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Abstract. We investigate dispersion relations of strained complex Lieb lattices
systematically, based on the tight-binding method with the nearest-neighbor approxi-
mation adopted. We find that there are edge states for strained Lieb lattices with solid
edges, while there are no edge states for the pointy and pointy-solid edges. Different
from honeycomb lattices, the PT -symmetric Lieb lattices cannot be generated.
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1. INTRODUCTION

Optical lattices are special photonic structures that can modulate light effec-
tively and were much investigated in the past decades [1–6]. Recently, edge states
of different kinds of lattices, with the corresponding boundaries, have attracted a lot
of attention. Among different lattices, honeycomb lattices [7–15] and Lieb lattices
[16–23] have excited a lot of interest. Photonic topological insulators with strange
optical properties, based on the two kinds of lattices, have been reported in [24–26].
The reason that lattices exhibit such exotic optical properties lies in the existence of
Dirac cones in the energy bands in the momentum space. The edge states that ap-
pear in the bulk band gap will spatially localize on the boundaries of strained lattices
[7, 21, 27, 28] and will be robust against defects, due to the topological protection –
thus possibly forming a topological insulator.

Lieb lattice, which is the face-centered square lattice, has three lattice sites in
each unit cell. As reported previously [16–19], it displays a triply-denegerate dia-
bolical point at which two conical bands and a flat band intersect. The flat band is
a non-dispersive band and is topologically trivial [28], which corresponds to totally
degenerate eigenstates. Since the states are degenerate, they are strongly correlated
[29], and lead to enhanced light-matter interaction [30]. In addition to Lieb lattices,
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2 Dispersion relations of strained and complex Lieb lattices 231

flat bands are also reported in honeycomb lattices with inhomogeneous strains [31] or
polarized monochromatic light irradiations [11], in kagome lattices [32, 33], square
lattices [29], T3 optical lattices [34], etc. Similar to honeycomb lattices, Klein tunnel-
ing [17] and conical diffraction [19] are also demonstrated in Lieb lattices. Different
from the honeycomb lattices, edge states of strained Lieb lattices are not reported
before, to the best of our knowledge. Even though edge states of Lieb lattices are
mentioned previously [18, 20, 21, 26, 28], they are not investigated in-depth.

It is known that if at the sites of the honeycomb lattice gain and loss are pro-
vided alternatively, the corresponding dispersion relation will be complex. However,
the dispersion relation will be real again if the honeycomb lattice is artificially de-
formed. That is, the PT -symmetric honeycomb lattices can be produced [35]. Sim-
ilar to the honeycomb lattice, a Lieb lattice can also be made complex, but this pos-
sibility was not explored before. A question arises, can complex Lieb lattices also
exhibit PT -symmetric properties? Can strained Lieb lattices exhibit edge states?
This paper will answer these questions.

For investigating the edge states, two methods are used. One is the nearest-
neighbor method, which treats the system with exact diagonalization of the cylinder
[7]. The other method is relating the presence of edge states to the geometrical phase
(Zak’s phase) of the bulk [36, 37]. In our theoretical analyses, nearest-neighbor tight-
binding method is adopted, which is also applied in previous works [7, 28, 35].

The organization of the paper is as follows. In Sec. 2, we study the dispersion
relation of the two-dimensional Lieb lattice, using the tight-binding method; in Sec.
3, we investigate the dispersion relation of strained Lieb lattices with different edges
(solid, pointy, solid-pointy and zigzag boundaries) systematically; in Sec. 4, the
dispersion relation of complex Lieb lattices is discussed in detail. We conclude the
paper in Sec. 5.

2. TWO-DIMENSIONAL DISPERSION RELATION

A Lieb lattice is displayed in Fig. 1(a), in which the lattice sites in a dashed
square form a unit cell. We assume that the hopping among lattice points only hap-
pens between the nearest-neighbor (NN) sites, as shown by the double-headed ar-
rows. Therefore, the corresponding Hamiltonian can be written as

HTB =−t
∑
m

[
(f∗rmgrm+e1 +f∗rmgrm+e2 +f∗rmhrm+e3 +f∗rmhrm+e4)

]
+ h.c.,

(1)

where f∗rm is the creation operator on themth lattice site, rm is the position of themth
lattice site, t is the hopping strength, and the vectors e1 = (−a/2,0), e2 = (a/2,0),
e3 = (0,−a/2), e4 = (0,a/2) are shown in Fig. 1(a). In real and momentum spaces,
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we have the transform pairs

fk =
1√
N

∑
m

frm exp(ik ·rm), frm =
1√
N

∑
k

fk exp(−ik ·rm). (2)

Plugging Eq. (2) into Eq. (1), one obtains

HTB =−t
∑
k

f∗kgk[exp(−ik ·e1) + exp(−ik ·e2)]

−t
∑
k

fkg
∗
k[exp(ik ·e1) + exp(ik ·e2)]

−t
∑
k

f∗khk[exp(−ik ·e3) + exp(−ik ·e4)]

−t
∑
k

fkh
∗
k[exp(ik ·e3) + exp(ik ·e4)]. (3)

Equation (3) can also be rewritten as

HTB =
∑
k

[
f∗k , g∗k, h∗k

]
H

fkgk
hk

 (4)

with the Hamiltonian kernel

H=−2t

 0 cos
(
akx
2

)
cos
(aky

2

)
cos
(
akx
2

)
0 0

cos
(aky

2

)
0 0

 . (5)

Therefore, one can solve Eq. (5) for the eigenvalues

β1 = 0,

β2,3 =±2t

√
cos2

(
akx
2

)
+ cos2

(
aky
2

)
,

(6)

which contribute to the dispersion relation. In Fig. 1(b), we display the dispersion
relation in the first Brillouin zone with a = 1 (the corresponding kx,y ∈ [−π, π]).
Note that we take a= 1 throughout the paper. It is clear that there is a flat band and
two symmetric conical bands about the flat band; such symmetry is known as the
particle-hole symmetry [19–21]. The two conical bands form a Dirac point, located
at one corner of the first Brillouin zone and intersected by the flat band, as shown in
Fig. 1(c), which is the zoomed region marked by the ellipse in Fig. 1(b).
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Fig. 1 – (a) Lieb lattice. (b) Dispersion relation in the first Brillouin zone. (c) Zoomed region marked
with an ellipse in (b).

3. DISPERSION RELATIONS OF STRAINED LIEB LATTICES

Honeycomb lattice with bearded, zigzag, bearded-zigzag, and armchair bound-
aries can be strained [7, 12], which will lead to different dispersion relations. Similar
to honeycomb lattice, a strained Lieb lattice can also have different boundaries, such
as solid, pointy, solid-pointy, zigzag boundaries, etc. Therefore, different strained
Lieb lattices may also possess different dispersion relations. In this section we
present a thorough discussion on the dispersion relations of strained Lieb lattices
with different boundaries.

3.1. SOLID EDGES

A Lieb lattice with solid edges is shown in Fig. 2(a), in which we mark off
a unit cell with a rectangle. For convenience, we only show one layer, i.e. n = 1.
According to the NN approximation, the Hamiltonian can be written as

Hstraight =−t
∑
m

[
f∗m1(f

′
m2 +fm2) +f∗m2(fm1 +f ′′m1 +fm3)

]
−t
∑
m

[
f∗m3(fm2 +fm5) +f∗m4(f

′
m5 +fm5)

]
−t
∑
m

f∗m5(fm3 +fm4 +f ′′m4). (7)

In the momentum space, Eq. (7) can be written as

HTB =
∑
k

[
f∗m1, f∗m2, f∗m3, f∗m4, f∗m5

]
H


fm1

fm2

fm3

fm4

fm5

 , (8)
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in which the corresponding Hamiltonian kernel is

H=−2t


0 cos

(
kx
2

)
0 0 0

cos
(
kx
2

)
0 1

2 0 0
0 1

2 0 0 1
2

0 0 0 0 cos
(
kx
2

)
0 0 1

2 cos
(
kx
2

)
0

 . (9)
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Fig. 2 – (a) Strained one-layer Lieb lattice with solid edges. The sites in the square compose a unit
cell. (b) Left panel: corresponding band structure with kx ∈ [0, 2π] and n= 50. Right panel: a

magnified view of the region shown in the left panel by a box.

It is clear that the Hamiltonian kernel is a 5× 5 matrix, and the size of the
matrix for any n can be induced to be (2 + 3n)× (2 + 3n). In Fig. 2(b), we show
the band structure of a 50-layer Lieb lattice with two solid edges in kx ∈ [0, 2π].
Even though the band structure is similar to those of a bearded honeycomb lattice
[7, 10, 12], there is no degenerate band in the energy spectrum (the point at β = 0 is
from the flat band). However, between the bulk band and the flat band, there are two
states which fill the band gap. A magnified view of the region in left panel shows
the states more clearly – they connect the bulk band and the flat band. These are the
edge states corresponding to the strained Lieb lattice with solid edges.
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3.2. POINTY EDGES

A Lieb lattice with pointy edges is exhibited in Fig. 3(a), in which the unit
cell is also marked by a rectangle. The corresponding Hamiltonian in the momentum
space can be written as

HTB =
∑
k

[
f∗m1, f∗m2, f∗m3, f∗m4

]
H


fm1

fm2

fm3

fm4

 , (10)

with

H=−2t


0 0 1

2 0

0 0 cos
(
kx
2

)
0

1
2 cos

(
kx
2

)
0 1

2
0 0 1

2 0

 . (11)

The dispersion relation of this strained Lieb lattice can be obtained from Eq. (11),
and the results are displayed in Fig. 3(b), in which there is a band gap between the
flat and the upper (bottom) bands. One can clearly see that there is no edge state in
the band gap.
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Fig. 3 – Strained Lieb lattice with pointy edges. Figure setup is similar to Fig. 2.
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3.3. SOLID-POINTY EDGES

The Lieb lattice can also be strained with hybrid boundaries, as shown in Fig.
4(a) – one edge is solid and the other is pointy. The corresponding band structure
can be obtained as before and is displayed in Fig. 4(b), which is similar to those
displayed in Fig. 3. Therefore, there are still no edge states in this case.
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Fig. 4 – Strained Lieb lattice with solid-pointy edges. Figure setup is as in Fig. 3.

4. COMPLEX LIEB LATTICES

In the above section, we have theoretically investigated the dispersion relations
of strained Lieb lattices with different edges. Similar to honeycomb waveguides [35],
Lieb waveguides can also be made complex. Since there are three sites in each unit
cell of Lieb lattice, we will assume that one waveguide exhibits gain, and the other
two loss.

The structure of a complex Lieb waveguide lattice with alternating gain and
loss is displayed in Fig. 5(a). Considering arrangement in the figure and according
to the tight-binding model, the dynamics of the system can be described by

i∂zfrm =−∆frm− iγfrm + t(cgrm+e1 +grm+e2 +hrm+e3 +hrm+e4),

i∂zgrm = + ∆grm + iγgrm + t(frm+e1 + cfrm+e2),

i∂zhrm = + ∆hrm + iγhrm + t(frm+e3 +frm+e4),

(12)

where γ describes the gain or loss of the waveguide, c is the deforming coefficient
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8 Dispersion relations of strained and complex Lieb lattices 237

of the lattice [8, 35], and ∆ is the detuning in the effective index between adjacent
waveguides.

We are looking for the solutions of the form:

frm =F exp[i(βz+mkx +nky)],

grm =Gexp[i(βz+mkx +nky)],

hrm =H exp[i(βz+mkx +nky)]

of Eq. (12). Here, F , G, and H are the amplitudes. Therefore, one obtains an
eigenvalue problem

M

FG
H

= β

FG
H

 , (13)

whereM is the matrix
∆ + iγ −t

[
cexp

(
ikx2
)

+ exp
(
−ikx2

)]
−2tcos

(
ky
2

)
−t
[
cexp

(
−ikx2

)
+ exp

(
ikx2
)]

−(∆ + iγ) 0

−2tcos
(
ky
2

)
0 −(∆ + iγ)

 .
(14)

The corresponding dispersion relation can be calculated as

β1 =− (∆ + iγ),

β2,3 =±

√
∆2−γ2 + 2iγ∆ + t2(c−1)2 + 4ct2 cos2

(
kx
2

)
+ 4t2 cos2

(
ky
2

)
.

(15)

Clearly, Eq. (15) is the same as Eq. (6) if ∆ = γ = 0 and c = 1, so that the
dispersion relation is as in Fig. 1(b). If γ = 0 and c = 1, the eigenvalues are all
real and the dispersion relation is displayed in Fig. 5(b) (∆ = 0.2 for this case).
In this case, the triply-degenerate diabolic point disappears. Instead, a band gap
appears between one conical band and the flat band. While if ∆ = 0, c = 1 and
γ 6= 0, the eigenvalues are complex. In Figs. 5(c) and 5(d), we show the real and
imaginary parts of the dispersion relation with γ = 0.5, which is quite similar to
the one of the complex honeycomb lattice [35]. As demonstrated previously [35],
lattice deformation may lead to completely real eigenvalues even though the lattice
is complex. In other words, there may exist the PT -symmetric lattice.

Here, we also deform the complex Lieb lattice and investigate the correspond-
ing dispersion relation. According to Eq. (15), when ∆ = 0 and if 0< c≤ (1−γ/t)
or c≥ (1 +γ/t), β2,3 will be real. However, the flat band β1 is always complex, be-
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Fig. 5 – (a) Complex Lieb lattice. Each point represents a waveguide. The red waveguides exhibit
gain, while the other two kinds exhibit loss. (b1) Dispersion relation with ∆ = 0.2 and γ = 0. (b2) A
magnified view of the dispersion relation around a corner of the first Brillouin zone. (c) and (d) Figure
setup is as in (b), but for the real and imaginary parts, for ∆ = 0 and γ = 0.5, respectively. For all the

cases, c= 1.

cause it cannot be adjusted by the deforming coefficient c. Since the eigenvalues are
always complex, there exists no PT -symmetric strained Lieb lattice. Interestingly,
the triply-degenerate diabolic point will reappear in the real parts of the dispersion
relation if c = 1− γ/t or c = 1 + γ/t. For other cases with 0 < c < (1− γ/t) or
c > (1 + γ/t), there is no degenerate diabolic point. No matter what the value of c
is, the particle-hole symmetry holds true in the real part of the dispersion relation if
∆ = 0.

5. CONCLUSION

In summary, we have investigated the dispersion relations of strained and com-
plex Lieb lattices. We find that there exist no edge states in the strained Lieb lattices
with pointy and pointy-solid edges. However, for the case with solid edges, there
are edge states. Concerning complex Lieb lattices, the PT -symmetric Lieb lattices
cannot be obtained either, because the flat band is not affected by the deforming coef-
ficient and is always complex, even though the imaginary eigenvalues of the top and
bottom bands can be eliminated. This investigation will help in understanding better
the dispersion relations of strained Lieb lattices with different edges and complex
Lieb lattices, and guide researchers to choose right structures in trying to fabricate
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topological insulators.
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