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Unveiling the Link Between Fractional Schrödinger Equation
and Light Propagation in Honeycomb Lattice

Da Zhang, Yiqi Zhang,* Zhaoyang Zhang, Noor Ahmed, Yanpeng Zhang, Fuli Li,
Milivoj R. Belíc, and Min Xiao

We suggest a real physical system — the honeycomb lattice — as a possible
realization of the fractional Schrödinger equation (FSE) system, through
utilization of the Dirac-Weyl equation (DWE). The fractional Laplacian in FSE
causes modulation of the dispersion relation of the system, which becomes
linear in the limiting case. In the honeycomb lattice, the dispersion relation is
already linear around the Dirac point, suggesting a possible connection with
the FSE, since both models can be reduced to the one described by the DWE.
Thus, we propagate Gaussian beams in three ways: according to FSE,
honeycomb lattice around the Dirac point, and DWE, to discover universal
behavior — the conical diffraction. However, if an additional potential is
brought into the system, the similarity in behavior is broken, because the
added potential serves as a perturbation that breaks the translational
periodicity of honeycomb lattice and destroys Dirac cones in the dispersion
relation.

1. Introduction

The fractional Schrödinger equation (FSE) is the fundamental
equation of the fractional quantum mechanics.[1–3] As compared
to the standard Schrödinger equation, it contains the fractional
Laplacian operator instead of the usual one. This change brings
profound differences in the behavior of wave function. In optics,

D. Zhang, Y. Q. Zhang, Z. Y. Zhang, N. Ahmed, Y. P. Zhang
Key Laboratory for Physical Electronics and Devices of the Ministry of
Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an
Jiaotong University
Xi’an, 710049, China
E-mail: zhangyiqi@mail.xjtu.edu.cn
Y. Q. Zhang, Z. Y. Zhang, F. L. Li
Department of Applied Physics
School of Science, Xi’an Jiaotong University
Xi’an, 710049, China
M. R. Belíc
Science Program, Texas A & M University at Qatar
P.O. Box 23874, Doha, Qatar
M. Xiao
Department of Physics
University of Arkansas
Fayetteville, Arkansas, 72701, USA
National Laboratory of Solid State Microstructures and School of
Physics, Nanjing University
Nanjing, 210093, China

DOI: 10.1002/andp.201700149

the fractional Laplacian corresponds to a
non-parabolic dispersion, which means
that the dispersion of the system is
directly modulated. Interesting phenom-
ena based on the FSE were reported in
the past few years[4–7] and some related
nonlinear aspects were discussed.[8–11]

The complicated fractional Laplacian
operation in the FSE is made more
manageable if one uses the Fourier
transform method in both theory and
experiment;[12] however, the real problem
is the lack of real physical systems
described directly by the FSE. Here, one
of our aims is to point at such a system.
The other aim is to describe this system
from different points of view.
The topological photonics[13] — as a

new field — has experienced an explo-
sive development and still attracts great

attention. Among different photonic models that are explored,
the honeycomb lattice (viz. the photonic graphene)[14,15] has ex-
cited particular interest. Research on honeycomb lattice has in-
spired new ideas to develop new techniques and methods in op-
tical manipulation, image transmission, and optical trapping, to
name a few. The goal of this paper is to investigate whether the
honeycomb lattice can be used as a real physical system described
by FSE, which usually is not related to the description by the stan-
dard Schrödinger equation. The inspiration for this investigation
comes from the fact that conical diffraction can be observed in
both the evolution described by the FSE and in the evolution de-
scribed by the Schrödinger equation in honeycomb lattice. There-
fore, one has reasons to believe that the cause behind might be
similar in the two systems. Indeed, the dispersion around the
Dirac point in honeycomb lattice is nearly linear,[16] which in-
dicates that the dispersion is effectively modulated — a conse-
quence that can also arise in FSE, due to the fractional Laplacian.
However, the connection is not straightforward.
Hence, in this paper we first demonstrate the transformation

of the FSE into a Dirac-Weyl-like equation, and then the construc-
tion of the corresponding honeycomb lattice by using the three-
wave interference method of light propagation. The band struc-
ture is calculated by the plane-wave expansion method. Then, we
numerically simulate light evolution described by FSE,DWE, and
the honeycomb lattice based on the usual Schrödinger equation,
and note apparent similarities that point to similar origins. Two
typical cases — direct and oblique excitation of the Bloch modes
of the Dirac cone— are discussed in some detail. Finally, we give
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a discussion on the breakup of the model when harmonic poten-
tial is added, leading to the translational symmetry breaking and
the disappearance of the Dirac point in the band structure. We
believe that our research may pave way in the exploration of real
physical systems that can be described by the FSE directly. It is
also worth mentioning that such an attempt can be extended to
networks, polariton condensates, as well as to the description of
the Lévy transport in slab geometry of inhomogeneous media.
The organization of the paper is as follows. In Sec. 2, we first

demonstrate the reduction of the FSE to theDirac-Weyl-like equa-
tion, and then through the construction of the honeycomb lattice
by the three-wave interference method, connect the same again
with the DWE. The corresponding band structure is investigated
by the plane-wave expansion method. In Sec. 3, we numerically
simulate the light propagation in the three models: the FSE, the
DWE, and the honeycomb lattice. The typical cases of directly and
obliquely exciting the Blochmode of the Dirac cone are discussed
in Subsecs. 3.1 and 3.2. We conclude the paper in Sec. 4. We be-
lieve that our research may pave way to the exploration of other
real physical systems that can be described by the FSE.

2. Theoretical Modeling

Some preliminaries from the fractional calculus are in order. We
start with the two-dimensional FSE without potential[4–6]

i
∂ψ

∂z
−

(
− ∂2

∂x2
− ∂2

∂y2

)α/2

ψ = 0, (1)

for the slowly-varying envelope ψ of the optical field. Here, z is
the normalized propagation distance, and x and y are the scaled
transverse coordinates; finally, α is the Lévy index (1 < α ≤ 2).
When α = 2, one recovers the usual Schrödinger equation in free
space. We will consider here the opposite limiting case α = 1,
as the most interesting.[12] The z-component of the generalized
fractional angular momentum operator of order ζ can be written
as

L̂ ζ
z = i

(
x∂ζ

y − y∂ζ
x

)
.

Considering its commutation relation with the Hamiltonian

Ĥα =
√

−∂2x − ∂2y of the FSE,

[
L̂ ζ
z, Ĥ

α
] = −α

(
∂α−1
x ∂ζ

y − ∂ζ
x ∂

α−1
y

) �= 0,

one infers that there should be an additional contribution, com-
ing from the spin or intrinsic angular momentum.[17] So, one as-
sumes that the field envelope |ψ〉 can be written as a multicom-
ponent field

|ψ〉 = (ψ1, . . . ψN)T .

Namely, if one writes the usual Laplacian operator as

L̂ = −
(

∂2

∂x2
+ ∂2

∂y2

)
, (2)

one can factorize it as L̂ = L̂+L̂−, where L̂+ = ∂x + i∂y ,L̂− =
−∂x + i∂y . Similarly, one can multiply both sides of Eq. (1) with
the fractional Hamiltonian, to obtain:

Ĥα Ĥα|ψ〉 = L̂|ψ〉 = L̂+L̂−|ψ〉
= (L̂+β̂†) (

β̂L̂−
) |ψ〉 = E E |ψ〉, (3)

where β̂ is N × N Hermitian matrix introduced to ensure the
conservation of probability. Taking into account the uniformity
of time and space, β̂ should be independent of (r̂ , t) – that is, a
constant matrix. Multiplying Eq. (3) with 〈ψ | from the left and
utilizing the completeness condition leads to

〈ψ | (L̂+β̂†) |ψ〉〈ψ | (β̂L̂−
) |ψ〉 = 〈ψ |E |ψ〉〈ψ |E |ψ〉,

which can be rewritten as

〈ψ |E |ψ〉
〈ψ | (L̂+β̂†) |ψ〉 = 〈ψ | (β̂L̂−

) |ψ〉
〈ψ |E |ψ〉 . (4)

It is reasonable to assume that both sides of Eq. (4) can be made
equal to a non-zero constant s . Therefore, one obtains

i
∂ψ

∂z
− s β̂L̂+ψ = 0, i

∂ψ

∂z
− 1

s
β̂L̂−ψ = 0,

as an equivalent system of equations to Eq. (1).
Any single component (ψi ) of the wave function ψ should sat-

isfy the D’Alembert equation. We conclude that β̂ must meet
the anti-commutation relation β̂i β̂ j + β̂ j β̂i = δi j , with i, j =
x, y, z. Combining these properties of Hermitian matrices, anti-
commutation relations, and β̂2 = 1, it becomes clear that in the
case N = 2 the Pauli matrices will appear. In the following, we
use the Pauli operator σx to replace β̂. On the other hand, the
above coupled equations must satisfy the local probability con-
servation condition, which demands s = 1/s = 1. The speed of
the spread of the two components should be the same, which
also leads to |k|/s = s |k| ⇒ s = 1. As a result, one ends up with

i
∂

∂z
ψ =

[
0 L+
L− 0

]
ψ or i

∂

∂z
ψ =

[
0 L−
L+ 0

]
ψ. (5)

Clearly, Eq. (5) is a Dirac-Weyl-like equation, which describes the
spin-1/2 fermions. Without loss of generality, we use the first
equation.
It is interesting to note that the DWE can be obtained from

the usual Schrödinger equation with a potential described by the
honeycomb lattice at the Dirac points.[18–21] The propagation of
light in such a honeycomb lattice can be described by the usual
Schrödinger equation[18,22]

i
∂ψ

∂z
+ ∇2ψ + Vh(x, y)ψ = 0, (6)

in which the Laplacian is ∇2 = ∂2x + ∂2y and Vh(x, y) is a periodic
potential that can be connected with the intensity pattern of the
three interfering plane waves. In other words, the missing link
between Eqs. (1) and (6) is the DWE (5); i.e., the propagation dy-
namics according to the FSE with α = 1 can be mimicked by the
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Figure 1. (a) Honeycomb lattice resulting from the three-wave interfer-
ence with k0 = 1. (b) Brillouin zone spectroscopy due to the far-field
diffraction pattern, in which the high-symmetry points �, M, K and K′ of
the first Brillouin zone are displayed. (c) The corresponding band structure
with V0 = 1.

Schrödinger equation around Dirac points in the honeycomb lat-
tice. The deduction of DWE around a Dirac point from Eq. (6) is
presented inAppendix; onemay also consult other literature.[18,19]

The periodic potential that results from the intensity pattern
of the three interfering plane waves[23] can be written as

Vh(x, y) = V0

⎛
⎝9−

∣∣∣∣∣∣
3∑
j=1

exp
(
ik0b j · r)

∣∣∣∣∣∣
2⎞
⎠ , (7)

where V0 indicates the input beam intensity, k0 is used to scale
the lattice constant, and b1 = (1, 0), b2 = (−1/2, √

3/2), and
b3 = (−1/2, −√

3/2) are the three unit vectors used to build the
lattice. The honeycomb lattice obtained from Eq. (7) is displayed
in Figure 1(a). One calculates the lattice constant — the distance
between the two sites— as 4π/(3

√
3k0). According to the far-field

diffraction patterns,[24–27] one can obtain the corresponding Bril-
louin zone spectroscopy of the honeycomb lattice as shown in
Fig. 1(b), in which the high symmetry points of interest, �(0, 0),
M(3k0/4,

√
3k0/4), K(k0, 0) and K′(−k0, 0) are separately labeled.

For the construction of the corresponding band structure, we
adopt the plane-wave expansion method.[6,18,28,29] The solution of
Eq. (6) can be written as φn(r; k) exp[iβn(k)z], in which φn(r; k) is
the Bloch mode and βn(k) is the corresponding propagation con-
stant. Plugging this solution into Eq. (6), one obtains

−βnφn + ∇2φn + Vh(x, y)φn = 0, (8)

which is the standard eigenvalue problem in band calculations.
The calculated band structure is displayed in Fig. 1(c). As ex-
pected, there are six Dirac cones at the high-symmetry points
K and K′ in the first Brillouin zone.

3. Numerical Simulations

In the following, we numerically demonstrate that light propaga-
tion in the FSE with α = 1 can be well mimicked by the propa-
gation in the honeycomb lattice. In addition, the inadequacy of
such mimicking is also discussed, once an additional potential
is included. We first consider and compare the propagation of
Gaussian beams in the FSE, DWE, and honeycomb lattice. This
is displayed in Figure 2.

Figure 2. (a1)-(a4) Intensity distribution of light propagating according to
FSE at z = 10, 20, 40 and 80. (b1)-(b4) Same as (a1)-(a4), but according
to DWE. (c1)-(c4) Same as (a1)-(a4), but according to honeycomb lattice.
The scale dimension of all panels is 100 × 100.

3.1. Conical Diffraction

The propagation of a Gaussian beam ψ0 = exp(−r 2/25) accord-
ing to FSE is presented in Figs. 2(a1)-2(a4). Since the dispersion
relation is linear, the light undergoes conical diffraction, as re-
ported previously.[5] As a comparison, we also display the inten-
sity distributions according to the DWE (5) and to the honeycomb
lattice (6) propagation, in Figs. 2(b1)-2(b4) and Figs. 2(c1)-2(c4),
respectively. We should note that we only excite the component
ψ+ by a Gaussian beam ψ0 = exp(−r 2/25), and in Figs. 2(b1)-
2(b4) only the component ψ+ is shown. To excite the mode of
the Dirac cone of the honeycomb lattice and obtain the con-
ical diffraction in Figs. 2(c1)-2(c4), we launch the three beam
interference pattern multiplied by a wide Gaussian beam ψ0 =
exp(−r 2/400) into one site of the honeycomb lattice,[20] since
there are two sites in one unit cell. As expected, the conical
diffraction is observed in all three cases. The appearance of wider
and less resolved rings in Figs. 2(c1)-2(c4) is caused by the use of
a wider Gaussian beam. Still, similar behavior is observed.
It is interesting to point out that the spreading speeds of the

three conical diffractions in Fig. 2 are almost the same. For the
first two cases, one can find that the relation between the radius
of the ring r and the propagation distance z is r/z = 1, if one
performs the Fourier transform of Eqs. (1) and (5). In the third
case, the spreading speed is different in the continuum and dis-
crete models; in the continuum model, the spreading speed is
controlled by the potential coefficient V0 (which here equals 1).
It is worth mentioning that the Dirac cone still exists in shallow
honeycomb lattices,[22] so the DWE is still valid.
Therefore, according to numerical simulations, the connection

between the propagation dynamics in FSE and in honeycomb
model indeed exists — it is the DWE. In other words, the hon-
eycomb lattice represents potentially a real physical system that
can be described by the FSE. Thus far, such real physical systems
have been absent from the literature. The observable difference
between the two in Fig. 2 is the presence of Poggendorff’s dark
ring[30] in the conical diffraction of the honeycomb lattice. The
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Figure 3. Same as Fig. 2, but for obliquely incident light beams.

reason is that there are two cones with opposite chiralities at the
Dirac point of the honeycomb lattice, whereas there is only one
cone in the FSE (as shown in Fig. 4 below).

3.2. Oblique Incidence

To further demonstrate the similarity between evolution de-
scribed by the FSE and evolution in the honeycomb lattice, we
investigate the propagation of obliquely incident beams accord-
ing to FSE, DWE, and the honeycomb lattice. This is shown in
Figure 3, which is set similarly to Fig. 2.
In Figs. 3(a1)-3(a4), the propagation of two obliquely inci-

dent Gaussian beams ψ1,0 = exp(−r 2/25) exp(i2y) and ψ2,0 =
exp(−r 2/25) exp(−i2y) according to the FSE is depicted. As
stated by the rule defined previously,[5] the beam centers will be
at (x, y) = z(0, ±1) during propagation; that is, the two beams
in propagation will separate linearly from each other in the
plane x = 0, as presented in Figs. 3(a1)-3(a4). Different from
the FSE case, in the DWE case in Figs. 3(b1)-3(b4), the prop-
agation of only one obliquely incident Gaussian beam ψ0 =
exp(−r 2/25) exp(i2y) is displayed. One finds that the obliquely
incident Gaussian beam splits into two Gaussian beams during
propagation, and the behavior of these two Gaussian beams is
the same as the behavior in Figs. 3(a1)-3(a4). For comparison,
the propagation of a slightly oblique beam that excites the Bloch
mode of the Dirac cone is exhibited in Figs. 3(c1)-3(c4). Onemust
remember that the dispersion can only be viewed as linear in a
small region around the Dirac point, and this is the reason why
we choose a slightly oblique beam with a wide width.
The explanation of the propagation behavior observed in Fig. 3

is quite direct. As displayed in Figure 4, we inspect the momen-
tum spectra corresponding to the evolution described by FSE,
DWE, and the Schrödinger equation in the honeycomb lattice.
In Fig. 4(a), the input two Gaussian beams will excite the Bloch
modes located at sites A and B, respectively. Whereas in Fig. 4(b),
only one input Gaussian beam can excite two Bloch modes at
sites A and B, because the Bloch modes are degenerate only at
the Dirac point, and the degeneracy is lifted if there is a shift in
the momentum space. Since the dispersion along the polar di-

Figure 4. Momentum spectra of (a) FSE, (b) DWE, and (c) honeycomb
lattice in the first Brillouin zone along high symmetric points.

rection is linear, as represented by the red lines in Figs. 4(a) and
4(b), the beam width along the vertical direction in Figs. 3(a) and
3(b) does not change. However, along the angular direction, as
indicated by the red ellipses in Figs. 4(a) and 4(b), the dispersion
is quadratic, which means the beams will spread along the hori-
zontal direction, as shown in Figs. 3(a) and 3(b).
One has reasons to believe that the two beams will evolve

into a structure that is close to the conical diffraction with
the increasing propagation distance, and the smaller the obliq-
uity angle, the smaller the propagation distance to observe the
conical-diffraction-like structure. This is more readily observed
in Fig. 4(c) than in Figs. 4(a) or 4(b). In that figure, correspond-
ing to Fig. 1(c), the band structure is shown along high-symmetry
points. The Dirac point is at K, and one cannot excite the Bloch
mode far away from K, to guarantee the linear dispersion. There-
fore, one has to prepare the input beam that meets two condi-
tions: large width and small slope. In Fig. 3(c), the input beam is
the three-wave interference pattern which is multiplied by a wide
Gaussian beam exp(−r 2/400) exp(iy/10). Since there are more
than two bands in this continuummodel, the wide input may ex-
cite additional Bloch modes belonging to other bands, which will
cause the movement of wide split beams in the circular direc-
tion – as seen in Fig. 3(c). Nevertheless, one still may agree that
the phenomena observed in FSE can also be obtained in the hon-
eycomb lattice. In other words, the honeycomb lattice can well
mimic the behavior in FSE.

4. Conclusion

In conclusion, we have investigated the similarities between evo-
lution described by the FSE and evolution in the honeycomb
lattice described by the usual Schrödinger equation. We have
found that the connection between the two can be established
via the DWE. Numerical simulations support our theoretical pre-
dictions. However, such a link is not generally feasible, because
when an additional potential is considered, the translational sym-
metry of the honeycomb lattice is broken,[13] which leads to the
disappearance of Dirac cones.We believe that our work is a signif-
icant attempt to find a real physical system that can be described
by the FSE, which may inspire new ideas on how to build novel
and dispersion-controllable optical systems.

Appendix

The solution of Eq. (6) can be written as φn(r̂ , k̂) exp(iβnk̂z), in
which φn(r̂ , k̂) is the Bloch mode and βn(k̂) is the corresponding
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propagation constant. Plugging this solution into Eq. (6), one ob-
tains

−βnφn + ∇2φn + Vh(x, y)φn = 0, (A1)

which is the standard eigenvalue problem. The Bloch mode φn is
periodic with respect to k̂, so it can be expanded in the Fourier
series:

φ
(
r̂ , k̂

) =
∑
m,n

wm,n (r̂ ) exp
(−imk̂ · ν̂1 − ink̂ · ν̂2

)
, (A2)

where wm,n(r̂ ) = 1
�′

∫
�′ φ(r̂ , k̂) exp(−imk̂ · ν̂1 − ink̂ · ν̂2)dk̂ is so-

called Wannier function. Here�′ is the Brillouin zone. From the
definition, one has that wm,n(r̂ ) = w0,0(r̂ − R̂m,n) where R̂m,n =
mν̂1 + nν̂2 denotes the position of the cell with indices (m, n).
Since βn(k̂) is also periodic, it can also be expanded in the

Fourier series,

β(k̂) =
∑
m,n

βm,n exp
(−imk̂ · ν̂1 − ink̂ · ν̂2

)
. (A3)

Due to the properties of Wannier function, the solution of Eq. (6)
can be written as

ψ(r̂ , z) =
∑
m,n,α

Cm,n,α(z)wα

(
r̂ − R̂m,n

)
exp

(−i k̂ · R̂m,n
)
, (A4)

with α being the index of different bands.
In the tight-binding approximation, the honeycomb lattice can

be broken into two triangular sublattices: A and B lattices. Close
to the Dirac point, and due to the degeneracy, Eq. (A4) can be
recast into

ψ(r̂ , z) =
∑
m,n

am,n(z)w
(
r̂ − Âm,n

)
exp

(−i k̂ · Âm,n
) +

∑
m,n

bm,n(z)w
(
r̂ − B̂m,n

)
exp

(−i k̂ · B̂m,n
)
. (A5)

Substituting Eqs. (A3) and (A5) into Eq. (6), one gets

∑
m,n

i
dam,n

dz
SA(m, n)−

∑
m′,n′

βm′,n′am−m′,n−n′SA(m− m′,

n − n′) exp
(−i k̂ · R̂m′,n′

) + i
dbm,n

dz
SB(m, n)−

∑
m′,n′

βm′,n′

· bm−m′,n−n′SB(m− m′, n − n′) exp
(−i k̂ · R̂m′,n′

) = 0. (A6)

Here, we introduce the notation SA(m, n) = w(r̂ − Âm,n)
exp(−i k̂ · Âm,n) and SB(m, n) = w(r̂ − B̂m,n) exp(−i k̂ · B̂m,n).
Assuming |β00| � ∣∣βm,n

∣∣ with m �= 0 and n �= 0, multiplying
Eq. (A6) by S∗

A(m̄, n̄) (the bar is dropped below), integrating over
the whole r̂ space, introducing the quantity

ε =
∫

w̃∗ (
r̂ − Âm,n

)
w̃

(
r̂ − B̂m,n

)
dr̂∫ ∣∣w̃(r̂ − Âm,n)

∣∣2 dr̂ , (A7)

and keeping the dominant terms, one ends up with

i
dam,n

dz
− β0,0am,n − εβ0,0

[
bm−1,n exp

(
i k̂ · d̂3

)
+bm,n−1 exp

(
i k̂ · d̂2

) + bm,n exp
(
i k̂ · d̂1

)] = 0. (A8)

Notice thatw(r̂ − Âm,n) is localized around Âm,n and independent
of (m, n). Also note that |β00| � ∣∣βm,n

∣∣ is only valid for deep poten-
tials. For our case in Eq. (7), the condition is not satisfied strictly,
but it still can serve as a non-shallow potential. In a similar fash-
ion, the other equation is obtained

i
dbm,n

dz
− β0,0bm+1,n − εβ0,0

[
am+1,n exp

(−i k̂ · d̂3
)

+am,n+1 exp
(−i k̂ · d̂2

) + am,n exp
(−i k̂ · d̂1

)] = 0, (A9)

where d̂1 = Âm,n − B̂m,n = l (0, −1), d̂2 = Âm,n − B̂m,n−1 =
l (−√

3/2, 1/2) and d̂2 = Âm,n − B̂m−1,n = l (
√
3/2 , 1/2).

We focus on the propagation of a light beam with wave num-
ber k̂ in the vicinity of Dirac point K = ( 4π

3
√
3l

, 0). From equations
above, one gets the discrete equations

i
dam,n

dz
− β0,0am,n − εβ0,0

[
bm−1,n

(
−1
2

+
√
3i
2

)

+bm,n−1

(
−1
2

−
√
3i
2

)
+ bm,n

]
= 0, (A10)

and

i
dbm,n

dz
− β0,0am,n − εβ0,0

[
am+1,n

(
−1
2

−
√
3i
2

)

+am,n+1

(
−1
2

+
√
3i
2

)
+ am,n

]
= 0. (A11)

Taking the continuum limit approximation, after some algebra,
one obtains the governing equations for a and b:

da
dz

− β0,0a −
√
3
2

εβ0,0
(
∂xb − i∂yb

) = 0, (A12)

and

i
db
dz

− β0,0b +
√
3
2

εβ0,0
(
∂xa + i∂ya

) = 0. (A13)

Notice that β0,0a and β0,0b can be absorbed into the first
terms by defining new variables ã = a exp(−iβ0,0z) and b̃ = b
exp(−iβ0,0z). So, one finally gets the Dirac equations for a and b:

i
da
dz

− D
(−∂x + i∂y

)
b = 0, (A14)

i
db
dz

− D
(
∂x + i∂y

)
a = 0. (A15)

with D = −√
3εβ0,0/2.
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