
Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices

Zhaoyang Zhang,1,2 Yiqi Zhang,2 Jiteng Sheng,3 Liu Yang,1,4 Mohammad-Ali Miri,5 Demetrios N. Christodoulides,5

Bing He,1 Yanpeng Zhang,2 and Min Xiao1,6,*
1Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

2Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic
Technique, Xi’an Jiaotong University, Xi’an 710049, China

3Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
4College of Physics, Jilin University, Changchun 130012, China

5CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
6National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China

(Received 10 July 2016; published 13 September 2016)

We experimentally demonstrate PT-symmetric optical lattices with periodical gain and loss profiles in a
coherently prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic
parameters, the onset of PT-symmetry breaking is observed through measuring an abrupt phase-shift jump
between adjacent gain and loss waveguides. The experimental realization of such a readily reconfigurable and
effectively controllable PT-symmetric waveguide array structure sets a new stage for further exploiting and
better understanding the peculiar physical properties of these non-Hermitian systems in atomic settings.
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The discovery of parity-time (PT) symmetric
Hamiltonians has allowed the physics community to see
the behaviors of non-Hermitian systems in a new light [1].
It was found that a broad class of complex Hamiltonians
can exhibit altogether real eigenvalue spectra, provided
they respect the parity-time symmetry [1–3]. Another
intriguing consequence of such a PT-symmetry condition
is the possibility for an abrupt symmetry breaking phase
transition, beyond which the spectrum ceases to be real and
starts to become complex, once a parameter controlling the
degree of non-Hermiticity exceeds a certain critical thresh-
old [4–6]. The experimental studies came about only
recently after recognizing that optics can provide a fertile
ground where PT-symmetric concepts can be implemented
[4–8]. What facilitates this possibility is the formal equiv-
alence between the quantum Schrödinger equation and the
optical wave propagation equation (under paraxial approxi-
mation), where the gain-loss parameters are responsible for
introducing the non-Hermiticity into the systems. Based on
this isomorphism, one can easily show that a necessary (yet
not sufficient) condition for PT symmetry is that the real
part of the complex potential must be an even function of
the position while its imaginary counterpart (in optics
corresponding to the gain or absorption) must have a
spatially antisymmetric profile [3,5]. In recent years,
significant progress has been made on both theoretical
and experimental fronts concerning a variety of optical
PT-symmetric systems that simultaneously engage gain
and loss processes in a balanced fashion [7–24]. These
studies have unveiled a number of interesting phenomena
such as non-Hermitian Bloch oscillations [7,8], unidirec-
tional invisibility [14–17], perfect laser absorbers [20,21],
optical solitons [22], and non-Hermitian manifestations of

topological insulators [23] in PT-symmetric optical con-
figurations. More recently, an “exceptional ring” effect was
reported in a Dirac cone setting analogous to the gain-loss
structure in PT-symmetric optics [24].
Since the refractive index, particularly the gain or loss

properties, can be simultaneously manipulated in multilevel
atomic systems [25,26], realizations of PT-symmetric
potentials [with nðxÞ ¼ n∗ð−xÞ] have been theoretically
proposed in certain multilevel atomic configurations
[27–30]. Quite recently, an anti-PT-symmetric potential
[with nðxÞ ¼ −n∗ð−xÞ] has been experimentally produced
in a pair of optically induced waveguides coupled by flying
atoms [31]. Compared with solid-state systems, PT sym-
metry in atomic media can possess certain distinguished
features due to their intrinsic attributes, such as the light-
induced atomic coherence, which can result in easily
controllable absorption, dispersion, Raman gain, and non-
linearity. First, we are able to construct gain- and loss-
modulated optical lattices in an N-type atomic system and
demonstrate the true PT symmetry and its breaking in a
simultaneous gain and loss optical waveguide array, which
was extensively studied theoretically [32,33] but has not yet
been experimentally achieved. Second, with multiple
tunable parameters, the atomic system allows real-time
reconfigurable capability and easy tunability (especially for
the periodicity and structure of the lattice) without employ-
ing sophisticated fabrication technologies and making a
large number of samples, which provide a new platform to
study PT symmetry under different parametric regimes and
other non-Hermitian Hamiltonians. Third, many interesting
effects, such as nonlinear PT-symmetric defect modes [34],
solitons in PT-symmetric nonlinear lattices [35], and uni-
directional light transport [36], have been predicted recently
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by considering the interplays between PT-symmetric poten-
tial and Kerr nonlinearity. Such phenomena might be
relatively easy to be observed in electromagnetically induced
transparency [37] (EIT) atomic systems with enhanced and
controllable nonlinearity [38], which opens the door for
future experimental studies of non-Hermitian nonlinear
optics.
Inspired by recent developments in PT-symmetric optics

and the superiorities of atomic media, here, we experimen-
tally demonstrate light wave transport in a periodic
PT-symmetric potential in a four-level atomic configuration
driven by a weak signal field and two sets of standing-wave
(coupling and pump) laser fields [39]. The PT-symmetric
potential is achieved by spatially engineering the desired
complex refractive indices of the atomic assemble. The
standing-wave coupling field propagating along the z direc-
tion is responsible for establishing the optically induced
lattice along the transverse direction x. By launching the
weak signal field into the lattice, we can obtain discrete
diffraction patterns [40], as well as the underlying spatially
modulated susceptibility, under the EIT condition. Our results
clearly indicate that by adding another standing-wave pump
field, spatially periodic gain and loss regions with high
contrast can be generated on the launched signal field. The
induced spatially periodic PT-symmetric optical potential
(with a periodic even refractive index and odd gain or
loss profiles) can be produced by properly tuning the
pertinent experimental parameters. The manifestation of
the spontaneous PT-symmetry breaking phenomenon is
directly observed by monitoring the relative phase difference
between the adjacent gain and loss channels. This is
accomplished by interfering the signal beam passing through
the atomic medium with a reference beam in the y direction.
The experimental observations can be well explained through
numerical simulations.
Figure 1(a) schematically depicts the experimental setup.

The signal field and two sets of standing-wave fields
propagating along the same z direction interact with an
N-type four-level 85Rb atomic system [see Fig. 1(b)],
which consists of two hyperfine states F ¼ 2 (level j1i)
and F ¼ 3 (j2i) of the ground state 5S1=2 and two excited
states 5P1=2 (j3i) and 5P3=2 (j4i). Two elliptical-Gaussian-
shaped coupling beams Ec and E0

c (of wavelength
λc ¼ 794.97 nm, frequency ωc, and Rabi frequencies Ωc
and Ω0

c, respectively) from the same external cavity diode
laser are symmetrically placed with respect to the z axis and
intersect at the center of the rubidium cell at an angle of
2θ ≈ 0.4° to establish an optical lattice along the transverse
direction x inside the cell. Similarly, two pump beams Ep
and E0

p (λp ¼ 780.24 nm, ωp, and Ωp and Ω0
p), partially

overlapped with Ec and E0
c, respectively, enter the cell at

almost the same angle 2θ to form a pump-field optical
lattice. The 7 cm long atomic vapor cell wrapped with
μ-metal sheets is heated by a heat tape to provide an atomic
density of ∼2.0 × 1012 cm−3 at 75 °C. The signal beam Es
(λs ¼ 794.97 nm, ωs, Ωs) with a Gaussian intensity profile

propagates through the two sets of optical lattices, as shown
in Fig. 1(c).
By properly adjusting the experimental parameters,

active Raman gain, one of the most important requirements
for implementing the exact PT symmetry in optics, can be
generated on the signal field [26,39]. As a result, the
desired periodic gain and loss profiles along the x direction
are obtained after Es passes through these two partially
overlapping optical lattices. The periodically gain- and
loss-modulated Es then interferes with a reference beam
(injected in the y direction) to exhibit the induced phase
difference between the adjacent gain and loss channels. The
reference beam originates from the same external cavity
diode laser as Es and is introduced into the optical path via
a 50=50 beam splitter to intersect with Es at the position of
a charge coupled device (CCD) camera [see Fig. 1(a)],
which is used to monitor both the output signal beam and
the relative phase difference. Figure 1(c) shows a schematic
diagram of the spatial arrangement for the two sets of
optical lattices andEs inside the cell. The spatial periodicity
of the coupling lattices is dc ¼ λc=2 sin θ ≈ 114 μm, and
the spatial-shift distanceΔd between the two lattices can be
adjusted to control the real and imaginary parts of the
susceptibility experienced by Es.
Figures 2(a) and 2(b) show the calculated real and

imaginary parts of the susceptibility versus the signal-field
frequency detuning for different pump-beam intensities. The
frequency detunings for the signal, coupling, and pump
fields are defined as Δs ¼ ω31 − ωs, Δc ¼ ω32 − ωc, and
Δp ¼ ω41 − ωp, respectively. To achieve the PT-symmetric
conditions in the current atomic lattices, the values of the real
part versus Δs at Ωp ¼ 0 and Ωp ≠ 0 must be the same,
while the corresponding imaginary parts must have the same
absolute value but opposite sign. The theoretically calculated

FIG. 1. (a) Experimental setup. E0
p and Ep are pump beams

from the same laser, and so are the coupling beams E0
c and Ec.

The reference beam intersects with Es to generate the reference
interference. (b) The energy-level diagram of the four-level
N-type configuration in 85Rb atomic vapor. (c) The spatial
arrangements of the signal field, coupling-field lattice, and
pump-field lattice. x and z represent the transverse and longi-
tudinal directions of beam propagation, respectively. Δd marks
the displacement between the two lattices.
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spatial distributions of the refractive index in Figs. 2(c)
and 2(d) clearly indicate that a PT-symmetric structure with
alternating gain and loss waveguides [39] can indeed be
established in such an atomic configuration. The periodic
structure can be interpreted through a complex potential
VðxÞ in the paraxial wave equation (5), which is math-
ematically isomorphic to the Schrödinger equation:

i
∂E
∂z þ ∂2E

∂x2 þ VðxÞE ¼ 0. ð1Þ

Here, the electric field envelope can be written as

Eðx; z; tÞ ¼ expðiβzÞ
X10

j¼1

AjðxÞEjðzÞ; ð2Þ

where EjðxÞ represents the eigenmode field profile in each
waveguide element and AjðzÞ denotes the corresponding
modal amplitude in this channel. Based on Eqs. (1) and (2),
one can then write down a coupled-mode (tight-binding) set
of equations from which the complex band structure can be
predicted. For a ten-waveguide coupled system (which can
be readily implemented in our experiment), an exceptional
point (where the PT symmetry breaks) exists at γ=2κ ¼
0.284, where γ ¼ γG ¼ γL is the gain or loss coefficient and
κ is the coupling coefficient between the adjacent wave-
guides. In principle, an infinite number of coupled wave-
guides can be considered. However, due to the limited beam
sizes and the periodicity of the waveguides, and considering
the alternate gain-loss requirement for the PT symmetry,
we use ten effective waveguides in the theoretical model to
mimic the experiment. Numerical simulations indicate
that the breaking threshold decreases as the number of
waveguides increases (see details in the Supplemental
Material [41]).

In the experiment, we first set a periodic refractive index
modulation based on the EIT scheme (generated by the
signal and coupling fields) [43] and then establish the
periodic gain-loss profiles (by adding the standing-wave
pump field), both along the x direction. With the signal
beam [as shown in Fig. 3(a)] first launched into the
coupling lattice (with the pump fields blocked), we
observed the discrete diffraction pattern that manifests
the periodic modification of the signal-field refractive
index. Such discrete diffraction patterns appear within a
frequency detuning window of about 50 MHz near the
two-photon resonance satisfying Δs − Δc ¼ 0 [40]. With
the signal-field detuning set as Δs ¼ −100 MHz, the
diffraction image shown in Fig. 3(b) is obtained by care-
fully adjusting dc to match the maximum refractive index
contrast at Δs − Δc ¼ 10MHz.
The presence of the pump-field lattice can provide an

amplification for Es. With the two sets of lattices turned on
concurrently, we can simultaneously induce gain and loss
regions with a high and controllable contrast on Es by
carefully modifying the displacement Δd between the two
established optical lattices [see Fig. 1(c)] and other exper-
imental controlling parameters. As shown in Fig. 3(c), two
adjacent channels in the lattice array experience alternative
gain and loss, which can be determined by comparing the
intensity profile of the signal beam before its interaction
with the medium [Fig. 3(a)]. Figure 3(d) demonstrates
the evolution of the gain-to-loss ratio as a function of
Δp—showing a sensitive dependence. Figures 3(d1)
and 3(d2) present the observed gain and loss intensity
profiles at Δp ¼ 30 and 10 MHz, respectively. The gain-to-
loss ratio in Fig. 3(c) reaches near unity, i.e., a balanced

FIG. 2. The real (dispersion) and imaginary (gain or absorption)
parts of the susceptibility versus Δs at (a)Ωp ¼ 0 and (b)Ωp ≠ 0,
respectively. The (c) real and (d) imaginary parts for periodic
lattices of the refractive index as a function of position x with
the coupling intensities spatially modified. Ωs ¼ 2π × 10 MHz,
Ωc ¼ 2π × 0.2½1þ cosðπx=2Þ�MHz, Ωp=2π ¼ 6 MHz, Δp ¼
40 MHz, Δc ¼ −100 MHz, and Δs ≈ −2π × 15 MHz.

FIG. 3. (a) Image and intensity profile of Es without interacting
with atoms. (b) Signal beam after propagating through the
coupling lattice. (c) Simultaneous gain and loss profiles on Es
with both lattices turned on. (d) Dependence of the gain-to-loss
ratio on Δp. The squares are experimental observations, and the
solid curve is the theoretical prediction. The observed gain-loss
profiles are presented at (d1) Δp ¼ 30 MHz and (d2) 10 MHz.
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gain and loss between neighboring waveguides, which is
required for achieving an exact PT symmetry in such a
coupled-waveguide array system [5].
In a PT-symmetric system, the evolutions of eigenvalues

can be the most reliable critera to determine whether the
system is below or above the threshold. For such a non-
Hermitian gain- and loss-modulated array, the behaviors of
its eigenvectors can be captured by the changes in the
relative phase difference ν (which represents the internal
phase difference of the eigenvectors) between the adjacent
gain and loss channels [12]. The distance (along the y
direction) between the adjacent interference fringes [as
shown in Fig. 4(a)] is defined as 2π. The dotted black line
gives the center of the two solid lines, so the distance
between the solid line and the dotted line is π. With the
intensity of Es spatially modulated, the interference pattern
divides the “bright” gain regions and “dark” loss regions
into a netlike square lattice. A dotted red line is drawn along
the center of a dark square in one row of the lattice to mark
its position. The relative distance [referred to as the relative
phase difference, marked by a pair of one-way arrows in
Figs. 4(c)–4(e)] between the dotted red line and dotted
black line represents the relative phase difference between
two neighboring gain and loss channels [12].

Figure 4(b) shows the case that no phase difference is
detected between the gain and loss channels when the gain
is zero; i.e., the dotted black line and dotted red line
overlap. Several relative phase differences (ν) are measured
in Figs. 4(c)–4(e) as the gain-to-loss ratio γG=γL increases
but still remains below the PT-symmetry breaking thresh-
old. Figure 4(f) illustrates the situation above the breaking
point, in which case the phase difference is fixed at ν ¼ π=2
even when the gain-to-loss ratio becomes slightly above
unity (the measured ν stays unchanged as γG=γL contin-
uously increases from 1 to 1.2). The measured phase-
difference dependence on γG=γL, as shown in Fig. 4(g), can
be qualitatively explained by the theoretical predictions
given in Fig. 4(h), illustrating that the value of γL=2κ can
indeed determine the relative phase difference produced in
a coupled-waveguide array system with a certain γG=γL.
The vertical axis γL=2κ represents the evolution of nI=nR
since the coupling coefficient κ directly relates to nR. Since
ν is consistently 0 under low and no gain conditions, there
are no error bars for the first two data points.
For the point at γG ¼ γL, the phase difference can vary

from 0 to π below the PT-symmetry breaking threshold
and jumps to a fixed value of π=2 above threshold by
increasing γL=2κ [12]. Actually, Fig. 4(f) shows the exact
PT-symmetry breaking point with γG=γL ¼ 1 and γL=2κ >
0.284 simultaneously realized. For the cases of γG ≠ γL, the
coupled gain and loss waveguides can still have phase
differences in the same way as the case of γG ¼ γL. It is
worth mentioning that the PT-symmetry breaking thresh-
old value for can change with the value of the gain-to-loss
ratio as indicated by the dotted curve shown in Fig. 4(h).
Giving the experimental parameters at a certain gain-loss
ratio in Fig. 4(g), we can calculate the γL=2κ value and
determine whether the system operates below or above the
PT-symmetry breaking threshold according to the coupling
equations [Eq. (S4) in the Supplemental Material]. In
principle, even if a coupled-waveguide lattice system has
an unbalanced gain-to-loss ratio (i.e., γG=γL ≠ 1), one
can still mathematically transform the system into a
PT-symmetry-like configuration [12]. This then establishes
a “quasi-PT-symmetry” system [44], in which the charac-
teristic eigenvalue pattern is simply offset with respect to
the original zero line [45]. Note that the dynamical
behaviors of the exact PT-symmetry system and its
quasi-PT-symmetry counterparts are essentially identical
if the PT symmetry is unbroken, while their dynamics are
different when the PT symmetry is broken [44].
In summary, we have experimentally demonstrated

PT-symmetric optical lattices with a controllable gain-
to-loss ratio in a coherently prepared N-type atomic
ensemble. The required index modulation and the anti-
symmetric gain and loss profiles are introduced by exploit-
ing the modified absorption (or EIT) and induced active
Raman gain in the four-level atomic configuration. The
presence of a well-defined breaking phase threshold was
experimentally verified by observing the abrupt change of

FIG. 4. Selected gain and loss channels for measurements are
marked with G and L, respectively. (a) Reference interference
fringes generated by the reference beam and the signal beam
without diffraction. The two solid lines mark the centers of two
adjacent fringes. (b)-(f) Observed phase differences (marked by
the pair of one-way arrows) between the adjacent gain and loss
channels with γG=γL being 0, 0.4, 0.6, 0.8, and 1.0, respectively.
(g) Measured dependence of phase difference on γG=γL. The left
(gray) and right (green) parts are the regions below and above the
PT-symmetry breaking threshold, respectively. (h) Theoretical
simulations of phase difference according to the coupled equa-
tions for ten waveguides at a propagation distance of z ¼ 10. The
breaking threshold (the dotted curve) decreases with an increas-
ing gain-to-loss ratio. The dimensionless z is scaled by the
Rayleigh range kx20 (k ¼ 2π=λ, and x0 is the waveguide width).
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relative phase difference between the gain and loss chan-
nels. The constructed PT-symmetric atomic lattices can be
used to study a variety of effects related to PT symmetry
and other non-Hermitian Hamiltonians, including anti-PT-
symmetric lattice and the PT-symmetric Talbot effect [46]
as well as intriguing beam dynamical features [5] such as
double refraction, power oscillation, and nonreciprocal
diffraction patterns.
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