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Two-dimensional linear and nonlinear Talbot effect from rogue waves
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We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating
periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect
originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue
wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are
observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images
as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing
the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing
phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier
transform of the initial periodic beam that is automatically performed during propagation. In particular, linear
Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be
viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial
condition is sufficient but not necessary for the observation of the effect. It may also be observed from other
periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of
3D photonic crystals.
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I. INTRODUCTION

Recently, optical rogue waves have attracted a lot of atten-
tion, due to their strange properties [1–4]. As a phenomenon,
rogue waves originate in oceans as an extreme localized wave
that suddenly appears and disappears without a trace. However,
it is now accepted that, as a nonlinear phenomenon, it can be
well described by the cubic nonlinear Schrödinger equation
(NLSE). The cubic NLSE possesses a variety of solutions
[5–9], some of which can serve as prototypical rogue
waves. These include Peregrine solitons [2,10], Kuznetsov-Ma
breathers [11,12], Akhmediev breathers (ABs) [13], higher-
order rogue waves [14,15], and Fermi-Pasta-Ulam (FPU)
recurrent pulses [16–18]. It should be emphasized that these
solutions are not rogue waves per se but can be used to model
ones. True rogue waves are extreme wave phenomena that
sporadically appear in the interaction of solutions of different
NLSEs and require statistical description for evidence and
confirmation. The solutions mentioned above are by and large
exact solutions to NLSE that contain solitary or trains of
pulses, ride on finite backgrounds, and are prone to modulation
instabilites. It is in the devlopment of unstable wave fronts that
extreme or freak waves may appear.

On the other hand, the Talbot effect represents a self-
imaging phenomenon in the near-field diffraction of plane
waves, first observed by H. F. Talbot [19] and theoretically
explained by Lord Rayleigh [20]. This effect is a spatial
recurrence phenomenon: If one records directly beyond a
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narrow diffraction slit the beam intensity along the propagation
direction, one sees a series of periodic diminishings and
revivals, generated by the interference of diffracted secondary
wavelets coming from different slits. Stretched in the trans-
verse dimension, one observes the so-called Talbot carpet. The
greatness of the effect lies in the fact that essentially all one
needs to observe periodicity along the longitudinal direction
is the periodicity of input in the transverse direction.

Due to its potential applications in image preprocess-
ing and synthesis, photolithography, optical testing, optical
metrology, spectrometry, and optical computing, the Talbot
effect has been reported in, but not confined to, atomic
optics [21,22], quantum optics [23,24], waveguide arrays [25],
photonic lattices [26], Bose-Einstein condensates [27,28],
x-ray imaging [29], and in an interferometer for C70 fullerene
molecules [30]. Recent research indicates that the Talbot
effect can also be obtained using spherical waves [31]. It
is worth mentioning that the aforementioned Talbot effect
represents various linear cases [32–34], even the so-called
“nonlinear effect” from Ref. [35]. Although the nonlinear
Talbot effect was apparently previously investigated [35–37],
it differs from the one that will be described here. The topic
is still in need of further exploration, because interdisciplinary
research—in this case of rogue waves, the Talbot effect, and
self-Fourier transformation—tends to induce new ideas and
applications.

Therefore, we will restrict our attention to just one basic
rogue-wave solution that displays the nonlinear Talbot effect—
the Akhmediev breather. However, we will consider other
inputs as well. An AB wave is periodic along the transverse
coordinate and decays along the longitudinal coordinate—it is
a transverse train of single optical pulses. When such a train
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is launched into a nonlinear Kerr medium, due to modulation
instability and nonlinear interference of propagating pulses,
a Talbot recurrence phenomenon is realized. Hence, if the
medium is nonlinear, then one obtains the nonlinear Talbot
effect. There exists a similar nonlinear recurrence phenomenon
in fibers—the Fermi-Pasta-Ulam recurrence, which has been
known for 60 years [16,17,38,39]. Nevertheless, the two effects
differ in nature. Even though both can be described by the
NLSE, FPU is a temporal phenomenon, whereas the nonlinear
Talbot effect is a spatial phenomenon. The nonlinear Talbot ef-
fect of rogue waves has recently been reported [37]. Although a
periodic initial condition is always required for a Talbot effect,
the nonlinear Talbot effect is in stark contrast to the linear one.
The linear Talbot requires real gratings or periodic diffracting
structures for generation, it forms in linear homogenous media,
and can be generally explained by the Fresnel diffraction
theory [34]. In contrast, the nonlinear Talbot effect requires
periodic inputs that ride on a finite background, happens
in bulk NL media, and possesses no adequate theoretical
explanation.

In this paper, we report both linear and nonlinear Talbot
effects in two dimensions but focus on the nonlinear Talbot
effect formed from rogue and other waves in a bulk nonlinear
medium. The two-dimensional nonlinear Talbot effect is
investigated here for the first time to the best of our knowledge.
The two-dimensional (2D) Talbot effect is essentially a 3D
optical phenomenon; it results in the formation of 3D periodic
optical structures. In passing, we also note that Talbot effect
can be regarded as a self-Fourier transform of input beams.
We first construct the incidence from a product of two 1D
(doubly periodic) ABs and then propagate it in a linear and
nonlinear Kerr medium. The result is a 3D stack of Talbot
carpets. Similarly to the nonlinear 1D Talbot effect reported
in Ref. [37], which not only originates from an exact rogue
wave but also requires bulk NL medium to form, such 1D
and 2D nonlinear Talbot effects differ from those reported in
Ref. [35].

The organization of the paper is as follows. In Sec. II we
briefly introduce the theoretical model and construct the input
from rogue-wave solutions. In Sec. III a linear Talbot effect
(coming also from rogue waves) is reviewed theoretically
and numerically, as a background for the nonlinear Talbot
effect. In Sec. IV we numerically investigate in some detail
the nonlinear Talbot effect from rogue-wave solutions, as well
as from other periodic inputs. The paper is concluded with
Sec. V.

II. THE MODEL

The propagation of a beam with envelope ψ in a Kerr
medium can be generally described by the normalized cubic
NLSE

i
∂ψ

∂z
+ 1

2
∇2

⊥ψ + |ψ |2ψ = 0, (1)

where ∇2
⊥ is the transverse Laplacian; in one dimension it is

∇2
⊥ = ∂2/∂x2 and in two dimensions ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2.
The transverse coordinates are measured in units of some
characteristic transverse length, whereas the longitudinal
coordinate is given in terms of the corresponding Rayleigh

range. One of the rogue solutions of the 1D NLSE is the
Akhmediev breather [13]

ψ(z, x) =
[

(1 − 4qx) cosh(axz) + √
2qx cos(�xx)√

2qx cos(�xx) − cosh(axz)

+ i
a sinh(axz)√

2qx cos(�xx) − cosh(axz)

]
× exp(iz), (2)

where

ax =
√

8qx(1 − 2qx)

and

�x = 2
√

1 − 2qx,

with qx being a free parameter ranging from 0 to 1/2. This
solution is periodic in the transverse direction and dies fast in
the propagation (z) direction. The period of ψ(z, x) along x

axis is

Dx = π√
1 − 2qx

and the maximum of |ψ(z, x)|2 is

Mx =
∣∣∣∣1 + √

2qx − 4qx

1 − √
2qx

∣∣∣∣
2

.

We have previously demonstrated that a beam with the
profile of AB at z = 0 [viz. ψ(z = 0, x) will not die away
when propagated according to the 1D NLSE, but thanks
to modulation instability and nonlinear interference it will
display the nonlinear Talbot effect [37]. A question naturally
arises as follows: Can this be generalized to 2D?

Even though various rogue-wave solutions are reported for
the 1D NLSE [15], unfortunately there exist no analytical
breather or periodic solutions of the 2D NLSE. It would be nice
if such an eigenfunction of 2D NLSE exists in the transverse
plane; then it would be possible to check directly if it produces
the 2D nonlinear Talbot effect. Since this is not the case, the
next best possibility is to use the product of two 1D ABs as a
planar diffraction pattern to see if it produces the effect. This
product is not the solution of 2D NLSE; nonetheless, it is useful
in investigating the nonlinear Talbot effect. In a latter section,
we discuss the possibility of obtaining a nonlinear Talbot effect
from simpler periodic 2D inputs. Thus, the incident wave for
the 2D NLSE is chosen in the form

ψ(x, y) = C√
MxMy

(1 − 4qx) + √
2qx cos(�xx)√

2qx cos(�xx) − 1

× (1 − 4qy) + √
2qy cos(�yy)√

2qy cos(�yy) − 1
, (3)

which is the product of two perpendicular 1D ABs ψ(z = 0, x)
and ψ(z = 0, y). It is clear that ψ(x, y) is periodic both along
the x and y cooridinates. The periods along x and y directions
are Dx and Dy , respectively. Generally, Dx �= Dy , but if qx =
qy , Dx = Dy . The coefficient 1/

√
MxMy in Eq. (3) makes the

maximum amplitude equal to that of Eq. (2) if C = 1.
Note that the initial beam can be formed by other periodic

functions in the transverse plane, not only by the product of
two ABs. However, we believe that not all periodic functions
can be used to produce a nonlinear Talbot effect. We choose
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the product of two ABs with z = 0 because AB is the solution
of 1D NLSE and exhibits convenient properties in comparison
with other solutions [5,6,8], that is, it is periodic along both
transverse coordinates and has a constant nonzero background.
Another solution of the cubic NLSE that possesses similar
properties is the doubly periodic AB [13],

ψ(z, x) = kx

A(x) dn (kxz, 1/kx) + i/kx sn (kxz, 1/kx)

[1 − A(x) cn (kxz, 1/kx)]

× exp(iz), (4)

in which sn, cn, and dn stand for Jacobi elliptic functions
and

A(x) =
√

1/(1 + kx) cn (
√

2kxx,
√

(kx − 1)/2kx)

with kx > 1. Because sn(x,m), cn(x,m), and dn(x,m) are all
periodic and the corresponding periods are 4K , 4K , and 2K ,
respectively, with [40]

K =
∫ π/2

0

1√
1 − m2 sin2 θ

dθ,

the solution described by Eq. (4) is periodic along both the x

and z directions. The transverse period is

Dx = 4√
2k

Km=√
(kx−1)/(2kx ).

As a result, one can also construct a viable initial 2D beam by
using the product of two doubly periodic ABs at z = 0.

In the following sections, we study the propagation and
dynamics of the product of two rogue waves in both linear
and nonlinear bulk media. We also consider the Talbot effect
coming from simpler periodic inputs. To guarantee high
numerical precision, we utilize a fourth-order split-step fast
Fourier transform (FFT) method [41] in double precision. To
make beams of finite energy and prevent FFT spillover effects,
we use an aperture with a diameter large enough to enforce
fast convergence of beam intensity to zero at the transverse
infinity.

III. LINEAR TALBOT EFFECT

A. Theoretical analysis

We discuss first the linear propagation equation [that is, the
nonlinear term in Eq. (1) is eliminated]. Using the separation
of variables method, one ends up with the following coupled
equations [42]:

i
∂

∂z
ψ(x, z) + 1

2

∂2

∂x2
ψ(x, z) − μψ(x, z) = 0, (5a)

i
∂

∂z
ψ(y, z) + 1

2

∂2

∂y2
ψ(y, z) + μψ(y, z) = 0, (5b)

where μ is the separation constant. If we set ψ(x, z) =
f (x, z) exp(−iμz) and ψ(y, z) = g(y, z) exp(iμz), Eqs. (5a)

and (5b) can be recast into

i
∂

∂z
f (x, z) + 1

2

∂2

∂x2
f (x, z) = 0, (6a)

i
∂

∂z
g(y, z) + 1

2

∂2

∂y2
g(y, z) = 0, (6b)

which are the same as the 1D case investigated in Ref. [37];
the initial fields are f (x, z = 0) = ψ(x, z = 0) and g(y, z =
0) = ψ(y, z = 0), respectively. Therefore, the 2D problem is
reduced to the two independent 1D problems, which greatly
decreases the complexity of the problem. The solutions of
Eqs. (6a) and (6b) have the same format, which can be written
as [43]

ϑ(x, z) =
√

− i

2πz
exp

(
i
x2

2z

)

×
∫ +∞

−∞
dξ

[
ϑ(ξ, 0) exp

(
i
ξ 2

2z

)]
exp

(
−i

x

z
ξ

)
,

(7)

where ϑ stands f or g. It is clear that Eq. (7) describes
the Fresnel diffraction [44]. Therefore, one can obtain the
analytical expressions of the Talbot length corresponding to
the two components [22],

zT x = D2
x

π
, zTy = D2

y

π
. (8)

Since the 2D linear Talbot effect can be treated as a product of
two independent 1D linear Talbot effects, the Talbot length of
the 2D linear Talbot effect would be the least common multiple
of two 1D Talbot lengths.

In addition, based on Eq. (7), the initial periodic beam can
be arbitrary. Therefore, one can investigate the linear Talbot
effect from a product of two ABs, two doubly periodic ABs,
or any other kind of periodic beams. In light of the formation
being quite similar, for the linear case we only focus on the
product of two ABs with equal periods. For convenience, we
set qx = qy = q, Dx = Dy = D, and Mx = My = M .

B. Numerical simulation

In Fig. 1(a) we display the transverse intensity isosurface
distribution of the propagating beam with q = 1/4 at different
propagation distances. It is immediately seen that the incident
rogue wave reappears at z ≈ 6.192. This distance defines the
Talbot length zT . At zT /4 and zT /2, the fractional Talbot
images also form. Similarly to previous research [22,25,35],
the fractional Talbot image at zT /2 exhibits a π phase shift in
comparison with the incidence, while for the zT /4 fractional
Talbot image, the transverse period is halved. To see the Talbot
effect more clearly, we also plot the intensity carpet versus x

and z in the plane y = 0, in Fig. 1(b). The Talbot images at zT /4
and zT are quite apparent, while the one at zT /2 is missing. The
reason is that because of the π phase shift, the Talbot image at
zT /2 is shifted for half of the period transversely and cannot
be seen in the y = 0 plane. The Supplemental Material [45]
provides a clear animated 2D version of this propagation. In
Fig. 1(c), the intensity profiles at z = 0, z = zT /4, z = zT /2,
and z = zT along the x/y axes are displayed. In conclusion,
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FIG. 1. (Color online) Linear 2D Talbot effect. (a) Intensity
isosurface plot of the propagating rogue-wave incidence, according
to the linear Schrödinger equation. The beam intensities are displayed
at the distances of 1/4, 1/2, and 1 Talbot lengths. (b) Corresponding
intensity carpet in the xz plane at y = 0. (c) Intensity profiles along
the x/y axes, depicting the profiles at z = 0, z = zT /4, z = zT /2,
and z = zT from (a). Other parameters: q = 1/4, D = √

2π , and
M = 3 + 2

√
2. (d) Relationships between D and zT , q, and M .

the 2D linear Talbot effect of rogue waves is easily visible and
verified.

It is clear that the linear Talbot effect does not change with
different incident intensities. Therefore, one can check the
influence of q (also of the transverse period) on the formation
of a linear Talbot effect, even though the intensity of the
incident beam changes with q [37]. In Fig. 1(d), we display
the relation between D and the Talbot length, as shown by
the solid curve and circles, which correspond to the analytical
and numerical results, respectively. It is seen that these results
agree with each other quite well. The same figure also displays
the relationship of D versus q (dashed curve) and D versus M

(dash-dotted curve).

C. Talbot effect as a self-Fourier transform

For a moment, let us go back to Eq. (7). It is evident
that the integral can be viewed as a Fourier transform of
ϑ(x, 0) exp(ix2/2z) with the spatial frequency x/z. At the
Talbot length zT , the initial beam is reproduced [46], i.e.,
ϑ(x, zT ) = ϑ(x, 0), which means that the Fourier transform
of ϑ(x, 0) exp(ix2/2zT ) with the frequency x/zT is the initial
beam ϑ(x, 0). This result extends to the two-dimensional case
straightforwardly. Therefore, the Talbot effect can be viewed
as a self-Fourier transform of input periodic beams that are
periodically reconstructed during propagation.

At an arbitrary z, Eq. (7) can be scaled through variable
substitution x ′ = x

√
zT /z and ξ ′ = ξ

√
zT /z as

ϑ(x, z) =
√

− i

2πzT

exp

(
i

x ′2

2zT

)

×
∫ +∞

−∞
dξ ′

[
ϑ

(√
z

zT

ξ ′, 0

)
exp

(
i

ξ ′2

2zT

)]

× exp

(
−i

x ′

zT

ξ ′
)

. (9)

As a result, the fractional Talbot effect is the self-Fourier
transform of the scaled transverse initial periodic beam. It
is worth mentioning that the scaling is equivalent to a π

phase shift at z = zT /2, due to the periodicity of the initial
beam. In fact, the linear Talbot effect can be interpreted as a
fractional self-Fourier transform [46]. However, the nonlinear
Talbot effect cannot be described as such, because it does not
contain fractional images. The nonlinear Talbot effect can be
classified only as a regular self-Fourier transform in the sense
that it only contains the original image at zT and the shifted
original image at zT /2. This question will be addressed in the
following section.

IV. NONLINEAR TALBOT EFFECT

When the nonlinearity is included, the practical problem is
that the model cannot be treated by the method of separation
of variables. Nonetheless, following the same numerical
procedure as in the linear case, the 2D nonlinear Talbot
effect can be investigated and demonstrated. We first take the
product of two ABs with equal transverse periods as the initial
beam, then a product of two doubly periodic ABs, and, last, a
relatively simple periodic function.

A. Akhmediev breather as an input

Results for a product of ABs are presented in Fig. 2, which
follows the same setup as in Fig. 1 but with a perturbation
added to the input beam. The maximum amplitude of the
perturbation is 10% of the product of ABs. The perturbation
is added to check the stability and robustness of the beams in
propagation, which is necessary for nonlinear propagation. In
Fig. 2(a) we show the isosurface intensity plots that display the
formation of a 2D nonlinear Talbot effect at q = 1/4. Together
with the isosurface plot, the intensities at certain distances are
also shown. One striking difference with the linear Talbot
effect is immediately apparent: The fractional Talbot images
are gone. One can only observe the secondary and primary
Talbot images at zT /2 and zT . This fundamentally differs from
the 2D linear Talbot effect.

We also display the intensity carpet in the y = 0 plane in
Fig. 2(b), from which one can verify that there are no fractional
Talbot images. It is evident that in the propagation range z ∈
[zT /2,zT ] a structure similar to the fractional Talbot image
appears, but this is not a fractional Talbot image, because of
the following reasons: (1) The transverse period is the same
as that of the input and (2) the position is not at 3zT /4. These
structures are just the consequence of modulation instability.
Such images also exist in the range z ∈ [0,zT /2]; however, one

032916-4



TWO-DIMENSIONAL LINEAR AND NONLINEAR TALBOT . . . PHYSICAL REVIEW E 91, 032916 (2015)

y x

x

z
zT
2

zT

(a)

(b)

= 0

6

8

4

z T
,
M

x ( y)

q

0.2

0.25

0.3

5

(d)

6π −4π −2π 6π4π2π

6

4

|ψ
|2

(c)

x − y

4

M

zT

q

0.35

0. 5

0.

z = zT

z = zT/4
z = 0

4. 55 .5
D D

FIG. 2. (Color online) Same as described in the caption to Fig. 1
but for the 2D nonlinear Talbot effect.

cannot see them in Fig. 2(b) because the maximum is shifted
from the plane y = 0, similarly to the image at z = zT /2. More
clear details about the nonlinear, as well as linear, evolution
of Talbot images can be seen in the movies provided in the
Supplemental Material [45].

The intensity profiles of the beam at z = 0, z = zT /2, and
z = zT along the x/y axes are shown in Fig. 2(c). Even though
the intensity carpet in Fig. 2(b) is not entirely symmetric about
z = zT /2, the image at z = zT is the same as the input and that
at zT /2 has a π phase shift (and is absent from the figure). The
intensity profiles in Fig. 2(c) demonstrate the formation of the
2D nonlinear Talbot effect. Note that the modulation instability
in the Kerr nonlinear medium results in the formation of a
2D nonlinear Talbot carpet that is not perfect—the intensity
maximum is a bit smaller than that of the incidence and small
humps appear between the neighboring peaks. However, the
formation of 2D nonlinear Talbot effect of rogue waves in
bulk nonlinear medium is clearly demonstrated, because the
required images at zT /2 and zT appear. Again, one should
check the evolution displayed in the movie in the Supplemental
Material [45] to ascertain the formation of 2D nonlinear Talbot
effect more convincingly.

Since q (or the transverse period) is related to the intensity
of the input beam and optical response of the nonlinear
medium is sensitive to the beam intensity, the formation of
a 2D nonlinear Talbot effect with different transverse periods
will be much more complex than that of the 2D linear Talbot
effect. In Fig. 2(d) we show the changing trend of the Talbot
length versus the transverse period. The relationships between

the transverse period and q as well as M are also displayed,
which are similar to those in Fig. 1(d). Phenomenologically,
the Talbot length increases slowly with the increase in Dx for
q < 0.2, while for q > 0.2 the relation is more steep. Viewed
as a whole, the relation between Dx and zT is parabolic.
This phenomenon can be explained from a scaling point of
view: rescaling transverse coordinates by a factor scales the
longitudinal coordinate by the factor squared. In the linear case
the relation can also be explained by the same scaling law, as
depicted by Eq. (8).

Similarly to the linear Talbot effect, the nonlinear Talbot
effect can be also viewed as a self-Fourier transform. At z =
zT , one obtains the initial beam, while at z = zT /2 one obtains
the same beam but transversely shifted. At other places, the
“Fourier transform” still gives a periodic image, but it differs
from the initial beam even when the transverse scaling is taken
into account. Hence, it cannot be viewed as the fractional
Talbot effect. The nonlinear Talbot effect proceeds from an
initial beam to the Fourier transform at z = zT /2 (which is the
shifted beam) and back to the original beam at z = zT . Thus,
it can be described as a genuine self-Fourier transform.

B. Discussion

The amplitude of the incident 2D AB in Eq. (3) can
be adjusted by changing the value of C, so we investigate
numerically the relationship between the intensity and Talbot
length for the same transverse period. This is important
because of the potential wave collapse in 2D.

We fix q (by correspondingly fixing Dx and Dy) and change
the amplitude of the incident beam to calculate the Talbot
length; the results are depicted in Fig. 3. Three values of q

are chosen, 1/5, 1/4, and 3/10, respectively. As shown in
Fig. 2(d), the bigger the q, the larger the Talbot length zT ,
so in Fig. 3 the Talbot length is the biggest when q = 3/10
for the same C. With C increasing, the Talbot length also
increases, and such increment becomes quite fast when C > 1.
The reason is that higher intensity leads to stronger modulation
instability, which demands a longer distance to adjust itself
during propagation. Since the nonlinearity is Kerr in NLSE,
the value of C cannot be chosen to be very high. Numerical
simulations indicate that the propagation will collapse in a
short distance when C = 2, even with a small perturbation.

z T

7

8

6

0.4 0.6 0.8 1 1.20.2
C

q = 1/5
q = 1/4
q = 3/10

FIG. 3. (Color online) Talbot length dependence on the ampli-
tude of the incident beam with fixed transverse periods.
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However, we would like to emphasize that the beam will
always collapse in such a medium when the propagation
distance is long enough; the occurrence of collapse does not
depend of the value of C only but on the value of q as well.
Choosing proper C can only help us demonstrate a nonlinear
Talbot effect over a relatively long distance—in Fig. 2 the
beam could robustly propagate over eight Rayleigh lengths.
Finite longitudinal extension of the Talbot effect is also a
consequence of the finite transverse window over which the
propagation is considered. The wider the window the longer
the carpet. The longitudinal periodicity of Talbot images is the
consequence of the transverse periodicity of input beams.

Finally, we touch upon the subject of wave collapse. It is
clear that the well-known “catastrophic self-focusing collapse”
may occur in cubic nonlinear medium during the development
of the nonlinear Talbot effect, i.e., the beam will always
collapse during propagation if the input power is high enough
and the propagation distance long enough. Therefore, to obtain
a relatively stable recurrence, one should use a not-too-high
input intensity. An interesting topic would be to address the
questions of threshold intensity and generally the stability of
nonlinear Talbot effect when different parameters in the model
are varied. These questions, however, are beyond the scope of
this paper. To check for an eventual development of collapse,
we only added a small amplitude perturbation to the initial
beam. As mentioned, in numerical simulations we introduce
white noise, whose maximum amplitude is up to 10% of the
input beam. We find that the figures reported in this paper
remain the same.

C. Results from the doubly periodic ABs

An input in the form of a product of two orthogonal doubly
periodic ABs is obtained using Eq. (4) and setting z = 0. In
the execution of numerical simulations, a perturbation is also
introduced. Results are displayed in Fig. 4. The formation of
the 2D Talbot effect from a product of two doubly periodic
ABs is evident. In Fig. 4(a), we display the intensity evolution
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FIG. 4. (Color online) (a) 2D Talbot effect coming from a product
of two doubly periodic ABs with k = 1.2 in the plane x − y = 0.
Dashed lines show the locations of half Talbot length and Talbot
length, respectively. [(b)–(d)] Intensities at the initial place, half
Talbot length, and Talbot length.

in the plane x − y = 0 to depict the generation of the Talbot
carpet clearly.

We can see that the beam is robust in propagation over
such a long distance, even though the perturbation is included.
Numerically, we find that the Talbot length is about zT ≈
6.436, as shown by the right dashed line in Fig. 4(a). In
addition, we also show the beam intensities at z = 0, z = zT /2,
and z = zT in Figs. 4(b)–4(d). Therefore, it is feasible to obtain
nonlinear Talbot effect from a product of two doubly periodic
ABs. The question then is as follows: Can it be obtained from
more simple periodic patterns?

D. Results from simply periodic initial conditions

In the above sections, we were mainly concerned with the
incident beams constructed from rogue waves. What about
the simpler periodic initial conditions? Is a rogue wave a
necessary condition? To answer these questions, we construct
a transversely periodic and longitudinally localized beam as
follows:

ψ(x, z) = 1 + cos(2x) exp(−z2), (10)

which possesses a nonzero background. By making a product
of ψ(x, z = 0) and ψ(y, z = 0), one gets a 2D input beam in
the form

ψ(x, y) = C[1 + cos(2x)][1 + cos(2y)]. (11)

Here we assume C = 0.25 to make the maximum of the
input 1.

The propagation of the input (11) with a small perturbation
(the maximum amplitude ∼5% of the input) is shown in Fig. 5.
From the figure one can see that the nonlinear Talbot recurrence
forms during propagation (at zT ≈ 3.352), even though the
peak intensity increases with the distance. It is also seen that
the nonlinear Talbot effect still does not exhibit the fractional
Talbot images and that the evolution is similar to those shown
in waveguide arrays [25]. This demonstrates that a rogue-wave
solution is not a necessary condition to realize nonlinear Talbot
effect. In other words, the nonlinear, as well as linear, Talbot
effect is not limited to very specific initial conditions.

On the other hand, if ψ in Eq. (11) is chosen as a simple
2D pattern cos(2x) cos(2y), one cannot realize the nonlinear
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FIG. 5. (Color online) 2D Talbot effect resulting from Eq. (11).
Figure setup is as in Fig. 4.
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Talbot effect (not shown here). Therefore, one can say that not
only is a rogue-wave solution not a necessary condition but
also the initial condition cannot be an arbitrary 2D periodic
pattern. The common condition is that the input should be
constructed from periodic functions with nonzero background,
as displayed in Eqs. (2), (4), and (10).

V. CONCLUSION

We have introduced the 2D nonlinear Talbot effect theoret-
ically and displayed the effect numerically for the first time
to the best of our knowledge. For the effect to be seen, not
only the incident beam has to be nonlinearly prepared, but
the formation of 2D Talbot images should also proceed in
the bulk Kerr nonlinear medium. We have also demonstrated
the 2D linear Talbot effect in the form of a stack of Talbot
carpets behind a periodic 2D diffraction pattern. Thus, the 2D
Talbot effect results in the formation of 3D periodic optical
structures. Differing from the 2D linear Talbot effect, there
are no fractional Talbot images in the 2D nonlinear Talbot
effect. Numerical experiments demonstrate that the smaller
the transverse period and the smaller the amplitude of the
incident beam, the shorter the Talbot length in 2D nonlinear
Talbot effect.

In addition, numerical simulations also demonstrate that
a rogue-wave solution is not a necessary condition for the
realization of the 2D nonlinear Talbot effect. It may be realized
from other, simpler, periodic inputs but with a general require-
ment that they possess a finite background. Last but not least,
the Talbot effect can be viewed as self-Fourier transform of the
initial periodic beams occurring during propagation. We hope
that our research has broadened up the potential applications
of Talbot effect—in particular, for possible fabrication of 3D
photonic crystals—and has deepened the understanding of
rogue waves.
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