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Abstract We investigate the fractional Schrödinger equation
with a periodic PT -symmetric potential. In the inverse space,
the problem transfers into a first-order nonlocal frequency-delay
partial differential equation. We show that at a critical point,
the band structure becomes linear and symmetric in the one-
dimensional case, which results in a nondiffracting propagation
and conical diffraction of input beams. If only one channel in the
periodic potential is excited, adjacent channels become uni-
formly excited along the propagation direction, which can be
used to generate laser beams of high power and narrow width.
In the two-dimensional case, there appears conical diffraction
that depends on the competition between the fractional Lapla-
cian operator and the PT -symmetric potential. This investiga-
tion may find applications in novel on-chip optical devices.
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1. Introduction

It is well known that a non-Hermitian Hamiltonian may
possess an entirely real eigenvalue spectrum if it is PT -
symmetric [1]. PT symmetry implies that the eigenfunc-
tions of a Hamiltonian are also eigenfunctions of the parity-
time operator, that is H P̂T̂ = P̂ T̂ H . The action of the par-
ity operator P̂ is defined by p̂ → − p̂, x̂ → −x̂ , whereas
that of the time operator T̂ by p̂ → − p̂, x̂ → x̂, i → −i ,
where p̂ and x̂ represent the momentum and position oper-
ators. From this point of view, a PT -symmetric Hamilto-
nian requires V (x) = V ∗(−x), which indicates that the real
part of the complex potential should be an even function
of the position and the imaginary part should be an odd
[2]. Such potentials are easily realized in optics. There, the
real part of the complex potential corresponds to an even
change in the refractive index, whereas the imaginary part
indicates alternatively changing loss and gain with equal
amplitudes [3].

Thus far, it has been theoretically and experimentally es-
tablished that light possesses unique characteristics in both
linear [4–9] and nonlinear [10–15] PT -symmetric sys-
tems. In particular, the spectra of PT -symmetric systems
possess a critical point, above which the eigenvalues of the
system become complex and therefore the PT symmetry
is broken. It is also known that in topological photonics
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[16–19], Dirac cones in the energy zones can be deformed
by the PT symmetry, which results in the complex eigen-
values [20, 21] becoming distributed in a circular fashion.
Based on these unique properties, enabled by PT sym-
metry, some novel on-chip optical devices such as optical
isolators [22–25] and coherent perfect absorbers [26–28]
have been proposed. Very recently it was pointed out how
a complex potential can be used to illustrate specific fea-
tures of disordered systems, in particular non-Hermitian
photonic lattices [29] and optical waveguide arrays [30].

On the other hand, research into fractional Schrödinger
equation (FSE) [31] – a generalization of the standard
Schrödinger equation (SE) that includes fractional deriva-
tives – lead to an interesting extension of quantum mechan-
ics that included new insights into the fractional field theory
and the behavior of particles with fractional spin [32]. An-
other interesting example of space-fractional quantum me-
chanics is a condensed-matter realization of Lévy crystals
[33]. The FSE was introduced into optics in 2015, and both
the steady behavior [34] and propagation dynamics [35] of
wavepackets in a harmonic potential were investigated. Dif-
ferent from the phenomena observed in a regular SE, those
found in FSE are truly intriguing, such as the zigzag propa-
gation of light in a parabolic potential. Most of the problems
related to FSE are still open, for the simple reason – the rig-
orous mathematical foundation of many facets of fractional
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calculus is still missing. A quintessential example is the
one dealing with light manipulation and control with the
help of a PT -symmetric potential. Indeed, the modula-
tion of light in such a system represents a fresh problem of
practical interest that deserves deeper exploration.

In this paper, we investigate the dynamics of waves
in the FSE with a PT -symmetric potential. We find that
similar phenomena to the ones observed in the regular SE
can be also observed in this model. Still, major differences
abound. The band structure of such a model is different
from that of a regular SE, especially near the critical point,
which becomes kink-like in the one-dimensional (1D) case
and cone-like in the two-dimensional (2D) case. The linear
band structure indicates a nondiffracting propagation in the
1D case. However, whether conical diffraction in the 2D
case can be realized or not, depends on the strength of the
PT -symmetric potential.

2. One-dimensional case

The FSE we are interested in can be written as

i
∂ψ

∂z
+

[
−

(
− ∂2

∂x2

)α/2

+ V (x)

]
ψ = 0, (1)

where α is the Lévy index (1 < α ≤ 2) and V (x) is the
periodic PT -symmetric potential. As a versatile model,
we pick the simple periodic lattice potential of the form
V (x) = A[cos2(x) + iV0 sin(2x)] with the amplitude A =
4 and V0 a parameter to be varied. Clearly, the period of
the potential is D = π . When the Lévy index is α = 2,
one recovers the usual SE. Here, we explore the opposite
region, α close to 1 from the positive side [35].

The solution of Eq. (1) can naturally be written in the
form φn(x, k) exp[iβn(k)z], in which φn(x, k) is the Bloch
mode and βn(k) is the propagation constant. Plugging this
ansatz into Eq. (1), one obtains

− βφ +
[
−

(
− ∂2

∂x2

)α/2

+ V (x)

]
φ = 0. (2)

According to the Floquet-Bloch theorem, φ(x) can be writ-
ten as φ(x) = wk(x) exp(ikx), where wk(x) = wk(x + D)
is spatially periodic. One can expand wk(x) and the poten-
tial in series of plane-waves, wk(x) = ∑

n cn exp(i Kn x),
with Kn = 2πn/D and V (x) = ∑

m Pm exp(i Km x), where
Pm = ∫

D V (x) exp(−i Km x)dx/D. Plugging these series
into Eq. (2), one obtains

∑
n

[−β − |k + Kn|α
]

cn exp[i(k + Kn)x]

+
∑
m,n

Pmcn exp[i(k + Kn + Km)x] = 0.

Figure 1 Photonic band structure of Eq. (2) for (a) V0 = 0.4 and
(b) 0.5. (c) and (d) Real and imaginary parts of the band structure
for V0 = 0.55, respectively.

Multiplying the above equation by exp[−i(k + Kq )x] and
integrating over x ∈ (−∞,+∞), one ends up with

−|k + Kq |αcq +
∑

m

Pmcq−m = βcq ,

which is an eigenvalue problem in matrix form. As a result,
the band structure corresponding to Eq. (2) can be obtained
for certain α.

The photonic band structure in the first Brillouin zone,
corresponding to different values of V0, is displayed in
Fig. 1. Clearly, the threshold value of V0 is V th

0 = 0.5, be-
low which the band structure is entirely real, as shown in
Fig. 1(a). However, at the threshold value, as shown in
Fig. 1(b), the band gap disappears and the two bands con-
nect with each other at the edges of the Brillouin zone.
Further increasing the value of V0, the two bands begin to
merge with each other and become a double-valued band.
In Figs. 1(c) and 1(d), the real and imaginary parts of the
band structure are displayed. One can see that the imagi-
nary eigenvalues in Fig. 1(d) are all zero in the closed region
of Fig. 1(c), while outside the region, the eigenvalues are
complex. More numerical simulations demonstrate that the
closed region in Fig. 1(c) shrinks gradually and ultimately
disappears with increasing V0. The phenomena described
are quite similar to those reported previously [4, 7], but
there are also stark differences – most notably, around k = 0
the bands are symmetric and almost linear. Especially, the
bands are completely symmetric and linear at V0 = V th

0 ,
as displayed in Fig. 1(b). Linear bands mean that a beam
propagating in this lattice is diffraction-free, because the
second-order derivative of the band is 0.

We should note that the band structure at the critical
point V0 = 0.5 can also be derived analytically, based on
the method previously applied to the regular Schrödinger
equation (α = 2) [36]. Rather generally, at V0 = 0.5 the
band structure of the fractional Schrödinger equation is the
same as the one of the potential-free particle with fractional
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Figure 2 (a) Propagation of a wide Gaussian beam ψ(x) =
exp(−x2/100) in the PT -symmetric lattice with V0 = 0.5. (b)
The corresponding propagation in the inverse space. (c) and (d)
Setup is as in (a) and (b), but with a narrow Gaussian beam
ψ(x) = exp(−x2) that excites only one channel.

kinetic energy operator, i.e. of the type ∼ |k|α [37]. For the
limiting cases, at α = 2 one has the usual parabolic disper-
sion relation, and at α = 1 one finds the linear dispersion
relation leading to conical diffraction.

We now focus on the propagation of light at the tran-
sition point. It has to be done numerically, and we do it
by utilizing the split-step fast Fourier transform method of
second order, as displayed in Fig. 2. Figure 2(a) shows the
case of many waveguiding channels excited by a wide Gaus-
sian beam; the beam indeed propagates without diffraction
except for the initial splitting, which is a 1D-equivalent of
conical diffraction. Note the preferential propagation to one
side, which can be explained by the projection coefficient
method of [4, 7]. Unidirectional propagation can be ob-
served if the beam is launched with an appropriate incident
angle. Conical diffraction results from the symmetric linear
diffraction relation, which is similar to those discussed in
topological photonics [38, 39].

To better understand the propagation, we consider Eq.
(1) in the inverse space, which can be written as

i
∂ψ̂(k, z)

∂z
+ c0ψ̂(k, z) + c−2ψ̂(k − 2, z)

+ c+2ψ̂(k + 2, z) = 0, (3)

where ψ̂ is the Fourier transform of ψ, c0 =
A/2 − |k|, c−2 = Aπ (1/2 + V0), and c+2 = Aπ (1/2 −
V0). Clearly, Eq. (3) is a first-order nonlocal frequency-
delay partial differential equation that couples the wave-
function at different k values, similar to the coupled discrete
photonic waveguides [40]. Such an infinitely-dimensional
dynamical system is quite typical of FSE, in which the cou-
pling strengths for the cases k � k − 2 on the k > 0 side
and k � k + 2 on the k < 0 side are different. This ex-
plains the observed fact that light is preferentially skewed

to one side during propagation in a PT -symmetric sys-
tem. At the critical point V0 = 1/2, the coupling exists only
for the k � k − 2 case. Figure 2(b), which is the propa-
gation in the inverse space that corresponds to Fig. 2(a),
demonstrates that such a coupling only acts on the k > 0
side, where the new modes in the inverse space are dis-
cretely excited during propagation. It is worth mentioning
that linear dispersion relations and conical diffraction in a
PT -symmetric waveguide array with the regular diffrac-
tion band structure can also be observed by introducing
longitudinal gain/loss modulation [41].

We now turn to the case with only one channel initially
excited, as depicted in Figs. 2(c) and 2(d). In Fig. 2(c),
one finds that the traditional discrete diffraction [42, 43]
disappears, and instead the channels are excited gradually
and uniformly to the left and right, which results in an
increasing power of the beam. Note that such behavior
was explained before on the basis of spectral singulari-
ties of the Schrödinger equation at the critical point [36].
Even though the power is not conserved during propagation,
the “quasipower” Q = ∫ +∞

−∞ ψ(x)ψ∗(−x)dx is. From Fig.
2(d), which represents the corresponding propagation in
the inverse space, the coupling appears in the k > 0 region,
which reflects the skewness of the propagation in each chan-
nel, noted in Fig. 2(c). We should stress that the discrete-like
diffraction in Fig. 2(c) is just the conical diffraction propa-
gation of the case with only one channel excited.

One may notice that the propagation in Fig. 2(d) seem-
ingly conflicts with the rule unveiled by Eq. (3). How-
ever, numerical simulations indicate that the beam stripes
at k = 1, 3, 5, · · · come from those at k = 2, 4, 6, · · ·. The
reason is that the narrow beam in the real space possesses a
broad width in the inverse space, which leads to the interfer-
ence among more and more components as the beam prop-
agates. Note also the increased intensity of k = 1 and k = 3
modes, coming from the gain/loss feature of the complex
potential. The intensity shown in Fig. 2(d) is normalized,
to show the propagation more clearly; the increasing power
during propagation will gradually overwhelm the anterior
propagation. One may conclude that filamentary character-
istics displayed in Fig. 2(d), resulting from Fig. 2(c), can
be used to generate high-power narrow-width laser beams.

3. Two-dimensional case

We now extend the analysis to FSE in two-dimensions,
which offers even more interesting behavior. In Cartesian
coordinates, the equation can be written as

i
∂ψ

∂z
+

[
−

(
− ∂2

∂x2
− ∂2

∂y2

)α/2

+ V (x, y)

]
ψ = 0. (4)

The complex periodic potential is generalized to the
appropriate 2D form V (x, y) = A{cos2(x) + cos2(y) +
iV0[sin(2x) + sin(2y)]}. The 2D band structure is displayed
in Fig. 3. Again, the diffraction relation is almost linear at
the center of the first Brillouin zone. Especially, the upper

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



LETTER
ARTICLE

Laser Photonics Rev. 10, No. 3 (2016) 529

Figure 3 Two-dimensional band structure of Eq. (4). Figure
setup is as in Fig. 1. Inset in (b) displays the band structure
along main symmetry points, in which the coordinates are �(0,0),
M(1,0), and X(1,1), respectively. Inset in (c) shows the phase
diagram of the first Brillouin zone, in which “R” represents the
complete real eigenvalue region, and “C” represents the complex
eigenvalue region.

band at the critical point, as shown in Fig. 3(b), is com-
pletely linear. For the lower band, as exhibited in the inset
in Fig. 3(b), the band is also linear along the �-M direction.
In Figs. 3(c) and 3(d), the band structure is for the case above
the critical point, from which one finds that the completely
real eigenvalues are surrounded by four symmetric regions
of complex eigenvalues, with the four vertices placed at the
corners of the first Brillouin zone, as shown in the inset
in Fig. 3(c). This is different from the structure displayed
in Ref. [4]. Numerical simulations demonstrate that the re-
gion of real eigenvalues is not affected much by the value
of V0, but along the diagonal directions of the first Brillouin
zone, the eigenvalues are all real. In addition, the regions
of complex eigenvalues broaden if V0 further increases.

Considering that the upper band in Fig. 3(b) is com-
pletely linear – which is quite similar to the Dirac cone in
topological photonics – a beam that excites the Floquet-
Bloch mode of the upper band will exhibit a 2D conical
diffraction [19, 44, 45] during propagation. However, such
a conical diffraction is affected by the strength of the PT -
symmetric potential, which is a complex square lattice (the
first Brillouin zone of which is also a square).

In Figs. 4(a1)-4(d1) and Figs. 4(a2)-4(d2), we display
the beam intensities at certain propagation distances with
A = 1, corresponding to narrow and wide inputs, respec-
tively. We have constructed the inputs by multiplying a
Gaussian with the Floquet-Bloch mode at kx = ky = 0
[7]. Figures 4(e1) and 4(e2) exhibit the corresponding
panoramic view of the propagation. Clearly, the conical
diffraction can be realized in the case of a relatively weak
PT -symmetric potential. According to Fig. 3(b) and the
inset, the group velocity of the conical diffraction should be
1, since the slope of the linear band structure is 1. Therefore,
the relation between the radius of the cone and the propaga-

Figure 4 Beam intensities at certain propagation distances, as
displayed in each panel. The dashed half-circles indicate the the-
oretical prediction of the conical diffraction. (a1)-(d1) The case
with only one channel excited. (a2)-(d2) The case with many
channels excited. (e1) and (e2) Panoramic views of the conical
diffraction, corresponding to (a1)-(d1) and (a2)-(d2), respectively.

tion distance should be z =
√

x2 + y2. In Figs. 4(a1)-4(d1)
and Figs. 4(a2)-4(d2), the dashed half circles represent the
theoretical prediction of the cone size at certain distances,
which completely agrees with the numerical simulations.

One also finds that in Fig. 4, the beam intensity is sym-
metric with respect to y = x but asymmetric with respect
to y = −x ; this is due to the skewness of beam propa-
gation that is caused by the PT -symmetric potential. If
we increase the value of A to 4 (not shown), the coni-
cal diffraction is much inhibited and the maximum inten-
sity also increases dramatically during propagation, which
means that the PT -symmetric potential plays a major role
in the propagation dynamics. In other words, there is a com-
petition between the fractional Laplacian that leads to the
linear band structure in Fig. 3(b) (which will induce the
conical diffraction [37] during propagation) and the PT -
symmetric potential (which will induce beam localization).
The main factor that determines the outcome of competi-
tion is the strength of the PT -symmetric potential, which
is characterized by the value of A. If the strength of the po-
tential is high enough, the beam will be trapped in the lattice
sites to one side and the diffraction will be suppressed [46].

4. Conclusion and outlook

In summary, we have investigated the conical diffrac-
tion of a light beam in a fractional Schrödinger equation
with a PT -symmetric potential. Our investigation not
only demonstrates how to obtain beam localization in a
PT -symmetric potential without utilizing nonlinearities,
but also connects fractional Laplacian and PT symme-
try, which indicates that our investigation possesses ad-
vantages from both sides. Thus, it may exhibit a great
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deal of applicative potential for fabricating on-chip optical
devices.

In an outlook, we have to point out that it is still chal-
lenging and an open problem to design a physical realiza-
tion of the free propagation and conical diffraction in the
fractional Schrödinger equation with a PT -symmetric po-
tential. One possible breakout could be based on Eq. (3),
which is similar to the equation that describes the propaga-
tion of light in coupled waveguides. The complexity here
comes from the fact that one has to elaborate on the coupling
strength among “waveguides”, which indeed is conceivable
according to previous literature [40].
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