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We analytically and numerically investigate an anharmonic
propagation of two-dimensional beams in a harmonic
potential. We pick noncentrosymmetric beams of common
interest that carry orbital angular momentum. The exam-
ples studied include superposed Bessel–Gauss (BG),
Laguerre–Gauss (LG), and circular Airy (CA) beams. For
the BG beams, periodic inversion, phase transition, and
rotation with periodic angular velocity are demonstrated
during propagation. For the LG and CA beams, periodic
inversion and variable rotation are still there but not the
phase transition. On the whole, the “center of mass” and
the orbital angular momentum of a beam exhibit harmonic
motion, but the motion of the beam intensity distribution
in detail is subject to external and internal torques and
forces, causing it to be anharmonic. Our results are appli-
cable to other superpositions of finite circularly asymmetric
beams. © 2015 Optical Society of America
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In the last decade, accelerating beams, such as Airy and related
beams, have attracted much attention and were intensively in-
vestigated. Dynamics of Airy beams were considered in free
space [1,2], bulk nonlinear media [3–7], fibers [8–12], media
with external potentials [13–18], and so on. In an external po-
tential, naturally, the spatial properties of Airy beams will be
modulated during propagation. In a recent article, we showed
that a one-dimensional (1D) finite-energy Airy beam will, quite
surprisingly, perform periodic inversion, phase transition, and
anharmonic oscillation during propagation in a harmonic po-
tential [18]. Under phase transition, we mean the transition of
the optical mode from one form to another during propagation.

A natural question is, will this behavior carry over to two
dimensions?

In the paper mentioned [18], toward the end, we proved
that the 2D case of an Airy beam can be reduced to the product
of two 1D cases, on the account of the linearity of the problem.
Thus, a product of two finite-energy Airy beams—one along x
and the other along y direction—will in a two-dimensional par-
abolic potential exhibit all the properties of 1D Airy beams:
periodic inversion, phase transition, and anharmonic oscilla-
tion. However, the interest in 2D goes beyond the products
of 1D beams—to the genuine 2D beams that can be radially
symmetric or asymmetric and importantly, can carry orbital
angular momentum.

On the other hand, recently radially self-accelerating [19]
and angularly accelerating [20] beams have been introduced.
In these papers, beams that carry angular momentum, related
to Bessel waves—which are also nondiffracting [21–23]—have
been propagated in free space. In a similar vein, we want to
know what happens to an asymmetric diffractionless beam,
which carries orbital angular momentum, when launched into
a harmonic potential. The beam will also radially and angularly
accelerate, but what modulation will it receive and how will it
behave in such a common potential? Do phase transition and
periodic inversion carry over from one dimension, and how are
they affected by the rotation imposed on the beam? For the
difference, instead of considering exotic beams such as helicons
[19] or superpositions of vortices with opposite helicities [20],
we focus on familiar beams such as Bessel–Gauss (BG),
Laguerre–Gauss (LG), and circular Airy (CA) beams.

Hence, in this Letter, we construct two-dimensional beams
by superposing several BG and LG beams of different order,
and investigate their dynamics as they propagate in a harmonic
potential. In addition, we also discuss the propagation of a
superposition of rotating CA beams with different topological
charges. To consider more interesting cases of rotating asym-
metric intensity distributions, we chose the BG, LG, and
CA beams in the form of noncentrosymmetric superpositions.
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Such superpositions more readily expose the effects we are after,
which also depend on the internal structure of beams. Thus, we
suppose that the evolution of a 2D beam can be understood as a
variable rotation of its intensity distribution, which can be de-
scribed in terms of beam’s moment of inertia and its angular
velocity [21]. In an external potential, there appear external tor-
ques and forces acting on the beam, and the orbital angular
momentum is not conserved. In addition, there exist internal
forces and torques that change the intensity distribution inter-
nally, whose evolution then appears anharmonic.

In the paraxial approximation and in the harmonic poten-
tial, the beam in propagation obeys the dimensionless linear
(2 + 1)D Schrödinger equation

i
∂ψ
∂z

� 1

2
∇2ψ −

1

2
α2�x2 � y2�ψ � 0; (1)

where ψ is the beam envelope and α a parameter controlling the
width of the potential. The variables x, y, and z are the nor-
malized transverse coordinates and the propagation distance,
scaled by some characteristic transverse width x0 � y0 and
the corresponding Rayleigh range kx20. Here, k � 2πn∕λ0 is
the wavenumber, n the ambient index of refraction, and λ0
the wavelength in free space. Typically, the external harmonic
potential comes from the modulation of the index of refraction,
easily achieved, for example, in gradient-index (GRIN) media.

With this choice of the potential, Eq. (1) describes the linear
2D harmonic oscillator and possesses many well-known solu-
tions. In Fourier optics, one is interested in the solutions that
can be written as [18]

ψ�x; y; z� � −
i
2π

f �x; y; z�
ZZ �∞

−∞
dξdηψ�ξ; η�

× exp�ib�ξ2 � η2�� exp�−iK �xξ� yη��; (2)

where f �x; y; z� � K exp�ib�x2 � y2��, b � α cot�αz�∕2, and
K � α∕ sin�αz�. It is clear that the integral in Eq. (2) is the 2D
Fourier transform of ψ�ξ; η� exp�ib�ξ2 � η2��, with K x and K y
being the spatial frequencies.

As an example, we consider an input in the form of a super-
position of BG beams:

ψ�r; θ� �
X4
n�1

Jn�ar� exp�inθ� exp
�
−
r2

σ2

�
; (3)

in which σ is the decay factor, Jn�•� represents the Bessel func-
tion of the first kind of order n, and a is an arbitrary stretching
coefficient. The intensity following from Eq. (3) is noncentro-
symmetric. The oscillating period is D � 2π∕α [18].

Plugging the input given by Eq. (3) into Eq. (2), one obtains

ψ�r; θ; z� � −
i
2π

f �r; θ; z�
Z �∞

0

Z
2π

0

ρdρdϕ

×
X�∞

m�−∞
i−mJm�ρr� exp�−imϕ� exp�imθ�

×
X4
n�1

gn�ρ� exp�inϕ�; (4)

where

gn�ρ� � Jn�aρ� exp�ibρ2� exp
�
−
ρ2

σ2

�
:

Here, ρ2 � ξ2 � η2 and ϕ � arctan�η∕ξ� represent the spatial
polar coordinates, and r2 � K 2�x2 � y2� and θ � arctan�y∕x�
represent the spatial frequency in polar coordinates. In Eq. (4),
we utilize the relation [24]

exp�−iK �xξ� yη�� �
X�∞

m�−∞
i−mJm�ρr� exp�−imϕ� exp�imθ�:

By introducing the Kronecker delta,Z
2π

0

exp�i�n − m�ϕ�dϕ � 2πδnm �
�

0 if n ≠ m
2π if n � m;

Eq. (4) can be rewritten as

ψ�r;θ; z� � −f �r;θ; z�
X4
n�1

i1−n exp�inθ�
Z �∞

0

gn�ρ�Jn�ρr�ρdρ:

(5)

As a result, the final solution can be written as [25]

ψ�r;θ; z� � −
1

2w
f �r;θ; z�

×
X4
n�1

i1−n exp�inθ� exp
�
−
r2 � a2

4w

�
In

�
ar
2w

�
; (6)

where w � 1∕σ2 − ib and In�•� is the modified Bessel function
of the first kind of order n.

Figure 1 depicts the propagation of the finite energy BG
beam with a � 4 and σ � 10 in a harmonic potential. From
the panels, one can clearly see the periodic inversion of the
beam during propagation. In the 3D plot below panels, one
can discern two separate phases in the evolution of the beam.
Specifically, the panel in Fig. 1(c)—the second phase of the

Fig. 1. Intensity of the Bessel–Gauss beam during propagation in a
harmonic potential with α � 0.5 at z � 0 (a), D∕8 (b), D∕4 (c),
3D∕8 (d), D∕2 (e), 5D∕8 (f ), 3D∕4 (g), and 7D∕8 (h), respectively.
(i) Iso-surface plot (Visualization 1) of the propagation.
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beam—is the Fourier transform of the initial beam from
Fig. 1(a). It is equivalent to a superposition of perfect vortex
beams of different order [26]. Based on Eq. (5), the analytical
intensity distribution can be obtained (not shown), which is in
complete accordance with the numerical simulation. In
Fig. 1(i) we display the iso-surface plot of the beam during
propagation. One can note that the beam undergoes periodic
inversion and two-phase oscillation. We would like to point
that, similar to the finite-energy Airy beams [18], the oscillation
of the maximum intensity is anharmonic. Visualization 1
provides a clear animated version of this propagation. Thus,
the periodic inversion and the two-phase oscillation of an asym-
metric BG beam are clearly seen during propagation.

Equation (5) is an analytical solution, with ψ�r; θ� being
the input. An analogous procedure is feasible for other kinds
of inputs, e.g., a superposition of finite LG beams of different
order [27]:

ψ�r; θ� �
X4
n�1

ArnLnn�ar2� exp�inθ� exp
�
−
r2

σ2

�
; (7)

where the generalized Laguerre polynomial is Ltn�x� �
x−t ex∕n!dn�e−xxn�t�∕dxn, and A is the amplitude. Plugging
Eq. (7) into Eq. (2), and following the same procedure as
for the BG beams, one obtains the corresponding solution,
which can be written as [25]

ψ�r; θ; z� � −
A
2w

f �r; θ; z� exp
�
−
r2

4w

�

×
X4
n�1

i1−n exp�inθ�
�
w − a
2w2 r

�
n
Lnn

�
ar2

4w�a − w�

�
:

(8)

For convenience, we assume a � 1, σ � ffiffiffi
2

p
, and A � 0.1 (in

a linear system, the value of A is arbitrary). In Figs. 2(a)–2(h),

we display the intensity distributions of the beam at certain
distances, while in Fig. 2(i) and Visualization 2, we show
the propagating dynamics of the whole beam. From Fig. 2
and Visualization 2, one can see that the LG beam rotates anti-
clockwise during propagation, without changing basically its
profile. The reason is clear: from Eq. (8), one sees that the
propagating beam is again a superposition of LG beams but
with different parameters. As a result, the two-phase oscillation
disappears in Fig. 2.

As mentioned before, a 2D Airy beam can be considered as a
product of two 1D Airy beams. Thus, it displays inversion and
phase transition during propagation [18]. We want to check
the behavior of a 2D Airy beam when it rotates. To this end,
we turn to the propagation of superposed CA beams [28–32]:

ψ�r; θ� � Ai���r − r0�� exp��a�r − r0��
X4
n�1

exp�inθ�; (9)

where a is the decay factor, r0 determines the center of the main
ring, and� corresponds to the inward and outward CA beams,
respectively. Unfortunately, an analytical solution correspond-
ing to the propagating input beam from Eq. (9) is hard to
obtain. To handle such a difficult problem, a fairly accurate
approximation was developed in [29]. The result is that the
CA beam during propagation can be approximated by

ψ�r; θ; z� ≈ −A0f �r; θ; z� exp�ibr20�
X4
n�1

i1−n exp�inθ�Jn�r0r�;

(10)

where A0 ≈ �1 − a2∕r0� exp�a3∕3�. Clearly, Eq. (10) is a super-
position of Bessel beams of the first kind, and the propagation
of such a beam should be similar to Fig. 1. The result is
depicted in Fig. 3.

In the figure, we display the intensity distributions of
outward CA beams [Figs. 3(a)–3(d)] and inward CA beams
[Figs. 3(e)–3(h)] at certain distances. In Figs. 3(b) and 3(d)
for outward, and Figs. 3(f ) and 3(h) for inward CA beams,
the intensity recorded at z � D∕4 indeed is similar to that
shown in Fig. 1(a). This holds for both inward and outward CA
beams, because Eq. (10) is not limited to only one kind of CA
beams. However, the two-phase transition seems to be absent.
Therefore, analytical results agree with numerical simulations
quite well. In Fig. 3(i) (and Visualization 4), we display the
isosurface plot of the propagation, which corresponds to the
inward CA beams. For CA beams, the oscillation is more
continuous, similar to LG beams.

In the end, it is instructive to look at the dynamics of
the “center of mass” [18,21], coming from the intensity
distribution

x̄ �
RR�∞

−∞ xjψ j2dxdyRR�∞
−∞ jψ j2dxdy ; ȳ �

RR�∞
−∞ yjψ j2dxdyRR�∞
−∞ jψ j2dxdy ;

and the dynamics of the orbital angular momentum [33,34]

Lz � −
i
2

ZZ �∞

−∞
ψ	

�
x
dψ
dy

− y
dψ
dx

�
dxdy � c:c:

of noncentrosymmetric beams. These beams carry orbital an-
gular momentum and rotate during propagation. This momen-
tum is proportional to the product of the moment of inertia of
the beam and its angular velocity that in turn may both depend
on the propagation distance. Such a dependence produces a

Fig. 2. Laguerre–Gauss beam in propagation. Figure setup is as in
Fig. 1.
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torque on the beam that exhibits components along both the
angular velocity and the angular acceleration. The force acting
on the beam in such a rotation is not uniform along the propa-
gation coordinate and imparts radial and angular acceleration to
the beam, resulting in a nonuniform periodic behavior (results
not shown). Hence, the beam cannot be classified as a purely
angularly or purely radially accelerating beam, because these
kinds of beams require certain conditions [19].

In summary, we have investigated the dynamics of super-
posed two-dimensional BG, LG, and CA beams in a medium
with an external harmonic potential. Due to orbital angular
momentum, beams rotate during propagation, with the inten-
sity and the angular velocity changing periodically. The BG
beams exhibit phase transition at an odd-integer multiple of
quarters of the oscillation period, and undergo spatial inversion
at an odd-integer multiple of halves of the period. For the LG
beams, the two-phase oscillation disappears, and the beam pro-
file does not change significantly, because it is always described
by a superposition of LG beams of the same order but different
parameters. Concerning CA beams, the propagation looks sim-
ilar to that of LG beams, but is approximately described by the
superposition of Bessel beams.

In general, the analytical solution described in this Letter is
applicable to other noncentrosymmetric initial beams com-
posed of finite circularly symmetric components. Periodic in-
version and anharmonic oscillation appear to be universal
features of propagation in the harmonic potential, but the ap-
pearance of two-phase oscillation depends on the actual beam
distribution. Our investigation may lead to potential applica-
tions in particle manipulation, signal processing, propagation in
GRIN media, and other fields.
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Fig. 3. Propagation of circular Airy beams. From left to right: in-
tensity distributions at z � 0, z � D∕4, z � D∕2, and z � 3D∕4.
Intervals inside give the relative measure of the beam size.
(a)–(d) Outward CA beam (Visualization 3). (e)–(h) Inward CA beam
(Visualization 4). (i) Iso-surface plot of the propagation of the inward
CA beam. Parameters: α � 0.5, a � 0.1 and r0 � 10.
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