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We demonstrate the dual accelerating Airy–Talbot recur-
rence effect, i.e., the self-imaging of accelerating optical
beams, by propagating a superposition of Airy beams with
successively changing transverse displacements. The dual
Airy–Talbot effect is a spontaneous recurring imaging of
the input and of the input with alternating component
signs. It results from the constructive interference of Airy
wave functions, which is also responsible for other kinds
of Airy beams, for example, Airy breathers. An input com-
posed of finite-energy Airy beams also displays the dual
Airy–Talbot effect, but it demands a large transverse
displacement and diminishes fast along the propagation
direction. © 2015 Optical Society of America

OCIS codes: (070.6760) Talbot and self-imaging effects; (070.2580)

Paraxial wave optics; (070.7345) Wave propagation.
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The Talbot effect is a self-imaging phenomenon, first observed
by Talbot [1] and explained by Lord Rayleigh [2]. Owing to its
potential applications in image preprocessing and synthesis,
photolithography, optical testing, optical metrology, spectrom-
etry, and optical computing, the Talbot effect has been reported
in, but not confined to, atomic optics [3,4], waveguide arrays
[5], photonic lattices [6], and x-ray imaging [7]. The Talbot
effect can also be obtained using harmonic waves [8], spherical
waves [9], and rogue waves [10,11], but a general requirement
for its appearance is the transverse periodicity of the input wave.
Thus an infinitely extending, transversely periodic input will
generate an infinitely extending, longitudinally periodic self-
imaging output—a Talbot carpet. For finite-window periodic
or nearly periodic inputs, partial reconstructions are possible in
the near field due to wave interference. However, a longitudinal
self-imaging may not be caused by transversely periodic beam
structures only [12,13]—but then this is not the Talbot effect

in the usual sense. For a thorough reading on the Talbot effect,
readers are directed to [14] and the references therein.

Very recently, the Airy–Talbot effect, formed from a super-
position of Airy functions, was introduced [13]. This effect is quite
different from previous research on Talbot, because the input is
an asymmetric self-accelerating beam, and, consequently, the self-
images also accelerate during propagation. In the last decade, Airy
and related accelerating beams have attracted widespread atten-
tion [15–17] and have been reported in nonlinear media [18–23],
on the surface of a metal [24–27], in the harmonic potential
[28,29], and elsewhere.

In this Letter, we demonstrate the dual Airy–Talbot effect,
theoretically and numerically. The dual Airy–Talbot effect does
not contain the images of the input only; the superpositions of
Airy beams with successively increasing transverse displace-
ments form two types of sharp images of the input and of the
input with alternating signs of the components, hence the
name, the dual Airy–Talbot effect. The effect is carried over to
the finite-energy Airy beams but with diminishing range and
clarity. We establish that, effectively, the Airy–Talbot effect
and the Airy breathers have a common cause—the constructive
interference of linear accelerating beams.

In free space, the paraxial wave equation can be written as
the dimensionless Schrödinger equation

i
∂ψ
∂z

� 1

2

∂2ψ
∂x2

� 0; (1)

where x and z are the normalized transverse coordinate and the
propagation distance, scaled by some characteristic transverse
width and the corresponding Rayleigh range [21,22]. It is as-
tonishing that such a simple parabolic partial differential equa-
tion can still offer interesting dynamics of its specific particular
solutions. According to the Fresnel diffraction integral [30], for
any input ψ�x� the corresponding propagating solution can be
written as
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We assume that the input ψ is chosen as a sum of equidistant
Airy functions

ψ�x� �
X
n∈Z

cnAi�x − nδ�; (3)

where cn is an arbitrary amplitude coefficient, and δ is an
arbitrary transverse displacement. By plugging Eq. (3) into
Eq. (2), one obtains
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The integral in Eq. (4) can be rewritten as a convolution of the
Fourier transforms of Ai�x − nδ� and exp�ix2∕2z� with x∕z
being the spatial frequency. As a result, Eq. (4) takes the form
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After some algebra, Eq. (5) can be rewritten as
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If we let ξ � η� iz∕2, Eq. (6) is recast into
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By using the definition of Airy function [31], one can write
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which is exactly Eq. (4)—the solution obtained in [13].
Naturally, the corresponding intensity is
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Since the phases corresponding to different components are
different, the components will interfere with each other and
form Airy breathers [32]. However, if znδ∕2 � 2mπ with m
being a nonzero integer, the phase contributions from all
the components will be the same. In other words, all the com-
ponents will be in phase because exp�iz∕2 · nδ� ≡ 1. So the in-
tensity is the same as the input, except for the transverse
displacement, due to the accelerating coordinate x − z2∕4.
This phenomenon is called the accelerating self-imaging or
Airy–Talbot effect [13], and the distance at which the first
recurrence appears is called the Talbot length:

zT � 4π

δ
: (10)

In Fig. 1, we display the intensity carpet of the Airy–Talbot
effect in the real frame of reference (z, x) [Fig. 1(a)] and in the
accelerating frame [Fig. 1(b)] by setting δ � 1 and by choosing
the components cn � �…; 1; 1; 1;…� for n ∈ �−5; 5�. To depict
the accelerating property more clearly, we combine the positive
and negative propagation cases separated by the dashed line and
indicated by the arrows. From Fig. 1, it is evident that the self-
imaging is more easily identified in the accelerating coordinates
than in the real coordinates. One easily recognizes the acceler-
ating self-images at �zT , �2zT , etc.

In addition to zT , another place of interest is at half of the
Talbot length, where another constructive interference appears.
By definition, this distance is given by zH � zT ∕2, but the im-
age seen is not of the input beam, as can be seen in Fig. 1; in
fact, from Eq. (9), it is given by
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4
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2
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which is similar to the input superposition, but with the rede-
fined (sign-changing) coefficients c 0n � cn exp�−inπ�. One
finds zHnδ∕2 � �2m − 1�π if n is odd and zHnδ∕2 � 2mπ
if n is even. That is, there is a π phase shift between the
nth and �n� 1�st components and their images are identical.
Thus the images at zH are as sharp as the ones at zT , are phase-
shifted relative to the input, come from the sign-alternating in-
put components, and recur at the same intervals �zT . For this
reason, we call the phenomenon the dual Airy–Talbot effect.

Different Talbot and dual-Talbot images can be constructed
for different choices of the coefficients cn. For example, if we
choose cn � �…; 1; i; 1; i; 1;…�, i.e., assume the coefficients of
the odd components are i, then Eq. (8) can be recast into

ψ�x; z� �
�X
even

Ai

�
x − nδ −

z2

4

�
� i

X
odd

Ai

�
x − nδ −

z2

4

��

× exp
�
i
z
2

�
x −

z2

6

��
(12)

and

Fig. 1. (a) Airy–Talbot effect in �x; z� coordinates. (b) Accelerating
�x − z2∕4; z� coordinates. Parameters are δ � 1, cn � 1 and n ∈ �−5; 5�.
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at z � zT and z � zH , respectively. In Eqs. (12) and (13), the
phase shifts between the two nearest components are π∕2 and
−π∕2, respectively. Thus the amplitude (except for the expo-
nential term) at zH is the conjugate of that at zT , but the inten-
sities are the same. Therefore, in this case, the beam at zH—the
dual Airy–Talbot image—is identical to the Airy–Talbot image
at zT . We show this effect in Fig. 2(a). The same result is
obtained if cn � �…; 1; −i; 1; −i; 1;…� is chosen.

To clarify things even further, we consider the case with
cn � �…; 1; 0; 1; 0; 1;…�, which makes the components in
phase at zH . The result is shown in Fig. 2(b). One should note
that the Talbot length here is halved in comparison to that
shown in Fig. 1, which can be easily seen if one replaces n by
2n in Eq. (9), making the problem identical to the one in
Fig. 1. As a result, zH mentioned above is the Talbot length
for this case. But one still observes the dual Airy–Talbot effect
at the half-Talbot length zH∕2; that is, at the quarter of the
original Talbot length.

We would like to point out that if there is only one com-
ponent (e.g., n � 0) in Eq. (8), the solution is reduced to the
well-known Airy solution [15]

ψ�x; z� � Ai
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x −
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6

��
: (14)

Thus an Airy wave function itself can be considered just as an
accelerating self-imaging beam, which can be understood in
two different ways:

(1) If the transverse displacement is δ → ∞, the components
will not affect each other. Therefore, one can obtain a single
Airy function as given in Eq. (14), and the corresponding
Talbot length is zT → 0.
(2) If the transverse displacement is δ → 0, all the components
will overlap into the Airy function given in Eq. (14), and thus
a single Airy function is obtained in the limit zT → ∞.

Based on the above analysis, the Airy function possesses the
characteristics of duality and indicates a close unity of the two
opposite limits. Therefore, the Airy function, the Airy–Talbot
effect, and the Airy breather can be considered from a unified
point of view. The appearance of the latter two phenomena
results from the interference among Airy wave functions with
different transverse displacements. While the Airy–Talbot ef-
fect is the result of interference of many displaced Airy func-
tions, the Airy breather is a result of the interference of just
two [32].

The energy of all the Airy functions considered above is
infinite, which is not very realistic; however, in a similar vein,
a plane wave is also not realistic—but still very useful. As done
earlier [16,21,22,28], an apodization is needed. Corresponding
with Eq. (3), the finite-energy version can be written as

ψ�x� �
X
n∈Z

cnAi�x − nδ� exp�a�x − nδ��; (15)

where a is the decay factor. Following the same procedure as
above, the propagating solution with Eq. (15) being the input is
given by
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(16)

which reduces to Eq. (8) if a � 0 and Eq. (5) in [16] if only
n � 0 is considered. The corresponding intensity is
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in which the decay factor a affects the Airy function profile
during propagation and leads to the accelerating range being
limited to only a few Rayleigh lengths so that the self-
imaging property will be affected even though znδ∕2 � 2mπ.
In Figs. 3(a1) and 3(b1), we display the propagation of a finite-
energy input with cn � �…; 1; 1; 1;…�, in which the Airy–
Talbot effect disappears fast. The reason is that the Talbot length
is too long and beyond the accelerating range. So one has to
enlarge δ (viz. shorten zT ) to make sure that the accelerating
range is long enough for the formation of the Airy–Talbot ef-
fect. In Figs. 3(a2) and 3(b2), we show the result with δ � 8, in
which the Airy–Talbot effect can be seen, even though there are
some distortions, due to finite energy.

Another interesting phenomenon is that the beam propa-
gates almost along straight lines when the propagation distance
is long enough, as shown in Figs. 3(a1) and 3(b1). As men-
tioned above, the accelerating range is only limited to a few
Rayleigh lengths, and with the increasing distance, each finite-
energy Airy component is getting closer to a Gaussian-like beam
[16] with the symmetry axis x � nδ. As a result, the propagation
is more and more similar to the interference of Gaussian-like
beams, which do not possess accelerating property.

In summary, we have theoretically and numerically investi-
gated the dual Airy–Talbot effect by superposing Airy wave
functions with successively changing transverse displacement

Fig. 2. Dual Airy–Talbot carpet in the accelerating frame. (a) Case
with cn � �…; 1; i; 1; i; 1;…�. (b) Case with cn � �…; 1; 0; 1; 0; 1;…�.
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and properly choosing the coefficients of the components. At
half-Talbot length, the intensity of the beam may not be the
same as the input beam, because it comes from a redefined ini-
tial superposition, which is the dual Airy–Talbot effect.
Affected by the decay factor, the finite-energy Airy–Talbot ef-
fect can only be obtained with large transverse displacements.
Last but not least, in our approach, the concepts of an Airy
breather and Airy–Talbot effect can be unified, because both
stem from the interference of Airy wave functions. The dual
Airy–Talbot effect can have potential applications in particle
capture, light-bullet generation, photolithography, optical test-
ing, and elsewhere. In addition, it can also be used in flores-
cence microscopy [33] if cn are chosen as multiplications of
random numbers and �…; 1; i; 1; i; 1;…�.
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