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The previously known works describing the generalization of least-square regularized re-
gression algorithm are usually based on the assumption of independent and identically
distributed (i.i.d.) samples. In this paper we go far beyond this classical framework by
studying the generalization of least-square regularized regression algorithm with Markov
chain samples. We first establish a novel concentration inequality for uniformly ergodic
Markov chains, then we establish the bounds on the generalization of least-square regu-
larized regression algorithm with uniformly ergodic Markov chain samples, and show that
least-square regularized regression algorithm with uniformly ergodic Markov chains is con-
sistent.
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1. Introduction

Learning from samples can be regarded as the regression problem of approximating a multivariate function from finite
data. The problem of approximating a function from finite data is usually ill-posed and then a classical method to solve it
is regularization technique (see e.g. [1–3]). The previously known results on the learning performance and consistency of
regularized regression algorithm are usually based on the assumption that training samples are independent and identically
distributed (i.i.d.) (see e.g. [3–7]). However, independence is a very restrictive concept (see [8,9]). Therefore, relaxations
of such i.i.d. assumption have been considered for quite a while in both machine learning and statistics literatures. For
example, Yu [10] established the rates of convergence for empirical processes of stationary mixing sequences. Modha and
Masry [11] established the minimum complexity regression estimation with m-dependent observations and strongly mixing
observations respectively. Samson [12] studied the concentration of measure inequalities for Markov chains and φ-mixing
processes. Vidyasagar [9] considered the notions of mixing and proved that most of the desirable properties (e.g. PAC,
UCEMUP) of i.i.d. sequence are preserved when the underlying sequence is mixing sequence. Glynn and Ormoneit [13]
established the Hoeffding’s inequality for uniformly ergodic Markov chains based on the equivalent definition of uniformly
ergodic Markov chains. Gamarnik [14] extended the PAC learning from i.i.d. samples to the case of Markov chain with finite
and countably infinite state space by establishing the bounds on the sample sizes which would guarantee the PAC learning
for Markov chain samples. More recently, Smale and Zhou [16] considered online learning algorithm based on Markov
sampling. Kontorovich and Ramanan [17] established the concentration inequalities for dependent random variables via the
martingale method. Steinwart et al. [8] proved that the SVMs for both classification and regression are consistent only if
the data-generating process satisfies a certain type of law of large numbers (e.g. WLLNE, SLLNE). Mohri and Rostamizadeh
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[20] studied the Rademacher complexity bounds for non-i.i.d. processes. Steinwart and Christmann [18] considered the
fast learning rates of regularized empirical risk minimizing algorithm for α-mixing process. Zou et al. [19] established the
bounds on the generalization performance of the ERM algorithm with strongly mixing observations.

There are many definitions of non-independent sequences in [8], but in this paper we focus only on an analysis in the
case when the training samples of least-square regularized regression algorithms are Markov chains, the reasons are as
follows: First, Markov chain samples appear so often and naturally in applications, especially in biological (DNA or protein)
sequence analysis, speech recognition, character recognition, content-based web search and marking prediction. We can
present two examples of Markov chain input samples as follows [15]:

Example 1. Consider the problem of an insurance company wanting to draft the amount of insurance money and claim set-
tlement according to the health condition of insurance applicants. In the simplest case, the health condition of an insurance
applicant consists of healthy and ill. For an insurance applicant during given age stage, we suppose that the probability that
he/she is healthy this year and also next year is given. The probability that he/she is ill this year but healthy next year is
also known. Let xi be the health condition given by the i-th year, and yi be the corresponding profit or loss the insurance
company made. Then {xi} is a sequence with Markov property. The insurance company had a data set of past insurance
applicants and the profit or loss of the company. To draft the amount of insurance money and claim settlement, one should
learn the unknown functional dependency between xi and yi from the Markov chain samples {zi = (xi, yi)}i�1.

Example 2. We usually have the following quantitative example in the models of random walk and predicting the weather,
that is, suppose that {xi} is a Markov chain consisting of five states 1,2,3,4,5 and having transition probability matrix

P =

⎡⎢⎢⎢⎣
0.2 0.2 0.2 0.2 0.2
0.1 0.3 0.2 0.2 0.2
0.2 0.1 0.3 0.2 0.2
0.2 0.2 0.1 0.3 0.2
0.2 0.2 0.2 0.1 0.3

⎤⎥⎥⎥⎦ .

By the matrix P , we can create a sequence with Markov property, for example, x1 = 1, x2 = 1, x3 = 5, x4 = 3, . . . . Through
target function y = f (x) = x2 + 10x + 3, we also can produce the corresponding values of xi , that is, y1 = 14, y2 = 14,
y3 = 78, y4 = 42, . . . . Then a problem is posed: how can we learn the target function f (x) = x2 + 10x + 3 from these
Markov chain input samples and the corresponding output samples {z1 = (1,14), z2 = (1,14), z3 = (5,78), z4 = (3,42), . . .}?
In addition, many empirical evidences show that a learning algorithm very often performs well with Markov chain samples.
Why it is so, however, has been unknown (particularly, it is unknown how well it performs in terms of consistency and
generalization) [15]. Answering those questions is the purpose of the present paper. In this paper we first establish a novel
concentration inequality for uniformly ergodic Markov chains, and then we establish the bound on the generalization of
least-square regularized regression algorithm with uniformly ergodic Markov chain samples. We prove that least-square
regularized regression algorithm with uniformly ergodic Markov chain samples is consistent.

This paper is organized as follows: In Section 2 we introduce some notions and notations used in this paper. In Section 3
we present the main results on the generalization and consistency of least-square regularized regression algorithm with
uniformly ergodic Markov chain samples. In Section 4 we prove our main results. We conclude this paper in Section 5.

2. Preliminaries

In this section we introduce the definitions and notations used throughout the paper.

2.1. Stochastic input process

Suppose (Z, S) is a measurable space, a Markov chain is a sequence of random variables {Zt}t�1 together with a set of
transition probability measures Pn(A|zi), A ∈ S, zi ∈ Z . It is assumed that

Pn(A|zi)
.= Prob{Zn+i ∈ A | Z j, j < i, Zi = zi}.

Thus Pn(A|zi) denotes the probability that the state zn+i will belong to the set A after n time steps, starting from the initial
state zi at time i. It is common to denote the one-step transition probability by

P 1(A|zi)
.= Prob{Zi+1 ∈ A | Z j, j < i, Zi = zi}.

The fact that the transition probability does not depend on the values of z j prior to time i is the Markov property, that is

Prob{Zn+i ∈ A | Z j, j < i, Zi = zi} = Prob{Zn+i ∈ A | Zi = zi}.
This is commonly expressed in words as “given the present state, the future and past states are independent”.
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Given two probabilities ν1, ν2 on the measure space (Z, S), the total variation distance between the two measures ν1, ν2
is defined as

‖ν1 − ν2‖TV
.= sup

A∈S

∣∣ν1(A) − ν2(A)
∣∣.

Thus we have the following definition of uniformly ergodic Markov chain (see e.g. [21,22]).

Definition 1. A Markov chain {Zt}t�1 is said to be uniformly ergodic if there exist constants γ < ∞ and ρ < 1 such that for
any z ∈ Z , and for any n � 1,∥∥Pn(·|z) − π(·)∥∥TV � γρn,

where π(·) is the stationary distribution of Markov chain {Zt}t�1.

Remark 1. (i) A weaker condition than uniformly ergodic is geometrically ergodic (see e.g. [9,22]). The difference between
geometrically ergodic and uniformly ergodic is that here the constant γ does not depend on the initial state z. In particular,
if the state space Z is finite, then all irreducible and aperiodic Markov chains are geometrically (in fact, uniformly) ergodic.
In addition, by the theory of Markov chains in [21], we have that the Markov chain presented in Example 2 is a uniformly
ergodic Markov chain.

(ii) By Proposition 7 in [22], we have that a Markov chain with stationary distribution π(·) is uniformly ergodic if and
only if supz∈Z ‖Pn(·|z) − π(·)‖TV < α for some integer n with α < 1

2 . Therefore, in this paper we assume that the constants
γ and ρ in Definition 1 satisfy γρ < 1

2 . We have d(1) := β1 = supz∈Z ‖P (·|z) − π(·)‖TV � γρ . By Proposition 3 in [22], we
have that for any k ∈ N, d(k) � (d(1))k � βk

1. Hence ‖Pk(·|z) − π(·)‖TV � 1
2 βk

1 , so the chain is uniform ergodic with γ = 1
2

and ρ = β1.

To develop further conditions which ensure uniform ergodicity, Meyn and Tweedie [21] presented the following defini-
tion.

Definition 2. Let {Zt}t�1 be a uniformly ergodic Markov chain. Then there exists a probability measure ψ on S , a positive
number τ ∈ (0,1), and an integer n1 � 1 such that

Pn1(z, A) � τψ(A)

for every z ∈ Z and any A ∈ S , where Pn1 (z, A)
.= Prob{Zn1+i ∈ A | Zi = z}.

2.2. Regularized regression algorithms

We consider a problem of estimating a continuous function f in C(X ,R), where X is a compact subset of R
N (N � 1)

and C(X ) is a class of continuous functions on X . The observed output y for x ∈ X can be represented by y = f ∗(x) + ε0,
where f ∗(x) represents the target function and ε0 represents random noise with a mean of zero and a variance of σ 2

ε0
. Let

z = {z1 = (x1, y1), z2 = (x2, y2), . . . , zm = (xm, ym)
}

be a uniformly ergodic Markov chain sample set of size m in Z = X × Y drawn from an unknown distribution D . The goal
of learning from the sample set z is to choose a function f : X → Y such that it is a good approximation of the target
function f ∗ , which is a minimizer of the error (or risk)

E ( f )
.= E
[
( f , z)

]= ∫
Z

(
f (x) − y

)2
dD.

Since one knows only the training sample set z, the minimizer of E ( f ) cannot be computed directly. According to the
principle of Empirical Risk Minimization (ERM) [2], we minimize, instead of the error E ( f ), the so-called empirical error

Em( f ) = 1

m

m∑
i=1

(
f (xi) − yi

)2
.

Let fz be the minimizer of Em( f ) over a given function space H, i.e.,

fz = arg min
f ∈H

Em( f ) = arg min
f ∈H

1

m

m∑
i=1

(
f (xi) − yi

)2
. (1)

By the principle of ERM, we then consider the function fz as an approximation of the target function f ∗ . However, when
the complexity of the function set H is high, the ERM algorithm (1) is usually ill-posed and overfitting may happen. Thus
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regularized techniques are frequently adopted (see [1,3]). These include least-square regularized regression algorithm. The
least-square regularized regression algorithm is a discrete least-square problem associated with a Mercer kernel.

let K : X × X → R be continuous, symmetric, and positive semidefinite, i.e., for any finite set of distinct points
{x1, x2, . . . , xl} ⊂ X , the matrix (K (xi, x j))

l
i, j=1 is positive semidefinite, such a function is called a Mercer kernel. The (RKHS)

H associated with the kernel K is defined to be the closure of the linear span of the set of functions {Kx := K (x, ·): x ∈ X }
with the inner product 〈·,·〉H = 〈·,·〉K satisfying 〈Kx, K y〉K = K (x, y). The reproducing property takes the form

〈Kx, f 〉K = f (x), ∀x ∈ X , ∀ f ∈ H.

Denote C(X ) as the space of continuous functions on X with the norm ‖ · ‖∞ . Let κ = supx∈X
√

K (x, x), then the above
reproducing property tells us that

‖ f ‖∞ � κ‖ f ‖K , ∀ f ∈ H.

The least-square regularized regression algorithm is to solve

fz,λ = arg min
f ∈H

{
Em( f ) + λ‖ f ‖2

K

}= arg min
f ∈H

{
1

m

m∑
i=1

(
f (xi) − yi

)2 + λ‖ f ‖2
K

}
(2)

with λ > 0 a constant. The constant λ is called the regularization parameter. It often depends on the sample size m:
λ = λ(m), and satisfies limm→∞ λ(m) = 0 (see [7]).

Throughout this paper, we assume that for some M � 0, |y| � M almost surely and | f ∗(x)| � M .
Our purpose in this paper is to study the learning ability of least-square regularized regression algorithm (2) with

uniformly ergodic Markov chain samples. In other words, we expect that the minimizer of the regularized empirical error,
fz,λ is a good approximation of the minimizer f ∗ of the error E ( f ), as m → ∞ and λ = λ(m) → 0. Therefore, we have to
estimate the difference E ( fz,λ) − E ( f ∗) between the value of achieved risk E ( fz,λ) and the value of minimal possible risk
E ( f ∗). Since the minimization (2) is taken over the discrete quantity Em( f ), we should regulate the capacity of function
set H. Here the capacity is measured by the covering number.

Definition 3. For a subset M of a metric space and ε > 0, the covering number N (M, ε) of the function set M is the
minimal r ∈ N such that there exist r disks in M with radius ε covering M.

For same R > 0, let

B R = { f ∈ H: ‖ f ‖K � R
}
.

It can be regarded as a subset in (C(X ),‖ · ‖∞). Denote the covering number of B1 in C(X ) with the metric ‖ · ‖∞ by N (ε).

Definition 4. We say that the reproducing kernel Hilbert space has polynomial complexity exponent s > 0 if

ln N (ε) � Csε
−s, ∀ε > 0.

Remark 2. Definition 4 may be found in [7] and [24]. The covering number N (ε) has been extensively studied, see, e.g.
[26,27] and [25]. In addition, the definition of B R is a general definition in learning theory, which was used to study the
learning rates of least-square regularized regression in [4,6] and [7].

3. Main results

To study the learning performance of least-square regularized regression algorithm (2) with uniformly ergodic Markov
chain samples, we introduce a regularizing function f̃λ ∈ H. This is arbitrarily chosen and depends on λ. A special and
standard choice is (see [7])

fλ = arg min
f ∈H

{
E ( f ) − E

(
f ∗)+ λ‖ f ‖2

K

}
.

By the definition of the output function fz,λ , for any f̃λ ∈ H, there holds

Em( fz,λ) + λ‖ fz,λ‖2
K � Em( f̃λ) + λ‖ f̃λ‖2

K .

Hence we have (see [7])

E ( fz,λ) − E
(

f ∗)� E ( fz,λ) − E
(

f ∗)+ λ‖ fz,λ‖2
K

�
{

Em( f̃λ) − E ( f̃λ)︸ ︷︷ ︸
T1

+ E ( fz,λ) − Em( fz,λ)︸ ︷︷ ︸
T2

}+ {E ( f̃λ) − E
(

f ∗)+ λ‖ f̃λ‖2
K

}
. (3)

In this way we decompose the excess error E ( fz,λ) − E ( f ∗) into two parts: the sample error (the first term) and the
regularization error (the second term).



B. Zou et al. / J. Math. Anal. Appl. 388 (2012) 333–343 337
Definition 5. The regularization error for a regularizing function f̃λ ∈ H is defined by

D̃(λ) := E ( f̃λ) − E
(

f ∗)+ λ‖ f̃λ‖2
K . (4)

Since the regularization error is independent of the learning samples, in order to estimate the excess error E ( fz,λ) −
E ( f ∗), our main aim is to estimate the sample error: T1 and T2. The function fz,λ in T2 changed with the sample z runs
over a set of functions, and should not be a fixed function. Let us begin with the estimate for T1. In doing so, we first
establish a new concentration inequality for uniformly ergodic Markov chains.

Theorem 1. Let ξ be a random variable on a probability space Z and {zi}m
i=1 be a uniformly ergodic Markov chain. If |ξ(z)| � B for all

z ∈ Z , then for any ε > 0,

Prob

{∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi) − E(ξ)

∣∣∣∣∣� ε

}
� 2 exp

{ −mε2

2B2 A2
m

}
, (5)

where Am = (2γρ)m−1
2γρ−1 .

Remark 3. (i) By Remark 1, we have

Am = (2γρ)m − 1

2γρ − 1
→ 1

1 − 2γρ
, as m → ∞.

This implies that bound (5) has the same convergence rate O (exp(−m)) as those bounds (see e.g. [2,23]) for i.i.d. sample.
In particular, when the sequence {zi}m

i=1 is i.i.d., by Definition 1, we have Am = 1 for any m ∈ N.
(ii) Compared inequality (5) with those results (see e.g. [18,28]) based on α-mixing sequences, we can find that these

bounds for α-mixing sequences have the rate O (exp(−m(α))), where m is the number of samples and m(α) < m is the
“effective number of observations”. This implies that these bounds for α-mixing sequences in [28] and [18] have worse
convergence rate than that for i.i.d. sequences and uniformly ergodic Markov chains.

Remark 4. To have a better understanding the significance and value of the obtained result in Theorem 1, now we compare
Theorem 1 with the previously known results in [17] and [13] respectively as follows: First, different from the concentration
inequality (see Theorem 1.2) in [17] , inequality (5) is a generalization of Hoeffding’s inequality to partial sums that are
derived from a uniformly ergodic Markov chain, and inequality (5) depends on the constants γ and ρ (see Definition 1) of
uniformly ergodic, does not dependent on the contraction coefficient θk (see definition (8)).

In addition, Glynn and Ormoneit [13] established a concentration inequality based on Definition 2. Compared inequality
(5) with the inequality obtained by Glynn and Ormoneit in [13], we can find that although these two concentration inequal-
ities have the same convergence rates, the difference is obvious, that is, the inequality obtained by Glynn and Ormoneit
[13] depends on two constants n1 and τ of Definition 2, while inequality (5) depends on two other constants γ and ρ of
Definition 1, and Definition 1 is a more general definition of uniformly ergodic Markov chains (see [9]).

By Theorem 1, and using the similar arguments conducted as that in Theorem B established by Cucker and Smale [23],
we obtain the following bound on the rate of the empirical error uniform convergence to the error for uniformly ergodic
Markov chains.

Theorem 2. Let {zi}m
i=1 be a uniformly ergodic Markov chain, then for any ε > 0,

Prob
{

sup
f ∈B R

∣∣E ( f ) − Em( f )
∣∣� ε

}
� 2N

(
B R ,

ε

8(κ R + M)

)
exp

{ −mε2

8C2
1 A2

m

}
,

where Am is as defined in Theorem 1, C1 = B1(κ R + M) and B1 = max{κ R, M}.

Remark 5. Theorem 2 shows that as long as the covering number of the function space B R is finite, the empirical error
Em( f ) will uniformly converge to the error E ( f ), and the convergence speed may be exponential. Then we generalized
these i.i.d. classical results in [2,23] to uniformly ergodic Markov chains.

As an application of Theorems 1 and 2, we also establish the generalization bound of least-square regularized regression
algorithm (2) with uniformly ergodic Markov chains.

Theorem 3. Let D̃(λ) = E ( f̃λ) − E ( f ∗) + λ‖ f̃λ‖2
K for any f̃λ ∈ H. Suppose that {zi}m

i=1 is a uniformly ergodic Markov chain. Then for
any η ∈ (0,1) and R � M, with probability at least 1 − η, there holds

E ( fz,λ) − E
(

f ∗)� Am
(
κ

√
D̃(λ)/λ + M

)2√2 ln(2/η) + 4(κ + 1)R2ε(m, η) + D̃(λ),

m
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where Am is as defined in Theorem 1, C2 = max{κ,1} and

ε(m, η)
.= max

{
C2 Am

[
ln(2/η)

m

] 1
2

,

[
2sCsC2

2 A2
m

m

] 1
2+s
}
.

By Theorem 3, we also obtain the following corollary on the error bound.

Corollary 1. Suppose that {zi}m
i=1 is a uniformly ergodic Markov chain. Let 0 < λ � 1, f̃λ ∈ H and fz,λ be defined by (2). Then for any

0 < δ < 1, with confidence 1 − δ, inequality

E ( fz,λ) − E
(

f ∗)� Am
(
κ

√
D̃(λ)/λ + M

)2√2 ln(2/δ)

m
+ 4(κ + 1)M2

λ

[
2sCsC2

2 A2
m

m

] 1
2+s

+ D̃(λ)

is valid provided that

m �
C2

2 A2
m ln(2/δ)

4

[
ln(2/δ)

C2
s

] 1
s

,

where Am is as defined in Theorem 1 and C2 = max{κ,1}.

By Corollary 1, we can easily establish the following bound on the learning rate of the least-square regularized regression
algorithm with uniformly ergodic Markov chain samples.

Proposition 1. Suppose that {zi}m
i=1 is a uniformly ergodic Markov chain. Assume D(λ) � C0λ

β for some 0 < β � 1 and C0 > 0, and

λ = λ(m) = m− 1
(1+β)(2+s) . For any 0 < δ < 1, with confidence 1 − δ, the bound

E ( fz,λ) − E
(

f ∗)� C̃ ln(2/δ)

(
1

m

) β
(1+β)(2+s)

holds provided that

m �
C2

2 A2
m ln(2/δ)

4

[
ln(2/δ)

C2
s

] 1
s

,

where C̃ is a constant depending on C0, κ, M, s, β .

Remark 6. By Proposition 1, we have

E ( fz,λ) − E
(

f ∗)→ 0, as m → ∞.

This shows that least-square regularized regression algorithm (2) with uniformly ergodic Markov chain samples is consistent.
This implies that although the output of the least-square regularized regression algorithm (2) is found via minimizing the
regularized empirical error, it can eventually predict as well as the optimal predictor f ∗ , or it can give the best (the
lowest risk) prediction for any unlabeled samples. Then we have generalized this classical results of least-square regularized
regression algorithm with i.i.d. samples (see e.g. [7]) to uniformly ergodic Markov chain samples.

4. Proof of main results

To estimate the excess error E ( fz,λ) − E ( f ∗), our approach is based on the following four useful lemmas. The first one
is due to Kontorovich and Ramanan [17]. The second one and the third one may be found in Azuma [29]. The fourth one is
due to Cucker and Smale [4].

Given 1 � i < j � m, ψ
j

i is used to denote the sequence (ψi,ψi+1, . . . ,ψ j), and Ψ
j

i represents the random vector

(Ψi,Ψi+1, . . . ,Ψ j). For simplicity, ψ
j

1 and Ψ
j

1 will be sometimes written simply as ψ j and Ψ j respectively. Given a proba-
bility space (Am,d,P), for 1 � i < j � m, define (see (1.1) in [17])

ηi j
.= sup

ψ i−1∈Bi−1,ω,ω̂∈B
ηi j
(
ψ i−1,ω, ω̂

)
, (6)

where, for ψ i−1 ∈ Ai−1 and ω, ω̂ ∈ A

ηi j
(
ψ i−1,ω, ω̂

)= ∥∥P
(
Ψ n
∣∣Ψ i = ψ i−1ω

)− P
(
Ψ n
∣∣Ψ i = ψ i−1ω̂

)∥∥ .
j j TV
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Let F be the set of all subsets of Am . For i = 1,2, . . . ,m, we set F0 = {∅, Am}, Fm = F and for 1 � i � m − 1, let Fi be the
σ -algebra generated by Ψ i = (Ψ1,Ψ2, . . . ,Ψi). Then{∅, Am}= F0 ⊂ F1 ⊂ · · · ⊂ Fm = F .

For a function g : Am → R, we define the associated Martingale differences by

V i(g)
.= E[g|Fi] − E[g|Fi−1], i = 1,2, . . . ,m. (7)

A Hamming metric d : Am × Am → [0,∞) on Am is defined by

d(u, v)
.=

m∑
i=1

1{ψi =ψ ′
i },

where u = (ψ1,ψ2, . . . ,ψm) ∈ Am and v = (ψ ′
1,ψ

′
2, . . . ,ψ

′
m) ∈ Am . For 1 � k � m, let P (k) be the A × A transition probability

matrix associated with the k-th step of the Markov chain {Ψt}t�1, that is, for 1 � k � m,

P (k)
i j

.= Pk(ψ j|ψi) = Prob(Ψk+1 = ψ j|Ψk = ψi), ψi,ψ j ∈ A.

The contraction coefficients θk are defined as

θk
.= sup

ψi ,ψi′ ∈B

∥∥P (k)
i j − P (k)

i′ j

∥∥
TV . (8)

Kontorovich and Ramanan [17] established the following bound on the Martingale difference V i(g) (see Theorem 2.1 in [17]).

Lemma 1. Let {Ψt}t�1 be a Markov chain with countable state space A. Assume g : Bm → R is a c-Lipschitz function with respect to
the Hamming metric on Am for some constant c > 0. Then for 1 � i � m,

∥∥V i(g)
∥∥∞ � c

(
1 +

m∑
j=i+1

ηi j

)
, ηi j � θiθi+1 · · · θ j−1,

where V i(g), ηi j and θk are as defined in (7), (6) and (8), respectively.

Lemma 2. Let ξ1 be such that the expected value of ξ1 , E(ξ1) = 0 and −a � ξ1 � b. Then for any convex function f

E
[

f (ξ1)
]
� b

a + b
f (−a) + a

a + b
f (b).

Lemma 3. For any θ , 0 � θ1 � 1,

θ1e(1−θ1)ζ + (1 − θ1)e−θ1ζ � e(ζ 2/8).

Lemma 4. Let c1, c2 > 0, and p1 > p2 > 0. Then the equation

xp1 − c1xp2 − c2 = 0

has a unique positive zero x∗ . In addition x∗ � max{(2c1)
1/(p1−p2), (2c2)

(1/p1)}.

Proof of Theorem 1. We decompose the proof into three steps.
Step 1: Let g = 1

m

∑m
i=1 ξ(zi). For any i, 1 � i � m, we define Ui

.= E[g|Gi] − μ, where Gi is the σ -algebra generated by
zi = (z1, z2, . . . , zi), and μ

.= E(ξ).
For any τ > 0, note that eτU0 = exp{τ [E(g|G0) −μ]} = 1. Thus for any m � 1, eτUm = eτUm−1 · eτ (Um−Um−1) . It follows that

E
[
eτ Um

∣∣Gm−1
]= eτ Um−1 · E

[
eτ (Um−Um−1)

∣∣Gm−1
]
. (9)

To estimate the second term in Eq. (9), we assume that for all i ∈ {1,2, . . . ,m}, there exist two constants ai and bi such that
−ai � Ui − Ui−1 � bi , which will be determined in the sequel. Since exp(·) is a convex function, by Lemma 2, we have that
for any τ > 0

E
[
eτ (Um−Um−1)

]
� bme−τam + ameτbm

am + bm
.

Combining Eq. (9) with the above inequality, we have

E
[
eτ Um

]
� E
[
eτ Um−1

] · bme−τam + ameτbm

.

am + bm
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Iterating this inequality, we obtain that for any τ > 0

E
[
eτ Um

]
�

m∏
i=1

bie−τai + aieτbi

ai + bi
. (10)

By Lemma 3, we also have that for any τ > 0

bie−τai + aieτbi

ai + bi
� exp

{
τ 2(ai + bi)

2

8

}
.

Returning to inequality (10), we have that for any τ > 0

E
[
eτ Um

]
� exp

{
m∑

i=1

τ 2(ai + bi)
2

8

}
. (11)

Step 2: Now we begin to estimate the quantity ‖V i(g)‖∞
.= ‖E[g|Gi] − E[g|Gi−1]‖∞ for any i,1 � i � m. By Definition 1,

we have that for any k, 1 � k � m − 1,

θk = sup
zi ,zi′ ∈Z

∥∥P (k)
i j − P (k)

i′ j

∥∥
TV

= sup
zi ,zi′ ∈Z

∥∥Pk(z j|zi) − Pk(z j|zi′)
∥∥

TV

� sup
zi ,zi′ ∈Z

(∥∥Pk(z j|zi) − π(z j)
∥∥

TV + ∥∥Pk(z j |zi′) − π(z j)
∥∥

TV

)
� 2γρ.

In addition, for any u1 = (z1, z2, . . . , zm) ∈ Z m and v1 = (z′
1, z′

2, . . . , z′
m) ∈ Z m , we have

∣∣g(u1) − g(v1)
∣∣= ∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi) − 1

m

m∑
i=1

ξ
(
z′

i

)∣∣∣∣∣
� 1

m

m∑
i=1

∣∣ξ(zi) − ξ
(
z′

i

)∣∣
� 2B

m

m∑
i=1

1{zi =z′
i}. (12)

This implies that g = 1
m

∑m
i=1 ξ(zi) is a 2B

m -Lipschitz function with respect to the Hamming metric on Z m . By Lemma 1, we
have that for any i, 1 � i � m,

∥∥V i(g)
∥∥∞ � c

(
1 +

m∑
j=i+1

ηi j

)

� 2B

m
(1 + ηi(i+1) + ηi(i+2) + · · · + ηi(m−1))

� 2B

m
(1 + θi + θiθi+1 + · · · + θiθi+1 · · · θm−1)

� 2B Am

m
,

where Am = (2γρ)m−1
2γρ−1 .

Thus by inequality (11), we have that for any τ > 0,

E
[
eτ Um

]
� exp

{
τ 2 B2 A2

m

2m

}
. (13)

Step 3: By Markov’s inequality, we have that for any ε > 0 and τ > 0

Prob{Um � ε} = Prob
{

eτ Um � eτε
}

� exp

{
−τε + τ 2 B2 A2

m
}
.

2m
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Taking τ = mε
B2 A2

m
, we conclude that for any ε > 0,

Prob{Um � ε} � exp

{ −mε2

2B2 A2
m

}
.

It follows that for any ε > 0,

Prob

{
1

m

m∑
i=1

ξ(zi) − E(ξ) � ε

}
� exp

{ −mε2

2B2 A2
m

}
.

By symmetry we also have that for any ε > 0,

Prob

{
E(ξ) − 1

m

m∑
i=1

ξ(zi) � ε

}
� exp

{ −mε2

2B2 A2
m

}
.

Combining these two inequalities above, we then complete the proof of Theorem 1. �
Proof of Theorem 2. Let g1 = 1

m

∑m
i=1( f (xi) − yi)

2. For any f ∈ B R and any z1 = (x1, y1), z′
1 = (x′

1, y′
1) ∈ Z , we have∣∣( f (xi) − yi

)2 − ( f
(
x′

i

)− y′
i

)2∣∣= ∣∣[ f (xi) − yi + f
(
x′

i

)− y′
i

][
f (xi) − yi − f

(
x′

i

)+ y′
i

]∣∣
� 2(κ R + M)

[∣∣ f (xi) − f
(
x′

i

)∣∣+ ∣∣yi − y′
i

∣∣]
� 2(κ R + M)B1 · 1{zi =z′

i},

where B1 := max{κ R, M}. It follows that for any u1 = (z1, z2, . . . , zm) ∈ Z m and v1 = (z′
1, z′

2, . . . , z′
m) ∈ Z m ,

∣∣g1(u1) − g1(v1)
∣∣= ∣∣∣∣∣ 1

m

m∑
i=1

(
f (xi) − yi

)2 − 1

m

m∑
i=1

(
f (xi) − y′

i

)2∣∣∣∣∣
� 1

m

m∑
i=1

∣∣( f (xi) − yi
)2 − ( f

(
x′

i

)− y′
i

)2∣∣
� 2(κ R + M)B1

m

m∑
i=1

1{zi =z′
i}. (14)

This implies that g1 = 1
m

∑m
i=1( f (xi)− yi)

2 is a 2(κ R+M)B1
m -Lipschitz function with respect to the Hamming metric on Z m .

Then by Theorem 1, we have that for any ε > 0,

Prob
{∣∣Em( f ) − E ( f )

∣∣� ε
}

� 2 exp

{ −mε2

2C2
1 A2

m

}
, (15)

where Am is defined as in Theorem 1, and C1 = (κ R + M)B1.
In addition, let L( f ) = E ( f ) − Em( f ), we have that for any f1, f2 ∈ B R ,∣∣L( f1) − L( f1)

∣∣� ∣∣E ( f1) − E ( f2)
∣∣+ ∣∣Em( f1) − Em( f2)

∣∣
� E
{∣∣( f1(x) − y

)2 − ( f2(x) − y
)2∣∣}+ 1

m

m∑
i=1

∣∣( f1(xi) − yi
)2 − ( f2(xi) − yi

)2∣∣
� 4(κ R + M) · ∥∥ f1(x) − f2(x)

∥∥∞.

Thus by inequality (15) and using the similar arguments conducted as that in Theorem B established by Cucker and
Smale [23], we can complete the proof of Theorem 2. �
Proof of Theorem 3. By the definition of D̃(λ), we have that

λ‖ f̃λ‖2
K � E ( f̃λ) − E

(
f ∗)+ λ‖ f̃λ‖2

K = D̃(λ).

It follows that

‖ f̃λ‖∞ � κ‖ f̃λ‖K � κ

√
D̃(λ)
λ
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and (
f̃λ(x) − y

)2 � C2 := (κ√D̃(λ)/λ + M
)2

.

By Theorem 1, we have that for any ε > 0,

Prob
{∣∣Em( f̃λ) − E ( f̃λ)

∣∣� ε
}

� 2 exp

{ −mε2

2C2
2 A2

m

}
. (16)

For any η ∈ (0,1], let

exp

{ −mε2

2C2
2 A2

m

}
= η

and solve the equation above with respect to ε, we have

ε = C2 Am

√
2 ln(1/η)

m
.

Then by inequality (16), we have that for any η ∈ (0,1], there exists a subset V 1 of Z m such that for any f̃λ ∈ H and for
any z ∈ V 1, inequality

Em( f̃λ) − E ( f̃λ) � Am
(
κ

√
D̃(λ)/λ + M

)2√2 ln(1/η)

m
(17)

is valid with probability at least 1 − η.
By Theorem 2 and Definition 4, we have that for any ε > 0,

P
{

sup
f ∈B R

∣∣E ( f ) − Em( f )
∣∣> ε

}
� 2 exp

{
Cs

(
ε

8R(κ R + M)

)−s

− mε2

8C2
1 A2

m

}
.

Let us rewrite the above inequality in the equivalent form. We equate the right-hand side of the above inequality to the
same η above

exp

{
Cs

(
ε

8R(κ R + M)

)−s

− mε2

8C2
1 A2

m

}
= η.

It follows that

ε2+s − 8C2
1 A2

m ln(1/η)

m
· εs − 8C2

1 A2
mCs[8R(κ R + M)]s

m
= 0.

By Lemma 4, this equation with respect to ε has a unique positive zero ε∗ , and

ε∗ � ε′(m, η)
.= max

{
4C1 Am

[
ln(1/η)

m

] 1
2

,4

[
CsC2

1 A2
m(2R)s(κ R + M)s

m

] 1
2+s
}
.

Then we deduce that for any f ∈ B R , there exists a subset V (R) of Z m , inequality

E ( f ) − Em( f ) � ε′(m, η) (18)

holds true with probability at least 1 − η.
Let

W (R) = {z ∈ V 1: ‖ fz,λ‖K � R
}
.

By inequalities (17) and (18), we deduce that for any z ∈ V (R) ∩ W (R), with probability at least 1 − 2η,

E ( fz,λ) − Em( fz,λ) + Em( f̃λ) − E ( f̃λ) � ε′(m, η) + Am
(
κ

√
D̃(λ)/λ + M

)2√2 ln(1/η)

m
.

Thus by inequality (3), we have

E ( fz,λ) − E
(

f ∗)� E ( fz,λ) − E
(

f ∗)+ λ‖ fz,λ‖2
K

� Am
(
κ

√
D̃(λ)/λ + M

)2√2 ln(1/η)

m
+ ε′(m, η) + D̃(λ). (19)

Replacing η by η/2 in inequality (19), we can complete the proof of Theorem 3. �
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Proof of Corollary 1. For all λ > 0, and almost all z ∈ Z m , by the definition of fz,λ , we have that for f = 0,

λ‖ fz,λ‖2
K � Em( fz,λ) + λ‖ fz,λ‖2

K

� Em(0) + 0

= 1

m

m∑
i=1

(0 − yi)
2 � M2.

Then we have ‖ fz,λ‖K � M/
√

λ for almost all z ∈ Z m . This implies that fz,λ ∈ B R with R = M/
√

λ.
Replacing R by M/

√
λ in Theorem 3, we can easily finish the proof of Corollary 1. �

5. Conclusions

In order to study the learning performance of least-square regularized regression algorithm with uniformly ergodic
Markov chain samples, we first established a new concentration inequality for uniformly ergodic Markov chains, then we
established the bound on the generalization performance of least-square regularized regression algorithm with uniformly
ergodic Markov chain samples, and proved that least-square regularized regression algorithm with uniformly ergodic Markov
chain samples is consistent. These results extended the i.i.d. classical results on the learning performance of least-square
regularized regression algorithm to the case of Markov chain samples. To our knowledge, these studies here are the first
works on this topic.

Along the line of the present work, several open problems deserve further research. For example, establishing the bound
on the fast learning rates of least-square regularized regression algorithm with uniformly ergodic Markov chain, and estab-
lishing the bound on the consistency and generalization of regularized regression algorithms with uniformly ergodic Markov
chain based on the measure of Rademacher average. All these problems are under our current investigation.
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