable NL medium is stable for arbitrary A1 and A2, which is different from

the Kerr medium. From the numerical results in Fig. 5, one can infer that the interactions in a

saturable NL medium are also plastic, similar to the cases in a Kerr NL medium.

In the end, we should mention that both Kerr and saturable NL media can support accelerat-
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(a2) (b2) (c2) (d2) (e2) (f2) (g2)

Fig. 5. Interactions of two in-phase ((a1)-(g1)) and out-of-phase ((a2)-(g2)) Airy beams

with A1 = A2 = 3 in the saturable medium.

ing solutions, which possess infinite energy – but not accelerating solitons. In the manuscript,

we only use the truncated beams to study the interactions. Concerning interactions, there is

nothing special about the saturable NL medium. The main difference between the two types of

nonlinear media is the stability at higher intensities. The accelerating beams cannot behave like

particles or solitons – they are only extended beams, even when propagating in the NL media.

After the interaction, solitons or solitons pairs are generated from the colliding main lobes, as

well as radiation. The generated solitons are just the commonly known solitons, which exhibit

particle properties and do not accelerate.

4. Interactions of nonlinear accelerating beams

We now address the interactions of nonlinear accelerating beams. In Fig. 1 we have displayed

numerically obtained Kerr, saturable, and strong Kerr nonlinear accelerating modes. Similar

to the Airy modes, they exhibit long tails and possess infinite energy. As seen in Figs. 1(b)–

1(e), the Airy beam as well as the nonlinear beams accelerate along parabolic (or square-root)

trajectories. Because of the infinite power, it is reasonable to cut off oscillating tails and study

the truncated cases, shown in Figs. 1(f) and 1(h). One can see that the truncated “normal” Kerr

solutions (obtained for α = 30) as shown in Fig. 1(g), shed radiation but form no solitons.

However, the strong Kerr solutions (obtained for α = 1012), shown in Fig. 1(f), readily form

solitons from the strong radiation shedding.

4.1. Kerr medium

Similar to the interactions of Airy beams, we now study the interactions of two truncated non-

linear beams in NL media, according to Eq. (6). Figure 6 depicts the interactions of two in-phase

(top panels) and out-of-phase (bottom panels) truncated Kerr beams obtained with α = 30 dur-

ing acceleration. It is seen that solitons and solitons pairs can be produced in the interactions.

Also, before the formation of soliton pairs, interactions will lead to extreme focusing of the

beams (red dots in the figures), which decreases the brightness in the panels of Fig. 6. In gen-

eral, one obtains complex beam patterns. With the increasing interval between the two compo-

nents, the interaction becomes weaker gradually, as seen in Figs. 6(a), 6(b), 6(f) and 6(g), from

which one can also see that the main lobes of the nonlinear accelerating beams still exhibit

some accelerating property, because they do not interact with each other over a long distance.

When the two nonlinear accelerating beams overlap more and interact with each other more

strongly, the main lobes do not show the accelerating property any longer, as shown in Figs.
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6(d) and 6(e), because most of the energy of the main lobes contributes to the formation of the

solitons. Thus, the interactions are also plastic.

1

(a1) (b1) (c1) (d1) (e1) (f1) (g1)

(a2) (b2) (c2) (d2) (e2) (f2) (g2)

5

Fig. 6. Interactions of two in-phase (top panels) and out-of-phase (bottom panels) nonlinear

Kerr accelerating beams with α = 30, respectively.

When the truncated strong Kerr solutions interact, complex beam patterns are seen, including

individual solitons, breathing solitons, and radiation (not shown). It is found that the accelerat-

ing beams easily generate single solitons and soliton pairs, which do not accelerate. In compar-

ison with the normal Kerr solutions, more solitons and soliton pairs can be induced from the

strong Kerr solutions. Similar to the cases in Fig. 6, the interactions are also plastic.

4.2. Saturable medium

As mentioned in Sec. 3.3, the behavior of the saturable nonlinear accelerating modes is quite

similar to that of the Kerr nonlinear modes, except that the saturable NL medium endorses

stable propagation of beams with arbitrary high intensities. Therefore, we do not discuss them

here.

5. Interactions of different accelerating beams

Up to now we have considered interactions of like beams: two Airy beams, two accelerating

nonlinear beams, etc. However, one can consider the interaction of unlike beams; then many

possibilities arise. As an example, we will cover a case of single soliton interacting with a Kerr

accelerating beam. This case is interesting because a narrow solitary beams interacts with a

wide accelerating beam. In this case the accelerating beam will tend to retain its accelerating

property and the interaction will be more elastic, with the exclusion of the specific situation

when the soliton strongly overlaps with the main lobe of the accelerating beam.

As is well known, Eq. (1) has a stationary soliton solution of the form

ψ(x,z) = sech(x)exp(iz/2),

when δn = |ψ|2. For other nonlinearities (e.g., saturable nonlinearity), analytical soliton solu-

tion of Eq. (1) cannot be found, but one can use numerical methods to find a numerical solu-

tion [35]. Here, we investigate the interaction between a soliton solution and a Kerr nonlinear

accelerating solution, by launching a composite beam ψ(x) = ψ1(x)+ exp(ilπ)ψ2[(x−B)], in

which ψ1 and ψ2 represent the truncated Kerr nonlinear accelerating solution and the single

soliton solution, respectively. The corresponding numerical results are shown in Fig. 7.

When the distance between the two components is big, as shown in Figs. 7(a) and 7(g), the

soliton will collide with the relatively weak lobes of the nonlinear accelerating beam; that is why
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the intensity of the soliton exhibits fluctuations, while the Kerr beam still accelerates. When

the distance between components is smaller, as in Figs. 7(b)–7(f), the propagation properties

depend on the profile of the superposed beam. In principle, the emerging breathing soliton

will come from the soliton component, modulated by the interaction with the lobes of the Kerr

accelerating beam. No soliton is generated from the main lobe. As a consequence, the properties

of the soliton and the nonlinear accelerating beam are quite immune to the collision, owing to

the conservation laws and the stability of both beams. Comparing Fig. 7(a1) with Fig. 7(a2) (or

Fig. 7(g1) with Fig. 7(g2)), we can see that if the collision leads to a peak in the in-phase case,

it will lead to a dip in the out-of-phase case, during propagation.

5

(a1) (b1) (c1) (d1) (e1) (f1) (g1)

(a2) (b2) (c2) (d2) (e2) (f2) (g2)

Fig. 7. Interactions of in-phase (top row) and out-of-phase (bottom row) soliton and trun-

cated Kerr accelerating beams. Black curves show the accelerating trajectories of the main

lobe.

In Figs. 7(a) and 7(g), the main lobes conserve the accelerating property, due to the same

reason as in Sec. 4.1 – a weak interaction with the soliton. When the main lobe interacts with

the soliton, it is more strongly affected both in amplitude and width. Different from the strongly

interacting cases of wide beams mentioned previously, in Fig. 7 we can find some energy dis-

tributions along the curved black lines (even though there is also some energy shedding). This

can be attributed to the retention of the accelerating property, owing to the limited transverse

extension of the single soliton. Thus, we can say that the the main lobe still exhibits some

accelerating property.

6. Conclusion

In summary, we have investigated the interactions of both in-phase and out-of-phase Airy

beams, nonlinear accelerating beams, and the soliton beams propagating in Kerr and saturable

NL media. We find that single solitons and soliton pairs can be produced in these interac-

tions. As the Airy beams and nonlinear accelerating beams have infinite energy, we use the

corresponding truncated beams, to discuss their interactions. The generated individual solitons

and soliton pairs do not accelerate transversely, because their properties are determined by the

underlying NL media and not by the incident beam from which they are generated. They fly

straight away along the tangential lines to the lobes from which they are generated. However,

the frequency of generation as well as the subsequent interactions between solitons do depend

on the amplitude and phase of the incident beams. The interactions of Airy beams and nonlin-

ear accelerating beams are plastic, in that the main lobes of the beams do not show accelerating

property after the interaction. Most of the energy of the main lobes participates in the formation

of solitons or soliton pairs during the plastic interaction. If an accelerating beam interacts with

a single soliton, the accelerating property of the main lobe of the accelerating beam is still re-
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tained after interaction, owing to the limited extension of the soliton and insufficient interaction

to produce solitons from the main lobe.
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