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We report on the transport properties of the super-

honeycomb lattice, the band structure of which possesses

a +at band and Dirac cones, according to the tight-binding

approximation. The super-honeycombmodel combines

the honeycomb lattice and the Lieb lattice and displays the

properties of both. It also represents a hybrid fermionic

and bosonic system, which is rarely seen in nature. By

choosing the phases of input beams properly, the +at-band

mode of the super-honeycomb lattice will be excited and

the input beams will exhibit strong localization during

propagation. On the other hand, if the modes of Dirac cones

of the super-honeycomb lattice are excited, one will observe

conical di3raction. Furthermore, if the input beam is prop-

erly chosen to excite a sublattice of the super-honeycomb

lattice and the modes of Dirac cones with di3erent pseu-

dospins, e.g., by the three-beam interference pattern, the

pseudospin-mediated vortices will be observed.

1 Introduction

In the last decade, research in photonic crystals and op-

tical waveguide arrays has attracted a lot of attention

[1–4]. Recently, flat bands [5, 6] and Dirac cones [7, 8]

were observed in the band structure of certain optical

lattices and promptly acquired a special notice. A flat

band means that the bandwidth of the band is zero, so

that the eigenmodes of the flat band are highly degen-

erate, which can be explored to study the strong correla-

tion problems [9]. Light that excites a flat-band mode will

be strongly localized during propagation, because both

the first-order and the second-order derivatives of a flat

band are zero. Due to such strong localization and non-

diffracting properties, the flat-band materials, e.g., the

Lieb lattice and the kagome lattice photonic crystals, are

broadly utilized for distortion-free image transmission,

lossless optical information, and light localization [10,

11]. It should be noted that there exist many flat-band

materials and models [8, 12–21], but the models based

on the Lieb lattice [22–27] are probably the simplest. En-

lightened by the properties of a simple Lieb lattice, novel

face-centered square lattices (i.e., Lieb-5 and Lieb-7 lat-

tices) that possess more than one flat band were intro-

duced recently [28]. It is worth mentioning that these lat-

tices are free of the “pseudomagnetic effect”, as discussed

in the previous literature [16, 29–31].

Concerning Dirac cones, which are amply discussed

in the graphene or the honeycomb lattice (i.e., the pho-

tonic graphene) [17, 32–37], the dispersion relation in the

vicinity of a Dirac cone is linear. Hence, the first-order

derivative close to the Dirac point is constant and the

second-order derivative is zero, which indicates that light

exciting the modes of the Dirac cone will undergo conical

diffraction during propagation [38–41]. The intensity dis-

tribution then forms a circular ring, the radius of which

is increasing with propagation, while the width remains

the same. To excite a mode of the Dirac cone, two meth-

ods are usually adopted to prepare the input beam [39]:
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(1) Numerically obtain the Bloch modes of the Dirac cone

and then multiply the modes with a wide Gaussian beam;

(2) Find the location of the Dirac cone in the first Bril-

louin zone, produce the plane waves accordingly, and

then multiply these waves with a wide Gaussian beam.

Another interesting phenomenon connected with the

honeycomb lattice is the pseudospin, which was the-

oretically predicted in [42, 43] and experimentally ob-

served recently [44, 45]. It is important to note that the

pseudospin arises from the sublattice in space and can

be totally transformed into angular momentum. Coni-

cal diffraction and pseudospin were also investigated in

the Lieb lattice [46, 47]. We would like to note mention

that optical lattices of this kind can be conveniently ob-

tained by the so-called femtosecond laser writing tech-

nique [48–51].

Here, we investigate the super-honeycomb lattice

(which could also be denoted as the edge-centered hon-

eycomb lattice) that was first reported more than 20

years ago in [52, 53] and then recently again in [54].

Starting from the structure of the honeycomb lattice,

the super-honeycomb lattice is prepared by inserting

another site in-between the two nearest-neighbor (NN)

sites. Now, there are 5 sites in the unit cell and 5 en-

ergy bands, according to the tight-binding approxima-

tion. Naturally, such a lattice can be viewed as a combi-

nation of the honeycomb lattice and the Lieb lattice—

it contains both a flat band and Dirac cones (in fact,

two kinds of Dirac cones—at the center and at the cor-

ners of the first Brillouin zone) in the band structure. It

was suggested in the previous literature that the super-

honeycomb lattice provides a new structure to investi-

gate flat bands [52] and Hofstadter’s butterflies [53]. It

was also revealed that the super-honeycomb lattice can

support simultaneously spin-1/2 and spin-1 Dirac-Weyl

fermions [54], and that it can be connected with both

the honeycomb lattice and the kagome lattice. Nonethe-

less, the super-honeycomb lattice deserves further ex-

ploration, owing to its unique band structure and exotic

properties.

In this paper, we study the transport properties of

light beams propagating in an array of waveguides ar-

ranged in the super-honeycomb lattice, and obtain in-

teresting new results. We calculate the proper phase of

the input, to excite both strong localization and coni-

cal diffraction of light in such a lattice, and observe the

pseudospin-mediated vortices, by exciting the sublat-

tices alternatively. The methods of investigation and the

aspects of problems investigated here are different from

the previously reported accounts [52–54]. To the best

of our knowledge, such transport properties in a super-

honeycomb lattice have not been reported before.

Figure 1 (a) Schematic of the super-honeycomb lattice with 5 sites

marked as A, B, C, D and E in the unit cell. v1 and v2 are the basis

vectors in real space. (b) Band structure; from top to bottom, the

bands are β1∼5. Inset shows the ?rst Brillouin zone and the high

symmetry pointsŴ, M, K and K′. (c) The corresponding density of

states.

The paper is organized as follows. In Sec. 2 we intro-

duce the mathematical model and display the schematic

of the super-honeycomb lattice. By applying the tight-

binding method (only considering the NN hopping), the

band structure of the super-honeycomb lattice is ob-

tained. The transport properties are discussed in Secs.

3 and 4. In particular, Sec. 3 discusses light localization

due to a flat band. We show that both the intensity and

the phase of light remain the same during propagation,

if the flat-band mode is excited; or, if not, they undergo

discrete diffraction. In Subsec. 4.1, the conical diffraction

of light that excites a Dirac cone is presented. We discuss

the generation of pseudospin-mediated vortices by excit-

ing a sublattice of the super-honeycomb lattice in Sub-

sec. 4.2. We conclude the paper in Sec. 5.

2 Mathematical model

The geometry of the super-honeycomb lattice is de-

picted in Fig. 1(a). Different from the honeycomb lattice,

there are 5 sites in the unit cell of a super-honeycomb

lattice. Similar to the honeycomb lattice, there are two

sublattices, formed by three A sites and three B sites, re-

spectively. Even though C, D and E sites can form another

set of triangles, the properties of the three sites are dif-

ferent (they are not equivalent to each other). Therefore,
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there are 5 sublattices in a super-honeycomb lattice. By

adopting the tight-binding method and assuming that

hopping only occurs between the NN sites, the propa-

gation of light in this discrete model obeys the discrete

coupled Schrödinger equations [28, 55]:

i
∂ Am

∂z
= t

∑

Rm,ei

(Cm + Dm + Em), (1a)

i
∂ Bm

∂z
= t

∑

Rm,ei

(Cm + Dm + Em), (1b)

i
∂Cm

∂z
= t

∑

Rm,ei

(Am + Bm), (1c)

i
∂ Dm

∂z
= t

∑

Rm,ei

(Am + Bm), (1d)

i
∂ Em

∂z
= t

∑

Rm,ei

(Am + Bm), (1e)

where z is the longitudinal distance and Rm is the po-

sition of the mth unit cell. Thus, it is assumed that

a photonic crystal consisting of an array of optical

waveguides is arranged in the form of super-honeycomb

lattice and that light propagates perpendicular to the

lattice, along the waveguides. For simplicity, we set the

distance between sites A and B to be a = 1, and the hop-

ping strength to be t = 1. The vectors e1,2,3 are the three

unit vectors representing the hopping directions, with

components e1 = (1/2,
√

3/2), e2 = (1/2,−
√

3/2), and

e3 = (−1, 0); v1,2 are the Bravais primitive vectors, with

components v1 = (3/2,
√

3/2) and v2 = (3/2,−
√

3/2).

In order to find solutions of Eqs. (1), one introduces

an ansatz of the form [55]

Am = Ak exp[i(βz + Rm · k)],

Bm = Bk exp[i(βz + Rm · k)],

Cm = Ck exp[i(βz + Rm · k)],

Dm = Dk exp[i(βz + Rm · k)],

Em = Ek exp[i(βz + Rm · k)].

(2)

Plugging Eq. (2) into Eq. (1), after some algebra, one ob-

tains:

HT B|β, k〉 = β|β, k〉, (3)

in which

|β, k〉 =
[

Ak, Bk, Ck, Dk, Ek

]T
, (4)

and the tight-binding Hamiltonian of the system is:

HT B = −















0 0 H13 H14 H15

0 0 H ∗
13 H ∗

14 H ∗
15

H ∗
13 H13 0 0 0

H ∗
14 H14 0 0 0

H ∗
15 H15 0 0 0















, (5)

where H13 = exp[i(kx/4 +
√

3ky/4)], H14 = exp[i(kx/4 −√
3ky/4)], H15 = exp(−ikx/2); here (•)∗ denotes the com-

plex conjugate of (•). Obviously, Eq. (5) is a Hermitian

matrix, so that one can solve for five real eigenvalues β1∼5

that represent the dispersive relation, i.e., the band struc-

ture. It is not difficult to demonstrate that β1(kx, ky) =
−β5(kx, ky), β2(kx, ky) = −β4(kx, ky), and β3 = 0. Since β3

is independent of kx or ky, it corresponds to a complete

flat band in the first Brillouin zone. The corresponding

eigenstate of the flat band is

|β3, k〉 =



















0

0

sin
(

3kx/4 −
√

3ky/4
)

− sin
(

3kx/4 +
√

3ky/4
)

sin
(√

3ky/2
)



















, (6)

which means that the flat-band mode has a vanishing

amplitude on sublattices A and B.

Figure 1(b) presents the numerical dispersion rela-

tion of the super-honeycomb lattice in the first Brillouin

zone. One finds that the bands are symmetric about the

flat band, and that there are 6 Dirac cones between β1

and β2, as well as between β4 and β5 at the corners of the

first Brillouin zone, which is similar to the Dirac cones

in the honeycomb lattice. Intersected by the flat band,

there is another Dirac cone, which is similar to that in

the Lieb lattice, but located at the origin of the first Bril-

louin zone. We note that typically there are two symmet-

ric sites in the first Brillouin zone that are called K and K′.

As shown in the inset in Fig. 1(b), the locations of K and

K′ are (0,± 4π/3
√

3). Due to the symmetry of the band

structure, there will be a state | − β1, k〉 for each |β1, k〉,

and | − β2, k〉 for each |β2, k〉, therefore the particle-hole

symmetry is observed in the super-honeycomb lattice.

In fact, the criteria for the existence of such a symmetry

is that there is an operator Ô which anticommutes with

the Hamiltonian [46]. It is easy to verify that the oper-

ator Ô for this case is Ô = diag(1, 1,−1,−1,−1). Look-

ing at the band structure shown in Fig. 1(b), one can

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (3 of 10) 1600258www.ann-phys.org
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draw a conclusion that the super-honeycomb lattice is

a hybrid of the honeycomb lattice and the Lieb lattice,

because there are simultaneously “pseudospin-1/2” and

“pseudospin-1” Dirac cones in it, which are present in

the honeycomb lattice [42–45] and in the Lieb lattice [46,

47, 56] separately.

We also display the corresponding density of states

[32] of the band structure in Fig. 1(c), to classify and dis-

tinguish different pseudospins embedded in the super-

honeycomb lattice. One can clearly see a δ-function sin-

gularity at β = 0 (due to the flat band), therefore the

corresponding Dirac cone is bosonic with s = 1 (where

s represents the pseudospin) [56]. Whereas, for the other

two Dirac cones the density of states is zero, so they are

fermionic with s = 1/2.

Now, we present a brief analysis of the pseudospin

connected with the Dirac cones at K and Ŵ. Around the

Dirac points (K or Ŵ) in the band structure, the Hamilto-

nian in Eq. (5) can be rewritten as

Hp = −















0 0 γ H13,p γ ∗ H14,p H15,p

0 0 γ ∗ H ∗
13,p γ H ∗

14,p H ∗
15,p

γ ∗ H ∗
13,p γ H13,p 0 0 0

γ H ∗
14,p γ ∗ H14,p 0 0 0

H ∗
15,p H15,p 0 0 0















,

(7)

where p = [ px, py] is the displacement from the

Dirac point, H13,p = 1 + i( px/4 +
√

3 py/4), H14,p =
1 + i( px/4 −

√
3 py/4), H15,p = 1 − i px/2, and γ is the

coefficient that is exp(iπ/3) for the Dirac point at K

and 1 for the Dirac point at Ŵ. One can calculate that

the dispersion relation is β =
√

3(1 ± |p|/4) around K

and β = ±
√

3|p|/2 around Ŵ. Considering that ∇pβ

determines the group velocity of the beam, the speed of

the beam spreading at Ŵ is twice that of the beam at K;

this was also found in Ref. [54].

We first consider the Hamiltonian Hp around the Ŵ

point; one finds that [Hp, L̂z] 6= 0, where L̂z = −i(r × ∇)z
⊗

1̂ is the orbital angular momentum operator. So, there

must be some additional angular momentum missing,

which is the so-called pseudospin. If we define the pseu-

dospin operator as Ŝz, the total angular momentum can

be written as Ĵz = L̂z + Ŝz, which meets the condition

[Hp, Ĵz] = 0. Indeed, one finds that

2
√

3Sx =















0 0 i i −2i

0 0 −i −i 2i

−i i 0 0 0

−i i 0 0 0

2i −2i 0 0 0















, (8)

2Sy =















0 0 i −i 0

0 0 −i i 0

−i i 0 0 0

i −i 0 0 0

0 0 0 0 0















, (9)

√
3Sz =















0 0 0 0 0

0 0 0 0 0

0 0 0 i −i

0 0 −i 0 i

0 0 i −i 0















, (10)

which satisfy the angular momentum algebra

[S j, Sk] = iǫ jkl Sl and [S2, Sk] = 0, with S2 =
∑

k S2
k .

Diagonalizing Sz, one obtains

|Sz = 0〉 = [1, 0, 0, 0, 0]T , (11a)

|Sz = 0〉 = [0, 1, 0, 0, 0]T , (11b)

|Sz = 0〉 = [0, 0, 1, 1, 1]T , (11c)

|Sz = 1〉 = [0, 0, exp(−i2π/3), exp(i2π/3), 1]T , (11d)

|Sz = −1〉 = [0, 0, exp(i2π/3), exp(−i2π/3), 1]T . (11e)

Hence, for the |Sz = 0〉 state, there are two cases: the van-

ishing amplitude on A and B, and the non-vanishing am-

plitude only on A or B. Whereas for the |Sz = ±1〉 states,

the amplitudes on A and B vanish, and the amplitudes on

C, D and E have a relative phase difference 2π/3. Thus,

we determine that the pseudospin corresponding to the

Dirac cone at Ŵ can be 0 or 1.

There is also pseudospin at the Dirac point K in the

super-honeycomb lattice; however, the pseudospin ma-

trix corresponding to this case is nontrivial. According

to the commutator relation [Hp, Ŝz] = −[Hp, L̂z], one can

obtain 25 linear equations, which can be rewritten in the

matrix form: M S = L, in which M is the coefficient ma-

trix, and S and L are 25 × 1 vectors constructed from the

matrices Sz and −[Hp, L̂z]. One can easily verify that the

rank of the matrix M is 20 and the rank of the corre-

sponding augmented matrix is 21. Therefore, there is no

solution to the equation M S = L. At least, one clear point

is that the appearance of the Dirac cones is only due to

the sublattices A and B. One can consider the 2-band

Hamiltonian that describes the Dirac cone at K, to find

1600258 (4 of 10) C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org
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Figure 2 (a) Intensity of the input beam that contains six Gaussian

beams pointed at the sublattices C,D and E. (b) Output intensity of

the input beam if the six Gaussian beams are neither in-phase nor

out-of-phase. Discrete di3raction happens during propagation. (c)

Same as (b), but for the out-of-phase case. Strong localization is

observed during propagation. Inset: phase of the output beam. (d)

Iso-surface plot of the propagation corresponding to (c).

that the pseudospin is 1/2 [54, 57, 58], which is similar

to that in the honeycomb lattice or the kagome lattice.

Therefore, we will just discuss the intensity distributions

on sublattices A and B when analyzing the pseudospin-

mediated vortex generation associated with the Dirac

cone at K in Sec. 4.2; those on sublattices C, D and E are

not involved in the indistinct projections.

3 Strong localization due to the ,at band

It has been proven that if light excites the mode of the flat

band of the Lieb lattice or the kagome lattice, it will be

strongly localized during propagation in the correspond-

ing waveguides [5, 6, 10, 11, 59]. In this section, we in-

vestigate the localization of the flat-band mode in the

super-honeycomb lattice, according to Eqs. (1). Based on

Eq. (6), the flat-band mode has a vanishing amplitude on

sublattices A and B, so we launch the input beam — six

Gaussian beamlets — into sublattices C, D and E, as pre-

sented in Fig. 2(a). If the input beam lobes are in-phase,

we say the input beam is in-phase, while if the two ad-

jacent lobes are out-of-phase, we say the input beam is

out-of-phase.

First, we assume that the six Gaussian beamlets are

neither in-phase (according to Eq. (11a), conical diffrac-

tion will then be obtained) nor out-of-phase. On this oc-

casion, the input beam exhibits discrete diffraction dur-

ing propagation along lattice waveguides, as shown in

Fig. 2(b), which means that neither the in-phase nor the

out-of-phase input beam excites the bulk mode.

On the other hand, if the six beamlets are out-of-

phase, the flat-band mode will be excited [6, 10, 28]

and the strong localization during propagation will be

observed, as shown in Fig. 2(c). As expected, once the

flat-band mode is excited, the beam is localized — the

output intensity is the same as the initial in Fig. 2(a).

Concerning the phase of the output beam, as shown in

the inset in Fig. 2(c), the phase is also preserved very well,

i.e., the six peaks are still out-of-phase. The physical ex-

planation of this phenomenon is quite natural. Since the

band width of the flat band is zero, the first-order deriva-

tive (corresponding to the group velocity of the beam) as

well as the second-order derivative (corresponding to the

diffraction of the beam) of the flat band is also zero. As a

result, the beam will not diffract during propagation and

it will remain the same — an indication of strong local-

ization.

To see the strong localization more clearly, in Fig.

2(d) we show the whole propagation of the input beam

used in Fig. 2(c), by connecting the corresponding iso-

surfaces (which form tubes) of the beam during prop-

agation. In Fig. 2(d), the amplitudes of the input beam

and the output beam are displayed at the input face and

the output face, respectively, and there is a π-phase dif-

ference between the red tubes and the blue tubes. Again,

one observes that both the amplitude and the phase of

the beam do not change during propagation — both

the width and the color of the tubes remain unchanged.

Comparing Fig. 2(b) with Fig. 2(c), one comes to the con-

clusion that not only the amplitude but also the phase

plays an important role in the excitation of the flat-band

mode.

4 Conical di/raction and pseudospin due to
Dirac cones

4.1 Conical di3raction

After discussing the localization caused by the flat band

in the super-honeycomb lattice, we now analyze the

influence of Dirac cones on the beam propagation dy-

namics. As already mentioned, there are two kinds of

Dirac cones in the band structure shown in Fig. 1(b), cor-

responding to pseudospin 1/2 (at K and K′) and pseu-

dospin 1 (at Ŵ), respectively. The group speed of the

beam due to the former Dirac cones is half of that due

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (5 of 10) 1600258www.ann-phys.org
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Figure 3 Conical di3raction during propagation. (a)-(c) Intensity

distributions of the beam at certain propagation distances, dis-

played in the le[-bottom corner of each panel. Six wide Gaussian

beams multiplied with the plane waves at the six Dirac points are

launched into the sublattices A and B. (d) Square root of the ampli-

tude of the pseudospin-0 input. Upper panel: six in-phase narrow

Gaussian beams are launched into the sublattices C, D and E. Bot-

tom panel: three in-phase narrow Gaussian beams are launched

into the sublattice A. Insets show the magni?ed beams. (e) and (f)

Square root of the amplitude of the output beam corresponding to

the upper and lower inputs in (d), respectively. (g)-(i) Square root

of the amplitudes of the pseudospin-1 beam. Six narrow Gaussian

beamswith a 2π/3 phase di3erence between adjacent beams (up-

per inset: magni?ed beam, bottom panel: phase distribution), are

launched into the sublattices C, D and E. Dashed circles represent

the analytical radius of the conical di3raction.

to the latter. We first discuss the first kind of Dirac cones

and then the second.

In the neighborhood of a Dirac point, the shape of

the band structure is cone-like. So, the corresponding

first-order derivative is constant, while the second-order

derivative is zero. That is, the beam will linearly spread

during propagation, but the beam width will not change.

By definition, this is the conical diffraction [38–40, 44–47,

56, 60, 61]. To see conical diffraction during propagation

in the super-honeycomb lattice, we assume that the in-

put beam is constructed according to the second method

mentioned in the introduction, as shown in Fig. 3(a). Fig-

ures 3(b) and 3(c) depict the intensity distribution of the

beam at certain distances, at which the beam indeed

shows conical diffraction, as expected. The dashed cir-

cles in the panels correspond to the analytical locations

of the conical rings, obtained according to the group

speed of the beam. One finds that the analytical predic-

tions and numerical results agree with each other very

well. Similar to previous research, there are two bright

rings separated by a dark ring — the Poggendorff’s dark

ring [62] — and the intensity of the outer ring is higher

than the intensity of the inner one.

To excite the mode of the Dirac cone at Ŵ, the input

beam can be prepared in two different ways, according

to Eqs. (11): one is the pseudospin-0 case, the other the

pseudospin-1 case. For the pseudospin-0 case, we first

launch six narrow Gaussian beams into the sublattices

C, D and E according to Eq. (11c); the square root of the

beam amplitude is shown in the upper panel in Fig. 3(d),

and the corresponding output is shown in Fig. 3(e). We

use the square root of the beam amplitude instead of

the beam intensity, because the narrow Gaussian beams

might excite the modes of other dispersive bands except

the modes of Dirac cones. This would lead to high inten-

sity at the beam center during propagation, as seen in

Fig. 3(e), and make the conical diffraction hard to recog-

nize [39, 46].

If one launches three narrow Gaussian beams into the

sublattice A according to Eq. (11a), as presented in the

bottom panel in Fig. 3(d), the corresponding output is

displayed in Fig. 3(f). From Figs. 3(e) and 3(f) one can

see that the output beam indeed exhibits conical diffrac-

tion and the numerical results agree well with the analyt-

ical predictions (dashed circles). Since the group speed

of the mode of the Dirac cone at Ŵ is twice that of the

cone at K, the beam radii in Figs. 3(e) and 3(f), which are

recorded at z = 50, are the same as that in Fig. 3(c), which

is recorded at z = 100.

Concerning the pseudospin-1 case, we prepare the

input according to Eq. (11d), as shown in Fig. 3(g). The

inset displays the corresponding phase distribution of

the input beam. If the input beam is prepared accord-

ing to Eq. (11e), the corresponding phase distribution is

opposite of that shown in the inset. Figures 3(h) and 3(i)

display the square root of the beam amplitude at cer-

tain propagation distances, from which one observes the

pseudospin-1 conical diffraction.

We would like to point that we used narrow Gaus-

sian beams to avoid mixing of sublattices; if one launches

wide Gaussians into a sublattice, the other sublattices

will be lighted simultaneously. Therefore, the input con-

dition will be destroyed, and one typical example is the

case based on Eq. (11c). However, if one simultaneously

launches six wide Gaussian beams into sublattices A and

B according to Eqs. (11a) and (11b), and assumes a π-

phase difference between the beams on sublattices A and

B, the input light leakage from sublattices A and B onto
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Figure 4 Conical di3raction from wide Gaussian beams. (a) Six

wide Gaussian beams with a π -phase di3erence are launched into

sublattices A and B. (b) and (c) Beam intensities at certain dis-

tances. (d) Same as Fig. 3(g), but for wide Gaussian beams. (e) and

(f) Setup is as in (b) and (c). Insets are the phase distributions.

sublattices C, D and E will be suppressed, as shown in

Fig. 4(a). To see the conical diffraction, we just display the

intensity distributions on sublattice A, as shown in Figs.

4(b) and 4(c). Since the input Gaussian beams are quite

wide, the mode of the Dirac cone is well excited, and the

conical diffraction apparently appears. Similar method

can be applied to the pseudospin-1 case, as shown in

Figs. 4(d)-4(f).

Up to now, we have discussed conical diffraction due

to Dirac cones with different psedudospins in the super-

honeycomb lattice. In the following subsection, we in-

vestigate the pseudospin-mediated vortices.

4.2 Pseudospin-mediated vortices

It has been demonstrated before that there is pseudospin

in a honeycomb lattice [42–45]. It has also been demon-

strated that pseudospin also exists in the Lieb lattice

[46, 47]. It should be stressed that pseudospins in the

honeycomb and Lieb lattices are different — the former

is fermionic and the latter is bosonic. This is determined

by the order of the Dirac cone in the corresponding

band structure [56, 63]. As shown in Fig. 1(b), the Dirac

cones in the band structure of the super-honeycomb

lattice have different orders, therefore both fermionic

and bosonic pseudospins can be observed in the super-

honeycomb lattice [63]. Indeed, as investigated above in

this paper, the super-honeycomb lattice is a combina-

tion of the honeycomb lattice and the Lieb lattice. We

believe that the reason why such a lattice expresses pseu-

dospins is that it is not a Bravais lattice, and the total

Figure 5 Intensity and phase of the optical ?eld from numeri-

cal simulation of Eq. (1), when only sublattice A is excited using

the three-beam interference pattern. Le[ column: input intensity;

Middle column: output intensity; Right column: interferograms

of the output beams with a tilted plane wave. The dashed circle

shows the location of the phase singularity.

wavefunction is a direct sum of the wavefunctions of the

sublattices.

We first consider the pseudospin-1/2 Dirac cones at

K and K′ in the super-honeycomb lattice. To this end,

we selectively launch the input beam into the sublattice

A (or B) by using the interference pattern among three

broad Gaussian beams [44, 45], as shown in Fig. 5(a1).

In Fig. 5(b1), the beam intensity on sublattice B is also

displayed, which is zero — no light beam is launched

into the sublattice. This input beam will excite the modes

of the Dirac cones at K and K′, and then exhibit coni-

cal diffraction during propagation. As demonstrated in

previous research [42–45], the pseudospin could be com-

pletely transferred into the angular momentum, so in or-

der to check such a transfer in the super-honeycomb lat-

tice, we show the output intensities on the sublattices A

and B separately in Figs. 5(a2) and 5(b2), and the corre-

sponding interferograms in Figs. 5(a3) and 5(b3). Since

sublattice A is excited, there is no vortex generated on

this sublattice, as shown in Fig. 5(a3). However, as shown

in Fig. 5(b3), a vortex is generated on sublattice B with a

topological charge +1, because of the bifurcation in the

interferogram. That is, when sublattice A is excited, the

psedudospin is converted to a vortex angular momen-

tum, and such an angular momentum will be indicated

in sublattice B. This is same as in the previous research

on honeycomb lattice [44, 45].

On the other hand, if sublattice B is excited, the sit-

uation will be in the opposite, so that the pseudospin is

converted into a vortex angular momentum on sublat-

tice A, with a topological charge −1, as shown in Fig. 6. As

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (7 of 10) 1600258www.ann-phys.org
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Figure 6 Same as Fig. 5, but with the sublattice B excited.

mentioned before, the pseudospin matrix for the Dirac

cone at K in the super-honeycomb lattice is nontrivial,

and the projections on sublattices C, D and E are not

clear. As a result, we only display the vortex generation

on sublattices A and B, since the eigenmodes on them are

separated.

Let us turn now to the pseudospin-1 Dirac cone at Ŵ.

According to the matrices in Eqs. (8)-(10) and the corre-

sponding states in Eqs. (11a)-(11e), we have to consider

two cases: the pseudospin-0 case and the pseudospin-

1 case, even though we call it the pseudospin-1 Dirac

cone. Considering that the pseudospin connected with

the Dirac cones at K and K′ is ±1/2, which reveals the

fermionic nature of the super-honeycomb lattice, the

pseudospin connected with the Dirac cone at Ŵ reflects

its bosonic nature, because of the integer pseudospins

0 and ±1. As already mentioned, the super-honeycomb

lattice exhibits both fermoinic and bosonic properties,

which is a consequence of its hybrid, honeycomb and

Lieb, nature.

Considering that Ŝz is not diagonal in the natural sub-

lattices, we have to take the method used in the previ-

ous investigation [47] to check the pseudospin-mediated

vortices. We should note that the pseudospin-1 Dirac

cone is located in the middle of the first Brillouin zone

(Ŵ), which comes from the Lieb lattice [46, 47]. So, there

is no global phase tilt in our investigation, and the output

beam intensities corresponding to different pseudospins

can be directly obtained from the output beam accord-

ing to Eq. (11). Also, considering that both eigenstates

|Sz = 0〉 in Eq. (11c) and |Sz = ±1〉 in Eqs. (11d) and (11e)

demand excitation of C, D and E, which looks like they

are somehow “in entanglement”, we only take the eigen-

state |Sz = 0〉 in Eq. (11a) or (11b) as an input.

The results are displayed in Fig. 7, in which the panels

in the first row are square roots of the amplitude of differ-

ent components obtained according to Eqs. (11a)-(11e)

and the panels in the second row are the corresponding

phase profiles. The beams are not hollow conical beams,

because they carry contributions from other modes of

the bands, but one may observe that they consist of many

concentric rings. These rings come just from the pseu-

dospin components we are interested in, which indeed

are the pseudospin mediated vortices. To avoid checking

the vortex and anti-vortex pairs in the complicated phase

profiles, the total topological charge can be obtained

directly from the phase gradients of the rings. In Figs.

7(a2)-7(c2), there is no phase gradient in the rings, so the

topological charge is 0, and these rings are not vortices.

In Fig. 7(d2), there is a phase gradient from π to −π , as

Figure 7 Pseudospin-mediated vortex generationwhen sublattice A is excited according to Eq. (11a). (a1)-(e1) Square root of the amplitudes

of the output pseudospin components obtained according to Eqs. (11a)-(11e), respectively. (a2)-(e2) Corresponding phase pro?les. The

dashed circle with an arrow indicates the phase gradient.
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indicated by the dashed circle with an arrow. Therefore,

the rings in Fig. 7(d1) form a vortex with a topological

charge +1. The phase gradient in Fig. 7(e2) is opposite

that in Fig. 7(d2), so the rings in Fig. 7(e1) form a vortex

with a topological charge −1. The results agree with those

reported for a Lieb lattice [47].

5 Conclusion

In summary, we have investigated transport properties

of the super-honeycomb lattice, which is a combina-

tion of the honeycomb lattice and the Lieb lattice. Since

there is a flat band, and pseudospin-1/2 and pseudospin-

1 Dirac cones in the band structure of the super-

honeycomb lattice, strong localization of light due to

the flat band is observed, and conical diffraction coming

from the pseudospin-1/2 and pseudospin-1 Dirac cones

is displayed. We have also discussed the pseudospin-

mediated vortex generation based on the pseudospin-

1/2 and pseudospin-1 Dirac cones. These facts provide

a new platform for investigating light trapping, higher

pseudospin states, vortex generation, and other interest-

ing phenomena in this intriguing physical system.

We believe that other novel topological properties of

the super-honeycomb lattice are ready for further explo-

ration, and deeper investigation on this interesting sys-

tem may inspire new ideas and bring about new physical

phenomena.
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sson, P. Öhberg, N. Goldman, and R. R. Thomson,
arXiv:1604.05612.

[32] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(Jan),
109–162 (2009).

[33] A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M.
Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk, L. N.
Pfeiffer, K. W. West, and V. Pellegrini, Science 332,
1176–1179 (2011).

[34] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T.
Esslinger, Nature 483, 302–305 (2012).

[35] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C.
Manoharan, Nature 483, 306–310 (2012).

[36] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoha-
ran, and V. Pellegrini, Nat. Nanotechnol. 8, 625–633
(2013).

[37] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Nature 515(Nov),
237–240 (2014).

[38] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev,
and D. N. Christodoulides , Phys. Rev. Lett. 98(Mar),
103901 (2007).

[39] M. J. Ablowitz, S. D. Nixon, and Y. Zhu , Phys. Rev. A
79(May), 053830 (2009).

[40] M. J. Ablowitz and Y. Zhu, Phys. Rev. A 82(Jul), 013840
(2010).

[41] M. J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 73,
1959–1979 (2013).

[42] M. Mecklenburg and B. C. Regan, Phys. Rev. Lett.
106(Mar), 116803 (2011).

[43] M. Trushin and J. Schliemann, Phys. Rev. Lett.
107(Oct), 156801 (2011).

[44] D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L.
Tang, J. Xu, M. Ablowitz, N. K. Efremidis, and Z. Chen,
Nat. Commun. 6, 6272 (2015).

[45] D. Song, S. Liu, V. Paltoglou, D. Gallardo, L. Tang, J.
Zhao, J. Xu, N. K. Efremidis, and Z. Chen, 2D Mater.
2, 034007 (2015).

[46] D. Leykam, O. Bahat-Treidel, and A. S. Desyatnikov,
Phys. Rev. A 86(Sep), 031805 (2012).

[47] F. Diebel, D. Leykam, S. Kroesen, C. Denz, and A. S.
Desyatnikov, Phys. Rev. Lett. 116(May), 183902 (2016).

[48] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt.
Lett. 21(Nov), 1729–1731 (1996).

[49] A. Szameit and S. Nolte, J. Phys. B: At. Mol. Opt. Phys.
43, 163001 (2010).

[50] Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J.
M. Zeuner, S. Nolte, Y. Lumer, N. Malkova, J. Xu, A.
Szameit, Z. Chen, and M. Segev, Nat. Mater. 13, 57–62
(2014).

[51] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit,
arXiv:1605.03877.

[52] N. Shima and H. Aoki, Phys. Rev. Lett. 71(Dec), 4389–
4392 (1993).

[53] H. Aoki, M. Ando, and H. Matsumura, Phys. Rev. B
54(Dec), R17296–R17299 (1996).

[54] Z. Lan, N. Goldman, and P. Öhberg, Phys. Rev. B
85(Apr), 155451 (2012).

[55] A. Szameit, M. C. Rechtsman, O. Bahat-Treidel,
and M. Segev, Phys. Rev. A 84(Aug), 021806
(2011).

[56] D. Leykam and A. S. Desyatnikov, Adv. Phys. X 1, 101–
113 (2016).

[57] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys.
Rev. Lett. 103(Jul), 046811 (2009).

[58] D. Leykam, Wave and spectral singularities in pho-
tonic lattices, PhD thesis, The Australian National
University, 2015.

[59] R. A. Vicencio and C. Mej́ıa-Cortés, J. Opt. 16, 015706
(2014).

[60] Y. Q. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. P.
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