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We report on the transport properties of thesuper-
honeycomb lattice, the band structure of which possesses
a +at band and Dirac cones, according to the tight-binding
approximation. The super-honeycomb model combines
the honeycomb lattice and the Lieb lattice and displays the
properties of both. It also represents a hybrid fermionic
and bosonic system, which is rarely seen in nature. By
choosing the phases of input beams properly, the +at-band
mode of the super-honeycomb lattice will be excited and
the input beams will exhibit strong localization during
propagation. On the other hand, if the modes of Dirac cones
of the super-honeycomb lattice are excited, one will observe
conical di3raction. Furthermore, if the input beam is prop-
erly chosen to excite a sublattice of the super-honeycomb
lattice and the modes of Dirac cones with di3erent pseu-
dospins, e.g., by the three-beam interference pattern, the
pseudospin-mediated vortices will be observed.

1 Introduction

In the last decade, research in photonic crystals and op-
tical waveguide arrays has attracted a lot of attention
[1±4]. Recently, ¯at bands [5, 6] and Dirac cones [7, 8]
were observed in the band structure of certain optical
lattices and promptly acquired a special notice. A ¯at
band means that the bandwidth of the band is zero, so
that the eigenmodes of the ¯at band are highly degen-
erate, which can be explored to study the strong correla-
tion problems [9]. Light that excites a ¯at-band mode will
be strongly localized during propagation, because both
the ®rst-order and the second-order derivatives of a ¯at
band are zero. Due to such strong localization and non-
diffracting properties, the ¯at-band materials, e.g., the
Lieb lattice and the kagome lattice photonic crystals, are

broadly utilized for distortion-free image transmission,
lossless optical information, and light localization [10,
11]. It should be noted that there exist many ¯at-band
materials and models [8, 12±21], but the models based
on the Lieb lattice [22±27] are probably the simplest. En-
lightened by the properties of a simple Lieb lattice, novel
face-centered square lattices (i.e., Lieb-5 and Lieb-7 lat-
tices) that possess more than one ¯at band were intro-
duced recently [28]. It is worth mentioning that these lat-
tices are free of the ªpseudomagnetic effectº, as discussed
in the previous literature [16, 29±31].

Concerning Dirac cones, which are amply discussed
in the graphene or the honeycomb lattice (i.e., the pho-
tonic graphene) [17, 32±37], the dispersion relation in the
vicinity of a Dirac cone is linear. Hence, the ®rst-order
derivative close to the Dirac point is constant and the
second-order derivative is zero, which indicates that light
exciting the modes of the Dirac cone will undergo conical
diffraction during propagation [38±41]. The intensity dis-
tribution then forms a circular ring, the radius of which
is increasing with propagation, while the width remains
the same. To excite a mode of the Dirac cone, two meth-
ods are usually adopted to prepare the input beam [39]:
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(1) Numerically obtain the Bloch modes of the Dirac cone
and then multiply the modes with a wide Gaussian beam;
(2) Find the location of the Dirac cone in the ®rst Bril-
louin zone, produce the plane waves accordingly, and
then multiply these waves with a wide Gaussian beam.

Another interesting phenomenon connected with the
honeycomb lattice is the pseudospin, which was the-
oretically predicted in [42, 43] and experimentally ob-
served recently [44, 45]. It is important to note that the
pseudospin arises from the sublattice in space and can
be totally transformed into angular momentum. Coni-
cal diffraction and pseudospin were also investigated in
the Lieb lattice [46, 47]. We would like to note mention
that optical lattices of this kind can be conveniently ob-
tained by the so-called femtosecond laser writing tech-
nique [48±51].

Here, we investigate the super-honeycomb lattice
(which could also be denoted as the edge-centered hon-
eycomb lattice) that was ®rst reported more than 20
years ago in [52, 53] and then recently again in [54].
Starting from the structure of the honeycomb lattice,
the super-honeycomb lattice is prepared by inserting
another site in-between the two nearest-neighbor (NN)
sites. Now, there are 5 sites in the unit cell and 5 en-
ergy bands, according to the tight-binding approxima-
tion. Naturally, such a lattice can be viewed as a combi-
nation of the honeycomb lattice and the Lieb latticeÐ
it contains both a ¯at band and Dirac cones (in fact,
two kinds of Dirac conesÐat the center and at the cor-
ners of the ®rst Brillouin zone) in the band structure. It
was suggested in the previous literature that the super-
honeycomb lattice provides a new structure to investi-
gate ¯at bands [52] and Hofstadter's butter¯ies [53]. It
was also revealed that the super-honeycomb lattice can
support simultaneously spin-1/2 and spin-1 Dirac-Weyl
fermions [54], and that it can be connected with both
the honeycomb lattice and the kagome lattice. Nonethe-
less, the super-honeycomb lattice deserves further ex-
ploration, owing to its unique band structure and exotic
properties.

In this paper, we study the transport properties of
light beams propagating in an array of waveguides ar-
ranged in the super-honeycomb lattice, and obtain in-
teresting new results. We calculate the proper phase of
the input, to excite both strong localization and coni-
cal diffraction of light in such a lattice, and observe the
pseudospin-mediated vortices, by exciting the sublat-
tices alternatively. The methods of investigation and the
aspects of problems investigated here are different from
the previously reported accounts [52±54]. To the best
of our knowledge, such transport properties in a super-
honeycomb lattice have not been reported before.

Figure 1(a) Schematic of the super-honeycomb lattice with 5 sites
marked asA, B, C, DandEin the unit cell.v1 andv2 are the basis
vectors in real space. (b) Band structure> from top to bottom, the
bands arē 1» 5. Inset shows the ?rst Brillouin zone and the high
symmetry points0 ,M,K andK0. (c) The corresponding density of
states.

The paper is organized as follows. In Sec. 2 we intro-
duce the mathematical model and display the schematic
of the super-honeycomb lattice. By applying the tight-
binding method (only considering the NN hopping), the
band structure of the super-honeycomb lattice is ob-
tained. The transport properties are discussed in Secs.
3 and 4. In particular, Sec. 3 discusses light localization
due to a ¯at band. We show that both the intensity and
the phase of light remain the same during propagation,
if the ¯at-band mode is excited; or, if not, they undergo
discrete diffraction. In Subsec. 4.1, the conical diffract ion
of light that excites a Dirac cone is presented. We discuss
the generation of pseudospin-mediated vortices by excit-
ing a sublattice of the super-honeycomb lattice in Sub-
sec. 4.2. We conclude the paper in Sec. 5.

2 Mathematical model

The geometry of the super-honeycomb lattice is de-
picted in Fig. 1(a). Different from the honeycomb lattice,
there are 5 sites in the unit cell of a super-honeycomb
lattice. Similar to the honeycomb lattice, there are two
sublattices, formed by three A sites and three B sites, re-
spectively. Even though C, D and Esites can form another
set of triangles, the properties of the three sites are dif-
ferent (they are not equivalent to each other). Therefore,
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there are 5 sublattices in a super-honeycomb lattice. By
adopting the tight-binding method and assuming that
hopping only occurs between the NN sites, the propa-
gation of light in this discrete model obeys the discrete
coupled Schr Èodinger equations [28, 55]:
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where z is the longitudinal distance and Rm is the po-
sition of the mth unit cell. Thus, it is assumed that
a photonic crystal consisting of an array of optical
waveguides is arranged in the form of super-honeycomb
lattice and that light propagates perpendicular to the
lattice, along the waveguides. For simplicity, we set the
distance between sites A and B to be a D 1, and the hop-
ping strength to be t D 1. The vectors e1;2;3 are the three
unit vectors representing the hopping directions, with
components e1 D (1=2;

p
3=2), e2 D (1=2; ¡

p
3=2), and

e3 D (¡ 1; 0); v1;2 are the Bravais primitive vectors, with
components v1 D (3=2;

p
3=2) and v2 D (3=2; ¡

p
3=2).

In order to ®nd solutions of Eqs. (1), one introduces
an ansatz of the form [55]

Am D Ak exp[i (¯ z C Rm ¢k)];

Bm D Bk exp[i (¯ z C Rm ¢k)];

Cm D Ck exp[i (¯ z C Rm ¢k)];

Dm D Dk exp[i (¯ z C Rm ¢k)];

Em D Ek exp[i (¯ z C Rm ¢k)]:

(2)

Plugging Eq. (2) into Eq. (1), after some algebra, one ob-
tains:

HT Bj¯; ki D ¯ j¯; ki ; (3)

in which

j¯; ki D
£

Ak ; Bk ; Ck ; Dk ; Ek
¤T

; (4)

and the tight-binding Hamiltonian of the system is:

HT B D ¡

2

6
6
6
6
6
4

0 0 H13 H14 H15

0 0 H ¤
13 H ¤

14 H ¤
15

H ¤
13 H13 0 0 0

H ¤
14 H14 0 0 0

H ¤
15 H15 0 0 0

3

7
7
7
7
7
5

; (5)

where H13 D exp[i (kx=4 C
p

3ky=4)], H14 D exp[i (kx=4 ¡p
3ky=4)], H15 D exp(¡ ikx=2); here (² )¤ denotes the com-

plex conjugate of ( ² ). Obviously, Eq. (5) is a Hermitian
matrix, so that one can solve for ®ve real eigenvalues ¯ 1» 5

that represent the dispersive relation, i.e., the band struc -
ture. It is not dif®cult to demonstrate that ¯ 1(kx; ky) D
¡ ¯ 5(kx; ky), ¯ 2(kx; ky) D ¡ ¯ 4(kx; ky), and ¯ 3 D 0. Since ¯ 3

is independent of kx or ky, it corresponds to a complete
¯at band in the ®rst Brillouin zone. The corresponding
eigenstate of the ¯at band is

j¯ 3; ki D

2

6
6
6
6
6
6
6
4

0
0

sin
³
3kx=4 ¡

p
3ky=4

´

¡ sin
³
3kx=4 C

p
3ky=4

´

sin
³ p

3ky=2
´

3

7
7
7
7
7
7
7
5

; (6)

which means that the ¯at-band mode has a vanishing
amplitude on sublattices A and B.

Figure 1(b) presents the numerical dispersion rela-
tion of the super-honeycomb lattice in the ®rst Brillouin
zone. One ®nds that the bands are symmetric about the
¯at band, and that there are 6 Dirac cones between ¯ 1

and ¯ 2, as well as between ¯ 4 and ¯ 5 at the corners of the
®rst Brillouin zone, which is similar to the Dirac cones
in the honeycomb lattice. Intersected by the ¯at band,
there is another Dirac cone, which is similar to that in
the Lieb lattice, but located at the origin of the ®rst Bril-
louin zone. We note that typically there are two symmet-
ric sites in the ®rst Brillouin zone that are called K and K0.
As shown in the inset in Fig. 1(b), the locations of K and
K0 are (0; § 4¼=3

p
3). Due to the symmetry of the band

structure, there will be a state j ¡ ¯ 1; ki for each j¯ 1; ki ,
and j ¡ ¯ 2; ki for each j¯ 2; ki , therefore the particle-hole
symmetry is observed in the super-honeycomb lattice.
In fact, the criteria for the existence of such a symmetry
is that there is an operator ÃO which anticommutes with
the Hamiltonian [46]. It is easy to verify that the oper-
ator ÃO for this case is ÃO D diag(1; 1; ¡ 1; ¡ 1; ¡ 1). Look-
ing at the band structure shown in Fig. 1(b), one can
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draw a conclusion that the super-honeycomb lattice is
a hybrid of the honeycomb lattice and the Lieb lattice,
because there are simultaneously ªpseudospin-1/2º and
ªpseudospin-1º Dirac cones in it, which are present in
the honeycomb lattice [42±45] and in the Lieb lattice [46,
47, 56] separately.

We also display the corresponding density of states
[32] of the band structure in Fig. 1(c), to classify and dis-
tinguish different pseudospins embedded in the super-
honeycomb lattice. One can clearly see a ±-function sin-
gularity at ¯ D 0 (due to the ¯at band), therefore the
corresponding Dirac cone is bosonic with s D 1 (where
s represents the pseudospin) [56]. Whereas, for the other
two Dirac cones the density of states is zero, so they are
fermionic with s D 1=2.

Now, we present a brief analysis of the pseudospin
connected with the Dirac cones at K and 0 . Around the
Dirac points ( K or 0 ) in the band structure, the Hamilto-
nian in Eq. (5) can be rewritten as

Hp D ¡

2

6
6
6
6
6
4

0 0 ° H13;p ° ¤H14;p H15;p

0 0 ° ¤H ¤
13;p ° H ¤

14;p H ¤
15;p

° ¤H ¤
13;p ° H13;p 0 0 0

° H ¤
14;p ° ¤H14;p 0 0 0

H ¤
15;p H15;p 0 0 0

3

7
7
7
7
7
5

;

(7)

where p D [ px; py] is the displacement from the
Dirac point, H13;p D 1 C i (px=4 C

p
3py=4), H14;p D

1 C i (px=4 ¡
p

3py=4), H15;p D 1 ¡ i px=2, and ° is the
coef®cient that is exp( i ¼=3) for the Dirac point at K
and 1 for the Dirac point at 0 . One can calculate that
the dispersion relation is ¯ D

p
3(1 § j pj=4) around K

and ¯ D §
p

3jpj=2 around 0 . Considering that r p¯
determines the group velocity of the beam, the speed of
the beam spreading at 0 is twice that of the beam at K;
this was also found in Ref. [54].

We ®rst consider the Hamiltonian Hp around the 0
point; one ®nds that [ Hp ; ÃLz] 6D0, where ÃLz D ¡ i (r £ r )zN Ã1 is the orbital angular momentum operator. So, there
must be some additional angular momentum missing,
which is the so-called pseudospin. If we de®ne the pseu-
dospin operator as ÃSz, the total angular momentum can
be written as ÃJz D ÃLz C ÃSz, which meets the condition
[Hp ; ÃJz] D 0. Indeed, one ®nds that

2
p

3Sx D

2

6
6
6
6
6
4

0 0 i i ¡ 2i
0 0 ¡ i ¡ i 2i

¡ i i 0 0 0
¡ i i 0 0 0
2i ¡ 2i 0 0 0

3

7
7
7
7
7
5

; (8)

2Sy D

2

6
6
6
6
6
4

0 0 i ¡ i 0
0 0 ¡ i i 0

¡ i i 0 0 0
i ¡ i 0 0 0
0 0 0 0 0

3

7
7
7
7
7
5

; (9)

p
3Sz D

2

6
6
6
6
6
4

0 0 0 0 0
0 0 0 0 0
0 0 0 i ¡ i
0 0 ¡ i 0 i
0 0 i ¡ i 0

3

7
7
7
7
7
5

; (10)

which satisfy the angular momentum algebra
[Sj ; Sk] D i ² jkl Sl and [ S2; Sk] D 0, with S2 D

P
k S2

k .
Diagonalizing Sz, one obtains

jSz D 0i D [1; 0; 0; 0; 0]T ; (11a)

jSz D 0i D [0; 1; 0; 0; 0]T ; (11b)

jSz D 0i D [0; 0; 1; 1; 1]T ; (11c)

jSz D 1i D [0; 0; exp(¡ i 2¼=3); exp(i 2¼=3); 1]T ; (11d)

jSz D ¡ 1i D [0; 0; exp(i 2¼=3); exp(¡ i 2¼=3); 1]T : (11e)

Hence, for the jSz D 0i state, there are two cases: the van-
ishing amplitude on A and B, and the non-vanishing am-
plitude only on A or B. Whereas for the jSz D § 1i states,
the amplitudes on A and B vanish, and the amplitudes on
C, D and E have a relative phase difference 2 ¼=3. Thus,
we determine that the pseudospin corresponding to the
Dirac cone at 0 can be 0 or 1.

There is also pseudospin at the Dirac point K in the
super-honeycomb lattice; however, the pseudospin ma-
trix corresponding to this case is nontrivial. According
to the commutator relation [ Hp ; ÃSz] D ¡ [Hp ; ÃLz], one can
obtain 25 linear equations, which can be rewritten in the
matrix form: M S D L, in which M is the coef®cient ma-
trix, and Sand L are 25 £ 1 vectors constructed from the
matrices Sz and ¡ [Hp ; ÃLz]. One can easily verify that the
rank of the matrix M is 20 and the rank of the corre-
sponding augmented matrix is 21. Therefore, there is no
solution to the equation M S D L. At least, one clear point
is that the appearance of the Dirac cones is only due to
the sublattices A and B. One can consider the 2-band
Hamiltonian that describes the Dirac cone at K, to ®nd
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Figure 2(a) Intensity of the input beam that contains six Gaussian
beams pointed at the sublatticesC,DandE. (b) Output intensity of
the input beam if the six Gaussian beams are neither in-phasenor
out-of-phase. Discrete di3raction happens during propagation. (c)
Same as (b), but for the out-of-phase case. Strong localization is
observed during propagation. Inset: phase of the output beam. (d)
Iso-surface plot of the propagation corresponding to (c).

that the pseudospin is 1/2 [54, 57, 58], which is similar
to that in the honeycomb lattice or the kagome lattice.
Therefore, we will just discuss the intensity distribution s
on sublattices A and B when analyzing the pseudospin-
mediated vortex generation associated with the Dirac
cone at K in Sec. 4.2; those on sublattices C, D and E are
not involved in the indistinct projections.

3 Strong localization due to the ,at band

It has been proven that if light excites the mode of the ¯at
band of the Lieb lattice or the kagome lattice, it will be
strongly localized during propagation in the correspond-
ing waveguides [5, 6, 10, 11, 59]. In this section, we in-
vestigate the localization of the ¯at-band mode in the
super-honeycomb lattice, according to Eqs. (1). Based on
Eq. (6), the ¯at-band mode has a vanishing amplitude on
sublattices A and B, so we launch the input beam Ð six
Gaussian beamlets Ð into sublattices C, D and E, as pre-
sented in Fig. 2(a). If the input beam lobes are in-phase,
we say the input beam is in-phase, while if the two ad-
jacent lobes are out-of-phase, we say the input beam is
out-of-phase.

First, we assume that the six Gaussian beamlets are
neither in-phase (according to Eq. (11a), conical diffrac-
tion will then be obtained) nor out-of-phase. On this oc-
casion, the input beam exhibits discrete diffraction dur-

ing propagation along lattice waveguides, as shown in
Fig. 2(b), which means that neither the in-phase nor the
out-of-phase input beam excites the bulk mode.

On the other hand, if the six beamlets are out-of-
phase, the ¯at-band mode will be excited [6, 10, 28]
and the strong localization during propagation will be
observed, as shown in Fig. 2(c). As expected, once the
¯at-band mode is excited, the beam is localized Ð the
output intensity is the same as the initial in Fig. 2(a).
Concerning the phase of the output beam, as shown in
the inset in Fig. 2(c), the phase is also preserved very well,
i.e., the six peaks are still out-of-phase. The physical ex-
planation of this phenomenon is quite natural. Since the
band width of the ¯at band is zero, the ®rst-order deriva-
tive (corresponding to the group velocity of the beam) as
well as the second-order derivative (corresponding to the
diffraction of the beam) of the ¯at band is also zero. As a
result, the beam will not diffract during propagation and
it will remain the same Ð an indication of strong local-
ization.

To see the strong localization more clearly, in Fig.
2(d) we show the whole propagation of the input beam
used in Fig. 2(c), by connecting the corresponding iso-
surfaces (which form tubes) of the beam during prop-
agation. In Fig. 2(d), the amplitudes of the input beam
and the output beam are displayed at the input face and
the output face, respectively, and there is a ¼-phase dif-
ference between the red tubes and the blue tubes. Again,
one observes that both the amplitude and the phase of
the beam do not change during propagation Ð both
the width and the color of the tubes remain unchanged.
Comparing Fig. 2(b) with Fig. 2(c), one comes to the con-
clusion that not only the amplitude but also the phase
plays an important role in the excitation of the ¯at-band
mode.

4 Conical di/raction and pseudospin due to
Dirac cones

9.1 Conical di3raction

After discussing the localization caused by the ¯at band
in the super-honeycomb lattice, we now analyze the
in¯uence of Dirac cones on the beam propagation dy-
namics. As already mentioned, there are two kinds of
Dirac cones in the band structure shown in Fig. 1(b), cor-
responding to pseudospin 1/2 (at K and K0) and pseu-
dospin 1 (at 0 ), respectively. The group speed of the
beam due to the former Dirac cones is half of that due
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Figure 3Conical di3raction during propagation. (a)-(c) Intensity
distributions of the beam at certain propagation distances, dis-
played in the le[-bottom corner of each panel. Six wide Gaussian
beams multiplied with the plane waves at the six Dirac pointsare
launched into the sublatticesAandB. (d) Square root of the ampli-
tude of the pseudospin-0 input. Upper panel: six in-phase narrow
Gaussian beams are launched into the sublatticesC, DandE. Bot-
tom panel: three in-phase narrow Gaussian beams are launched
into the sublatticeA. Insets show the magni?ed beams. (e) and (f)
Square root of the amplitude of the output beam corresponding to
the upper and lower inputs in (d), respectively. (g)-(i) Square root
of the amplitudes of the pseudospin-1 beam. Six narrow Gaussian
beams with a2¼=3phase di3erence between adjacent beams (up-
per inset: magni?ed beam, bottom panel: phase distribution), are
launched into the sublatticesC, DandE. Dashed circles represent
the analytical radius of the conical di3raction.

to the latter. We ®rst discuss the ®rst kind of Dirac cones
and then the second.

In the neighborhood of a Dirac point, the shape of
the band structure is cone-like. So, the corresponding
®rst-order derivative is constant, while the second-order
derivative is zero. That is, the beam will linearly spread
during propagation, but the beam width will not change.
By de®nition, this is the conical diffraction [38±40, 44±47,
56, 60, 61]. To see conical diffraction during propagation
in the super-honeycomb lattice, we assume that the in-
put beam is constructed according to the second method
mentioned in the introduction, as shown in Fig. 3(a). Fig-
ures 3(b) and 3(c) depict the intensity distribution of the
beam at certain distances, at which the beam indeed
shows conical diffraction, as expected. The dashed cir-
cles in the panels correspond to the analytical locations

of the conical rings, obtained according to the group
speed of the beam. One ®nds that the analytical predic-
tions and numerical results agree with each other very
well. Similar to previous research, there are two bright
rings separated by a dark ring Ð the Poggendorff's dark
ring [62] Ð and the intensity of the outer ring is higher
than the intensity of the inner one.

To excite the mode of the Dirac cone at 0 , the input
beam can be prepared in two different ways, according
to Eqs. (11): one is the pseudospin-0 case, the other the
pseudospin-1 case. For the pseudospin-0 case, we ®rst
launch six narrow Gaussian beams into the sublattices
C, D and E according to Eq. (11c); the square root of the
beam amplitude is shown in the upper panel in Fig. 3(d),
and the corresponding output is shown in Fig. 3(e). We
use the square root of the beam amplitude instead of
the beam intensity, because the narrow Gaussian beams
might excite the modes of other dispersive bands except
the modes of Dirac cones. This would lead to high inten-
sity at the beam center during propagation, as seen in
Fig. 3(e), and make the conical diffraction hard to recog-
nize [39, 46].

If one launches three narrow Gaussian beams into the
sublattice A according to Eq. (11a), as presented in the
bottom panel in Fig. 3(d), the corresponding output is
displayed in Fig. 3(f). From Figs. 3(e) and 3(f) one can
see that the output beam indeed exhibits conical diffrac-
tion and the numerical results agree well with the analyt-
ical predictions (dashed circles). Since the group speed
of the mode of the Dirac cone at 0 is twice that of the
cone at K, the beam radii in Figs. 3(e) and 3(f), which are
recorded at z D 50, are the same as that in Fig. 3(c), which
is recorded at z D 100.

Concerning the pseudospin-1 case, we prepare the
input according to Eq. (11d), as shown in Fig. 3(g). The
inset displays the corresponding phase distribution of
the input beam. If the input beam is prepared accord-
ing to Eq. (11e), the corresponding phase distribution is
opposite of that shown in the inset. Figures 3(h) and 3(i)
display the square root of the beam amplitude at cer-
tain propagation distances, from which one observes the
pseudospin-1 conical diffraction.

We would like to point that we used narrow Gaus-
sian beams to avoid mixing of sublattices; if one launches
wide Gaussians into a sublattice, the other sublattices
will be lighted simultaneously. Therefore, the input con-
dition will be destroyed, and one typical example is the
case based on Eq. (11c). However, if one simultaneously
launches six wide Gaussian beams into sublattices A and
B according to Eqs. (11a) and (11b), and assumes a ¼-
phase difference between the beams on sublattices Aand
B, the input light leakage from sublattices A and B onto
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Figure 4 Conical di3raction from wide Gaussian beams. (a) Six
wide Gaussian beams with a¼-phase di3erence are launched into
sublatticesA and B. (b) and (c) Beam intensities at certain dis-
tances. (d) Same as Fig. <(g), but for wide Gaussian beams. (e) and
(f) Setup is as in (b) and (c). Insets are the phase distributions.

sublattices C, D and E will be suppressed, as shown in
Fig. 4(a). To see the conical diffraction, we just display the
intensity distributions on sublattice A, as shown in Figs.
4(b) and 4(c). Since the input Gaussian beams are quite
wide, the mode of the Dirac cone is well excited, and the
conical diffraction apparently appears. Similar method
can be applied to the pseudospin-1 case, as shown in
Figs. 4(d)-4(f).

Up to now, we have discussed conical diffraction due
to Dirac cones with different psedudospins in the super-
honeycomb lattice. In the following subsection, we in-
vestigate the pseudospin-mediated vortices.

9.2 Pseudospin-mediated vortices

It has been demonstrated before that there is pseudospin
in a honeycomb lattice [42±45]. It has also been demon-
strated that pseudospin also exists in the Lieb lattice
[46, 47]. It should be stressed that pseudospins in the
honeycomb and Lieb lattices are different Ð the former
is fermionic and the latter is bosonic. This is determined
by the order of the Dirac cone in the corresponding
band structure [56, 63]. As shown in Fig. 1(b), the Dirac
cones in the band structure of the super-honeycomb
lattice have different orders, therefore both fermionic
and bosonic pseudospins can be observed in the super-
honeycomb lattice [63]. Indeed, as investigated above in
this paper, the super-honeycomb lattice is a combina-
tion of the honeycomb lattice and the Lieb lattice. We
believe that the reason why such a lattice expresses pseu-
dospins is that it is not a Bravais lattice, and the total

Figure 5Intensity and phase of the optical ?eld from numeri-
cal simulation of Eq. (1), when only sublatticeA is excited using
the three-beam interference pattern. Le[ column: input intensity>
Middle column: output intensity> Right column: interferograms
of the output beams with a tilted plane wave. The dashed circle
shows the location of the phase singularity.

wavefunction is a direct sum of the wavefunctions of the
sublattices.

We ®rst consider the pseudospin-1/2 Dirac cones at
K and K0 in the super-honeycomb lattice. To this end,
we selectively launch the input beam into the sublattice
A (or B) by using the interference pattern among three
broad Gaussian beams [44, 45], as shown in Fig. 5(a1).
In Fig. 5(b1), the beam intensity on sublattice B is also
displayed, which is zero Ð no light beam is launched
into the sublattice. This input beam will excite the modes
of the Dirac cones at K and K0, and then exhibit coni-
cal diffraction during propagation. As demonstrated in
previous research [42±45], the pseudospin could be com-
pletely transferred into the angular momentum, so in or-
der to check such a transfer in the super-honeycomb lat-
tice, we show the output intensities on the sublattices A
and B separately in Figs. 5(a2) and 5(b2), and the corre-
sponding interferograms in Figs. 5(a3) and 5(b3). Since
sublattice A is excited, there is no vortex generated on
this sublattice, as shown in Fig. 5(a3). However, as shown
in Fig. 5(b3), a vortex is generated on sublattice B with a
topological charge C1, because of the bifurcation in the
interferogram. That is, when sublattice A is excited, the
psedudospin is converted to a vortex angular momen-
tum, and such an angular momentum will be indicated
in sublattice B. This is same as in the previous research
on honeycomb lattice [44, 45].

On the other hand, if sublattice B is excited, the sit-
uation will be in the opposite, so that the pseudospin is
converted into a vortex angular momentum on sublat-
tice A, with a topological charge ¡ 1, as shown in Fig. 6. As

C° 2016 by WILEY-VCH Verlag GmbH 4 Co. KGaA, Weinheim (0 of $%) $&%%"!'www.ann-phys.org



O
rig

in
al

P
ap

er

H. Zhong et al.: Transport properties in the photonic super-honeycomb lattice Ð a hybrid fermionic and bosonic system

Figure 6 Same as Fig. 5, but with the sublatticeBexcited.

mentioned before, the pseudospin matrix for the Dirac
cone at K in the super-honeycomb lattice is nontrivial,
and the projections on sublattices C, D and E are not
clear. As a result, we only display the vortex generation
on sublattices Aand B, since the eigenmodes on them are
separated.

Let us turn now to the pseudospin-1 Dirac cone at 0 .
According to the matrices in Eqs. (8)-(10) and the corre-
sponding states in Eqs. (11a)-(11e), we have to consider
two cases: the pseudospin-0 case and the pseudospin-
1 case, even though we call it the pseudospin-1 Dirac
cone. Considering that the pseudospin connected with
the Dirac cones at K and K0 is § 1=2, which reveals the
fermionic nature of the super-honeycomb lattice, the
pseudospin connected with the Dirac cone at 0 re¯ects
its bosonic nature, because of the integer pseudospins
0 and § 1. As already mentioned, the super-honeycomb

lattice exhibits both fermoinic and bosonic properties,
which is a consequence of its hybrid, honeycomb and
Lieb, nature.

Considering that ÃSz is not diagonal in the natural sub-
lattices, we have to take the method used in the previ-
ous investigation [47] to check the pseudospin-mediated
vortices. We should note that the pseudospin-1 Dirac
cone is located in the middle of the ®rst Brillouin zone
(0 ), which comes from the Lieb lattice [46, 47]. So, there
is no global phase tilt in our investigation, and the output
beam intensities corresponding to different pseudospins
can be directly obtained from the output beam accord-
ing to Eq. (11). Also, considering that both eigenstates
jSz D 0i in Eq. (11c) and jSz D § 1i in Eqs. (11d) and (11e)
demand excitation of C, D and E, which looks like they
are somehow ªin entanglementº, we only take the eigen-
state jSz D 0i in Eq. (11a) or (11b) as an input.

The results are displayed in Fig. 7, in which the panels
in the ®rst row are square roots of the amplitude of differ-
ent components obtained according to Eqs. (11a)-(11e)
and the panels in the second row are the corresponding
phase pro®les. The beams are not hollow conical beams,
because they carry contributions from other modes of
the bands, but one may observe that they consist of many
concentric rings. These rings come just from the pseu-
dospin components we are interested in, which indeed
are the pseudospin mediated vortices. To avoid checking
the vortex and anti-vortex pairs in the complicated phase
pro®les, the total topological charge can be obtained
directly from the phase gradients of the rings. In Figs.
7(a2)-7(c2), there is no phase gradient in the rings, so the
topological charge is 0, and these rings are not vortices.
In Fig. 7(d2), there is a phase gradient from ¼ to ¡ ¼, as

Figure 7Pseudospin-mediated vortex generation when sublatticeAis excited according to Eq. (11a). (a1)-(e1) Square root of the amplitudes
of the output pseudospin components obtained according to Eqs. (11a)-(11e), respectively. (a2)-(e2) Corresponding phase pro?les. The
dashed circle with an arrow indicates the phase gradient.
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indicated by the dashed circle with an arrow. Therefore,
the rings in Fig. 7(d1) form a vortex with a topological
charge C1. The phase gradient in Fig. 7(e2) is opposite
that in Fig. 7(d2), so the rings in Fig. 7(e1) form a vortex
with a topological charge ¡ 1. The results agree with those
reported for a Lieb lattice [47].

5 Conclusion

In summary, we have investigated transport properties
of the super-honeycomb lattice, which is a combina-
tion of the honeycomb lattice and the Lieb lattice. Since
there is a ¯at band, and pseudospin-1/2 and pseudospin-
1 Dirac cones in the band structure of the super-
honeycomb lattice, strong localization of light due to
the ¯at band is observed, and conical diffraction coming
from the pseudospin-1/2 and pseudospin-1 Dirac cones
is displayed. We have also discussed the pseudospin-
mediated vortex generation based on the pseudospin-
1/2 and pseudospin-1 Dirac cones. These facts provide
a new platform for investigating light trapping, higher
pseudospin states, vortex generation, and other interest-
ing phenomena in this intriguing physical system.

We believe that other novel topological properties of
the super-honeycomb lattice are ready for further explo-
ration, and deeper investigation on this interesting sys-
tem may inspire new ideas and bring about new physical
phenomena.

Acknowledgements.This work is supported by National Natural
Science Foundation of China (61<0=015, 1198922=), China Postdoc-
toral Science Foundation (2016M600888, 2016M5;0;<5), and Qatar
National Research Fund (NPRP 6-021-1-005).

Key words.super-honeycomb lattice, pseudospin, Dirac cone, +at
band.

References

[1] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G.
Assanto, M. Segev, and Y. Silberberg, Phys. Rep.463,
1±126 (2008).

[2] S. Longhi, Laser Photon. Rev. 3, 243±261 (2009).
[3] Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev.

Mod. Phys. 83(Apr), 247±305 (2011).
[4] I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S.

Kivshar, Phys. Rep.518, 1±79 (2012).
[5] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B.

Real, C. MejÂõa-CortÂes, S. Weimann, A. Szameit, and M.
I. Molina, Phys. Rev. Lett. 114(Jun), 245503 (2015).

[6] S. Mukherjee, A. Spracklen, D. Choudhury, N. Gold-
man, P. ÈOhberg, E. Andersson, and R. R. Thomson,
Phys. Rev. Lett.114(Jun), 245504 (2015).

[7] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit, Nature 496, 196±200 (2013).

[8] Y. Q. Zhang, Z. K. Wu, M. R. BeliÂc, H. B. Zheng, Z. G.
Wang, M. Xiao, and Y. P. Zhang, Laser Photon. Rev. 9,
331±338 (2015).

[9] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev.
Lett. 106(Jun), 236803 (2011).

[10] S. Xia, Y. Hu, D. Song, Y. Zong, L. Tang, and Z. Chen,
Opt. Lett. 41(Apr), 1435±1438 (2016).

[11] Y. Zong, S. Xia, L. Tang, D. Song, Y. Hu, Y. Pei, J. Su, Y. Li,
and Z. Chen, Opt. Express 24(Apr), 8877±8885 (2016).

[12] S. Deng, A. Simon, and J. KÈohler, J. Solid State Chem.
176, 412±416 (2003).

[13] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys.
Rev. Lett. 99(Aug), 070401 (2007).

[14] H. Tasaki, Eur. Phys. J. B64, 365±372 (2008).
[15] A. Crespi, G. Corrielli, G. D. Valle, R. Osellame, and S.

Longhi, New J. Phys. 15, 013012 (2013).
[16] M. C. Rechtsman, J. M. Zeuner, A. T Èunnermann, S.

Nolte, M. Segev, and A. Szameit, Nat. Photon. 7, 153±
158 (2013).

[17] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.
Solnyshkov, G. Malpuech, E. Galopin, A. Lema Ãõtre, J.
Bloch, and A. Amo, Phys. Rev. Lett. 112(Mar), 116402
(2014).

[18] S. Mukherjee and R. R. Thomson, Opt. Lett. 40(Dec),
5443±5446 (2015).

[19] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin,
A. LemaÃõtre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E.
TÈureci, A. Amo, and J. Bloch, Phys. Rev. Lett. 116(Feb),
066402 (2016).

[20] R. Khomeriki and S. Flach, Phys. Rev. Lett. 116(Jun),
245301 (2016).

[21] S. Weimann, L. Morales-Inostroza, B. Real, C. Cantil-
lano, A. Szameit, and R. A. Vicencio, Opt. Lett. 41(Jun),
2414±2417 (2016).

[22] V. Apaja, M. Hyrk Èas, and M. Manninen, Phys. Rev. A
82(Oct), 041402 (2010).

[23] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev.
A 83(Jun), 063601 (2011).

[24] M. NitËÆa, B. Ostahie, and A. Aldea, Phys. Rev. B87(Mar),
125428 (2013).

[25] D. Guzm Âan-Silva, C. MejÂõa-CortÂes, M. A. Bandres, M.
C. Rechtsman, S. Weimann, S. Nolte, M. Segev, A.
Szameit, and R. A. Vicencio, New J. Phys. 16, 063061
(2014).

[26] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima,
and Y. Takahashi, Sci. Adv. 1, 1500854 (2015).

[27] Y. Q. Zhang, X. Liu, M. Beli Âc, W. P. Zhong, C. B. Li, H.
X. Chen, and Y. P. Zhang, Rom. Rep. Phys.68, 230±240
(2016).

[28] Y. Q. Zhang, M. R. BeliÂc, C. B. Li, Z. Y. Zhang, Y. P.
Zhang, and M. Xiao, arXiv:1605.04389.

[29] J. Vidal, B. DoucËot, R. Mosseri, and P. Butaud, Phys.
Rev. Lett. 85(Oct), 3906±3909 (2000).

C° 2016 by WILEY-VCH Verlag GmbH 4 Co. KGaA, Weinheim (# of $%) $&%%"!'www.ann-phys.org



O
rig

in
al

P
ap

er

H. Zhong et al.: Transport properties in the photonic super-honeycomb lattice Ð a hybrid fermionic and bosonic system

[30] S. Longhi, Opt. Lett. 39(Oct), 5892±5895 (2014).
[31] S. Mukherjee, A. Spracklen, M. Valiente, E. Ander-

sson, P. ÈOhberg, N. Goldman, and R. R. Thomson,
arXiv:1604.05612.

[32] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(Jan),
109±162 (2009).

[33] A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M.
Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk, L. N.
Pfeiffer, K. W. West, and V. Pellegrini, Science 332,
1176±1179 (2011).

[34] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T.
Esslinger, Nature 483, 302±305 (2012).

[35] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C.
Manoharan, Nature 483, 306±310 (2012).

[36] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoha-
ran, and V. Pellegrini, Nat. Nanotechnol. 8, 625±633
(2013).

[37] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Nature 515(Nov),
237±240 (2014).

[38] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev,
and D. N. Christodoulides , Phys. Rev. Lett. 98(Mar),
103901 (2007).

[39] M. J. Ablowitz, S. D. Nixon, and Y. Zhu , Phys. Rev. A
79(May), 053830 (2009).

[40] M. J. Ablowitz and Y. Zhu, Phys. Rev. A 82(Jul), 013840
(2010).

[41] M. J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 73,
1959±1979 (2013).

[42] M. Mecklenburg and B. C. Regan, Phys. Rev. Lett.
106(Mar), 116803 (2011).

[43] M. Trushin and J. Schliemann, Phys. Rev. Lett.
107(Oct), 156801 (2011).

[44] D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L.
Tang, J. Xu, M. Ablowitz, N. K. Efremidis, and Z. Chen,
Nat. Commun. 6, 6272 (2015).

[45] D. Song, S. Liu, V. Paltoglou, D. Gallardo, L. Tang, J.
Zhao, J. Xu, N. K. Efremidis, and Z. Chen, 2D Mater.
2, 034007 (2015).

[46] D. Leykam, O. Bahat-Treidel, and A. S. Desyatnikov,
Phys. Rev. A86(Sep), 031805 (2012).

[47] F. Diebel, D. Leykam, S. Kroesen, C. Denz, and A. S.
Desyatnikov, Phys. Rev. Lett. 116(May), 183902 (2016).

[48] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt.
Lett. 21(Nov), 1729±1731 (1996).

[49] A. Szameit and S. Nolte, J. Phys. B: At. Mol. Opt. Phys.
43, 163001 (2010).

[50] Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J.
M. Zeuner, S. Nolte, Y. Lumer, N. Malkova, J. Xu, A.
Szameit, Z. Chen, and M. Segev, Nat. Mater. 13, 57±62
(2014).

[51] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit,
arXiv:1605.03877.

[52] N. Shima and H. Aoki, Phys. Rev. Lett. 71(Dec), 4389±
4392 (1993).

[53] H. Aoki, M. Ando, and H. Matsumura, Phys. Rev. B
54(Dec), R17296±R17299 (1996).

[54] Z. Lan, N. Goldman, and P. ÈOhberg, Phys. Rev. B
85(Apr), 155451 (2012).

[55] A. Szameit, M. C. Rechtsman, O. Bahat-Treidel,
and M. Segev, Phys. Rev. A 84(Aug), 021806
(2011).

[56] D. Leykam and A. S. Desyatnikov, Adv. Phys. X 1, 101±
113 (2016).

[57] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys.
Rev. Lett. 103(Jul), 046811 (2009).

[58] D. Leykam, Wave and spectral singularities in pho-
tonic lattices, PhD thesis, The Australian National
University, 2015.

[59] R. A. Vicencio and C. Mej Âõa-CortÂes, J. Opt.16, 015706
(2014).

[60] Y. Q. Zhang, H. Zhong, M. R. Beli Âc, N. Ahmed, Y. P.
Zhang, and M. Xiao, Sci. Rep. 6, 23645 (2016).

[61] Y. Q. Zhang, H. Zhong, M. R. Beli Âc, Y. Zhu, W. P. Zhong,
Y. P. Zhang, D. N. Christodoulides, and M. Xiao, Laser
Photon. Rev. 10, 526±531 (2016).

[62] M. Berry and M. Jeffrey, Prog. Opt. 50, 13±50 (2007).
[63] Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P.

ÈOhberg, Phys. Rev. B84(Oct), 165115 (2011).

$&%%"!' ($% of $%) C° 2016 by WILEY-VCH Verlag GmbH 4 Co. KGaA, Weinheimwww.ann-phys.org


