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Nonlinear dimensionality reduction of data lying on multi-cluster manifolds is a crucial issue in

manifold learning research. An effective method, called the passage method, is proposed in this paper

to alleviate the disconnectivity, short-circuit, and roughness problems ordinarily encountered by the

existing methods. The specific characteristic of the proposed method is that it constructs a globally

connected neighborhood graph superimposed on the data set through technically building the smooth

passages between separate clusters, instead of supplementing some rough inter-cluster connections

like some existing methods. The neighborhood graph so constructed is naturally configured as a smooth

manifold, and hence complies with the effectiveness condition underlying manifold learning. This

theoretical argument is supported by a series of experiments performed on the synthetic and real data

sets residing on multi-cluster manifolds.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The goal of nonlinear dimensionality reduction (NLDR) is to
recover the intrinsic low-dimensional representations of data
located in the high-dimensional space. In recent years, an NLDR
problem, called ‘‘manifold learning’’, has been specifically high-
lighted. The manifold learning issue is addressed on the high-
dimensional data sampling a probability distribution on a smooth
manifold with intrinsic low dimensionality. Currently, this issue
has become one of the central problems in machine learning and
pattern recognition, such as text categorization [1], image proces-
sing [2], remote sensing [3], etc.

A variety of methods aiming at solving the manifold learning
issue have been recently developed. They include locally linear
embedding (LLE [1]), isometric feature mapping (Isomap [2]),
local tangent space alignment (LTSA [4]), etc. ([5–7]). The initial
step of all these methods is to specify a neighborhood around
each of the given data points and then construct a weighted
neighborhood graph superimposed on the entire data set, with a
collection of edges connecting the neighboring data points. In this
step, the most commonly utilized neighborhood-specifying
method is the k-NN or e-NN method, which defines neighbors
of a datum as its k nearest ones, or the ones away from the datum
smaller than the threshold e [1,2]. Under the assumption (the
neighborhood assumption) that each neighborhood so specified is
ll rights reserved.
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configured as a local patch (the neighborhood patch) approxi-
mately residing on the underlying manifold, the neighborhood
graph naturally forms the geometry of the underlying manifold.
For data located on a 1-cluster manifold, the neighborhood
graph so formed is globally connected and figures the smooth
manifold underlying the given data. By utilizing the intrinsic
neighborhood-preserving relationship between the manifold and
its representation set, the NLDR of the data can then be appro-
priately realized.

The data from practical applications, however, are often dis-
tributed on multiple manifold clusters instead of only one as
original manifold learning assumes. Current manifold learning
methods generally cannot take effect in such multi-cluster cases.
This is intrinsically conducted by the abnormity of the neighbor-
hood graph constructed by the traditional k-NN or e-NN techni-
que. If a small neighborhood size k or e is selected, it tends to
construct an inter-cluster disconnected neighborhood graph on
the entire data set. This always makes the manifold learning
methods invalid or infeasible since they are supposed to be
implemented on a connected neighborhood graph. The above
‘‘disconnectivity’’ problem can only be avoided under a large
neighborhood size, but accompanied is the ‘‘short-circuit’’ pro-
blem, i.e., the intra-cluster neighborhood patches tend to deviate
greatly from the underlying manifold. Such violations of the basic
neighborhood assumption tend to adversely affect the perfor-
mance of a manifold learning method. That is to say, the inter-
cluster disconnectivity problem and the intra-cluster short-circuit
problem cannot be easily compromised in multi-cluster cases.
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Fig. 1. (a) Manifold A composed by two semi-spherical surfaces; (b) Data A with 2000 points generated from Manifold A.

Fig. 2. The neighborhood graphs superimposed on Data A constructed by k-NN, AS, MinST, NF, S-Isomap, and the passage methods, respectively. All neighborhood sizes are

set as 6.
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So far, the state of the art on this topic can be mainly
represented by five approaches. The common feature of four
among them is that they all need to first specify a connected
neighborhood graph superimposed on the multi-cluster data. In
particular, the first approach realizes this aim through two steps:
constructing the k-NN or e-NN neighborhood graph with a
suitable neighborhood size k or e, and then connecting inter-
cluster nearest data pairs [8]. For convenience, we call this
approach as the add-shortest-connection (AS) method. The sec-
ond approach utilizes techniques of graph theory to construct k-
vertex-connected or k-edge-connected neighborhood graph on
the given data set under properly calibrated neighborhood size k.
Three latest techniques of this approach are k-EC [9], MinST [10]
and k-VC [11] methods. The third approach builds a special k-NN
neighborhood graph by connecting each point with its k=2 closest
data and k=2 farthest ones of the entire data set [12]. The method
can thus be called the nearest–farthest (NF) method in short. The
fourth approach is generally named supervised Isomap (S-Iso-
map) [13]. In the approach, the neighborhood graph of the input
data is constructed according to a certain kind of dissimilarity
between data points, which is specially designed to give a certain
chance to make the points in different clusters ‘‘more similar’’
than those in the same cluster. Another development for the
multi-cluster issue is the decomposition–composition (D–C)
method [14], so named due to its two involved processes: the
decomposition and composition processes. The former process
calculates the embeddings of each data cluster via its intra-cluster
neighborhood structures, and the latter tunes the rigid-body
transformations to appropriately locate and orient the embed-
dings of all clusters by utilizing their inter-cluster shortest
connections.

For the former four approaches aforementioned, the discon-
nectivity problem can be evidently avoided, and the short-circuit
problem can also be alleviated to a certain extent since the intra-
cluster neighborhood patches specified by these approaches
approximately reside on the underlying manifold. However, their
performance is still always unsatisfactory in multi-cluster appli-
cations [13]. This can be explained by virtue of Fig. 2, which
depicts the neighborhood graphs superimposed on the 2-cluster
data (as shown in Fig. 1(b)) specified by the AS, MinST, NF, and S-
Isomap methods, respectively. It is evident that under each of
these approaches, the inter-cluster neighborhood patches make
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Fig. 3. Graphical presentation of the process of the passage method. (a) Step I: Finding cluster edges; (b) Step II: Building inter-cluster passage; and (c) Step III: Data

embedding.
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Fig. 4. Graphical presentation of Step I of the passage method. (a) Step I.1: Constructing neighborhood graph; (b) Step I.2: Generating SPT trees; and (c) Step I.3:

Calculating edge sets.
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very rough transitions between manifold clusters, i.e., the mani-
fold reflected by the constructed neighborhood graph has a low
degree of smoothness. This is deviated from the fundamental
assumption of manifold learning: the manifold underlying the
input data is supposed to be smooth. This violation from the basic
manifold assumption largely conducts the possible abnormal
performance of the current approaches in multi-cluster applica-
tions. For convenience, we call this issue as the ‘‘roughness’’
problem.

Unlike the other four approaches, in the D–C method the intra-
cluster neighborhood structures and the inter-cluster connections
are employed in the decomposition and composition processes,
respectively. The rough inter-cluster connections still have to be
used to locate and orient each cluster’s embeddings in the composi-
tion process, and therefore, also tend to negatively affect the global
multi-cluster structure of the entire embeddings. That is to say, the
roughness problem still tends to occur in the calculation of the D–C
method, as clearly depicted in the simulation results in Section 3.

Different from the existing approaches, the proposed passage
method formulates smooth passages between separate manifold
clusters to generate a connected neighborhood graph superim-
posed on the entire multi-cluster data, which can be naturally
configured as a globally smooth manifold, as depicted in Fig. 2.
The roughness problem, together with the disconnectivity and
short-circuit problems, tend to be thus averted by applying the
manifold learning methods to the data so constructed.

In what follows, the general idea and the implementation details
of the passage method are first introduced in Section 2. Experimental
results obtained by applying the passage method to a series of
synthetic and real-world data sets are then analyzed and interpreted
in Section 3. The paper is finally concluded with a summary and
outlook for future research.
2. The passage method for multi-cluster manifold learning

Given the data set X ¼ fxig
l
i ¼ 1 distributed on multiple manifold

clusters in the space Rn, the proposed method aims at calculating
its intrinsic low-dimensional representation set Y ¼ fyig

l
i ¼ 1 � Rd

(don). For two separate clusters X1 and X2 of X, a passage
between them is defined as a differentiable manifold [15] which
forms a smooth connection between the edges of the two clusters
and shares the similar tangent spaces with the clusters in the
connection areas. The passage method aims to construct such
smooth transitional passage between separate manifold clusters
such that the union of the clusters and inter-cluster passage
configures a globally smooth manifold. In brief, the passage
method consists of the following basic steps:
Step I.
 Finding the approximate edge sets of all manifold clusters.

Step II.
 Building smooth passages between separate clusters.
Step III.
 Calculating low-dimensional representations of the
input data.
To facilitate our discussion, manifold A in Fig. 1 is employed to
illustrate how our method is realized in Fig. 3 through the
following procedure.
2.1. The procedure of the passage method

Step I. Finding cluster edges: Step I of the passage method aims
to generate the clusters of the given data set and Calculate the
edge representation set of each cluster (as depicted in Fig. 3(a)).
Three sub-steps are involved and graphically depicted in Fig. 4.
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Step I.1. Constructing neighborhood graphs of the manifold

clusters: There are three goals to be attained in this step:
(1) Generating the manifold clusters, (2) Constructing the neigh-
borhood graphs superimposed on the clusters, and (3) Estimating
their geodesic distance matrices.

Any efficient cluster techniques can be employed to generate the
clusters of the input data. For distinctly separate multi-cluster data,
the k-NN or e-NN approach with appropriately calibrated neighbor-
hood size can be simply and effectively utilized. The byproduct of
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Fig. 6. (a) Manifold B composed by two clusters; (b) Data B with 2000 points generated

rectangle, diamond, sphere, square and triangle, respectively; (d) Data C with 3000 po

surfaces with different radii; (f) Data D generated from Manifold D, number of points

distributed in its 1–3 dimensional subspace; (h) Data with size 400 generated from the

dimensional subspace; (j) Data with size 800 generated from the manifold (i); and (k)(l)

Manifold E distributed in its 5–6 and 7–9 dimensional subspaces, respectively.
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Fig. 5. Graphical presentation of Step II of the passage method. (a) Step II.1: Calculating

(c) Step II.3: Computing inter-cluster passage.
this technique is that the neighborhood graph superimposed on
each cluster data is also automatically constructed (as depicted in
Fig. 4(a)). We denote the clusters of the data so generated as
Xi
¼ fxi

jg
li
j ¼ 1ði¼ 1,2, . . . ,sÞ, where s is the number of manifold

clusters and li is the number of data points in the i-th cluster.
The geodesic distance between a data pair in the i-th cluster Xi

can then be estimated by calculating the length of the pairwise
shortest path in the corresponding neighborhood graph. The
standard shortest-path-finding algorithm, such as the Dijkstra’s
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algorithm [16] and the Floyd’s algorithm [17,18], can be utilized
for such estimation. The geodesic distance matrix so estimated is
denoted as Di ¼ ½Diðj,kÞ�li�li

, where Diðj,kÞ is the approximate
geodesic distance between xj

i and xk
i .

Step I.2. Generating shortest-path trees for manifold clusters: This
step aims to yield a shortest-path tree (SPT) for each manifold
cluster (as depicted in Fig. 4(b)). An SPT is a rooted spanning tree
of a connected graph, whose branches (edges) are taken as the
shortest paths from the root vertex to all other vertices of the
graph. Each vertex of an SPT is connected to a single vertex
immediately following it and leads in turn to the root vertex on
the shortest path. Since the SPT is designated as long as the root
vertex is selected, to construct an SPT for a manifold cluster, the
root vertex must first be determined.

Without any prior knowledge about the underlying manifold,
it is preferable to select the cluster center as the root. An easy way
to obtain the approximate center of a cluster is to utilize its
circumcenter. For a bounded close set O, its circumcenter is
defined as arg minxAOðmaxyAOðJx�yJÞÞ. Correspondingly, the cir-
cumcenter of the i-th cluster can be approximated by

xc
i ¼ arg min

xi
j
AXi

max
xi

k
AXi
ðDiðj,kÞÞ

 !
, 1r irs,

where Diðj,kÞ is the estimated geodesic distance between xj
i and xk

i .
Utilizing xc

i as the root vertex, the SPT of the i-th cluster can then
be designated.
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(11) S-Isomap, (12) D–C method, (13) passage method, respectively. The below two fi

corresponding methods cannot find embeddings of the entire data set.
Step I.3. Finding the main branches of the SPTs: The aim of this
step is to search for the main branches of each SPT generated by
the previous step, such that the leafs of these branches can
approximately represent the edge of the corresponding cluster
(as depicted in Fig. 4(c)). Actually, if there are k neighbors around
the estimated center (the root vertex) xc

i of the i-th cluster, since
each branch of the corresponding SPT definitely passes through
one neighbor of the root xc

i , all branches are naturally clustered
into k categories by taking the neighbors they pass by as cluster
labels [19]. Then it is reasonable to select the longest branch from
each category as the representation of that category. The branch
so selected approximately depicts the orientation tendency of all
branches in this category directed from the root to their leaf
vertices. The k branches so constructed are then configured as the
main branches of the SPT, and their leafs can approximately
represent the edge of the whole cluster. Therefore, after this step,
the edge representation set of each cluster is obtained.

Step II. Building inter-cluster passages: The aim of this step is to
construct the passage set such that the separate clusters can be
smoothly connected (as depicted in Fig. 3(b)). There are also three
sub-steps involved, as depicted in Fig. 5.

Step II.1. Formulating tangent directions of manifold clusters: For
two separate manifold clusters, this step aims to calculate the
start and end points of the inter-cluster passage located on both
cluster edges, and compute the tangent directions towards the
outside of the corresponding clusters at the points so calculated
(as depicted in Fig. 5(a)). This is to be achieved via three steps.
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First, the nearest data pair, denoted as e1 and e2, in the edge sets
of the two clusters is calculated. Second, for each of the nearest
pair, the neighborhood patch around it, i.e., the collection of its
first k nearest data points, denoted as O1 and O2, is computed.
Third, based on the location of the neighborhood patch on the
corresponding SPT, the tangent direction of the corresponding
cluster is calculated. Specifically, for each datum (p1) on the
neighborhood patch O1 or O2, we need to search its immediate
vertex (p2) on its located shortest path oriented to the root of the
SPT and calculate the direction from p2 to p1 (i.e., p1�p2=Jp1�p2J).
Since the neighborhood patches approximately reside on the
underlying cluster manifold, the direction so formulated tends
to be tangent to the manifold. Furthermore, since each of the
branches in the SPT orients from the cluster center to the edge of
the manifold, this formulated direction tends to be oriented
towards the outside of the manifold. By this means, k tangent
directions pointing towards the outside of the cluster at e1 or e2

can be approximately formulated for each of the clusters. In the
algorithm, their average, denoted as v1 or v2, respectively, is
actually computed to improve the statistical stability of the
method.

Accordingly, after this step, two outward orienting tangent
directions, v1 and v2, of the two separate clusters, starting from
the nearest edge vertices e1 and e2, are formulated. Besides, the
neighborhood patches O1 and O2 around e1 and e2 are con-
structed, respectively.

Step II.2. Calculating the smooth inter-cluster path: This step
aims to generate a smooth curve between two separate clusters
(as depicted in Fig. 5(b)). By virtue of the output obtained from
the last step, this task is easily accomplished by formulating the
following curve:

f ðtÞ ¼ At3
þBt2

þCtþD, tA ½0,1�, ð1Þ

where A¼ 2e1�2e2þv1�v2, B¼�3e1þ3e2�2v1þv2, C ¼ v1,
D¼ e1. This curve is infinitely differentiable, and with the follow-
ing property:

f ð0Þ ¼ e1, f 0ð0Þ ¼ v1, f ð1Þ ¼ e2, f 0ð1Þ ¼�v2: ð2Þ

That is, the curve starts from e1 with tangent direction v1, and
ends at e2 with tangent orientation �v2. Evidently, the two
clusters can be smoothly connected by this curve.

Step II.3. Constructing the smooth inter-cluster passage: This step
aims to generate a collection of data points such that it forms a
transitional passage smoothly connecting two separate clusters
(as depicted in Fig. 5(c)). Before discussing the strategies for the
realization of such aim, it is necessary to introduce some relevant
theoretical and practical knowledge on differentiable (smooth)
manifolds. For a smooth manifold, one can attach to every point x

on the manifold a tangent space, containing all vectors at x

tangent to the attached manifold. When only limited number of
data points on the manifold are available, the tangent space at x

can be approximated by the affine space spanned by the neigh-
bors of x [4].

According to the above knowledge, the tangent spaces p1 and
p2 at edge vertices e1 and e2 can be generated from the
corresponding neighborhood patches O1 and O2, respectively.
Since the directions v1 and v2 calculated in Step II.1 are approxi-
mately tangent to the underlying cluster manifolds at e1 and e2,
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they can be seen as two elements in p1 and p2. Thus, two
orthogonal coordinates systems of the tangent spaces p1 and p2,
P¼ ðv1,p1,p2, � � �pdi�1Þ and Q ¼ ð�v2,q1,q2, � � � qdj�1Þ (di and dj,
respectively, are the intrinsic dimensions of the manifold clusters Xi

and Xj. Here diZdj is the default assumption), can be approximately
generated. In particular, the last di�1 or dj�1 axes of P or Q are the
first di�1 or dj�1 principle directions of O1 or O2 after being
projected onto the space orthogonal to v1 or v2, respectively. Employ-
ing the coordinate systems P and Q so constructed, the inter-cluster
smooth passage can then be constructed using the following proce-
dure:
1.
 Compute the di-dimensional coordinates U of O1�e1 (i.e.,
centralizing the neighborhood patch O1 at e1) on the coordi-
nate system P.
2.
 Build a sequence of points f ðt1Þ,f ðt2Þ, . . . ,f ðtmÞ (0ot1o � � �o
tm�1otm ¼ 1) along the curve f(t) (Eq. (1)).
3.
 Generate a sequence of coordinate systems ðP1,P2, . . . ,PmÞ

along the curve f(t) as follows: for each ti (1r irm), set

oi
s ¼

3At2
i þ2BtiþC, s¼ 1

ð1�tiÞps�1þtiqs�1, 2rsrdj

ð1�tiÞps�1, djosrdi

8>><
>>:

and let Pi ¼ ðo
i
1,oi

2, . . . ,oi
di

).

4.
 Calculate new data sets X0i (i¼ 1,2, . . . ,mÞ by mapping the

coordinates U onto the coordinate systems Pi, respectively,
and then centralize X0i at f ðtiÞ (i.e., let X0i ¼ X0iþ f ðtiÞÞ.S
5.
 Output the union X0 ¼ m
i ¼ 1 X0i as the inter-cluster passage set.
It should be noted that the first axis oi
1 is set as f 0ðtiÞ to make the

affine space spanned from Pi be tangent to the curve f(t).
By implementing the above procedure, the sequence of X01, X02,

y, X0m composes the passage set X0. The passage so constructed has
the following properties: it smoothly connects two separate clusters
along the continuous curve f(t) (actually, along the point sequence
f ðtiÞ,i¼ 1,2, . . . ,m), and the tangent spaces along the passage are
continuously transferred from p1 to p2. Specifically, the coordinate
system Pi of the tangent space attached to f ðtiÞ smoothly changes
from the coordinate system P of the tangent space p1 at point e1 to Q

of p2 at e2 along the passage. Therefore, the passage smoothly
connecting two separate clusters is generated after this step.

Step III. Data embedding: The aim of this step is to calculate the
low-dimensional embedding set of the union of the original and
the passage data sets, X [ X0, and choose from the entire embed-
dings the subset Y corresponding to the original data set X as the
final output (as depicted in Fig. 3(c)).

The pseudocode of the whole algorithm is listed in the
appendix.
2.2. NLDR method selection

Aiming at designating an appropriate manifold learning
method to implement NLDR in Step III of the passage method, it
is necessary to construct a reasonable assessment criterion to
quantitatively evaluate the performance of the method. Remind
that the motivation of the passage method is to realize the NLDR
of the multi-cluster data such that on one hand the local
neighborhood topology of each cluster can be well preserved,
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and on the other hand the global multi-cluster structure can be
finely recovered. Therefore, the criterion should be composed by
two parts: local measure (LM) and global measure (GM). The
former evaluates the local-neighborhood-preserving degree of
each manifold cluster, and the latter scales the global-structure-
holding degree between the calculated embedding data and the
original data.

For LM evaluation, there are several methods for candidates.
The latest developments along this line include the trustworthi-
ness and continuity measure (T&C [8]), the local continuity
metacriterion (LCMC [20]), the mean relative rank error (MRRE
[21]). Here we employ the continuity measure utilized in T&C
method for its easiness of calculation. In this measure, the
performance of a dimensionality reduction is assessed by the
extent that the k closest neighbors of a point in the original space
are deviated from its neighbors on the reduction. Denote the k

nearest neighbors of the point xi as Oi ¼ fxi1,xi2, . . . ,xikg, and
denote fyi1,yi2, . . . ,yikg as the fIi1,Ii2, . . . ,Iikg nearest points from yi

in the reduction space. Then this measure is calculated as follows:

LM¼

Pl
i ¼ 1

Pk
j ¼ 1 Iij�l

Pk
j ¼ 1 j

HðkÞ
, ð3Þ

where l,k denote the data size and the neighborhood size,
respectively, and HðkÞ ¼ lkðl�kÞ is the normalization term. In
specific, if the local neighborhood topology of the original
multi-cluster data is well preserved by the embeddings obtained
by the NLDR method, then LM so calculated is of a comparatively
small value. Otherwise, if some neighborhood structures are
greatly distorted after NLDR implementation, the value of LM

tends to be its largest value 1.
Comparatively, the GM estimation is easier to be attained through

the following steps: first to obtain the cluster structure of the input
data, then to apply a cluster algorithm to the embedding data to get
its categorization, and further to compute the misclassification rate of
this categorization based on the prior cluster knowledge. The
misclassification rate so calculated can then be taken as the GM

value. If the data points have already been categorized by an external
source, the aforementioned first step can be directly skipped. Many
effective clustering methods can be utilized in the above strategy,
such as the Meanshift and k-means [22] methods. It should be noted
that although another GM measure is presented in [19], it is proposed
only for 1-cluster data and does not consider keeping global cluster
structures underlying the multi-cluster manifolds. We thus do not
employ this measure for GM evaluation.

By taking LM and GM as the assessment criterion, the optimal
NLDR method to implement Step III of the passage method can be
properly selected.

2.3. Computational complexity

The computational complexity is one of the basic issues in the
implementation of the passage method. To clarify this point, the
computational complexity of its related algorithm is analyzed in
this section.

For the algorithm of the passage method, the time complexity
of Step I is essentially determined by Step I.1, specifically, by the
neighborhood graph construction and the geodesic distance
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estimation processes. The former needs to compute the k-NN
neighborhood graph superimposed on the entire data set, costing
oðnl2Þ time in the worst case [23]. The latter needs to estimate the
shortest path between data pairs, at least taking oðl2k log lÞ time
by adopting the Floyd’s algorithm [17]. Assuming the data set
residing on the s-cluster manifolds (s5 l and sZ2), then Step II at
most contains sðs�1Þ=2 iterations. In each iteration, most of the
computational cost is evidently consumed by searching the inter-
cluster nearest data (Step II.1) and calculating the principle axes
of the local neighborhood patches (Step II.3). By applying the
well-known heap sorting algorithm [24], the computational time
of the former process is around Oðl2=s2 log lÞ, and the latter
process involves two eigenvector calculations, costing about
Oðk3
Þ time [25]. Thus, the total time complexity of Steps I and II

is around Oðnl2þkl2 log lÞ.
Actually, the computational speed of these two steps essen-

tially determines the increased computational burden of the
proposed method compared with the existing NLDR methods.
This is due to the fact that one of the existing NLDR methods, such
as LLE, Isomap, and LTSA, is to be called in the final step of the
passage method. Generally speaking, the speed impact of the first
two steps of the passage method on the last NLDR step is
immaterial. For instance, the time complexities of Isomap and
LTSA are around Oðnl3þkl2 log lÞ [18] and Oðnkl3Þ [4], respectively,
higher than that of the first two steps, and the computational cost
of LLE is about Oðnl2þnlk3

Þ [1], slightly, but not substantially,
lower than that of the first two steps. It should be noted that most
of the current NLDR techniques for multi-cluster manifold learn-
ing, like the AS, graph-based, NF and S-Isomap methods, need to
first construct a connected neighborhood graph on multi-cluster
data and then run traditional NLDR methods, like Isomap, LLE and
LTSA, on this graph, and thus their computational complexities
are no less than these NLDR methods. This is to say, the passage
method does not materially increase the time complexity of the
existing NLDR methods, including the current multi-cluster mani-
fold learning techniques.
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3. Experimental results and interpretations

The proposed passage method was applied to multiple syn-
thetic and real multi-cluster data sets. For comparison, 12 of the
existing methods, including LLE, Isomap, LTSA, AS-LLE, AS-Isomap,
AS-LTSA, MinST, NF-LLE, NF-Isomap, NF-LTSA, S-Isomap, and D–C
methods, have also been utilized. The five synthetic data sets are
first employed for evaluation, and the two real data sets are then
analyzed for further substantiation.

3.1. Simulations on synthetic data sets

The performance of the passage method was first evaluated on
five synthetic multi-cluster data sets. The first two data sets (Data
A and Data B, as depicted in Figs. 1(b) and 6(b)), both with 2000
points, were uniformly generated from the 2-cluster manifolds as
shown in Figs. 1(a) and 6(a), respectively. The third 5-cluster data
set contains 3000 points (Data C, as shown in Fig. 6(d)), dis-
tributed on the 5-cluster manifolds with a global 3-D S-curve
form, composed by five separate sub-manifolds wrapped from 2-
D rectangle, diamond, sphere, square and triangle, respectively, as
shown in Fig. 6(c). Another 3-cluster data set (Data D, as shown in
Fig. 6(f)) was generated from three separate hemispherical
surfaces, with radii 1, 0.75, 0.5, respectively (as shown in
Fig. 6(e)). Each cluster consists of 600 points, and thus evidently,
the three clusters are of different densities. Comparatively, the
last 9-D data set (Data E) is designed to test the performance of
the proposed method on multi-cluster data with complex intrin-
sic structures [26]. Its 4 clusters are located in the 1–3, 2–4, 5–6,
7–9 dimensional subspaces of the whole space, respectively. Two
of its clusters (as shown in Fig. 6(h) and (j)) are generated from
Swiss-roll and S-shaped manifolds (as shown in Fig. 6(g) and (i)),
wrapped from two star-like 2-D figures, respectively. Both of the
other clusters lie in the manifolds with 1-D intrinsic dimension:
one is with O-shape and the other is a curve, as depicted in
Fig. 6(k) and (l), respectively.

The embeddings of the five multi-cluster data sets calculated
by the passage method are shown in Figs. 7–11, respectively. For
all of the five data sets, LLE, Isomap and LTSA were utilized as the
NLDR methods in Step III of the related algorithms, and the
optimal one was evaluated by taking LMþGM=2 as the assess-
ment criterion. For comparison, results obtained by the existing
12 methods are also shown in the corresponding figures.

It can be easily observed from Figs. 7–11 that the proposed
method outperforms the existing methods on all of the five multi-
cluster data sets, and the disconnectivity, short-circuit and rough-
ness problems all appear to be averted. In particular, the passage
method have advantages mainly in the following three-fold
aspects. (i) The local intra-cluster topologies are well preserved,
which can be observed from the continuously changing colors of
the local areas in the calculated embeddings. (ii) The global inter-
cluster structure is correctly obtained. These two advantages are
also accordantly reflected on the values of LM and GM (as shown
in the below figures of Figs. 7–11) estimated by utilizing the
methods provided in Section 2.2. Especially, for each of the five
data sets, LM of the passage method is the smallest and its GM is
approximately 0, quantitatively showing the good intra-cluster
neighborhood-preserving and inter-cluster structure-holding
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properties of the passage method. (iii) By means of graphical
visualization, it is evident that the cluster shapes are properly
recovered in all of the five cases by the proposed method.
Specifically, embeddings of Data A–D are correctly shaped as
two adjacent rectangles, two adjacent circles, five clusters con-
figured as a rectangle, a diamond, a sphere, a square and a
triangle, and three adjacent circles, respectively. The intrinsic
figures of Data E are also recovered approximately, except that
the O-shaped cluster is a little pinched. Based on these advan-
tages, the effectiveness of the passage method in improving the
capability of NLDR in multi-cluster manifold learning can be
verified, even when the clusters are in different subspaces (e.g.,
Data E), with different shapes (e.g., Data C) or with different
densities (e.g., Data D).

3.2. Simulations on real data sets

Two multi-cluster real data sets were employed to testify the
performance of the proposed method. The first is a 3-cluster
image data set, each containing 100 images of a cartoon panda, a
terracotta soldier, and a horse in different poses, respectively. All
of the images in the set are gray scale pictures of 50�60 pixels
(3000-dimension). The second contains 1000 handwritten ‘‘0’’s
and ‘‘1’’s, each of which is a 28�28-pixel (784-dimension) gray
scale picture, randomly selected from the benchmark MNIST
database (downloaded from http://yann.lecun.com/exdb/mnist).
Some typical images in the two data sets are depicted in Fig. 12.
The passage method and 12 existing multi-cluster manifold
learning methods were applied to the data sets, and the results
are depicted in Figs. 13 and 14, respectively. The LM and GM of the
embedding results obtained by all of the methods were also
evaluated, as shown in the below sub-figures of Figs. 13 and 14
for comparison.

For both data sets, the excellent performance, in both local and
global aspects, is attained by the passage method. On one hand,
LM value of the proposed method, as well as the D–C method, is
smaller than those of the other 11 methods, implying that the
result obtained by the passage method can finely preserve the
intra-cluster neighborhood topologies of the original data. On the
other hand, GM of the new method approximates 0 in each of the
two cases, meaning that the low-dimensional embeddings calcu-
lated by the passage method correctly hold the global cluster
structures of the input high-dimensional data. Both empirical
results show the effectiveness of the passage method on NLDR of
data residing on multiple manifold clusters.
4. Conclusion

In this paper, we have proposed a new method, called the
passage method, for nonlinear dimensionality reduction of data
lying on multi-cluster manifolds. The proposed method has been

http://yann.lecun.com/exdb/mnist
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formulated for the purpose of solving the disconnectivity, short-
circuit, and roughness problems commonly encountered in the
existing methods for multi-cluster manifold learning. The most
distinguished characteristic of the new method is the construc-
tion of smooth transitional passages between separate clusters.
The passages, together with the input data, can be configured as a
smooth manifold such that the effectiveness condition underlying
manifold learning can be satisfied, and multi-cluster manifold
learning can thus be properly implemented.

There are, however, limitations of the passage method. For
example, the proposed method is generally not appropriate when
cluster boundaries are imprecise, i.e., very fuzzy. It is due to the
implicit assumption of the passage method that clusters can be
precisely separated so that they can be properly detected by the
clustering method utilized in Step I.1. Besides, it is necessary to
try more LM and GM measures to more reasonably evaluating the
performance of the multi-cluster manifold learning methods in
our future research, and the effectiveness of the proposed method
should be further substantiated by more practical applications.
Conflict of interest statement

None declared.
Acknowledgement

This research was supported by the Geographical Modeling
and Geocomputation Program under the Focused Investment
Scheme at The Chinese University of Hong Kong, the National
Grand Fundamental Research 973 Program of China under Grant
No. 2013CB329404 and the China NSFC project under contract
11131006 and 61075054.
Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at http://dx.doi.org.10.1016/j.patcog.2013.
01.028.
References

[1] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (2000) 2323–2326.

[2] J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science 290 (2000) 2319–2323.
[3] C.M. Bachmann, T.L. Ainsworth, R.A. Fusina, Exploiting manifold geometry in
hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing
43 (2005) 441–454.

[4] Z.Y. Zhang, H.Y. Zha, Principal Manifolds and Nonlinear Dimension Reduction
via Local Tangent Space Alignment, Technical Report, CSE-02-019, CSE, Penn
State Univ., 2002.

[5] J.A. Lee, A. Lendasse, M. Verleysen, Nonlinear projection with curvilinear
distances: isomap versus curvilinear distance analysis, Neurocomputing 57
(2004) 49–76.

[6] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Computation 15 (2003) 1373–1396.

[7] D.K. Agrafiotis, H. Xu, A self-organizing principle for learning nonlinear
manifolds, Proceedings of the National Academy of Sciences 99 (2002)
15869–15872.

[8] J. Venna, S. Kaski, Local multidimensional scaling, Neural Networks 19 (2006)
889–899.

[9] L. Yang, Building k edge-disjoint spanning trees of minimum total length for
isometric data embedding, IEEE Transactions on Pattern Analysis and
Machine Intelligence 27 (2005) 1680–1683.

[10] L. Yang, Building k-edge-connected neighborhood graphs for distance-based
data projection, Pattern Recognition Letters 26 (2005) 2015–2021.

[11] L. Yang, Building k-connected neighborhood graphs for isometric data
embedding, IEEE Transanctions on Pattern Analysis and Machine Intelligence
27 (2006) 827–831.

[12] M. Vlachos, C. Domeniconi, D. Gunopulos, G. Kollios, N. Koudas, Non-Linear
Dimensionality Reduction Techniques for Classification and Visualization,
SIGKDD, Edmonton, Alberta, Canada, 2002.

[13] X. Geng, D.C. Zhan, Z.H. Zhou, Supervised nonlinear dimensionality reduction
for visualization and classification, IEEE Transactions on Systems, Man, and
Cybernetics: Part B 35 (2005) 1098–1107.

[14] D.Y. Meng, Y. Leung, T. Fung, Z.B. Xu, Nonlinear dimensionality reduction of
data lying on the multi-cluster manifolds, IEEE Transactions on Systems,
Man, and Cybernetics: Part B 4 (2008) 1111–1122.

[15] H. Whitney, Differentiable manifolds, Annals of Mathematics 37 (1936)
645–680.

[16] E.W. Dijkstra, Anote on two problems in connection with graphs, Numerische
Mathematik 1 (1959) 269–271.

[17] R.W. Floyd, Algorithm 97: Shortest path, Communications of the ACM 5
(1962) 345.

[18] V.D. Silva, J.B. Tenenbaum, Global versus localmethods in nonlinear dimen-
sionality reduction, Advances in Neural Information Processing Systems 15
(2003) 705–712.

[19] D.Y. Meng, Y. Leung, Z.B. Xu, Evaluating nonlinear dimensionality reduction
based on its local and global quality assessments, Neurocomputing 74 (2011)
941–948.

[20] L. Chen, Local multidimensional scaling for nonlinear dimension reduction,
graph layout and proximity analysis, Ph.D. Thesis, University of Pennsylvania,
2006.

[21] J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer, Berlin,
2007.

[22] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space
analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 24
(2002) 603–619.

[23] L.K. Saul, S.T. Roweis, Think globally, fitlocally: unsupervised learning of
nonlinear manifolds, Journal of Machine Learning Research 4 (2003)
119–155.

[24] D.E. Knuth, The Art of Computer Programming: Sorting and Searching, vol. 3,
Addison-Wesley, Massachusetts, 1973.

[25] T. Cox, M. Cox, Multidimensional Scaling, Chapman & Hall, London, 1994.
[26] X.X. Wang, P. Tino, M.A. Fardal, Multiple manifold learning framework based

on hierarchical mixture density model, Lecture Notes in Computer Science
5212 (2008) 566–581.
Deyu Meng received the B.Sc., M.Sc., and Ph.D degrees in 2001, 2004, and 2008, respectively, from Xi’an Jiaotong University, Xi’an, China. He is currently an associate
professor with the Institute for Information and System Sciences, Faculty of Science, Xi’an Jiaotong University. His current research interests include principal component
analysis, nonlinear dimensionality reduction, feature extraction and selection, compressed sensing, and sparse machine learning methods.
Yee Leung received the B.Sc degree in geography from The Chinese University of Hong Kong in 1972, the M.Sc and Ph.D. degrees in geography and the MS degree in
engineering from The University of Cororado, in 1974, 1977, and 1977, respectively. He is currently a professor of geography of the Department of Geography & Resource
Management, The Chinese University of Hong Kong. His current research interests include specialization over the development and application of intelligent spatial
decision support systems, spatial optimization, fuzzy sets and logic, neural networks, and evolutionary computation.
Zongben Xu received the M.Sc. degree in mathematics and the Ph.D. degree in applied mathematics from Xi’an Jiaotong University, Xi’an, China, in 1981 and 1987,
respectively. In 1988, he was a postdoctoral researcher with the Department of Mathematics, The University of Strathclyde, Glasgow, U.K. He was a research fellow with
the Information Engineering Department from February 1992 to March 1994, the Center for Environmental Studies from April 1995 to August 1995, and the Mechanical
Engineering and Automation Department from September 1996 to October 1996, The Chinese University of Hong Kong, Shatin, Hong Kong. From January 1995 to April
1995, he was a research fellow with the Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong. He is currently a professor with the
Institute for Information and System Sciences, Faculty of Science, Xi’an Jiaotong University. His current research interests include manifold learning, neural networks,
evolutionary computation, and multiple-objective decision-making theory.

http://dx.doi.org.10.1016/j.patcog.2013.01.028
http://dx.doi.org.10.1016/j.patcog.2013.01.028

	Passage method for nonlinear dimensionality reduction of data on multi-cluster manifolds
	Introduction
	The passage method for multi-cluster manifold learning
	The procedure of the passage method
	NLDR method selection
	Computational complexity

	Experimental results and interpretations
	Simulations on synthetic data sets
	Simulations on real data sets

	Conclusion
	Conflict of interest statement
	Acknowledgement
	Supplementary data
	References




