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Nonparaxial Accelerating Electron Beams
Yongfeng Kang, Yiqi Zhang, Changbiao Li, Hua Zhong, Yanpeng Zhang, and Milivoj R. Belić

Abstract— We investigate nonparaxial accelerating electron
beams theoretically in two and three dimensions. Starting from
the Klein–Gordon equation, we obtain the Helmholtz equation
for electron beams. We demonstrate that the electron beams
can accelerate along semi-circular, parabolic, and semi-elliptic
trajectories. The shape of the trajectory is determined by the
input beam, which can be constructed by using phase masks
that reflect the shape of the relevant special functions: half-
Bessel, Weber, or half-Mathieu. The corresponding self-healing
and ballistic-like effects of the nonparaxial accelerating beams are
also demonstrated. The depth of the focus of the electron beam
can be adjusted by the order of the function that is included in the
input. Our investigation enriches the accelerating electron beam
family, and provides new choices for improving the resolution of
transmission electron microscope images.

Index Terms— Electron accelerating beams, Klein-Gordon
equation, Bessel beams, Mathieu beams, Weber beams.

I. INTRODUCTION

IN 1979, it was demonstrated in quantum mechanics that
the Airy function is an eigenmode of the Schrödinger

equation [1]; it was also demonstrated that this wave function
exhibits the self-accelerating and nondiffracting properties.
However, to be a physical quantity, Airy wave function must
be truncated, and this was first accomplished in optics by
Siviloglou et al. [2,3], in 2007. From then on, Airy and
other accelerating nondiffracting beams have become one
of the hottest fields in optics and have experienced rapid
development. Until now, studies of Airy beams have been
reported in nonlinear media [4]–[7], optical fibers [8], [9],
systems with linear potentials [10]–[12], and elsewhere.

It should be recalled that the Airy beam is a paraxial
accelerating beam, being based on the paraxial wave equa-
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tion, which is equivalent to the Schrödinger equation. If
one treats the beams using Maxwell’s equations directly, one
will arrive at the nonparaxial optical beams, based on the
Helmholtz equation [13], [14]. It is known that the solu-
tions of the two-dimensional (2D) Helmholtz equation are
plane waves in Cartesian coordinates, Bessel beams in polar
coordinates [15]–[19], Mathieu beams in elliptic coordi-
nates [20], [21], and Weber beams in parabolic coordi-
nates [20], [22]. One can also solve the 3D Helmholtz equation
for the 3D accelerating beams, by e.g. utilizing the Whittaker
integral [15], [23], [24]. For a comprehensive look into this
field, one may consult the review articles [25], [26]. A question
naturally pops up: What about the matter waves such as
electron beams?

Besides in electron optics, electron beams as accelerating
waves were reported in [27] and [28]; they also possess
self-healing and nondiffracting properties. The investigation
of accelerating electron beams has opened a new chapter in
the field, adding matter waves to the list. Indeed, research
in this field has broadened to cover acoustics [29], sur-
face plasmons [30], Bose-Einstein condensates [31], water
waves [32], and other areas. However, one should note that
the investigations were mostly focused on the paraxial cases;
therefore, we wonder if the nonparaxial accelerating concept
can be extended to the electron beams. This is the motivation
and the goal of this paper.

In addition, we believe that such a research is meaningful
and sorely needed. Since one has to take into account relativis-
tic properties of a single electron, the Helmholtz equation for
an electron will be obtained directly from the Klein-Gordon
equation [33]. It should be mentioned that the nondiffracting
nonparaxial electron Bessel beam was recently demonstrated
experimentally [34]; therefore, we believe that theoretically
predicted self-accelerating nonparaxial matter beams in this
paper can also be experimentally observed, even though there
are challenges on that path.

It should also be noted that the traditional electron optics has
been researched thoroughly in the last decades, owing to its
great applicative potential. In order to calculate higher-order
aberrations [35], differential algebra method was applied to
the electron optical systems, including electron lens and com-
bined focus and deflection systems [36], [37]. Nevertheless,
introducing a novel accelerating concept into electron optics
may inspire new designs and supply additional avenues to the
management of electron beams.

The organization of the paper is as follows. In Sec. II, we
obtain the Helmholtz equation for electrons from the Klein-
Gordon equation. In Sec. III, we display the nonparaxial
electron beams based on the 2D Helmholtz equation. The
discussion is divided into three cases based on the accelerating
trajectories: the half-Bessel beams in Subsec. III-A, the Weber
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beams in Subsec. III-B, and the half-Mathieu beams in Sub-
sec. III-C. In Sec. IV, we briefly investigate the nonparaxial
electron beams in 3D. We conclude the paper in Sec. V and
also give a brief outlook on the future investigations.

II. MATHEMATICAL MODELING

The Klein-Gordon equation is used to calculate the wave
function of a relativistic electron when the spin effects are
neglected. In free space, it is expressed as

−h̄2 ∂2

∂ t2 � =
(

mec2
)2

� − c2h̄2∇2�, (1)

where h̄ is the reduced Planck constant, me is the mass
of electron, c is the light speed in vacuum, and ∇2 is the
Laplacian. For our purposes, it is sufficient to consider the
time-independent solutions, so we seek here a solution with
an ansatz

�(r, t) = ψ(r) exp

(
−i

E

h̄
t

)
, (2)

where E is the energy of the electron. For a relativistic
electron, it can be written as E = √

c2 p2 + (mec2)2, with
p being the corresponding momentum. Plugging Eq. (2) into
Eq. (1) and after some algebra, one obtains

∇2ψ(r) + k2
Bψ(r) = 0, (3)

where kB = p/h̄ is the de-Broglie wavenumber of the electron.
Equation (3) is the Helmholtz equation that is frequently
considered in the literature [16], [20], [21].

First, we consider the Laplacian in two dimensions that in
Cartesian coordinates can be written as(

∂2

∂z2 + ∂2

∂x2

)
ψ(r) + k2

Bψ(r) = 0 (4)

in which x and z are the transverse and longitudinal coordi-
nates, and r = √

x2 + z2. Equation (4) is also the governing
equation for the nonparaxial accelerating electron beams that
will be discussed below. For the forward propagation-invariant
beams, the solution of the 2D Helmholtz equation can be
written as [15], [38]–[40]

ψ(x, z) =
∫ π/2

−π/2
Am(φ) exp[ikB(x sin φ + z cos φ)]dφ, (5)

where Am(φ) is the angular spectral function, which deter-
mines the pattern of ψ , and φ is the wave propagation angle
measured from the z axis.

Classically, one has E = γ mec2 and p = γ mev when the
relativistic effects are considered, where γ = 1/

√
1 − β2 and

β = v/c, with v being the speed of the electron. In electron
optics, the cathode surface in the electron gun is usually
chosen to be the equipotential surface. Then, the potential at
the point of observation is identical with the voltage ϕ applied
between this point and the cathode. The relativistic modified
electric potential can be written as

ϕ∗ = ϕ

(
1 + eϕ

2mec2

)
, (6)

Fig. 1. (a) Propagation of a half-Bessel beam that accelerates along a circular
trajectory. The black dashed curve indicates the theoretical accelerating
trajectory, and the white dashed line the axis of symmetry of the trajectory.
(b) Self-healing of the beam when the main lobe is removed. (c) Dependence
of R on the order m of the half-Bessel beam.

and the de-Broglie wavelength λB is

λB = h

p
= h√

2emeϕ∗ . (7)

In our calculation, we assume β ≈ 0.5479, so that the de-
Broglie wavelength λB of the electron is about 3.7 pm, which
can be reached in the field emission gun transmission electron
microscope that operates at 100 keV. In the following section,
we present results obtained in other 2D coordinate systems.

III. RESULTS AND DISCUSSION

A. Half-Bessel Beam

In polar coordinates, one of the solutions of Eq. (4) is the
Bessel beam [15], i.e.

ψm(x, z) = u0im Jm(kBr) exp[im arctan(z, x)], (8)

where u0 is a constant that determines the amplitude of ψm ,
and Jm is the Bessel function of the first kind and order m.
However, it was demonstrated before that the forward beam
only exhibits half of the Bessel beam structure [16]. Since the
analytical solution in Eq. (8) is symmetric about the vertical
axis x = 0 at certain propagation distance z, one can consider
half of it to be the input. Instead of using the integration
formula in Eq. (5), we directly use the half-Bessel beam as
the input, to observe the corresponding propagation according
to the 2D Helmholtz equation (4).

We take the left part of ψm(x, z = −0.5 Å) with m = 200
as the input, and the propagation is displayed in Fig. 1(a). One
finds that the input beam exhibits accelerating and nondiffract-
ing properties during propagation, and that the trajectory is
circular. This is in accordance with the analytical result, as
shown by the black dashed curve, which is a part of a circle
with radius R ∼ m/kB . Since the input is ψm(x, z = −0.5 Å),
the symmetry point moves from 0 to 0.5 Å, as depicted by the
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Fig. 2. (a) and (b) Same as Fig. 1, but for the Weber beam. (c) and (d)
Propagation of Weber beams with the input at z = 0 and at z = 0.5 Å.

white dashed line. According to the simulation, one observes
that the electron beam can bend nearly 90° and exhibits the
ballistic-like effect [41], [42]. To check the self-healing effect,
we remove the main lobe of the input beam deliberately, and
then follow the propagation in Fig. 1(b). One finds that the
main lobe recovers fast during propagation.

We would like to emphasize that the length of the focus can
be well adjusted over a long range, because this quantity is
controlled by the radius of accelerating trajectory R ∼ m/kB .
In Fig. 1(c), we display the relation between R and m, from
which one finds that the nonparaxial electron beam can have
a very large length of focus if one further increases the order
m without changing the transverse distribution. In experiment,
one has to prepare a proper phase mask, similar to that used
in the equivalent optical experiments [17], [20], [27].

As expected, one discovers that an electron beam behaves
like a light beam, as demanded by the de-Broglie hypoth-
esis. In addition, there exist not only paraxial accelerating
electron beams, but also the nonparaxial accelerating electron
beams. As investigated previously for the optical beams, we
also demonstrate the nonparaxial accelerating electron beams
that follow parabolic and elliptic trajectories—the Weber and
Mathieu beams.

B. Weber Beam

In parabolic coordinates, one can find another solution of the
2D Helmholtz equation (4)—the Weber wave function. Since
the corresponding description is rather technical, to facilitate
an easy discussion, we move it to Appendix A.

Similar to the half-Bessel case, we also use ψ(x, z =
−0.5 Å) with a = 50 as the input beam (see Appendix A),
and the corresponding propagation is shown in Fig. 2(a). As
expected, the beam accelerates along a parabolic trajectory
with a preserved shape, and the numerical trajectory agrees
with the analytical (black dashed curve) [22] very well. If the
main lobe of the input beam is removed, the self-healing effect
is displayed, as shown in Fig. 2(b).

Fig. 3. (a) Intensity of the elliptic mode of the Mathieu electron beam of
order m = 65 and q = 1100. (b) and (c) Setup is as in Fig. 1 (a) and (b),
with the half-Mathieu beam along the horizontal dashed line in (a) launched
from the major axis. (d) Same as (b), but with the half-Mathieu beam along
the direction indicated by the vertical dashed line in (a) launched from the
major axis. Panels (b)-(d) share the same scale.

To demonstrate the ballistic effect, we show the propagation
of Weber beams with the input at z = 0 and at z = 0.5 Å, in
Figs. 2(c) and 2(d), respectively. One finds that the scenarios
in Figs. 2(a), 2(c) and 2(d), which are quite similar to the
paraxial cases in [41] and [42], clearly indicate the ballistic
effect. As a result, the nonparaxial Weber beam is also feasible
for electrons.

C. Half-Mathieu Beam

As shown in Appendix B, the 2D Helmholtz equation in
elliptic coordinates supports the accelerating Mathieu beam as
a solution, with an elliptic trajectory. In Fig. 3(a), we depict
the intensity profile of the elliptic mode from Eq. (14) in
Appendix B, with m = 65 and q = 1100. According to the
real parameters provided in Sec. II, one can find that the foci
are located at (±h, 0), with h ≈ 0.39 Å.

We first adopt the left part of ψ(x, z = −0.15 Å) to
be the input and display the corresponding propagation in
Fig. 3(b). Again, as expected, the acceleration is along an

elliptic trajectory x = −
√

1 − (z − 0.15 Å)2/(a2 − h2)a, with
a being the location of the main lobe in Fig. 3(a). If the main
lobe is removed, the self-healing effect will recover it soon
during propagation, as depicted in Fig. 3(c). One can also use
the half-Mathieu beam along the vertical direction shown by
the dashed line in Fig. 3(a) to be the input, and such a beam
will also accelerate along an elliptic trajectory, as shown in
Fig. 3(d). Different from the case in Fig. 3(b) which goes
through the apogee point, the case in Fig. 3(d) accelerates by
the way of the perigee point.

IV. THREE-DIMENSIONAL CASE

In addition to the 2D nonparaxial accelerating
electron beams, there also exist the corresponding



9200206 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 53, NO. 2, APRIL 2017

Fig. 4. (a) Intensity of the 3D electron beam in the x0y plane. (b) Same as
(a), but in the x0z plane. Dashed curve is the analytical accelerating trajectory
of the main lobe. (c) Panels (a) and (b), the beam intensities in the xy plane
at z = 1 Å and in the yz plane at x = −2 Å, and the beam intensity in the
xz plane at y = 1 Å, put together. The parameters are the same as in Fig. 1.

3D cases [15], [23], [43]. The accelerating solution of
the 3D Helmholtz equation in Eq. (3) can be written as [24]

ψ(x, y, z)

=
∫ π

0
dθ

∫ π/2

−π/2
dφAm(θ, φ) sin θ

× exp[ikB(x sin θ sin φ + y cos θ + z sin θ cos φ)]. (9)

Clearly, if θ = π/2, Eq. (9) reduces to Eq. (5), i.e., to the 2D
case. Similar to [23], if we consider the beams that accelerate
along a semi-circular trajectory, the angular spectral function
can be written as A(θ, φ) = g(θ) exp(imφ).

In Fig. 4, we present the propagation of a 3D nonparaxial
accelerating electron beam with g(θ) = 1. Figure 4(a) is the
transverse intensity distribution of the beam in the x0y plane,
and Fig. 4(b) is the corresponding intensity distribution in the
x0z plane. In order to display the 3D propagation more clearly,
Figs. 4(a) and 4(b) are put together in Fig. 4(c), according to
the accepted geometric arrangement. In addition, in Fig. 4(c),
we also exhibit three intensity distributions that are in the xy
plane at z = 1 Å, in the yz plane at x = −2 Å, and in the xz
plane at y = 1 Å.

V. CONCLUSION

In summary, we have demonstrated that electron beams can
also exhibit nonparaxial accelerating properties, as well as
self-healing and ballistic effects during propagation. We have
shown that the accelerating trajectories can be semicircular,
parabolic, and semi-elliptic. The bending angle is nearly 90°.
These accelerating electron beams can be prepared using the
half-Bessel function, the Weber function, and the half-Mathieu
function in the phase masks. Our research not only enriches the
family of accelerating electron beams, but also exhibits poten-
tial applications in improving the resolution of transmission
electron microscopes. Owing to the fact that the beam shape
can be preserved over a relatively long distance, the depth
of the focus can be easily controlled. Since the accelerating
trajectories of paraxial accelerating electron beams can be
well adjusted, we believe that the trajectories of nonparaxial
cases can also be well managed by using magnetic field [27],
which will play the role of a linear potential. We also believe
that the self-accelerating beams can be potentially used for
atmospheric detections [44], which has never been explored
before.

APPENDIX A
WEBER BEAM

The transformation between Cartesian coordinates (x, z)
and parabolic coordinates (η, ξ) is accomplished by the rela-
tion x + i z = (η+ iξ)2/2, with η ∈ (−∞,∞) and ξ ∈ [0,∞).
By utilizing variable separation, that is, by writing the solution
of the 2D Helmholtz equation as ψ(ξ, η) = R(ξ)�(η), one
obtains two ordinary differential equations:

∂2 R(ξ)

∂ξ2 +
(

k2
Bξ2 − 2kBa

)
R(ξ) = 0, (10a)

∂2�(η)

∂η2 +
(

k2
Bη2 + 2kBa

)
�(η) = 0, (10b)

where 2kBa is the separation constant. The parameter a affects
both the scaling and the curvature of parabolic lobes of the
Weber beam. The solutions of Eqs. (10a) and (10b) are deter-
mined by the same Weber functions, but the corresponding
eigenvalues have the opposite signs. If we denote the even
and odd solutions of Eq. (10a) as Pe and Po, the final even
and odd transverse stationary solutions of the 2D Helmholtz
equation in parabolic coordinates are expressed as

We(x, z; a) = 1√
2π

|�1|2 Pe

(√
2kBξ; a

)
Pe

(√
2kBη; −a

)
,

(11a)

Wo(x, z; a) = 2√
2π

|�3|2 Po

(√
2kBξ; a

)
Po

(√
2kBη; −a

)
,

(11b)

respectively, where Pe,o(t, a) = ∑∞
n=0 cntn/n!, �1 =

�[(1/4) + (1/2)ia], �3 = �[(3/4) + (1/2)ia], and the
coefficients cn satisfy the recurrence relation: cn+2 = acn −
n(n − 1)cn−2/4. For Pe (Po), the first two cn coefficients are
c0 = 1 and c1 = 0 (c0 = 0 and c1 = 1) [22]. The transverse
stationary solution can be written in the form

ψ(x, z) = We(x, z; a) + i Wo(x, z; a). (12)

APPENDIX B
MATHIEU BEAM

In the elliptic coordinates z = h cosh ξ cos η and x =
h sinh ξ sin η, with ξ ∈ [0,+∞) and η ∈ [0, 2π), the solutions
of the 2D Helmholtz equation are the Mathieu functions. By
utilizing the variable separation, that is, by writing the solution
of the 2D Helmholtz equation as ψ(ξ, η) = R(ξ)�(η), one
obtains two ordinary differential equations:

∂2 R(ξ)

∂ξ2 − (a − 2q cosh 2ξ)R(ξ) = 0, (13a)

∂2�(η)

∂η2 + (a − 2q cos 2η)�(η) = 0, (13b)

where a is the separation constant, q = k2
Bh2/4 is a parameter

related to the ellipticity of the coordinate system, and h is the
interfocal separation. The solutions of Eqs. (13a) and (13b)
are the radial and angular Mathieu functions. The transverse
stationary solution can be written as

ψ(x, z) = cem(η; q)Jem(ξ; q) + isem(η; q)Jom(ξ; q), (14)
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where cem and sem are the even and odd angular Mathieu
functions of order m, and Jem and Jom represent the corre-
sponding even and odd radial Mathieu functions of the first
kind.
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