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Abstract. Acceleration and deceleration of one-dimensional and two-dimensional
obliquely incident Airy beams are investigated theoretically and numerically. One-
dimensional Airy beams with given initial velocities propagate along parabolic trajec-
tories. However, the beams will undergo deceleration and then acceleration if the initial
velocity is in the opposite direction to the acceleration. In the opposite case, the beams
will only accelerate during propagation. Two-dimensional tilted Airy beams are treated
as products of two 1D Airy beams with initial velocities. Such accelerating and decel-
erating properties due to initial velocities can be effectively controlled by small angles
of incidence.
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1. INTRODUCTION

Self-accelerating nondiffracting optical beams have attracted much attention
from research community all over the world [1–10]. Such beams can find potential
applications in tweezing [11, 12], the generation of plasma channels [13, 14], mate-
rial modifications [15], light bullet production [5, 16, 17], particle clearing [18], and
manipulation of dielectric microparticles [19]. Special attention has been focused
on the Bessel [20, 21] and Airy function beams [22]. Analyses have been mostly
confined to linear media, for the reason of wanting to observe minimally diffract-
ing beams in linear optics. In the paraxial approximation, the beam in the form of
Airy function evolves according to the linear Schrödinger equation; it can propagate
practically without diffraction and accelerate along a parabolic trajectory [23, 24].
However, in different media the acceleration is not necessarily along the parabolic
curve. By introducing a linear index potential, the Airy beam can accelerate along
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any predefined path [25]. Recently, three new types of accelerating beams have been
reported, the accelerating trajectories of which also do not proceed along parabolic
curves [26].

Even though the analysis of Airy beam propagation has become quite involved,
almost all research in the last decade has been focused on the cases without initial
velocity. Therefore, it is of interest to investigate what will happen when an Airy
beam is launched into a medium with an initial velocity. The question is, how does
the beam accelerate in this case? Having this question in mind, we present here a
thorough investigation of the propagation of both one-dimensional (1D) and two-
dimensional (2D) incident Airy beams with nonzero initial velocities that includes
both theoretical and numerical aspects of the problem. Nonzero initial velocity is
most easily obtained by launching an Airy beam obliquely. Although the obliquely
incident Airy beams exhibiting ballistic properties during propagation have been dis-
cussed previously [27, 28], we address the problem of Airy beams with initial veloc-
ities using classical Newton’s dynamics.

The organization of this article is as follows: In Sec. 2, we introduce the the-
oretical model and exhibit numerical results. We discuss the 1D case first, and then
the 2D case. In the end we briefly mention the finite energy Airy beams. With Sec.
3, we conclude the article.

2. MODELING AND NUMERICAL SIMULATION

2.1. ONE-DIMENSIONAL CASE

In the paraxial approximation, the normalized equation for the evolution of a
slowly-varying envelope ψ of the beam’s electric field has the form:

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
= 0, (1)

where x and z are the dimensionless transverse coordinate and the propagation dis-
tance, respectively, presented in units of x0 and kx20. Here, x0 is some convenient
transverse scale and kx20 is the corresponding Rayleigh range. As usual, k= 2πn/λ0
is the wavenumber, n is the refractive index, and λ0 the wavelength. Typical values
of the parameters can be taken as x0 = 100µm, n = 1.45, and λ0 = 600nm [1, 7].
Obviously, Eq. (1) is just the Schrödinger equation without potential; as a linear 2nd
order PDE, it possesses infinitely many solutions. One of the accelerating solutions
of Eq. (1) is the well-known Airy function

ψ(x,z) = Ai
(
x−z2/4

)
exp

[
i
(
6xz−z3

)
/12
]
. (2)

The trajectory of this accelerating beam can be directly obtained from Eq. (2), which
is x= z2/4. In analogy to classical mechanics, the velocity of the beam during prop-
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agation is v = zx̂/2 and the acceleration g = x̂/2, where x̂ is the unit vector; the
motion is akin to a projectile in the (z,x) plane.

If one launches an Airy beam into the medium with an angle, the transverse
velocity vector of the beams becomes relevant. The launched Airy beam can be
written as

ψob(x,z = 0) = Ai(x)exp(iv0x), (3)

where v0 is the magnitude of the velocity vector. Different from Eq. (2), the beam
in Eq. (3) has an initial velocity vin = v0x̂. Therefore, the total velocity of the tilted
beam during propagation should be written as

vtotal = v+vin = (v0+z/2) x̂. (4)

Integrating Eq. (4) in the range [0 z], one obtains

x= v0z+z
2/4, (5)

which is the trajectory of the tilted Airy beam. It is clear that Eq. (5) is still a
parabolic curve, the symmetry axis of which is zsym =−2v0.
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Fig. 1 – Acceleration of Airy beams with v0 = 0 (a), v0 =−3 (b), and v0 = 3 (c), respectively. The
dashed curves, according to Eq. (5), represent the trajectories of the main lobe.

In Figs. 1(a)-1(c), we display three examples of accelerating Airy beams with
v0 = 0, v0 =−3, and v0 = 3, respectively. Figure 1(a) is just the case without initial
transverse velocity [1]. When the Airy beam is incident obliquely with a negative
incidence angle (v0 < 0), the symmetry axis of the accelerating parabolic curve is
positive, as shown in Fig. 1(b). In this case, the direction of the initial velocity is
opposite to that of the acceleration, so the absolute value of acceleration decreases
first, and then increases. Therefore, the Airy beam undergoes deceleration and then
acceleration during propagation. If the incident angle is positive (v0 > 0), the initial
velocity is in the same direction as the acceleration, so the beam will only accelerate
during propagation. The dashed curves in Fig. 1 are the theoretical accelerating
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trajectories obtained from Eq. (5), so we can see that the theory is in accordance
with numerical simulations.

In order to analyze the accelerating process more clearly, we display the ac-
celerating trajectories of the main lobes of oblique incident Airy beams in Fig. 2.
Along the curved arrow, the values of v0 are negative and increase for all the cases.
The thick solid blue curve is for the vertical incidence; the cases v0 < 0 are above
the horizontal and the cases v0 > 0 are bellow the horizontal axis. The shaded region
in Fig. 2 represents the cases where the tilted beams propagate along the negative z
direction. The usual projectile trajectories are seen if one rotates the graph for π/2.
Combining the cases along positive and negative z directions, one obtains the whole
spectrum of parabolic trajectories of the main lobes. From Fig. 2 one can also see
that the symmetry axis of the trajectory is positive for v0 < 0 and negative for v0 > 0.

x

z

0 50 100

0

10

20

30

-20

-30

-10

-50

Fig. 2 – Trajectories of the main lobes. Along the arrow, the values of v0 are −7, −5, −3, −1, 0, 1, 3,
5, and 7, respectively. The shaded region represents the propagation along the negative z direction.

The initial velocity of the Airy beams is related to the incident angle θ, so
that the accelerating properties of tilted beams can be controlled by θ, which can be
written as

θ = arcsin
v0
x0k

. (6)

Based on the parameters mentioned above, one can calculate incident angles θ be-
longing to different v0, as shown in Table 1 that corresponds to the cases exhibited
in Fig. 2. From the values shown in Table 1, we find that the accelerating properties
can be adjusted by small incident angles.

Table 1

Incident angle θ corresponding to v0

v0 ±7 ±5 ±3 ±1 0
θ ±0.2641◦ ±0.1887◦ ±0.1132◦ ±0.0377◦ 0
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2.2. TWO-DIMENSIONAL CASE

Applying the variable separation technique to the 2D linear Schrödinger equa-
tion leads to the oblique incident 2D Airy beam solution

ψob(x,y,z = 0) = Ai(x)Ai(y)exp[i(vxx+vyy)], (7)

where vx and vy are the components of the transverse velocity vector along x and y
directions. The trajectory of the accelerating 2D tilted Airy beam can be determined
by writing the x and y components parametrically in terms of the z coordinate, which
turned out to be

x= vxz+z
2/4, y = vyz+z

2/4, z = z. (8)

in Cartesian coordinates, or

r =
z

2
√
2

√
[z+2(vx+vy)]2+4(vx−vy)2. (9)

in the cylindrical coordinates. Thus, Eq. (9) does not describe a parabolic trajec-
tory, although the x and y beam components are accelerated along parabolic curves,
according to Eq. (8). However, for a specific choice vx = vy = v0, Eq. (9) can be
rewritten as

r =

√
2

4
(4v0z+z

2), (10)

which is a parabolic function.
We display accelerating beams with different vx and vy (the values are provided

in the caption) in Fig. 3. These beams are solutions to the 2D linear Schrödinger
equation

i∂ψ/∂z+(∂2/∂x2+∂2/∂y2)ψ/2 = 0. (11)

The bottom three panels in Fig. 3 present the projections of the trajectories onto
x0z plane, y0z plane, and x0y plane, respectively. Note that Fig. 3(e) represents the
vertical incidence case. Different from the straight beam in Fig. 3(e), the accelerating
trajectories of oblique incident 2D Airy beams greatly change. For the case in Fig.
3(a), both x and y components undergo deceleration first and then acceleration during
propagation, since vx = vy =−3< 0. On the other hand, for the cases in Figs. 3(b)
and 3(c) [resp. Figs. 3(d) and 3(g)] only the y (resp. x) component undergoes
deceleration first and then acceleration, while the other component just accelerates.
In one word, the concrete accelerating properties are determined by the signs of vx
and vy that reflect the obliqueness of the incident 2D Airy beam. The dashed curves
in Fig. 3 are the theoretical accelerating trajectories of the main lobes obtained from
Eq. (8). Clearly, the theoretically predicted trajectories agree with the numerics very
well.
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Similarly to the 1D case, one can also obtain the incident angle of a tilted 2D
Airy beam as

θ = arcsin

√
v2x+v

2
y

x0k
, (12)

in which the signs of vx and vy determine the quadrant of the transverse projection
of the total wavevector located in the transverse x0y plane. For parameters in Fig. 3,
the maximum θ is approximately 0.3735◦. Therefore, the accelerating properties of
2D oblique Airy beams with given initial velocities can also be controlled by small
incident angles.
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Fig. 3 – Accelerating obliquely incident Airy beams. (a)-(i) Values of (vx, vy) are (−3,−3), (0,−3),
(3,−3), (−3, 0), (0, 0), (3, 0), (−3, 3), (0, 3), and (3, 3), respectively. Dashed curves are the

trajectories of accelerating main lobes, according to Eq. (8). Bottom three panels (from left to right)
are the projections of accelerating beams onto x0z, y0z, and x0y planes, respectively.

2.3. FINITE ENERGY AIRY BEAMS

It is well known that Airy beams possess infinite energy, and as such are not
very realistic physical quantities. The finite energy Airy beams are produced by an
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appropriate apodization, for example, by introducing transverse exponentially de-
caying factors exp(ax) for the 1D case and exp(ax+ay) for the 2D case, with a≥
being the decay constant [1]. For the parameters used in this paper, the Rayleigh
length is about 15.18 cm, and the apodized Airy beam with a = 0.1 can propagate
invariantly for about 6 Rayleigh lengths [1]. Taking the case v0 =−5 as an example,
the symmetry axis is zsym = 10 which is bigger than 6, so the corresponding finite
energy beam will mainly decelerate during propagation.
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Fig. 4 – Propagation of oblique 1D Airy beams with finite energy. (a)-(c) Corresponding to Figs.
1(a)-1(c), respectively. Inset shows the inputs and outputs for the three cases.

In Fig. 4 we display the propagation of oblique incident 1D Airy beams with
finite energy. Figures 4(a)-4(c) correspond to Figs. 1(a)-1(c), respectively. The inset
displays the intensity of the corresponding input and output beams. It is clear that the
cases displayed in Figs. 4(a) and 4(c) accelerate, whereas the case displayed in Fig.
4(b) decelerates during propagation. One can also predict that the cases in between
Figs. 4(a) and 4(b) will at first decelerate and then accelerate.

Finally, we should mention that one can use the same procedure to treat the
propagation of nonlinear Airy beams, that is, the ones propagating according to the
nonlinear Schrödinger equation. In this case, a similar kind of controllability can be
achieved for the oblique incidence of beams.

3. CONCLUSION

In summary, we have theoretically and numerically investigated the propaga-
tion of both 1D and 2D Airy beams with oblique incidence. We find that the Airy
beams with initial velocities still propagate along parabolic trajectories, but may un-
dergo deceleration before acceleration. The initial velocity can be determined by the
incident angles and directions. We also find that small incident angles can adjust the
accelerating process effectively. Our research may broaden the potential applications
of Airy beams.
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Since Airy beams can be used to produce light bullets [5, 16, 17], which is
quite popular research these days [29–32], the research reported here may help others
generate accelerating as well as decelerating light bullets.
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