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Abstract In many applications, the pre-information on regression function is always unknown. Therefore,

it is necessary to learn regression function by means of some valid tools. In this paper we investigate the

regression problem in learning theory, i.e., convergence rate of regression learning algorithm with least square

schemes in multi-dimensional polynomial space. Our main aim is to analyze the generalization error for multi-

regression problems in learning theory. By using the famous Jackson operators in approximation theory, covering

number, entropy number and relative probability inequalities, we obtain the estimates of upper and lower

bounds for the convergence rate of learning algorithm. In particular, it is shown that for multi-variable smooth

regression functions, the estimates are able to achieve almost optimal rate of convergence except for a logarithmic

factor. Our results are significant for the research of convergence, stability and complexity of regression learning

algorithm.
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1 Introduction

It is well known that regression and classification are two important basic issues in learning theory.
Regression is a hot problem in the research of learning theory, and the convergence of regression is
one of the core problems. As early as in 1998, Vapnik [1] systematically investigated the convergence
of classification and regression algorithm in statistical learning theory via VC-dimension. Meanwhile,
he studied the consistency of Structure Risk Minimization principle algorithm and obtained a series of
relative results of convergence. In [2], Shawe-Taylor et al. showed the generalization performance for the
Structure Risk Minimization algorithm via VC-dimension. In 2001, Cuker and Smale [3] gave the basic
framework of learning theory from mathematical view and pointed out that regression was one of the
most important problems in learning theory. They then studied the approximation questions in learning
theory by using the method of covering number. In 2002, Cuker and Smale [4] engaged in how to construct
the approximations of regression functions and chose regularization parameters to get a better order. In
2006, using the classical Bernstein’s inequality in probability theory, Wu et al. [5] studied the convergence
∗Corresponding author (email: feilongcao@gmail.com)



702 Xu Z B, et al. Sci China Inf Sci March 2012 Vol. 55 No. 3

for least squares regularized regression learning algorithm in reproducing kernel Hilbert space. In 2007,
Smale and Zhou [6] investigated the approximation problems of regression learning algorithm by using
the integral operators of reproducing kernels. Caponnetto and DeVito [7] showed the generalization
performance for the least squares regularized regression algorithm in reproducing kernel Hilbert space.
In particular, they established the estimate of convergence rate for the vector-valued objective functions.
Temlyakov [8] made use of the methods and techniques in function approximation theory to study the
approximation problems in learning algorithm. For research on the convergence rate please refer to [9–11].

These estimations cannot, however, completely characterize the convergence capability of learning
algorithms in general, because an established upper estimation might be too loose to reflect their inherent
convergence capability. Hence, in order to present the inherent convergence rates of learning algorithm
accurately, we need to estimate not only the upper bound for convergence rate of learning algorithm
but also the lower bound. Naturally, the estimate for lower bound is difficult but significant. In [12],
Temlyakov studied the convergence rate of learning algorithm by the theory of optimal approximation
in approximation theory and showed the estimate of lower bound for the convergence rate under some
assumptions of regression functions.

A series of research referred above focuses on the convergence performance and rate of learning algo-
rithm, especially the estimates of upper and lower bounds for the convergence rate of learning algorithm
which have important effects on the studies of performance, stability and complexity of learning algorithm.

However, for the general integral operators corresponding to kernels, calculations of their feature values
are very difficult. Moreover, we know that the covering number is widely used as the measurement of
complexity [13–17]. Hence, in this paper we first establish the upper bound for the convergence rate using
the covering number of reproducing kernel Hilbert space as the measurement of complexity. Then we
introduce the entropy number and show the lower bound of learning rate by using this tool. The upper
and lower bounds that we have obtained have the same order except for a logarithmic factor.

2 Regression learning algorithm and upper bound for convergence rate

Let Rs be s-dimensional Euclidean space and [−1, 1]s be the cube in Rs where s is an integer. In this
paper, we consider a function set consisting of polynomial functions on X = [−1, 1]s as a hypothesis
space, over which we minimize a least squares risk. In regression analysis, an Rs × R-valued random
vector (X ,Y) with EY2 < ∞ is considered and the dependency of Y on the value of X is of interest. The
goal is to find a function f : Rs → R such that f(X ) is a good approximation of Y. In the sequel, the
main aim of the analysis is to minimize the mean squared prediction error or L2 risk:

E(f) = E{|f(x) − y|2}.

The function that minimizes the error is called the regression function, given by

m(x) = E{Y|X = x}, x ∈ Rs.

Indeed, let f : Rs → R be an arbitrary measurable function on Rs. We denote the distribution of X by
ν. The well-known relation [9,18]

E{|f(x)− y|2} = E{|m(x) − y|2} +
∫
Rs

(f(x) − m(x))2ν(dx)

implies that the regression function is the optimal predictor in view of minimization of the L2 risk:

E{|m(x) − y|2} = min
f : Rs→R

E{|f(x) − y|2}.

In addition, any measurable function f is a good predictor with its L2 risk close to the optimal value, if
and only if

E(f) = E{|f(x)− y|2} (1)
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is small. This motivates us to measure the error caused by using the function f instead of the regression
function by error (1).

In many applications, the distribution of the sample is usually unknown. Hence the regression function
is unknown. But often it is possible to observe a sample chosen according to the distribution. This leads
to the regression estimation problem. Let z = {zi}n

i=1 = {(xi, yi)}n
i=1 be independent and identically

distributed random vectors drawn on X × Y . Our goal is to construct an estimate

fz(·) = f(·, z)

of the regression function such that the L2 error
∫

X

(fz(x) − m(x))2ν(dx)

is small.
Throughout this paper, we assume that |m(x)| � M/4 for some M ∈ R+. Here it is necessary to

impose smoothness conditions on the regression function. Since learning processes do not take place in a
vacuum, and some structure needs to be at the beginning of the process, this structure (which is called
hypothesis space) usually takes the forms of functions (e.g., a space of polynomials, continuous function
space, etc.). A familiar hypothesis space is polynomial function space, which has been used in [18, 19].
The goal of learning process will thus be to find the best approximation of the regression function m(x)
within the hypothesis space.

In the sequel, we will introduce the polynomial functions [20] on X = [−1, 1]s. Let Hd be the space of
all functions

f : Rs → R, f(x) =
∑

0�k1�d

· · ·
∑

0�ks�d

ak1,...,ksak1,...,ks , x
k1
1 xk2

2 · · ·xks
s , x ∈ [−1, 1]s,

where ak1,...,ks ∈ R for |k1| � d, . . . , |ks| � d. By the definition of Hd, dimHd = (2d)s.
In the paper, we consider the set Fd = {f ∈ Hd : |f(x)| � M/4, x ∈ [−1, 1]s} as the hypothesis space.

The estimate fz is defined by

fz = arg min
f∈Fd

1
n

n∑
i=1

(f(xi) − yi)2, (2)

where f(x) =
∑

0�k1�d · · ·
∑

0�ks�d ak1,...,ksx
k1
1 xk2

2 · · ·xks
s , x ∈ [−1, 1]s.

We will analyze the rate of convergence of this least squares estimate fz. The efficiency of the algorithm
(2) is measured by the difference between fz and the regression function m(x). According to the definition
of m(x), we know ∫

X

(fz(x) − m(x))2ν(dx) = E(fz) − E(m).

Our goal is to estimate the above error for algorithm (2) by means of properties of μ and the functions
set Fd.

Set the empirical error at

Ez(f) =
1
n

n∑
i=1

(f(xi) − yi)2.

It is a discretization of the error E(f). Therefore, fz can also be written as

fz = arg min
f∈Fd

Ez(f).

Our first theorem gives an upper bound for the expected L2 error of our estimate.

Theorem 1. Let Fd be a hypothesis space. Then, for the estimate fz defined by (2), we have

E(fz) − E(m) � 204M2

n
log

2
δ

+
64M2(2d)s log(4M2n)

n
+ 3(E(Qd(m)) − E(m))
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with confidence at least 1 − δ.
Together with the approximation result this theorem implies the next corollary, which considers the rate

of convergence of the estimate. Here it is necessary to impose smoothness condition on the regression
function. Denote all continuous functions on the set X = [−1, 1]s by C[−1,1]s . For f ∈ C[−1,1]s and
positive integer r, define the difference of f :

Δ1
tf(x) = f(x + t) − f(x), Δr

tf(x) = ΔtΔr−1
t f(x).

It is well known that

Δr
tf(x) =

r∑
j=0

(−1)j

(
r

j

)
f(x + jt).

Let ‖t‖2 = (t21 + · · · + t2s)1/2, the usual Euclidean norm of (t1, . . . , ts). The modulus of smoothness of
a continuous function f is then defined as

ωr(f, h) = sup
‖t‖2�h

‖Δtf‖∞,

where ‖f‖∞ = maxx∈[−1,1]s |f(x)|.
The modulus of smoothness is a tool used in approximation theory, and it is also usually used to

describe smoothness of functions and approximation error and has the following properties:

Proposition 1 [21]. There hold the following inferences.
1) For λ > 0, ωr(f, λh) � (1 + λ)rωr(f, h).
2) Let ∂i denote the partial derivative with respect to ti and ∂k = ∂k1

1 · · ·∂ks
s . Then

ωr(f, h) � hr
∑

k1+···+ks=r

r!
k1! · · · ks!

‖∂kf‖∞.

In the sequel, we give the definition of partial derivative of the function that belongs to Lipschitz class.

Definition 1. Suppose k is a natural number, 0 < β � 1 and C > 0. Let α = (α1, . . . , αs), αi ∈ N,∑s
j=1 αj = k. Let f : [−1, 1]s → R. Then we have partial derivative:

∂kf

∂xα1
1 · · · ∂xαs

s
.

If for all x, z ∈ [−1, 1]s, there exists a constant C > 0 such that

∣∣∣∣ ∂kf(x)
∂xα1

1 · · · ∂xαs
s

− ∂kf(z)
∂zα1

1 · · · ∂zαs
s

∣∣∣∣ � C‖x − z‖β ,

then we say that the kth order of partial derivative of function f belongs to the class of LipCβ, i.e.,
∂kf ∈ LipCβ.

From the above definition, we obtain the following corollary based on Theorem 1.

Corollary 1. Let Fd be a hypothesis space. Suppose k is a natural number, 0 < β � 1. If the kth
order of partial derivative of regression function m(x) belongs to LipC1, and d = [n1/(k+1)], then we have

E

∫
X

(fz(x) − m(x))2ν(dx) � 408M2 log 2
n

+ 2CK,s

(
log n

n

) 2k
2k+s

,

where CK,s = 2(108M22s)
2k

2k+s + 2(3C
′
K)

s
2k+s , [a] denotes the integer part of real number a.
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3 Estimation of lower bound for convergence rate of learning algorithm

In this section, we will present the estimate of lower bound for convergence rate of learning algorithm,
and show that the upper bound obtained by Corollary 1 is almost optimal. In order to give the lower
bound for convergence rate, we first introduce entropy number of a set.

Definition 2 [12]. Let E be a Banach space, and F ⊂ E be a bounded set. For i � 1, the ith entropy
number ei(F, E) of F is defined to be the infimum over all ε > 0 such that there exist x1, x2, . . . , x2i−1 ∈ F

with
F ⊂ ∪2i−1

j=1 (xj + εBE),

where BE denotes the closed unit ball of E.
The following theorem gives the lower bounds of learning rates.

Theorem 2. Let ν be the distribution of X . Θ is a compact subset of L2(ν) such that Θ ⊂ 1
4U(C(X)).

Assume that there exists a positive integer k, c1, c2 > 0 such that

c1i
−k/s � ei(Θ, L2(ν)) � c2i

−k/s.

Then for all algorithms A defined by (2) there exists a distribution P on X × [−M, M ] satisfying PX = ν

and fρ ∈ Θ such that

E

∫
X

(πM (fz,q)(x) − fρ(x))2dρX � C1

(
1
m

) 2k
2k+s

,

where C1 is a constant. The proof of Theorem 2 is based on the following Lemma 1.

Lemma 1 [12]. Let ν be a distribution on X , and Θ ⊂ L2(ν) such that ‖f‖∞ � M/4 for all f ∈ Θ

and some M > 0. In addition, assume that there exists an r > 0 such that

ei(Θ, L2(ν)) ∼ i−1/r.

Then there exist constants δ0, c1, c2 > 0 and a sequence {εm} with

εm ∼ m− 2
2+r ,

such that for all learning methods A defined by (2) there exists a distribution P on X × Y satisfying
PX = ν and fρ ∈ Θ such that for all ε > 0 and m � 1:

P m(z : E(πM (fz,q)) − E(fρ) � ε) �
{

δ0, if ε < εm,

c1e
−c2εm, if ε � εm,

where fz is the the decision function produced by A for a given training set D.
Our next goal is to apply Lemma 1 to the proof of Theorem 2.

Proof of Theorem 2. Since the set Θ satisfies

c1i
−k/s � ei(Θ, L2(ν)) � c2i

−k/s,

we apply Lemma A3 (see Appendix) with r = s
k , and know that there exists a sequence {εm} with

εm ∼ m− 2k
2k+s ,

such that for m ∈ Θ,

Pm(z : E(fz) − E(m) � ε) �
{

δ0, if ε < εm,

c1e
−c2εm, if ε � εm.

Using the above inequality, we get

E

∫
X

(fz(x) − m(x)))2dρX =
∫ ∞

0

Pm(z : E(fz) − E(m) � ε)dε
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�
∫ εm

0

εdε + c1

∫ ∞

εm

e−c2εmdε = δ0εm +
c1

mc2
e−c2mεm � c1

(
1
m

) 2k
2k+s

.

The proof of Theorem 2 is finished.

4 Conclusions

In this paper we have investigated the upper and lower bounds of the convergence rate for least squares
regularized learning algorithm on polynomial space. The obtained upper and lower bounds have the same
order except for a logarithmic factor, which are significant for the studies of convergence, stability and
adaption of regression learning algorithm.

We have introduced and investigated deeply the multi-variate Jackson operators, especially estimated
the approximation order of these operators by the rth modulus of smoothness. Meanwhile, combining the
covering number in Hilbert space and inequalities in probability theory, we have established the upper
bound of convergence rate for the regression learning algorithm. Particularly, we have obtained the better
order of convergence when regression functions satisfy some smoothness conditions. In order to get the
lower bound for the convergence rate of the learning algorithm, we have obtained the lower bound by
entropy number which satisfies some conditions.

It is well known that the performance of an algorithm is frequently determined by such factors as
characteristics of convergence and complexity. This paper has not only demonstrated the algorithm
studied in convergence, but also given the function relation among algorithm, samples and hypothesis
space. The upper and lower bounds obtained in this paper for the generalization error of least squares
regularized algorithm are almost optimal. Although [22] got better upper and lower bounds, the com-
plexity of hypothesis space was measured by feature values of integral operators. However, it is hard to
calculate feature values of general integral operators. We have obtained the upper bound for learning
rate via covering number of reproducing kernels Hilbert space, and given the lower bound by the entropy
number of the set. Covering number and entropy number have been widely used as the measurement of
complexity in learning theory.

According to Corollary 1 and Theorem 2, when the kth order of partial derivative of regression function
m(x) belongs to LipC1, it is easy to get the following inequality:

c1

(
1
n

) 2k
2k+s

�
∫

X

(f(x) − m(x))2ν(dx) � c2

(
log n

n

) 2k
2k+s

.

The above inequality implies that the obtained estimates of convergence rate are optimal except for a
logarithmic factor when the regression functions satisfy some smoothness assumptions. Naturally, we
expect that the upper and lower ‘orders’ are the same. We try to characterize exactly the essential order
of convergence of learning algorithm. This is an important problem and deserves further study. We guess
that the upper bound can be improved into c1( 1

n )
2k

2k+s under some conditions.
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Appendix

1 Approximation of Jackson operators

It is well known that the Jackson operator (see [20]) plays an important role in approximation theory. For the

natural number d, r, let t q = [d/r] + 1, and define a kernel function:

Kdr(t) = Lq,r(t) =
1

λqr

(
sin qt

2

sin t
2

)2r

, (A1)

where λqr =
∫ π

−π
(
sin qt

2
sin t

2
)2rdt. Jackson kernels have the following properties.

Lemma A1 [20]. Let Kdr(t) be defined by (A1). Then it is a trigonometric polynomial with order of d, and

∫ π

−π

Kdr(t)dt = 1,

∫ π

−π

tkKdr(t)dt � Ck(d+ 1)−k, k = 0, 1, . . . , 2r − 2.

Let Kdr(t) = Kdr(t1) · · ·Kdr(ts), and |k| = k1 + · · · + ks. Then we get

∫
[−π,π]s

tkKdr(t)dt � C′
k(d+ 1)−k1 · · · (d+ 1)−ks = C′

k(d+ 1)−|k|,

where C′
k = Ck1 · · ·Cks .

Let φ(t) = f(cos t). Then φ(t) is a periodic function. We define Jackson operator on [−π,π]s as

Jd(f,u) = −
∫

[−π,π]s
Kdr(t)

k∑
j=1

(−1)j

(
k

j

)
f(cos(u + jt))dt

= −
∫

[−π,π]s
Kdr(t)

k∑
j=1

(−1)j

(
k

j

)
φ(u + jt)dt, (A2)
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where r is the minimum positive integer satisfying r � [(k + 2)/2].

Denote by L2
[−1,1]s the set of Lebesgue square-integrable functions on [−1, 1]s. Define ‖f‖2 = (

∫
[−π,π]s

|f(t)|2
dt)1/2 < ∞ for f ∈ L2

[−1,1]s , where L2
[−1,1]s is a Banach space and denote the inner product on L2

[−1,1]s by

〈f, g〉 =
∫
[−π,π]s

f(t)g(t)dt. Then L2
[−1,1]s is a Hilbert space. Furthermore, we know that {eik·x}k∈Zs is the

orthogonal basis of Hilbert space L2
[−1,1]s with respect to the above inner product. Therefore, for any ψ ∈ L2

[−π,π]s ,

we have

ψ(x) =
∑

k∈Zs

ak(ψ)eik·x,

where ak(ψ) =
∫
[−π,π]s

ψ(t)eik·tdt, and Z
s denotes s-repetition exponent index set.

The vector l is divided exactly by integer j if and only if every component of the vector l can be divided by j

exactly.

Lemma A2. Let φ ∈ L2
[−π,π]s , l = (l1, . . . , ls), and let lj be the positive integer (j = 1, 2, . . .). When the vector

l is not divided exactly by integer j, we have
∫

[−π,π]s
φ(jt)eil·tdt = 0.

Proof. Since the function φ(jt) has period 2π/j on each variable, we have
∫

[−π,π]s
φ(jt)eil·tdt =

∫ π

−π

· · ·
∫ π

−π

φ(jt1, . . . , jts)e
i(l1t1+···+lsts)dt1 · · · dts

=

∫ π+2il1π/j

−π+2il1π/j

· · ·
∫ π

−π

φ(jt1, . . . , jts)e
i(l1t1+···+lsts)dt1 · · · dts

=

∫ π

−π

· · ·
∫ π

−π

φ(jt1, . . . , jts)e
i((l1t1+2il1π/j)+···+lsts)dt1 · · · dts

= e2il1π/j

∫
[−π,π]

· · ·
∫

[−π,π]

φ(jt1, . . . , jts)e
i(l1t1+···+lsts)dt1 · · · dts

= e2il1π/j

∫
[−π,π]s

φ(jt)eil·tdt.

When l1 cannot be divided by j exactly, there holds
∫

[−π,π]s
φ(jt)eil·tdt = 0.

Similarly, we can prove that other component li of l cannot be divided by j exactly, i = 2, 3, . . . , s. The above

integral is 0. Therefore, when l cannot be divided exactly by j, we have
∫

[−π,π]s
φ(jt)eil·tdt = 0.

This finishes the proof of Lemma A2.

From Lemma A2 and the fact that∫
[−π,π]s

φ(u + jt) cos l · tdt =

∫
[−π,π]s

φ(jt) cos l · (t − u

j
)dt

=
1

2

∫
[−π,π]s

φ(jt)(eil·(t− u
j

) + e−il·(t− u
j

))dt

=
1

2

∫
[−π,π]s

φ(jt)(eil·te−il· u
j + e−il·teil· u

j )dt, (A3)

where cos l · t = cos l1t1 · · · cos lsts, it follows that if l is not divided exactly by j, (A3) equals to 0. Otherwise,

(5) is a trigonometric polynomial in Hd for 1 � j � k, 0 � li � d(i = 1, 2, . . . , d). From the above discussion,

we know Kdr is a trigonometric polynomial with an order of d. Therefore, Jd(f,u) is linear combination of∫ π

−π
f(u+jt) cos l · tdt, i.e., Jd(f,u) is a trigonometric polynomial. Let u = arccos x = arccos x1 · · · arccos xs.

Then Qd(f,x) = Jd(f, arccos x) is an algebraic polynomial with order of 2d− 2.

Proposition A1. Let k be a natural number, f ∈ C[−1,1]s . For d = 0, 1, . . ., there holds

|f(x) −Qd(f,x)| � Cksωk

(
f,

1

d+ 1

)
, ∀x ∈ [−1, 1]s.
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Proof. From Lemma A1, the definition of Qd(f,x) and the fact Kdr(t) = Kdr(−t), we have

|f(x) −Qd(f,x)| = |f(cos u) − Jd(f,u)| =

∣∣∣∣∣
∫

[−π,π]s
Kdr(t)�k

‖t‖2φ(u)dt

∣∣∣∣∣
�

∫
[−π,π]s

Kdr(t)|�k
‖t‖2φ(u)|dt � 2s

∫
[0,π]s

Kdr(t)ωk(φ, ‖t‖2)dt,

where φ(u) = f(cos u).

For any t, t′ ∈ R, we have | cos y − cos y′| � |y − y′|. It follows that

sup
‖t−t′‖2�h

|φ(t) − φ(t′)| � sup
‖ cos t−cos t′‖2�h

|φ(t) − φ(t′)| = sup
‖x−x′‖2�h

|f(x) − f(x′)|,

i.e., ωk(φ, ‖t‖2) � ωk(f, ‖t‖2).

From the definition of the modulus of smoothness of f , we know

ωk(f, ‖t‖2) � (1 + (d+ 1)‖t‖2)
kωk

(
f,

1

d+ 1

)
.

For n = 0, 1, . . . , k � 2r − 2 and any x ∈ [−1, 1]s, applying Lemma A1, we get

|f(x) −Qd(f,x)| � 2sωk

(
f,

1

d+ 1

) ∫
[0,π]s

(1 + (d+ 1)‖t‖2)
kKdr(t)dt

� Cksωk

(
f,

1

d+ 1

)
,

where Cks = 2sC′
k.

The proof of Proposition A1 is completed.

2 Proof of Theorem 1

To estimate the error E(fz) − E(m), we need to estimate

E(fz) − E(m) =;{(E(fz) − E(m)) − (Ez(fz) − Ez(m))}+ {Ez(fz) − Ez(Qd(m))}
+ {(Ez(Qd(m)) − Ez(m)) − (E(Qd(m)) − E(m))}+ (E(Qd(m)) − E(m))

� {(E(fz) − E(m)) − (Ez(fz) − Ez(m))}+ (E(Qd(m)) − E(m))

+ {(Ez(Qd(m)) − Ez(m)) − (E(Qd(m)) − E(m))}. (A4)

We first estimate the third term in (A4), we need the following lemma for the random variable ξ = (Qd(m,x)−
y)2 − (m(x) − y)2.

Lemma A3 [13]. Let ξ be a random variable on Z = [−1, 1]s × [−M,M ] with mean μ and variance σ2. Assume

that μ � 0, |ξ − μ| � B almost everywhere, and E(ξ2) � cξEξ, then for every ε > 0, there holds

Probz∈Zn

{
μ− 1

n

∑n
i=1 ξ(zi)√

μ+ ε
�

√
ε

}
� exp

{
− nε

2cξ + 2
3
B

}
.

In (A4), since ξ = (fz (x)− y)2− (m(x)− y)2 is not a single random variable on [−1, 1]s × [−M,M ], it depends

on the sample z. The variable ξ changing with the sample runs over the function set Fd, and should not be

considered as a fixed function. In the following, we shall bound the first part of (A4) by using the covering

number of the unit ball.

Theorem A1. For any 0 < δ � 1, with confidence at least 1 − δ
2
, there holds

(E(Qd(m)) − E(m)) − (Ez(Qd(m)) − Ez(m)) � 70M2

n
log

2

δ
+

1

2
(E(Qd(m)) − E(m)).

Proof. From (A2), we know that Qd(f,x) ∈ Hd. It follows from Proposition A1 that

|Qd(f,x)| � |f(x)| + ωk

(
f,

1

d

)
.
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If the kth order of partial derivative of f(x) belongs to LipC1, we have

ωk

(
f,

1

d

)
� C′

k
1

dk
,

where C′
k is a constant depending on k.

When dk � C′
k

M
, we have

|Qd(f,x)| � M +C
′
k

1

dk
� 2M, ∀x ∈ [−1, 1]s.

Hence, Qd(f,x) ∈ Fd, and |m(x)| � M . It follows that

|ξ| = |(Qd(m,x) −m(x))(Qd(x) +m(x) − 2y)| � 15M2,

Then we get

|ξ − μ| � B = 30M2

and

σ2 � E(ξ2) � cξE(ξ) = 25M2E(ξ).

Applying (Qd(m,x) − y)2 − (m(x) − y)2 to Lemma A3, we have

(E(Qd(m)) − E(m)) − (Ez(Qd(m)) − Ez(m)) �
√
ε(E(Qd(m)) − E(m) + ε)

� ε+
1

2
(E(Qd(m)) − E(m))

with confidence at least 1 − exp{− nε
70M2 }.

Let exp{− nε
70M2 } = δ

2
. Then we have

ε =
70M2

n
log

2

δ
.

Therefore, there holds

(E(Qd(m)) − E(m))− (Ez(Qd(m)) − Ez(m)) � 70M2

n
log

2

δ
+

1

2
(E(Qd(m)) − E(m))

with confidence at least 1 − δ
2
.

Definition A1 [16]. For a subset F of a metric space and ε > 0, the covering number N (F , ε) is defined to be

the minimal integer l ∈ N such that there exist l disks with radius ε covering F .

The covering number has been extensively studied [13, 14]1). BR is the closed ball with radius R in d-

dimensional space, there holds (see [17])

logN (BR, ε) � r log
4R

ε
. (A5)

In order to estimate the term {E(fz)−E(m)}− {Ez(fz )−Ez(m)} in (A4), we also need the following Lemma.

For a function g on Z, denote E(g) =
∫

Z
g(z)dρ.

Lemma A4 [13]. Let G be a set functions on Z such that for some cρ � 0, |g − Eg| � B almost everywhere. If

E(g2) � cρE(g) for each g ∈ G, for every ε > 0, and 0 < α � 1, we have

Probz∈Zm

{
sup
g∈G

E(g) − 1
m

∑m
i=1 g(zi)√

E(g) + ε
� 4α

√
ε

}
� N (G, αε) exp

{
− α2mε

2cρ + 2
3
B

}
.

We apply Lemma A4 to a set of functions

G = {g : g(z) = (f(x) − y)2 − (m(x) − y)2, f ∈ Fd},

where Fd is defined in section 2.

1) 1 Williamson R C, Smola A J, Schokopf B. Generalization performance of regularization networks and support vector

machines via entropy numbers of compact operators. IEEE Trans Inf Theory, 2001, 47: 2516–2532

2 Zhang T. Effective dimension and generalization of kernel learning. In: Proceedings of the 16th Annual Conference

on Neural Information Processing Systems, Vancouver, Canada, 2002. 454–461

3 Zhang T. Leave-one-out bounds for kernel methods. Neural Comput, 2003, 13: 1397–1437
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Theorem A2. For all ε > 0, we have

Probz∈Zn

{
sup

f∈Fd

E(f) − E(m)− (Ez(f) − Ez(m))√E(f) − E(m) + ε
�

√
ε

}

� 1 − exp

{
(2d)s log

(
4M2

ε

)
− nε

32M2

}
.

Proof. Consider the function set G. Each function g ∈ G has the form g(z) = (f(x) − y)2 − (m(x) − y)2 with

f ∈ Fd, and satisfies E(g) = E(f) − E(m) � 0, where

g(z) = (f(x) − y)2 − (m(x) − y)2 = (f(x) −m(x))(f(x) +m(x) − 2y).

Since |f(x)| � M/4 and |m(x)| � M/4 for any x ∈ [−1, 1]s, we obtain

|g(z)| � M/2 ×M = M2/2.

So we have |g(z) − E(g)| � M2 almost everywhere.

We take c0 = M2/2, B = M2. Applying Lemma A4 with α = 1
4

to the function G, for every ε > 0, with

confidence at least

1 −N
(
G, ε

4

)
exp

{
− nε

32M2

}
,

there holds

sup
f∈G

E(f) − E(m) − (Ez(f) − Ez(m))√E(f) − E(m) + ε
�

√
ε.

According to the definition of the function g(z), we know

|g1(z) − g2(z)| � |f1(x) − f2(x)||2y − f1(x) − f2(x)|
� 4M |f1(x) − f2(x)|.

Therefore

‖g1 − g2‖∞ � M‖f1 − f2‖∞,
which, (A5) implies

logN
(
G, ε

4

)
� logN

(
Fd,

ε

M

)
� (2d)s log

(
4M2

ε

)
.

The proof of Theorem A2 is completed.

Using Theorem A2, we can now start with the proof of Theorem 1.

Proof of Theorem 1. In the proof, we use the following error decomposition:

∫
X

|fz (x) −m(x)|2ν(dx)

� {(E(fz) − E(m)) − (Ez(fz) − Ez(m))} + (E(Qd(m)) − E(m))

+ {(Ez(Qd(m)) − Ez(m)) − (E(Qd(m)) − E(m))}
= T1 + T2 + T3.

We begin with bounding T1 in (A6). From Theorem 2, we know that for any f ∈ Fd there holds

E(f) − E(m) − (Ez(f) − Ez(m)) �
√
t
√

E(f) − E(m) + t

with confidence at least 1 − exp{(2d)s log( 4M2

t
) − mt

32M2 }.
Recall an elementary inequality :

ab � 1

2
(a2 + b2), ∀a, b ∈ R.

We find that there holds

E(fz) − E(m)− (Ez(fz) − Ez(m)) � t+
1

2
(E(fz) − E(m))

with confidence at least

1 − exp

{
(2d)s log

(
4M2

t

)
− nt

32M2

}
.
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We need to bound the positive solution ε0 to the equation

h(ε) = (2d)s log

(
4M2

ε

)
− nε

32M2
= log

δ

2
.

The function h : R+ → R is strictly decreasing. Hence ε0 � ε∗ if h(ε∗) � log δ
2
.

When ε � 1
n
, we have

h(ε) � (2d)s log
(
4M2n

) − nε

32M2
.

Taking ε∗ � 1
n

satisfying

(2d)s log
(
4M2n

) − nε

32M2
� log

δ

2
,

we have h(ε∗) � log δ
2
.

For large enough d > 0, we have

ε∗ � 32M2

n
log

2

δ
+

32M2(2d)s log
(
4M2n

)
n

� 1

n
.

Then we get

ε0 � 32M2

n
log

2

δ
+

32M2(2d)s log
(
4M2n

)
n

.

From Theorem A2, there holds

E(fz) − E(m) − (Ez(fz) − Ez(m)) � 32M2

n
log

2

δ
+

32M2(2d)s log
(
4M2n

)
n

+
1

2
(E(fz) − E(m))

with confidence at least 1 − δ
2
.

Combining Theorem A1 and (A6), there holds

E(fz) − E(m) � 204M2

n
log

2

δ
+

64M2(2d)s log
(
4M2n

)
n

+ 3 (E(Qd(m)) − E(m))

with confidence at least 1 − δ.

The proof of Theorem 1 is completed.

In order to prove Corollary 1, we need to estimate

inf
f∈Fd

∫
X

(f(x) −m(x))2ν(dx).

From (A2), we know that Qd(f,x) ∈ Hd. And Proposition A1 tells us that

|Qd(f,x)| � |f(x)| + ωk

(
f,

1

d

)
.

If the kth order of partial derivative of f(x) belongs to LipC1, then we get

ωk

(
f,

1

d

)
� C

′
k

1

dk
,

where C′
k is a constant depending on k.

From Proposition A1 we have

E(fz) − E(m) � 204M2

n
log

2

δ
+

64M2(2d)s log
(
4M2n

)
n

+ 3C′
k

1

d2k
,

and this is minimized for

d =

[(
3C

′
kn

2s64M2 log(4M2n)

) 1
2k+s

]
,

where [a] denotes the integer part of real number a.

For n � 4M2, there holds

E(fz) − E(m) � 204M2

n
log

2

δ
+ CK,s

(
log n

n

) 2k
2k+s
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with confidence at least 1 − δ. CK,s = 2(108M22s)
2k

2k+s + 2(3C
′
K)

s
2k+s .

Let t = 204M2

n
log 2

δ
+CK,s

(
log n

n

) 2k
2k+s . Then

δ = 2 exp

{
− t− CK,s

(
log n

n

) 2k
2k+s

204M2

n

}
.

The above probability inequality can be rewritten as

Probz∈Zn{E(fz) − E(m) � t} � 2 exp

{
− t− CK,s

(
log n

n

) 2k
2k+s

204M2

n

}
.

For τ � 1
n
, we have

E

∫
X

(fz(x) −m(x))2ν(dx) =

∫ ∞

0

Probz∈Zn{E(fz) − E(m) � t}dt

� τ +

∫ ∞

τ

2 exp

{
− t− CK,s

(
log n

n

) 2k
2k+s

204M2

n

}
dt,

and this is minimized for

τ =
204M2 log 2

n
+ CK,s

(
logn

n

) 2k
2k+s

.

Hence

E

∫
X

(fz (x) −m(x))2ν(dx) � 408M2 log 2

n
+ 2CK,s

(
log n

n

) 2k
2k+s

.

The proof of Corollary 1 is finished.


