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We theoretically and numerically investigate the nonparaxial
self-accelerating beams in a Λ-type three-level energy system
of rubidium atomic vapor in the electromagnetically induced
transparency (EIT) window. In the EIT window, the absorp-
tion of the atomic vapor is small, and robust nonparaxial self-
accelerating beams can be generated. The reason is that the
energy of the tail transfers to the main lobe, which then main-
tains its shape, owing to the self-healing effect. Media with
large absorption would demand large energy to compensate,
and the tail would be lifted too high to maintain the profile of
an accelerating beam, so that self-accelerating beams cannot
be obtained any longer. An atomic vapor with small absorp-
tion is the ideal medium to produce such self-accelerating
beams and, in return, self-accelerating beams may inspire
new ideas in the research associated with atomic vapors
and atomic-like ensembles. © 2016 Optical Society of America

OCIS codes: (070.3185) Invariant optical fields; (140.3300) Laser

beam shaping; (350.5500) Propagation; (300.1030) Absorption.
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Being convenient optical media for various applications, atomic
vapors were intensely investigated in the last few decades [1].
To overcome large absorption in atomic vapors, electromag-
netically induced transparency (EIT) [2] was developed. EIT
plays an important role in generating multi-wave mixing proc-
esses [3,4]. Recently, interesting experiments have been carried
out in atomic vapors, including an EIT-enhanced four-wave
mixing (FWM) in rubidium vapor [5,6], an efficient six-wave
mixing (SWM) in a five-level close-cycled atomic system [4],
and coexisting FWM and SWM in two ladder-type EIT
windows [7]. In addition, optical vortices [8,9], optical conden-
sates [10,11], photonic topological insulators [12–14], (anti-)

parity-time symmetry [15–17], and other interesting phe-
nomena [18,19] have also been observed in atomic vapors.
Of these other interesting phenomena, one should mention the
generation of self-accelerating and nondiffracting Airy beams
[20–23] in atomic vapors [24–31].

Unfortunately, a paraxial Airy beam attenuates quickly when
propagating in an atomic vapor, even when absorption is small
(i.e., in the EIT window); that is, it is not loss-proof. From this
point of view, absorption limits the application of atomic va-
pors. Nevertheless, there exist loss-proof self-accelerating beams
in the lossy media [32] which could propagate robustly, but
they are of a different type. Such self-accelerating beams origi-
nate from the complex Bessel function or other special func-
tions, represent eigenmodes of the lossy media, and belong
to the family of nonparaxial accelerating beams. We believe that
such nonparaxial self-accelerating beams may exist in an atomic
vapor, which is a natural optical medium (contains no free
charges or conduction currents) for the production of the
loss-proof self-accelerating beams. This exactly is the goal of
investigation in this Letter.

Thus, we demonstrate the existence of nonparaxial self-
accelerating beams in atomic vapors with small absorption in
the EIT window. As an example, we consider first the case of
a beam that accelerates along a circular trajectory. Then we
provide a general discussion and numerical simulation of such
self-accelerating beams. In the end, we display nonparaxial accel-
erating beams that accelerate along parabolic and elliptic trajec-
tories. Due to the multi-parameter controllable properties of an
atomic vapor, our research may broaden the field of potential
applications of self-accelerating beams in atomic vapors. We also
believe that such beams can be utilized in on-chip crystals, for
example, in the praseodymium-doped yttrium orthosilicate crys-
tal [33,34], which exhibits properties similar to atomic vapors.

The wave equation in an optical medium can be written
as [35]
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where ∇2 is the Laplacian, ϵ0 is the permittivity in vacuum,
c is the light speed in vacuum, and P is the polarization vector.
When only the linear polarization is considered, one obtains
P � ϵ0χ

�1�E, where χ�1� is the linear susceptibility. We restrict
our attention to the two-dimensional case of Eq. (1) and seek
the TE-polarized solutions of the form E�x; y; z� � Ey�x; z�y.
Then, Eq. (1) can be rewritten as�
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This being a linear partial differential equation, the optical field
Ey can be sought in the harmonic form Ey � ψ exp�iωt�, so
that Eq. (2) becomes�

∂2

∂z2
� ∂2

∂x2

�
ψ � k2�1� χ�1��ψ � 0; (3)

where k � ω∕c is the linear dispersion relation. Equation (3) is
the well-known two-dimensional Helmholtz equation. Our
research can be easily extended to three dimensions.

We consider the propagation in a Λ-type rubidium atomic
vapor [13,36,37], as shown in Fig. 1(a). The linear susceptibil-
ity in this case can be written as

χ�1� � iNμ210
ℏϵ0

1

d 10 � jG12j2∕d 20

; (4)

with N being the atomic density, μ10 being the electric dipole
moment, and d 10�Γ10� iΔ10 and d 20 � Γ20 � i�Δ10 − Δ12�
the complex decay rates. In Fig. 1(a), the probe field E10

connects the transition j0i → j1i, and the coupling field
E12 connects the transition j1i → j2i. Γij are the decay rates
between the jii and jji states, andΔ10 � Ω10 − ω10 andΔ12 �
Ω12 − ω12 are the detunings. They are determined by the tran-
sition frequencies Ωij between jii and jji, and by the frequen-
cies ω10 and ω12 of the probe and the coupling fields. G12

represents the Rabi frequency of the coupling fields, defined
as G12 � μ12E12∕ℏ.

In Fig. 1(b), we display the linear susceptibility χ�1�. If
G12 ≠ 0, there is an EIT window, as shown by the red solid curve
and, at the two-photon resonance condition Δ10−Δ12�0, the
absorption is much decreased, seemingly zero. Still, it should
be noted that some residual absorption always remains in the
EIT window. As a result, Eq. (3) is the Helmholtz equation in
the weakly lossy media. In this Letter, we only consider the case
of the EIT window. If G12 � 0, the absorption in the atomic
vapor is quite large, as indicated by the red dashed curve.

Recently, several interesting accelerating solutions of the
Helmholtz equation have been developed [38–41]. Without
the loss of generality, we first consider an accelerating solution
along a circular trajectory; later, we provide a discussion on the
parabolic and elliptic trajectories. In polar coordinates, Eq. (3)
can be rewritten as

1

r
∂
∂r

�
r
∂ψ
∂r

�
� 1

r2
∂2ψ
∂θ2

� k2�1� χ�1��ψ � 0; (5)

after performing a coordinate transformation z � r sin θ and
x � r cos θ. For the circularly accelerating beams, we seek
solutions in the form ψ � U �r� exp�iαθ�, where α is a free real
parameter. In this manner, Eq. (5) is recast into

r
∂
∂r

�
r
∂U
∂r

�
� �−α2 � r2k2�1� χ�1���U � 0: (6)

According to previous literature [32,38,42], an exact solution
of Eq. (6) is the complex Bessel function of the order α,
i.e., U �r� � Jα�rK � with K 2 � k2�1� χ�1��. To properly
introduce initial conditions, we utilize only the half-Bessel
propagating solution that has the form [43]

J�α �K x;K z��
Z

π∕2

−π∕2
exp�iαθ�exp�iK �x sinθ�z cosθ��dθ:

(7)

In Fig. 1(c), we display the half-Bessel function J�α �K x� in the
EIT window. One finds that the tail of the solution lifts higher
and higher when it approaches the boundary of the EIT win-
dow (with an increasing absolute value of Δ12 ). Numerical
simulations demonstrate that the solution loses its Bessel profile
as the absorption gets larger. The reason is that the energy
moves from the tail to the main lobe during propagation to
compensate for the absorption losses, as an indication of the
self-healing effect [32]. The larger the absorption, the higher
the tail, to supply enough energy to heal the main lobe during
propagation. As a result, the tail eventually becomes too high to
maintain the Bessel profile when the absorption gets too large.
Therefore, we have to consider self-accelerating beams in the
EIT window that guarantees small absorption.

We first consider the self-accelerating solution at the two-
photon resonance point, with Δ10 � Δ12 � 0. One calculates
the linear susceptibility χ�1� ≈ i8.8646 × 10−6, which is indeed
small. The corresponding effective wavenumber is K ≈ 1.181×
107 � i5.2348 × 101 m−1. The propagation of the beam, ob-
tained using Eq. (7) at z � −20 μm, is shown in Fig. 2(a). One
finds that the beam indeed accelerates along a circular trajectory
(the white dashed curve), with the beam shape preserved in the
wide angle range, up to �−40°; 40°�. (We set the red dashed line
as 0°, which is the symmetry axis of the trajectory.) We point
out that if a proper truncation is used, which removes more

Fig. 1. (a) Λ-type energy system in a rubidium atomic vapor.
(b) Linear susceptibility χ�1�. The parameters are N �5×1013 cm−3,
μ12 � 1.22 × 10−29 C ·m, Γ10 � 1 MHz, Γ20 � 1 kHz, and
Δ12 � 0. The solid and dashed curves are for G12 � 30 MHz and
G12 � 0. (c) Complex half-Bessel function as a function of x
and Δ10 in the EIT window with α � 500.
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energy from the tail, the shape-preserving range can be much
broadened. For comparison, one may find the solution directly
from Eq. (7); however, this solution is not a physical quantity
because it carries infinite energy.

Using the same input as in Fig. 2(a), we check its propagation
under the condition Δ10 � 4 MHz and Δ12 � 0, which leads
to χ�1��−0.0360� i0.0016 and K �1.1596×107� i9.8597×
103 m−1. Clearly, such a condition corresponds to a much bigger
absorption than at the two-photon resonance condition. As
shown by the numerically simulated propagation in Fig. 2(b),
the beam attenuates gradually. In Fig. 2(c), we plot the maxi-
mum intensity of the beam recorded during propagation, from
which one finds that the maximum intensity in Fig. 2(a) is main-
tained quite well, while that in Fig. 2(b) decreases appreciably.

Now, different from Fig. 2, we first consider the self-accel-
erating beam and its propagation under the condition Δ10 �
4 MHz and Δ12 � 0, and then follow the propagation under
the two-photon resonance condition. The results are displayed
in Figs. 3(a) and 3(b). Recall that in Fig. 2(a) the beam is the
mode of the medium right at the EIT condition, so its intensity
changes little. In Fig. 2(b), the input is the same as in Fig. 2(a),
but it propagates in a lossy medium, so the intensity decreases.
One finds that the propagation in Fig. 3(a) is quite similar to
that in Fig. 2(a); the beam accelerates along a circular trajectory
with the shape preserved because, in both cases, the input
beams are the modes of the system, regardless of the absorption,
if the truncation is not considered. In Fig. 3(b), the beam still
accelerates along a circular trajectory, but the intensity of the
main lobe increases during propagation. The reason is that the
absorption of the system in Fig. 3(b) is smaller than that in
Fig. 3(a), and the energy transferred from the tail to the main
lobe overcompensates the absorption. As explained in [32], the
propagation in Figs. 2(a) and 3(a) is the indication of the self-
healing effect; those in Figs. 2(b) and 3(b) are indications of the
under-healing and over-healing. Maximum intensities recorded

during propagation also demonstrate these effects, as exhibited
in Figs. 2(c) and 3(c).

Up to now, we have considered the nonparaxial self-accel-
erating beams in atomic vapors which accelerate along circular
trajectories in the EIT window. As it is well known, there also
exist nonparxial self-accelerating beams that accelerate along
parabolic and elliptic trajectories, the Weber and Mathieu
beams [39,40,44]. They arise when the eigensolutions of the
Helmholtz Eq. (3) that separate in the parabolic and elliptic
coordinate systems are considered. An extension to three
dimensions would require the separation of solutions of the
three-dimensional Helmholtz equation in cylindrical, parabolic
cylindrical, and elliptic cylindrical coordinates [45]. We
still restrict our attention to the two-dimensional cases.
Therefore, it is of interest to investigate such beams in lossy
atomic vapors. In Figs. 4(a1)–4(c1) and 4(a2)–4(c2), the
loss-proof self-accelerating beams that accelerate along para-
bolic and elliptic trajectories are displayed. The concrete set-
tings are elucidated in the caption. As expected, the results
indeed show the under-healing and over-healing effects. The
two-dimensional loss-proof self-accelerating beam family in
atomic vapors, as displayed in this Letter, consists of the
self-accelerating beams that accelerate along circular, parabolic,
and elliptic trajectories.

In summary, we have investigated the nonparaxial self-accel-
erating beams in atomic vapors in the EIT window. Even
though there is absorption, the nonparaxial accelerating beams
may propagate robustly in atomic vapors, due to the fact that
such beams are eigenmodes of the Helmholtz equation in the
media with absorption. Beyond the EIT window, such nonpar-
axial accelerating beams do not exist because the compensation
of the absorption needs a large energy transfer from the tail to
the head of the beam. As a result, the tail has to be lifted too
high to maintain the shape of the self-accelerating beam, which
cannot be achieved at high absorptions. Our method can be
naturally extended to three dimensions. The self-accelerating
beams in atomic vapors broaden the application potential of
atomic vapors and inspire new ideas in research associated with

Fig. 2. (a) Propagation of the circular self-accelerating beam in the
medium with Δ10 � Δ12 � 0. (b) Propagation of the same beam, but
in the medium with Δ10 � 4 MHz and Δ12 � 0. The white dashed
curve shows the analytical trajectory, the red dashed line indicates the
symmetry axis of the trajectory. (c) Maximum intensity of the beam
during propagation. The black curve and the red curve correspond to
(a) and (b), respectively.

Fig. 3. (a) Propagation of the self-accelerating beam with Δ10 �
4 MHz and Δ12 � 0. (b) Propagation of the same beam, but in the
medium with Δ10 � Δ12 � 0. (c) Maximum intensities in (a) and (b).
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atomic vapors or other atomic-like solid media (e.g., the pra-
seodymium-doped yttrium orthosilicate crystal).
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Fig. 4. (a1)–(c1) Setup is as in Fig. 2, but for the self-accelerating
Weber beam of order 100. (a2) and (c2) Setup is as in Fig. 3, but for
the self-accelerating half-Mathieu beam of the order 65 and with foci
��6 μm; 0�. We use Δ10 � 6 MHz in (b1) and (a2).
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