
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 7, JULY 2012 1013

L1/2 Regularization: A Thresholding Representation
Theory and a Fast Solver
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Abstract— The special importance of L1/2 regularization has
been recognized in recent studies on sparse modeling (particu-
larly on compressed sensing). The L1/2 regularization, however,
leads to a nonconvex, nonsmooth, and non-Lipschitz optimization
problem that is difficult to solve fast and efficiently. In this paper,
through developing a threshoding representation theory for
L1/2 regularization, we propose an iterative hal f thresholding
algorithm for fast solution of L1/2 regularization, corresponding
to the well-known iterative sof t thresholding algorithm for L1
regularization, and the iterative hard thresholding algorithm
for L0 regularization. We prove the existence of the resolvent
of gradient of ‖x‖1/2

1/2, calculate its analytic expression, and
establish an alternative feature theorem on solutions of L1/2
regularization, based on which a thresholding representation of
solutions of L1/2 regularization is derived and an optimal reg-
ularization parameter setting rule is formulated. The developed
theory provides a successful practice of extension of the well-
known Moreau’s proximity forward-backward splitting theory
to the L1/2 regularization case. We verify the convergence of
the iterative hal f thresholding algorithm and provide a series
of experiments to assess performance of the algorithm. The
experiments show that the hal f algorithm is effective, efficient,
and can be accepted as a fast solver for L1/2 regularization.
With the new algorithm, we conduct a phase diagram study to
further demonstrate the superiority of L1/2 regularization over
L1 regularization.

Index Terms— Compressive sensing, half, hard, Lq regulariza-
tion, soft, sparsity, thresholding algorithms, thresholding repre-
sentation theory.

I. INTRODUCTION

THE sparsity problems have attracted a great deal of atten-
tion in recent years, which aim to find sparse solution(s)

of a representation or an equation. Typically, the sparsity prob-
lems include those of variable selection [1], visual coding [2],
error correction [3], matrix completion [4], and compressed
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sensing [5]– [8]. All these problems can be described as the
following: Given a M × N matrix A, and a procedure of
generating an observation y such as

y = Ax + ε

where ε is the observation noise, we are asked to recover x
from observation y such that x is of the sparsest structure (that
is, x has the fewest nonzero components). The problem can
be modeled as

min
x∈RN

‖x‖0 subject to y = Ax + ε

where ‖x‖0, formally called L0 norm, is the number of
nonzero components of x . Sparsity problems can be frequently
transformed into the following so-called L0 regularization
problem:

min
x∈RN

{
‖y − Ax‖2 + λ‖x‖0

}
(1)

where (and henceforth) ‖ · ‖ denotes the Euclidean norm, x =
(x1, . . . , xN )T ∈ R

N , and λ > 0 is a regularization parameter.
The L0 regularization can be understood as a penalized

least squares with penalty ‖x‖0 , in which the parameter λ
functions as balancing the two objective terms. The complexity
of the model is proportional with the number of variables, and
solving the model generally is intractable, particularly when
N is large (It is NP-hard, see [9]). In order to overcome such
difficulty, many researchers [5], [6], [10], [11] have suggested
to relax the L0 regularization and, instead, to consider the
following L1 regularization:

min
x∈RN

{
‖y − Ax‖2 + λ‖x‖1

}
(2)

where ‖x‖1 is the L1 norm of R
N .

It is well known that the L1 regularization has a very
close relationship with the model Lasso and Basis Pursuit,
two independent works of Tibshirani [1], and that of Chen,
Donoho, and Saunders [12]. The L1 regularization prob-
lem can be transformed into an equivalent convex quadratic
optimization problem, and therefore, can be very efficiently
solved. It can also result in sparse solution of the considered
problem, with a promise that, under some mild conditions,
the resultant solution coincides with one of the solutions of L0
regularization (L1/L0 equivalence) [10], [11]. Because of this,
the L1 regularization gets its popularity and has been accepted
as a very useful tool for the solution of sparsity problems.
Nevertheless, the L1 regularization may yield inconsistent
selections [13] when applied to variable selection in some
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situations. It often introduces extra bias in estimation [14],
and cannot recover a signal with the least measurements
when applied to compressed sensing [15], [7]. Thus, a further
modification is required. Among such efforts, a very natural
improvement is the suggestion of the use of Lq regularization
[15], [16], [7], [17], [18]

min
x∈RN

{‖y − Ax‖2 + λ‖x‖q
q
}

(3)

where 0 < q < 1 and ‖x‖q is the Lq quasi-norm of R
N ,

defined by ‖x‖q = (
∑N

i=1 |xi |q)1/q .
The Lq regularization is a nonconvex, nonsmooth, and

non-Lipschitz optimization problem. It is difficult in general
to have a thorough theoretical understanding and efficient
algorithms for solutions. Moreover, even when solvable, which
q should be selected to yield the best result is also a
problem. Recent studies in [16], [19], [20], [7], and [21]
have resolved partially these problems. In [16], Krishnan and
Fergus demonstrated the very high efficiency of L1/2 and
L2/3 regularization when applied to image deconvolution.
In [20], we conducted a phase diagram study, and showed
the representativeness of L1/2 regularization among all Lq

regularizations with q in (0, 1). The results basically revealed
that the Lq regularizations can assuredly generate more sparse
solutions than L1 regularization, and, while so, the index 1/2
somehow plays a representative role: whenever q ∈ [1/2, 1),
the smaller the q, the sparser the solutions yielded by Lq

regularizations, and, whenever q ∈ (0, 1/2], the performance
of Lq regularizations has no significant difference. From these
studies, thus, the special importance of L1/2 regularization

min
x∈RN

{
‖y − Ax‖2 + λ‖x‖1/2

1/2

}
(4)

is highlighted.
We continue such a study in this paper. Our aim

is to expose a brand new feature of L1/2 regularization: Its
solutions can be analytically expressed in a thresholding form,
distinguishing it from other Lq(q �= 2/3) regularizations,
which permits then a fast algorithm for solutions, matching
the iterative hard thresholding algorithm (the hard algorithm
in brief) [22]–[25] for L0 regularization and the iterative soft
thresholding algorithm (the so f t algorithm in brief) [26], [25],
[27] for L1 regularization.

There have been two approaches for the solution of L0 reg-
ularization. One is the well-known greedy strategies, and the
other is the iterative hard thresholding algorithm. The greedy
strategies, such as the matching pursuit type of algorithms
[28], OMP [29], ROMP [30], are very fast for non-high-
dimensional problems [31], [32]. The iterative hard threshold-
ing algorithm is the approach to approximately solve the L0
regularization problem (1), which is efficient and applicable
to high-dimensional problems.

The increasing popularity of L1 regularization comes
mainly from the fact that the problem can be solved very
fast. There exist many exclusive and efficient algorithms, for
instance, the piecewise linear method [33], LARs [34], the
interior-point methods [5], [12], and the gradient boosting
methods [35]. Another type algorithm called the iterative soft
thresholding algorithm was suggested. It is a simple iteration

procedure, with each iteration consisting of a Landweber
update [36] followed by a thresholding operation. The sol f
algorithm is convergent and of very low computational com-
plexity. Consequently, it is adequate and fast even for very
large-scale sparsity problems.

Inspecting the algorithms effective for L0 and L1 regulariza-
tions, we are particularly interested in finding of an iterative
thresholding algorithm for L1/2 regularization. This is pro-
moted not only by the fact that the iterative thresholding-type
algorithms are adequate and efficient for high-dimensional
problems (this is crucial for compressed sensing application),
but also by the advantage that it is relatively easy to specify
the regularization parameter in the implementation of the algo-
rithms. Apparently, as long as such a fast iterative thresholding
algorithm is well developed, the L1/2 regularization could be
applied as powerfully as, or even more powerfully than, L1
regularization, which then, hopefully, would be an essential
step toward the better solution of sparsity problems.

The main contribution of this paper is to make the above
expectation real. More precisely, by justifying the existence
of the resolvent of gradient of penalty ‖x‖1/2

1/2, and uncovering
a novel alterative feature of solutions of L1/2 regulariza-
tion, we derive a thresholding representation of solutions of
L1/2 regularization. With the representation, an iterative hal f
thresholding algorithm for fast solution of L1/2 regularization
is suggested, corresponding to the so f t for L1 regularization,
and the hard for L0 regularization. We prove the diagonal
nonlinearity and analytical expressiveness of the thresholding
operator by the Cartan formula. We derive an optimal reg-
ularization parameter setting rule based on the established
alterative feature theorem, and verify the convergence of
the hal f algorithm when applied to k-sparsity problems.
We provide also a series of experiments and applications to
assess performance of the hal f algorithm. The experiments
and applications consistently show that the proposed hal f
algorithm is fast, effective, and very efficient for solving L1/2
regularization. With the new algorithm, we finally conduct a
phase diagram study to further demonstrate the superiority of
L1/2 regularization over L1 regularization.

The reminder of this paper is organized as follows. In
Section II, we develop the thresholding representation theory
of L1/2 regularization by showing the existence of the resol-
vent of gradient of penalty and the alternative feature theorem.
In Section III, we derive the hal f thresholding algorithm
with the suggestion of an optimal regularization parameter
setting strategy. In Section IV, we show the convergence of
the hal f algorithm when applied to k-sparsity problems. In
Section V, we present the experiments with a series of sparse
signal recovery applications, to demonstrate the robustness and
effectiveness of the new algorithm. In Section VI, we conduct
a phase diagram study with the help of the hal f algorithm. We
conclude this paper in Section VII with some useful remarks.

II. THRESHOLDING REPRESENTATION THEORY

In this section, we establish a thresholding representation
theory of L1/2 regularization, which underlies the algorithm
to be proposed.
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A. Notion and Notation

For any q in [0, 1], we call an Lq regularization problem an
Lq problem, and any solution of Lq problem an Lq solution
(including local minimizers). A real function h is said to be
a thresholding function if there is a value t∗ > 0, called the
threshold value, and a real function fd , called the defining
function, such that

h(t) =
{

fd (t), |t| > t∗
0, otherwise.

(5)

Clearly a thresholding function h is characterized by its
threshold value t∗ and defining function fd . A mapping
H (x) = (h1(x), h2(x), . . . , hN (x))T is said to be diagonally
nonlinear if, for every i , hi (x) depends only on xi and
hi is nonlinear, so that it can be simply represented as
H (x) = (h1(x1), h2(x2), . . . , hN (xN ))T . A diagonal nonlinear
mapping H is said to be deduced from h if h1 = h2 = · · · =
hN = h. When mapping H is deduced from a thresholding
function h, we say that the mapping is a thresholding operator.

Definition 1: An Lq problem is said to permit a thresholding
representation if there is a thresholding function h such that
any of its Lq solutions, x, can be represented as

x = H (Bx) (6)

where H is a thresholding operator deduced from h and B is
an affine operator from R

N to R
N .

When an Lq problem permits a thresholding representation,
every Lq solution can be represented as a common fixed point
of operators H and B. Thus, whenever Lq problem permits a
thresholding representation, an iteration xn+1 = H (B(xn)) can
be naturally defined, which is called an iterative thresholding
algorithm for the Lq problem.

Let supp(x) be the support set of x, i.e., supp(x) = {i :
xi �= 0}. A vector x is said to be k-sparse whenever supp(x)
contains k elements. Without loss of generality, we assume
supp(x) = {1, 2, ..., k} whenever x is k-sparse. Let [B(x)]i

be the i th row of B(x). Then, by (5) and (6), we have

xi = fd ([B(x)]i), ∀i ∈ supp(x)∣∣[B(x)] j
∣∣ ≤ t∗, ∀ j /∈ supp(x).

(7)

Furthermore, if we denote z = (x1, x2, ..., xk)
ᵀ, and let F :

R
k → R

k be the diagonal nonlinear operator deduced from
fd , and Bk×k be the k × k principle submatrix of B , then
(7) becomes z = F(Bk×k(z)), where z is the vector whose
components are all nonzero.

This suggests that, in order to justify the existence of
thresholding representation of an Lq problem, we can try
and look for the thresholding function in the following ways:
The threshold value t∗ is determined based on some kind
of alternative features of components of Lq solution [such
as (7)], and the defining function fd is constructed through
finding a common fixed point representation, when restricted
to a specific region R

N
0 , where R

N
0 = {z = (z1, z2, ..., zN )ᵀ ∈

R
N : all zi �= 0}.
We will verify the existence of the thresholding represen-

tation of L1/2 problem below, according to the methodology
suggested above.

B. Resolvent Operator: Existence and Its Analytical
Expression

We first show the existence of the defining function and
formulate its analytic expression. We suppose that x ∈ R

N
0 is a

solution of L1/2 (4). Then, the first-order optimality condition
of x implies

0 = AT (Ax − y) + λ

2
∇
(
‖x‖1/2

1/2

)
(8)

where ∇(‖·‖1/2
1/2) is the gradient of penalty ‖x‖1/2

1/2. Multiplying
by any positive parameter μ both sides of (8) then gives x +
μAT (y−Ax) = x+(λμ/2)∇(‖x‖1/2

1/2). Whenever the resolvent

of ∇(‖ · ‖1/2
1/2) exists, i.e., the operator

Rλ,1/2(·) = (I + λ

2
∇(‖ · ‖1/2

1/2))
−1 (9)

is well defined for any positive real λ, this then implies

x =
(

I + λμ

2
∇(‖ · ‖1/2

1/2)

)−1

(x + μAT (y − Ax))

= Rλμ,1/2(x + μAT (y − Ax)).

Define Bμ(x) = x + μAT (y − Ax)). Then we have x =
Rλμ,1/2(Bμ(x)) which deduces to a common fixed-point rep-
resentation of L1/2 solution. We proceed to show that the
resolvent operators Rλμ,1/2 can yield the defining function.

For any fixed x = (x1, x2, . . . , xN ) ∈ R
N
0 , let

R
N
1/2(xi) = arg min

yi �=0
{(yi − xi)

2 + λ|yi |1/2},

R
N
1/2(x) =

N∏
i=1

R
N
1/2(xi ), and R

N
1/2 =

⋃

x∈RN

R
N
1/2(x).

We also let D
N
1/2 = {x ∈ R

N : |xi | > (3/4)λ(2/3)}. Then we
prove the following basic result on Rλ,1/2(·).

Theorem 1: As a mapping from D
N
1/2 to R

N
1/2, the resolvent

operator Rλ,1/2(·) is well defined. It is a diagonally nonlinear
analytically expressive operator, and can be specified by

Rλ,1/2(x) = (( fλ,1/2(x1), fλ,1/2(x2), . . . , fλ,1/2(xN ))
)T

(10)
where

fλ,1/2(xi) = 2

3
xi

(
1 + cos

(
2π

3
− 2

3
ϕλ(xi )

))
(11)

with

ϕλ(xi ) = arccos

(
λ

8

( |xi |
3

)− 3
2
)

. (12)

Proof: Observe that ‖y‖1/2
1/2 is continuously differentiable

at any y in R
N
0 and its gradient is given by

∇(‖y‖1/2
1/2) =

(
sign(y1)

2
√|y1| ,

sign(y2)

2
√|y2| , . . . ,

sign(yN )

2
√|yN |

)ᵀ
. (13)

To show the existence of resolvent Rλ,1/2, we need to verify
that, for any x ∈ D

N
1/2, the equation, x = y + (λ/2)∇(‖y‖1/2

1/2)

has a unique solution y∗ (= Rλ,1/2(x)) in R
N
1/2. From (13),
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this requires us to show the existence of real solutions of the
following algebraic equations:

yi − xi + λ
sign(yi )

4
√|yi | = 0, yi ∈ R

N
1/2(xi) (14)

for any fixed i . Note, from (14), that any solution y∗ must
be such that y∗xi > 0. We only need to consider the case
yi xi > 0 for any i .

Case 1: xi > (3/4)λ(2/3): In this case, we can denote√|yi | = η and have yi = η2. Equation (14) then can be
transformed into the following cubic algebraic equation:

η3 − xiη + λ

4
= 0. (15)

According to the Cartan’s root-finding formula expressed in
terms of hyperbolic functions (see [37]), the solutions of (15)
vary with the sign of xi and can be expressed as follows:
Denote r = √

(|xi |/3), p = −(xi/3) and q = (λ/8).
Since xi > (3/4)λ(2/3), with φ = arccos( q

r3 ), the three roots
of (15) are given by η1 = −2r cos(φ/3), η2 = 2r cos(π/3 +
φ/3), and η3 = 2r cos(π/3 − φ/3). Since

√|yi | = η > 0, it
can be tested that η2 and η3 in this case are solutions of (15).
However, we can further check that η3 > η2 and η3 is the
unique solution of (14) satisfying y ∈ R

N
1/2(x) ⊂ R

N
1/2. There-

fore, in this case, (14) has a unique solution y∗
i ∈ R

N
1/2, which

is given by y∗
i = (2/3)xi (1 + cos (2π/3 − 2ϕλ(xi)/3)) ,

where ϕλ(xi ) is defined as in (12).
Case 2. xi < −(3/4)λ(2/3): In this case, let

√|yi | =
η and we have yi = −η2 (η > 0). Equation (14)
is then transformed into the cubic equation η3 + xiη +
(λ/4) = 0. By a similar analysis as in Case 1, we can
justify that (14) has a unique solution y∗

i = −(η2)
2 =

−(2/3)|xi | (1 + cos (2π/3 − 2ϕλ(xi )/3)) ∈ R
N
1/2(xi ).

To summarize, we have shown that

y∗
i =

⎧
⎨
⎩

2
3 |xi |

(
1 + cos

(
2π
3 − 2ϕλ(xi )

3

))
, xi > 3

4λ
2
3

− 2
3 |xi |

(
1 + cos

(
2π
3 − 2ϕλ(xi )

3

))
, xi < − 3

4λ
2
3

(16)
is the unique solution of (14) that satisfies y∗ ∈ R

N
1/2. This

leads to (11) and (12) and shows that operator Rλ,1/2(·) is
well defined from D

N
1/2 to R

N
1/2, and Rλ,1/2(·) is a diagonally

nonlinear and analytically expressive operator. The proof of
Theorem 1 is completed.

Theorem 1 implies that fλ,1/2(xi ) defined as in (11) and
(12) can be taken as a defining function, and so the resolvent
operator Rλ,1/2(·) as a thresholding operator. In the next
subsection we will explain why the resolvent Rλ,1/2(·) is
defined from D

N
1/2 to R

N
1/2 and why the so-defined Rλ,1/2(·)

is enough.

C. An Alternative Feature Theorem

We specify the threshold value t∗ by proving the following
alternative theorem on the solutions of L1/2 regularization.

For any λ,μ ∈ (0,∞) and z ∈ R
N , let

Cλ(x) = ‖y − Ax‖2 + λ‖x‖1/2
1/2 (17)

Cμ(x, z) = μ[Cλ(x) − ‖Ax − Az‖2] + ‖x − z‖2. (18)

We first prove the following lemma.
Lemma 1: If xs = (xs

1, xs
2, . . . , xs

N )ᵀ is a local minimizer
of Cμ(x, z) for any fixed λ,μ, and z, then

xs
i = 0 ⇔ |[Bμ(z)]i | ≤ t∗1/2, i = 1, 2, . . . , N

where t∗1/2 is the unique positive solution of

t2 fλμ,1/2(t) − 9

16
(μλ)2 = 0. (19)

Proof: We justify the lemma particularly through showing

xs
i =

{
fλμ,1/2([Bμ(z)]i ), |[B(z)]i | > t∗1/2

0, otherwise.
(20)

For this purpose, we first notice that, by definition, Cμ(x, z)
can be reexpressed as

Cμ(x, z) = ‖x − [(I − μA� A)z + μA�y]‖2

+μλ‖x‖1/2
1/2 + μ‖y‖2 + ‖z‖2 − μ‖Az‖2

−‖(I − μA� A)z + μA�y‖2 (21)

which implies that minimizing Cμ(x, z) for any fixed λ,μ,
and z is equivalent to

min
x∈RN

{
N∑

i=1

(xi − [Bμ(z)]i )
2 + μλ‖x‖1/2

1/2

}
. (22)

So, xs = (xs
1, xs

2, . . . , xs
N )ᵀ is a local minimizer of Cμ(x, z)

if and only if, for any i , xs
i solves the problem

min
xi∈R

{x2
i − 2xi [Bμ(z)]i + μλ|xi |1/2} (23)

because the summation of (22) is separable.
Define g(xi , z) = x2

i − 2xi [Bμ(z)]i +μλ|xi |1/2. Let us first
consider the solution of (23) in the setting xi �= 0. In this case,
the solution then satisfies the following Euler equation:

xi − [Bμ(z)]i + μλ
sign(xi )

4
√|xi | = 0. (24)

Comparing (24) with (14), we immediately know from the
proof of Theorem 1 that the solution of (23) is unique and
given by xss

i = fλμ,1/2([Bμ(z)]i ), wherever |[Bμ(z)]i | >
3
4 (λμ)2/3. Consequently, the solution of (23) can be found
to be xs

i = fλμ,1/2([Bμ(z)]i ) when g(xss
i , z) < g(0, z), and

xs
i = 0 when g(xss

i , z) ≥ g(0, z). Note that g(xss
i , z) < g(0, z)

amounts to

|[B(z)]i | >
f 2
λμ,1/2([Bμ(z)]i) + μλ| fλμ,1/2([Bμ(z)]i )|1/2

2| fλμ,1/2([Bμ(z)]i)| .

(25)
To show (20), let us define

G(γ ) = |γ |− f 2
λμ,1/2(γ ) + μλ| fλμ,1/2(γ )|1/2

2| fλμ,1/2(γ )| , |γ | >
3

4
(λμ)

2
3 .

Since, from (24), fλμ,1/2(γ ) satisfies f 2
λμ,1/2(γ ) −

γ fλμ,1/2(γ ) + (λμ/4)| fλμ,1/2(γ )|1/2 = 0, and
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γ fλμ,1/2(γ ) > 0, G(γ ) can be further simplified to

G(γ ) = |γ | − γ fλμ,1/2(γ ) + 3
4μλ| fλμ,1/2(γ )|1/2

2| fλμ,1/2(γ )| (26)

= |γ | − |γ || fλμ,1/2(γ )| + 3
4μλ| fλμ,1/2(γ )|1/2

2| fλμ,1/2(γ )|
= |γ |

2
− 3λμ

8| fλμ,1/2(γ )|1/2 . (27)

We can justify that G(γ ) is strictly increasing for γ > 0
and strictly decreasing for γ < 0. In effect, for γ > 0, for
instance, G(γ ) = (γ /2)−(3λμ/8| fλμ,1/2(γ )|1/2) is increasing
because γ and fλμ,1/2(γ ) both are strictly increasing (see
Appendix A).

Without loss of generality, we further consider G(γ ) for
γ > 0 below. It is obvious that lim

γ→+∞ G(γ ) = +∞, and by

using fλμ,1/2(γ ) < γ , one has

lim
γ→ 3

4 (λμ)2/3

G(γ ) = 3

8
(λμ)2/3

− 3λμ

8 lim
γ→ 3

4 (λμ)2/3

| fλμ,1/2(γ )|1/2 < 0. (28)

By the strict increasing property of G(γ ), we thus know that
G(γ ) has a unique positive root t∗1/2, t∗1/2 > (3/4)(λμ)2/3, and
it is exactly the unique solution of (19). This implies

G(γ ) > 0(≤ 0) ⇔ γ > t∗1/2(≤ t∗1/2).

We thus conclude that xs
i = 0 if and only if

G([Bμ(z)]i ) ≤ 0, and, further, if and only if |[Bμ(z)]i)| ≤
t∗1/2. With reference to (25), this leads to (20) and the proof
of Lemma 1 is completed.

Lemma 2: t∗1/2 = (
3
√

54/4)(λμ)(2/3).
Proof: By definition, t∗1/2 uniquely solves (19), and

therefore, t∗2
1/2 fλμ,1/2(t∗1/2) = (9/16)λ2μ2. Form (11) and

(12), we can test that (t/2) ≤ fλμ,1/2 < t for any
t ≥ 0. Therefore, we have (t∗3

1/2/2) ≤ t∗2
1/2 fλμ,1/2(t∗1/2) =

(9/16)λ2μ2 < t∗3
1/2, which implies ( 3

√
36/4)(λμ)2/3 ≤ t∗1/2 <

(
3
√

72/4)(λμ)2/3. This shows that there is a positive con-
stant β ∈ [( 3

√
36/4), ( 3

√
72/4)) such that t∗1/2 = β(λμ)2/3.

The bound of β can be further tightened. For instance, by
G(t∗1/2) = 0 we can find

t∗1/2 = f 2
λμ,1/2(t

∗
1/2) + λμ| fλμ,1/2(t∗1/2)|1/2

2 fλμ,1/2(t∗1/2)
(29)

= | fλμ,1/2(t∗1/2)|
2

+ λμ

4| fλμ,1/2(t∗1/2)|1/2

+ λμ

4| fλμ,1/2(t∗1/2)|1/2

≥ 3 3

√ | fλμ,1/2(t∗1/2)|
2

( λμ

4| fλμ,1/2(t∗1/2)|1/2

)2

=
3
√

54

4
(λμ)

2
3 . (30)

In consequence, β ∈ [( 3
√

36/4), ( 3
√

72/4)) follows.

We now bring expression t∗1/2 = β(λμ)2/3 into (19),
resulting in the equation that parameter β should satisfy is

β3

[
1 + cos

(
2

3

(
π − arccos

(
3
√

3

8β3/2

)))]
= 27

32
. (31)

A direct check shows that β = (
3
√

54/4) is exactly the unique
solution of (31). This completes the proof of Lemma 2.

By applying Lemmas 1 and 2, we now prove the following
alternative theorem:

Theorem 2: If x∗ = (x∗
1 , x∗

2 , . . . , x∗
N )ᵀ is an L1/2 solution

of (4) and μ is any fixed positive real number that satisfies
0 < μ ≤ ‖A‖−2, then

either x∗
i �= 0 or |[Bμ(x∗)]i | ≤

3
√

54

4
(λμ)

2
3 . (32)

In particular, one can express

x∗
i =

{
fλμ,1/2([Bμ(x∗

i )]i ), |[Bμ(x∗
i )]i | >

3√54
4 (λμ)

2
3

0, otherwise.
(33)

Proof: It follows directly from Lemmas 1 and 2 if we
notice that x∗ = arg minx∈RN Cμ(x, x∗). This latter assertion
can be justified from the fact that the assumption μ ∈
(0, ‖A‖−2) implies

Cμ(x, x∗) = μ
{
‖y − Ax‖2 + λ‖x‖1/2

1/2

}
(34)

+
{
‖x − x∗‖2 − μ‖Ax − Ax∗‖2

}
(35)

≥ μ
{
‖y − Ax‖2 + λ‖x‖1/2

1/2

}
(36)

≥ Cμ(x∗, x∗) (37)

for any x ∈ R
N , which shows that x∗ is a local minimizer of

Cμ(x, x∗) as long as x∗ is an L1/2 solution of (22).
Theorem 2 shows that t∗1/2 = (

3
√

54/4)(λμ)2/3 is the
threshold value of the thresholding representation of L1/2
regularization. (It is not the value (3/4)(λμ)2/3, as predicted
in Theorem 1.) A lower-bound estimation on the nonzero
components of Lq solution is presented in [38].

D. Thresholding Representation

Combining Theorems 1 and 2, we immediately conclude
that the function

hλμ,1/2(x) =
{

fλμ,1/2(x), |x | >
3√54
4 (λμ)2/3

0, otherwise
(38)

define a thresholding function of the L1/2 problem, and in this
case, the thresholding representation of L1/2 regularization is
exactly given by

x = Hλμ,1/2(Bμ(x)) (39)

where Hλμ,1/2 is the operator deduced from hλμ,1/2(·).
We call, henceforth, function (38) the hal f thresholding

function, and operator Hλμ,1/2 the hal f thresholding operator.
It is interesting to compare the hal f thresholding function

with the hard thresholding function in L0 regularization, and
the sof t thresholding function in L1 regularization. These
latter two functions are defined respectively by ([23]) as

hλ,0(x) =
{

x, |x | > λ1/2

0, otherwise
(40)
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and by ( [39])

hλ,1(x) =
{

x − sgn(x)λ/2, |x | > λ/2
0, otherwise.

(41)

Remark 1: A natural question raised from the research here
is: Is there another index q in (0,1), except 1/2, that permits
an (39)-like thresholding representation for Lq regularization?
If so, similar to (14), this amounts to asking that the algebraic
equation

yi − xi +
(

qλ

2

)
sign(yi )

|yi |1−q
= 0, yi �= 0

has algebraic roots, or equivalently, so are the equation

|yi |2−q − sign(yi )xi |yi |1−q +
(

qλ

2

)
= 0, yi �= 0. (42)

Let us express q = n/m, with n, m being two integers such
that n < m, and let t = |yi |1/m. Then, (42) can be rewritten
as

t2m−n − sign(yi )xi t
m−n + qλ

2
= 0.

By the classical Abel theorem, we then can test that this
equation has algebraic root(s) only when q = 1, 2/3, 1/2.
Thus, among Lq regularizations with q ∈ (0, 1), only L1/2 and
L2/3 regularizations permit an analytically expressive (39)-
like thresholding representation. In view of the fact that L2/3
regularization performs generally not as well as L1/2 regular-
ization [20], the special inportance of L1/2 regularization can
be concluded.

Remark 2: The analytic solvability of q = 1/2 and 2/3
for the Lq regularizations with A = I has been already
observed by Krishnan and Fergus [16] in the context of image
deconvolution. Without giving an explicitly expressive ana-
lytic representation of the solution, however, they applied the
solvability via formulating the closed-form solutions based on
finding the roots of the resultant cubic or quadratic equations.
In comparison, the contributions of this paper are the findings
of the explicitly expressive analytic representation of the L1/2
solutions (Theorem 1) and the alternative feature theorem
(Theorem 2). These new findings make it possible not only to
develop a precise thresholding representation theory of L1/2
regularization that extends the classical Moreau’s proximal
forward-backward splitting theory for convex optimization
[40], [41] but also to establish a rigorous theoretical analysis
of L1/2 regularization. The convergence analysis conducted in
Section IV, for instance, shows such a benefit.

III. HALF THRESHOLDING ALGORITHM

In this section, we present an iterative hal f thresholding
algorithm for performing L1/2 regularization, with some useful
parameter setting strategies.

A. Optimal Regularization Parameter

We begin with formulating an optimality condition on the
regularization parameters λ, which then serves as the basis of
the parameter setting strategies used in the algorithm to be
proposed.

It is known that the quantity of the solutions of a reg-
ularization problem depends seriously on the setting of the
regularization parameter λ. The selection of proper regular-
ization parameters is, however, a very hard problem. There is
no optimal rule in general, even when there exist various useful
heuristics (see AIC [42], BIC [43]). In most and general cases,
an “trial and error” method, say, the cross-validation method,
is still an accepted, or even unique, choice. Nevertheless,
when some prior information (e.g., sparsity) is known for a
problem, it is realistic to set the regularization parameter more
reasonably and intelligently.

To make this clear, let us suppose that we are considering a
problem formulated as a regularization form (4), the solutions
of which are of k-sparsity. Thus, we are required to solve
the L1/2 regularization problem restricted to the subregion

k = {x = (x1, x2, . . . , xN ) : supp(x) = k} of R

N . For
any μ, denote Bμ(x) = x + μAT (b − Ax). Assume x∗ is an
L1/2 solution of the problem, and, without loss of generality,
assume [Bμ(x∗)]1 ≥ [Bμ(x∗)]2 ≥ .... ≥ [Bμ(x∗)]N . Then, by
Theorems 1 and 2 [particularly, (38) and (39)], the following
inequalities hold:

∣∣[Bμ(x∗)]i
∣∣ >

3
√

54

4
(λ∗μ)

2
3 ⇔ i ∈ {1, 2, . . . , k}

∣∣[Bμ(x∗)] j
∣∣ ≤

3
√

54

4
(λ∗μ)

2
3 ⇔ j ∈ {k + 1, . . . , N}

which implies√
96

9μ

{∣∣[Bμ(x∗)]k+1
∣∣} 3

2 ≤ λ∗ <

√
96

9μ

{∣∣[Bμ(x∗)]k
∣∣} 3

2

namely

λ∗ ∈
[√

96

9μ

{∣∣[Bμ(x∗)]k+1
∣∣}3/2

,

√
96

9μ

{∣∣[Bμ(x∗)]k
∣∣} 3

2

)
.

(43)
The above estimation (43) provides an exact location of

where an optimal regularization parameter should be. Remem-
ber that

∣∣[Bμ(x∗)]k
∣∣ is the kth largest component of [Bμ(x∗)]

in magnitude. We can then take

λ∗ =
√

96

9μ

[
(1 − α)

∣∣[Bμ(x∗)]k+1
∣∣3/2 + α

∣∣[Bμ(x∗)]k
∣∣ 3

2

]

(44)
with any α ∈ [0, 1). Taking α = 0, this leads to a most reliable
choice of λ∗ specified by

λ∗ =
√

96

9μ

∣∣[Bμ(x∗)]k+1
∣∣ 3

2 . (45)

(Note that the larger the λ∗, the larger the threshold value
t∗, and the sparser the solution resulting by the thresholding
algorithm.) Note that (45) is valid for any fixed μ. We will
use this expression with a fixed μ0 > 0 below.

Instead of real solution, we may use any known approxi-
mations xn of x∗ in (44) and (45), say, we can take

λ∗
n =

√
96

9μ0

∣∣[Bμ0(xn)]k+1
∣∣ 3

2 (46)

in applications. When so doing, an iteration algorithm will be
adaptive and free from the choice of regularization parameter.
This parameter-setting strategy will be adopted latter.
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B. Half Thresholding Algorithm

With the thresholding representation (38) and (39), a thresh-
olding algorithm for L1/2 regularization can be naturally
defined as

xn+1 = Hλnμn, 1
2

(
xn + μn AT (y − Axn)

)
(47)

where Hλμ,1/2 is the hal f thresholding operator. We call this
method the iterative hal f thresholding algorithm, or briefly,
the hal f algorithm. The hal f algorithm can be seen as an
extended proximal forward-backward splitting method ( [40]).

Incorporated with different parameter-setting strategies, (47)
defines different implementation schemes of the hal f algo-
rithm. For example, we can have the following.

1) Scheme 1: μn = μ0; λn is chosen by cross-validation.

2) Scheme 2:

μn ∈ (0, μ0]; λn =
√

96

9
‖A‖2

∣∣[Bμ0(xn)]k+1
∣∣ 3

2 .

3) Scheme 3:

μn = μ0; λn = min

{
λn−1,

√
96

9
‖A‖2

∣∣[Bμn (xn)]k+1
∣∣ 3

2

}
.

Here

μ0 = (1 − ε)

‖A‖2 with any small ε ∈ (0, 1). (48)

Scheme 1, when ignoring ε, actually is the hal f algorithm
corresponding to taking μn = 1 and normalizing matrix A,
and Scheme 2 corresponds to taking μn = 1, normalizing A
and λn being selected according to (46). Scheme 3 is a variant
of Scheme 2 in the sense that the parameter λn is set to keep
monotonically decreasing, in addition to the same setting as
Scheme 2. We will test those half algorithms in the experiments
given in Section V.

As a general suggestion, we recommend that Scheme 1 be
applied when a generic problem is considered, and Scheme 2
and Scheme 3 applied when a k-sparsity problem is tackled.
Here, by a k-sparsity problem we mean the problem can be
cast as

min{‖Ax − b‖2} subject to ‖x‖0 ≤ k. (49)

In applications, the parameter k can be set as an upper-bound
estimation of the sparsity of the problem under consideration.
We will show in Section V-B, that the half algorithm has
certain robustness with the overestimation of the sparsity.

IV. CONVERGENCE ANALYSIS

In this section we justify the convergence of the hal f
algorithm when Scheme 1 is adopted.

Theorem 3: Let {xn} be the sequence generated by the hal f
algorithm with Scheme 1. Then:

1) {xn} is a minimization sequence, and Cλ(xn) converges
to Cλ(x∗), where x∗ is a limit point of minimization
sequence {xn};

2) {xn} is asymptotically regular, i.e., lim
n→∞ ‖xn+1 − xn‖ =

0;

3) {xn} converges to a stationary point of (39), whenever
μ is sufficiently small.

Proof: 1) As shown in (17) and (18), for any μ, λ, we
define the function Cλ(x) and Cμ,λ(x, z). Then from the proof
of Lemma 1, we easily see that

Cμ,λ(Hλμ,1/2(Bμ(z)), z) = min
x

Cλ,μ(x, z) (50)

and therefore, Cμ,λ(xn+1, xn) = minx Cλ,μ(x, xn). Since μ <
‖A‖−2, this implies

Cλ(xn+1) = 1

μ
[Cμ,λ(xn+1, xn) − ‖xn+1 − xn‖2]

+‖Axn+1 − Axn‖2

≤ 1

μ
[Cμ,λ(xn, xn) − ‖xn+1 − xn‖2]

+ ‖Axn+1 − Axn‖2

= Cλ(xn)

−μ−1[‖xn+1 − xn‖2 − μ‖Axn+1 − Axn‖2]
< Cλ(xn).

That is, xn is a minimization sequence of function Cλ(x), and
Cλ(xn) is monotonically decreasing to a fixed value C∗. Since
xn ∈ L0 = {x : Cλ(x) ≤ Cλ(x0)}, which is bounded, {xn}
is bounded and, therefore, there is a limit point, say x∗. By
continuity of Cλ(x) and monotonicity of Cλ(xn), C∗ = Cλ(x∗)
follows. This verifies (i) of Theorem 3.

2) Let ε = 1 − μ‖A‖2. Then we have ε ∈ (0, 1)

μ‖Axn+1 − Axn‖2 ≤ (1 − ε)‖xn+1 − xn‖2. (51)

From (50), we have also that

Cλ(xn) − Cλ(xn+1) = μ−1Cμ,λ(xn, xn) − Cλ(xn+1)

≥ μ−1Cμ,λ(xn+1, xn) − Cλ(xn+1)

= μ−1‖xn+1 − xn‖2 − ‖Axn+1 − Axn‖2.

This then implies

N∑
n=1

‖xn+1 − xn‖2 ≤ 1

ε

N∑
n=1

{‖xn+1 − xn‖2}

−1

ε

N∑
n=1

{μ‖Axn+1 − Axn‖2}

≤ μ

ε

N∑
n=1

{Cλ(xn) − Cλ(xn+1)}

≤ μ

ε
(Cλ(x1) − Cλ(xN+1))

≤ μ

ε
fλ(x1).

Thus, the series
∑∞

n=1 ‖xn+1 − xn‖2 is convergent, and so,
‖xn+1 − xn‖ → 0 as n → ∞. This verifies 2) of Theorem 3.

3) By 1) and 2), the sequence {xn} is asymptotically regular
and, for its any limit point x∗, there holds lim

n→∞Cλ(xn) =
Cλ(x∗). We further show that x∗ must be a stationary state of
(39), and xn itself is convergent.

We justify this through the following three steps.
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Step 1: We prove that any limit point of {xn} is a stationary
state of (39). Assume, say, x∗ is a limit point of {xn}. Then
there is a subsequence xni , such that xni → x∗(i → ∞). By
definition (47), it then implies

xni +1 = Hλμ,1/2(Bμ(xni )) → Hλμ,1/2(Bμ(x∗))(i → ∞).

Note that Hλμ,1/2 is discontinuous, but the convergence of
xni → x∗ implies the existence of the subsequence of
|[Bμ(xni )]p| for each p, say, |[Bμ(xni )]p| itself, satisfies either
|[Bμ(xni )]p| > (

3
√

54/4)(λμ)2/3 and lim
i→∞|[Bμ(xni )]p| >

(
3
√

54/4)(λμ)2/3, or |[Bμ(xni )]p|≤(
3
√

54/4)(λμ)2/3, based on
which we can show the validity of the above limit (for
details, refer to Appendix B). However, by Theorem 3 2),
we have lim

i→∞xni+1 = lim
i→∞xni = x∗. It then follows that

x∗ = Hλμ,1/2(Bμ(x∗)). That is, x∗ is a stationary state of
(39), as claimed.

Step 2: We show that the stationary states of (39) are finite.
Actually, let ϒ be the stationary state set of (39), and let
ϒk = {x∗ ∈ ϒ : |supp(x∗)| = k}. Then it is obvious that
ϒ = ∪N

k=1ϒk . We only need to show that ϒk contains a
finite number of elements. Let x∗ = (x∗

1 , x∗
2 , · · · , x∗

N ) ∈ ϒk .
Then, for any i ∈ supp(x∗), x∗

i = hλμ,1/2([Bμ(x∗)]i ) and
[Bμ(x∗)]i > (

3
√

54/4)(λμ)2/3. By Theorem 1, such x∗
i is

unique. So ϒk at most contains the vectors whose components
consist of k definite values and N − k zeros. All those vectors
are finite. This shows the finiteness of ϒ .

Step 3: We justify the convergence of {xn}. This follows
directly from the facts that {xn} has limit point(s), every
limit point is in ϒ which is a finite discrete set, and {xn}
is asymptotically regular.

With this, the proof of Theorem 3 is completed. Theorem
3 implies immediately that the hal f algorithm with Scheme 1
is sure to converge if μ is sufficiently small. It has not,
however, concluded the convergence of the hal f algorithm
with Scheme 2 and Scheme 3. This latter cases need more
technical skills. A more detailed convergence analysis of the
algorithm will be presented in [44].

V. SIMULATIONS AND APPLICATIONS

In this section, we provide a series of simulations and
applications to demonstrate the high performance of the hal f
thresholding algorithm.

The simulations and applications are conducted by applying
the algorithm to a typical compressed sensing problem, i.e.,
signal recovery. The purpose of the simulations is to assess the
effectiveness, robustness, and convergence of the algorithm.
The effectiveness is measured by how few measurements
(samples) are required to exactly recover a signal. The fewer
the measurements used by an algorithm, the better it is.
To compare performance, some other competitive algorithms
such as L1-Magic, so f t , hard , and reweighed L1-methods
have been also applied, together with the hal f algorithm.

The stimulations and applications were all conducted on a
personal computer (2.67 GHz, 4 Gb RAM) with MATLAB
7.9 programming platform (R2009b). The error precision was
set to 10−8.

A. Signal Recovery

The sparse signal recovery problem has been studied exten-
sively in the past few years (see [45], [6], [7]). According to
Donoho [6], the problem can be cast as an L0-problem

min ‖x‖0 subject to y = Ax + ε (52)

and solved by L1 regularization. We propose to solve the
problem via L1/2 regularization. Here, A ∈ R

M×N is a
sensing (sampling in this case) matrix, y is an observation,
ε is observation noise, and x is the signal we would like to
recover.

We present two experiments to compare the performance of
L0, L1 and L1/2 regularizations when they are applied to the
problem. In the experiments, the hard algorithm ([22], [23]),
the sof t algorithm ([26], [39]), the hal f algorithm, together
with the representative L1-algorithm, L1-Magic ( [45]), and
the newly suggested L1/2-algorithm, reweighed L1-algorithm
(RL1 in brief, [7]), were simulated. The sensing matrix A was
taken as the Gaussian random matrix, as suggested in [6]. We
have used Scheme 2 and Scheme 3 (the simulation results are
almost the same) of the hal f algorithm in the simulations. In
each case, the mean square error (MSE) between the recovered
signal and the original signal was computed, and the CPU time
[times (s)] for running the algorithm was recorded.

1) Signal Without Noise: We considered a real-valued
N-length (N = 512) signal x without noise, shown as in Fig.1,
where x is k-sparse with k = 130. The simulations then aim
to recover x ∈ R

512 through M measurements determined by
sampling A, where M is much less than 512. The sampling
was taken in the Gaussian random way in [0, 512]. The five
regularization algorithms were applied with a variable number
(M) of measurements. Some of the simulation results are listed
in Table I.

From Table I, we can see that all the five algorithms can
accurately recover the signal when M = 330, and, in this
case, the hal f algorithm attains the highest accuracy among
the algorithms (This was also observed for M > 330). When
M = 250, however, the first three algorithms, i.e., L1-Magic,
so f t , and hard , all failed, but the L1/2-algorithms, i.e., hal f
and RL1, still succeed in recovering the signal, and the hal f
algorithm still has the highest accuracy and keeps the lowest
computation time. Furthermore, when the measurements are
reduced to 240, it is seen that there is no other algorithm
except hal f that can accurately recover the signal. We found
that M = 240 is a phase transition point in the sense that the
L1/2-algorithm, hal f, cannot recover the signal any more if the
measurements are less than 240, as indicated for M = 239 in
Table I. In this critical case (M = 239), it is seen that the hal f
algorithm still succeeds in recovery with the highest precision
and lowest cost.

This experiment shows that the hal f algorithm outperforms
all the other four algorithms.

2) Signal With Noise: The signal in Fig.1 is considered
again, but with noise, say, with the white noise ε ∈ N(0, σ 2)
(σ = 0.1). Such noisy signal is designed to simulate a
real measurement or observation in which noise is inevitably
involved. Our simulations aim to assess the capability of all
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TABLE I

RECOVERY RESULTS OF A SIGNAL WITH DIFFERENT NUMBER OF SAMPLES

M Method(s) MSE CPU
time (s)

M Method(s) MSE CPU time (s)

L1-Magic 5.02E-05 1.91 L1-Magic 6.74 11.01
soft 2.63E-05 1.11 soft 7.33 0.16

330 hard 4.20E-07 0.07 250 hard 10.04 0.17
RL1 9.67E-06 34.07 RL1 1.27E-05 56.56
half 4.27E-08 0.18 half 1.198E-07 0.47

L1-Magic 4.36 1.05 L1-Magic 1.35 1.41
soft 4.83 0.51 soft 5.96 0.35

240 hard 12.07 0.18 239 hard 11.9 0.24
RL1 3.71 1.13 RL1 9.87 2.85
half 1.98E-07 0.67 half 9.77 0.82

TABLE II

RECOVERY RESULTS OF A NOISY SIGNAL WITH DIFFERENT NUMBER OF SAMPLES

M Method(s) MSE Ratio CPU time (s) M Method(s) MSE Ratio CPU time (s)

L1-Magic 3.71 1.46 2.14 L1-Magic 6.34 1.86 1.75

RL1 3.58 1.41 47.07 RL1 6.10 1.79 60.83

330 soft 3.42 1.34 0.16 274 soft 6.43 1.89 0.28

hard 2.96 1.16 0.13 hard 8.52 2.50 0.22

half 2.58 1.02 0.85 half 3.21 0.94 0.83

Oracle 2.54 Oracle 3.41

L1-Magic 5.30 1.77 1.86 L1-Magic 6.77 1.46 1.49

RL1 4.04 1.35 54.23 RL1 6.53 1.41 54.03

300 soft 5.21 1.75 0.20 239 soft 7.07 1.53 0.30

hard 4.21 1.41 0.21 hard 13.89 3.01 0.19

half 3.49 1.17 0.83 half 5.73 1.24 0.94

Oracle 2.98 Oracle 4.61

L1-Magic 6.10 1.75 1.91 L1-Magic 11.07 2.47 1.34

RL1 5.05 1.45 61.98 RL1 11.11 2.48 49.70

275 soft 6.27 1.80 0.30 238 soft 11.06 2.47 0.24

hard 10.46 3.00 0.20 hard 16.70 3.72 0.19

half 3.22 0.92 0.83 half 13.22 2.95 0.98

Oracle 3.49 Oracle 4.49
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Fig. 1. Sparse signal with length N = 512 and sparsity k = 130.

the regularization algorithms in recovering the signal from a
noisy circumstance and with fewer samplings. The robustness
of the algorithms is thus observed in the simulations.

In order to understand the effect of noise, we have used the
oracle MSE to examine the recovery capability of the algo-
rithms in the simulations. For each algorithm, we calculated

the ratio of the MSE generated from the algorithm and the
oracle, listed as “Ratio” in Table II. Thus, the more close the
ratio is to 1, the better the algorithm, and, correspondingly,
the stronger the robustness of the algorithm.

The simulation results with algorithms L1-Magic, RL1,
so f t, hard, and hal f are shown in Table II, as the number
of measurements (M) varies from 330 to 238. We found
that M = 274 is a phase transition point above which the
performance of L1/2 regularization changes dramatically.

From Table II, we can see that the ratio of hal f algorithm
is always very close to 1 from M = 330 to 239, and, in every
case before all the algorithms failed (namely, M = 238), it is
the closest to the oracle among the five algorithms. Moreover,
if we regard an algorithm to have failed in the exact recovery
when its ratio is larger than 1.5, then it is seen from Table II
that two L1-algorithms, i.e., L1-Magic and so f t, fail when
M ≤ 300, while the L1/2 algorithm RL1 fails until M = 274,
and so f t fails until M = 239 ( this is even later than the failure
number of the hard algorithm). Observing the MSE values in
Table II, we can also find that, for all cases, hal f always
yields the most accurate recovery results. This shows that
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Fig. 2. Robustness of the half algorithm to sparsity overestimation when
applied to the signal recovery problem.

L1/2-regularization, the hal f algorithm in particular, provides
the best signal recovery at the same noise level before the
phase transition value is reached. It is again the hal f algorithm
that requires the least number of samplings among the five
algorithms. From this experiment, the robustness of the hal f
algorithm is established.

B. Robustness on Sparsity Overestimation

In previous subsections, we have implemented the half
thresholding algorithm when the sparsity of a problem is
known. In real applications, the sparsity, however, is hardly
known, and, instead, we may only have a rough estimation of
the value. How about the performance of the hal f algorithm
when the exact sparsity value is replaced by its rough estima-
tion? We provide simulations in this subsection to show that
the hal f algorithm actually shows robustness with respect to
the sparsity estimation.

Let us again consider the signal recovery application made
in Section V-A. Instead of using the exact sparsity value
k = 130, we resimulated the hal f algorithm with variable
estimations on sparsity k, from an underestimated value (70)
to an overestimated value (240).

Fig. 2 shows the simulation results for different mea-
surements, in which the abscissa is the sparsity estimation
value and the ordinate is recovery precision (MSE) the hal f
algorithm has reached. From Fig. 2, we can see that the
underestimation of sparsity generally leads to an unsatisfactory
performance (the closer to the true sparsity, the better the per-
formance); nevertheless, a wide range of overestimations yield
the same perfect recovery as the true sparsity value is used.
This stability of the algorithm varies with the number M of
the measurements. That is, the more number of measurements
one uses, the wider the stable range (e.g., Fig. 2), and the
stable range shrinks to zero when the measurements get too
few (say, M = 240, as indicated in Fig. 2); the algorithm can
still recover the signal when the exact sparsity value k = 130
is used.

These experiments reveal that the hal f thresholding algo-
rithm has certain robustness with the overestimation of sparsity

value. The robustness degree, however, is proportional to
the number of measurements used. Thus, a more precise
estimation of the sparsity value can generally lead to fewer
measurements required for exact recovery, and conversely, a
rougher estimation of the sparsity must be compensated with
more measurements.

Remark 3: In the past studies, the Lq(0 < q < 1)
regularization problems have been solved either by approx-
imation techniques (e.g., [15]) or by reweighting skills (e.g.,
[46], [44]). The former approximates the nonconvex Lq

quasi-norm terms by appropriate convex functions and yields
approximate solutions of the problems, while the latter finds
the solution through successively transforming the problem
into a reweighted convex regularization (L1 or L2) prob-
lem. Different from those approaches, Krishnan and Fergus
[16], Chartrand [17], [18] developed a closed-form-solution-
based approach. Their approach is non-convexification and
thresholding based, but the thresholding operator needs to
be computed at each iteration step by implementing a root-
finding procedure. Different from those approaches, the half
algorithm proposed in this paper is also a thresholding-
representation-based nonconvexification method, which is as
explicitly expressive a thresholding operator and can be
computed faster. This feature makes the hal f algorithm
applicable more conveniently and efficiently very often. For
example, FOCUSS proposed by Gorodnitsky and Rao [46]
is a latest efficient algorithm for sparse signal reconstruction,
which is a reweighted L2 regularization method. Because, for
each L2 regularization subproblem, it has the same closed-
form analytic solution as the estimator of ridge regression,
FOCUSS handles sparse signal reconstruction fast. We com-
pared FOCUSS with the hal f algorithm when both the
algorithms were applied to the signal recovery problems in 1)
of this section. The comparison shows that, when signal length
is not large (say, less than 1000), both the algorithms perform
with nearly the same speed, but when the signal length is large
(say, large than 1000), FOCUSS performs much slower than
the hal f algorithm. The reason for this is that FOCUSS needs
calculation of the Moore–Penrose inverse at each iteration step
while the hal f algorithm only needs to calculate the half
operator [the expressions (10)–(12)]. This is the reason for the
high efficiency of the hal f algorithm for L1/2 regularization.

VI. PHASE DIAGRAM RESEARCH

In this section we conduct a phase transition study of
the hal f thresholding algorithm. The purpose is to further
demonstrate the stronger sparsity-promoting capability of L1/2
regularization over L1 regularization.

Phase diagram, as a succinct tool in studying the equiv-
alence of L0 and L1 regularization, was first introduced
by Donoho [10], [11]. Using high-dimensional geometry, he
provided a necessary and sufficient condition for any M × N
matrix A in (2) such that every k−sparse solutions of L1
problem (2) are k-sparse solutions of L0 problem (1). (Such a
solution is called a point of L1/L0 equivalence in [10], [11].)
This makes the performance of L1 regularization exhibit a
two-phase (success/failure) structure in a diagram by a phase
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Fig. 3. Phase diagram of signal recovery using different algorithms.
Horizontal axis: undersampling fraction δ = (M/N). Vertical axis: sparsity
fraction ρ = (s/M).

transition curve. Above the phase transition curve, the L1-
solution is not found to be an L0-solution; below, the curve the
L1-solution is an L0-solution. Using phase diagrams, Donoho
and Stodden [47] conducted a series of simulation studies
to assess how features of a problem (number of nonzeros in
x /number of rows in A) and indeterminacy (number of rows
in A/number of columns in A) determine the performance
of an L1-algorithm, or, equivalently, how the capability of
an L1-algorithm varies with the features of a problem. For
this reason, the phase diagram provides a useful methodology
(but in dependable way) to compare the abilities of various
L1 algorithms. We extend such a methodology to L1/2/L0
equivalence study, and utilize the phase diagram to compare
different regularization approaches.

In this paper, we have taken the 512-length signal recovery
problem considered in Section V as a prototype (thus N =
512) with which the variable features of the problem could
be constructed. More specifically, for each fixed M (abscissa
δ = M/N is fixed), we vary the sparsity level k from 1 to M
(ordinate ρ = k/M varies from 1/M to 1) by considering 100
equidistributed values ki = i M/100 in the interval [0, 1], and
then increase M from 0 to N (so δ from 0 to 1) in a way such
that 100 discrete values M j = j N/100 are considered. This
constitutes a testing situation with 10000 models. For each
model, a fixed k-sparse solution is computed by the various
algorithms to be tested.

We have applied the hal f thresholding algorithm with
Scheme 2 to this paper. For comparison, we have also applied
hard, L1-Magic, so f t , and RL1 at the same time. The
recovery was accepted as a “success” whenever the normalized
root-mean-square error (nRMSE), ‖x̂ − x‖/‖x‖, was smaller
than 10−5; otherwise, it was regarded as a “failure,” where
x is the true signal and x̂ is the signal recovered from the
fewer measurements by an algorithm. Also, we embody a pixel
(corresponding to a specific model feature) blue whenever the
point is the case of “success,” otherwise, red when “failure.”
In this way, a phase diagram (color image) of an algorithm
was drawn.

Fig. 3 shows the phase diagrams of the involved five regular-
ization algorithms. In Fig. 3, the commonly appearing yellow
curves are the phase transition curves of L1 regularization,

which consists of the theoretical thresholds at which L1/L0
equivalence breaks down.

From Fig. 3, we can see that the phase transition phe-
nomenon does appear for all the algorithms. As can be seen,
the theoretical L1 phase transition curve has been recovered
again with the L1 algorithm L1-Magic. The phase diagram of
so f t almost coincides with the theoretical one, demonstrating
the power of the iterative thresholding-type algorithms. It is
very pleasing to observe that the phase diagrams of hal f
and RL1 in Fig. 3 show that the phase transition curves are
all above the L1 curve. As predicted, it shows the stronger
sparsity-promoting property of L1/2 regularization over L1
regularization.

VII. CONCLUSION

We have conducted a continuation study of a specific
regularization framework, i.e., L1/2 regularization, for better
solution of sparsity problems. The main contribution is the
establishment of a precise thresholding representation theory,
and based on the theory a fast and effective iterative thresh-
olding algorithm for the implementation of L1/2 regularization
has been developed. The convergence analysis the proposed
algorithm was also conducted.

It has been shown in the previous studies [16], [19], [20],
[7], [17], [18] that L1/2 regularization provides a potentially
powerful new approach for sparsity problems, which is capable
of yielding sparser solutions than L1 regularization, and it can
be taken as a representative of Lq . The L1/2 regularization,
however, leads to a nonconvex, nonsmooth, and non-Lipschitz
optimization problem which is difficult solve fast and effi-
ciently. Accordingly, finding a fast algorithm to solve L1/2
regularization is imperative and of fundamental importance.

In this paper, by developing a thresholding representation
theory of L1/2 regularization, we have demonstrated a new
advantage of L1/2 regularization over other Lq (q �= 2/3)
regularization: its solution can be analytically expressed in a
thresholding fixed-point form. Based on the developed theory,
an iterative hal f thresholding algorithm was proposed for fast
solution of L1/2 regularization. The thresholding representa-
tion was constructed through a novel finding of alternative
feature of solutions of L1/2 regularization, and by the resolvent
gradient of penalty ‖x‖1/2

1/2 . We have verified the existence of
the resolvent, and shown that the resolvent is a diagonally
nonlinear analytically expressive operator deduced from a
defining function. With the help of the alternative feature
theorem, we have resolved the problem as to where the optimal
regularization parameter should be when a k-sparsity problem
is tackled. This defines a very powerful strategy of parameter
setting. Incorporated with such strategy, the iterative hal f
thresholding algorithm is adaptive and free from choice of
parameters. We have verified the convergence of the proposed
algorithm, and applied the algorithm, together with other
competitive regularization algorithms, to a series of problems
in signal processing. The applications consistently show the
following.

1) The algorithm is fast, effective, and very efficient for
k-sparsity problems.
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2) It is simple, is very convenient in use, and can be applied
to large scale problems.

3) It is robust to observation noise and overestimation of
sparsity value.

4) L1/2 regularization shows a significantly stronger
sparsity-promoting property than L1 regularization in
the sense that it allows getting more sparse solutions
of a problem and recovering a sparse signal from fewer
samplings, as compared with L1 regularization.

Consequently, we conclude that the iterative hal f thresh-
olding algorithm provides a fast and effective solver for L1/2
regularization, particularly for large-scale problems, and also,
that the hal f algorithm outperforms L1 regularization in
solution of sparsity problems. This is justified further by a
phase diagram study.

It is worth remarking finally that the threshoding representa-
tion theory developed for L1/2 regularization in this paper has
provided a successful extension of the well-known Moreau’s
proximal forward-backward splitting theory for convex opti-
mization ([40], [41]). The success of such an extension sheds
light on the possibility to generalize more well-developed
convex optimization theory to nonconvex cases.

We note that a related thresholding theory for the nonconvex
Lq regularization problems has been presented in [16], [17],
and [18].

APPENDIX A
STRICT INCREASING PROPERTY OF

HALF THRESHOLDING FUNCTION fλ,1/2

In this appendix, the strict increasing property of the half
threshoding function fλ,1/2(x) is verified. In particular, we
prove that fλ,1/2(x) is strictly increasing for any |x | >

(
3
√

54/4)λ2/3. Since fλ,1/2(x) is an odd function, we only
justify this for x > (

3
√

54/4)λ2/3.
By definition, for any x > (

3
√

54/4)λ2/3, fλ,1/2(x) is
defined by

fλ,1/2(x) = 2

3
x

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

where

ϕλ(x) = arccos

(
λ

8

( x

3

)−3
2
)

∈ [0, π].

Note that 0 ≤ (λ/8)(x/3)−3/2 ≤ (
√

2/2), and we
have (π/4) ≤ ϕλ(x) ≤ (π/2), and therefore, 0 ≤
(π/3) ≤ (2π/3) − (2/3)ϕλ(x) ≤ (π/2), which implies
0 ≤ cos(2π/3) − (2/3)ϕλ(x)) ≤ (1/2) and (

√
3/2) ≤

sin(2π/3) − (2/3)ϕλ(x)) ≤ 1. Also, since

sin ϕλ(x) =
√

1 − cos2 ϕλ(x)

=
√

1 − 27λ2

64x3 = x−2/3

√
x3 − 27λ2

64

and sin ϕλ(x).ϕλ(x) = (9
√

3/16)λx−5/2, we deduce

ϕ́(x) =
9
√

3
16 λx−5/2

sin ϕλ(x)
=

9
√

3
16 λ

x
√

x3 − 27
64λ2

. (53)

By using (53), we thus calculate

f λ́,1/2(x) = 2

3

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

+2

3
x

[
− sin

(
2

3
π − 2

3
ϕλ(x)

)][
−2

3
ϕ́λ(x)

]

= 2

3

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

+4

9
x sin

(
2

3
π − 2

3
ϕλ(x)

)
ϕ́λ(x)

= 2

3

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

+
√

3
4 λ sin

( 2
3π − 2

3ϕλ(x)
)

√
x3 − 27

64λ2

≥ 2

3

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

≥ 2

3

and

f λ́,1/2(x) = 2

3

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

+
√

3
4 λ sin

( 2
3π − 2

3ϕλ(x)
)

√
x3 − 27

64λ2

≤ 2

3

[
1 + cos

(
2

3
π − 2

3
ϕλ(x)

)]

+
√

3
4 λ sin

( 2
3π − 2

3ϕλ(x)
)

3
√

3λ
8

≤ 5

3
.

Therefore, (2/3) ≤ f λ́,1/2(x) ≤ (5/3) follows. This justifies
the strictly increasing property and Lipschitz property of
fλ,1/2(x) whenever x > (

3
√

54/4)λ2/3.

APPENDIX B
ANY LIMIT POINT OF HALF ALGORITHM

IS ITS STATIONARY POINT

We prove here that any limit point of the half thresholding
algorithm (47) with Scheme 1 must be its stationary point.
More specifically, we prove the following theorem.

Theorem 4: Let {xn} be the sequence defined by hal f
thresholding algorithm (47) with Scheme 1, and

μ <⎧
⎪⎪⎨
⎪⎪⎩

λ2/3

3
√

32

{√
N‖Aᵀ A‖F [Cλ(x0)]2

λ2 + 9λ2/3
√

N‖Aᵀ A‖F

(
3√54)2‖A‖4/3

2

+‖Aᵀy‖F

}

⎫
⎪⎪⎬
⎪⎪⎭

3

.

(54)

Then any limit point x∗ of {xn} satisfies

x∗ = Hλμ,1/2(Bμ(x∗)). (55)
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Proof: Without loss of generality, we assume {xn} itself
converges to x∗. Write xn = (x (n)

1 , x (n)
2 , ..., x (n)

N )ᵀ and x∗ =
(x∗

1 , x∗
2 , ..., x∗

N )ᵀ. Then x (n)
i

→ x∗
i

as n → ∞. Since
fλμ,1/2(.) is an odd function (i.e., fλμ,1/2(t) = − fλμ,1/2(−t)),
it suffices to consider the case [xn]i ≥ 0 for any i (Note that
[Bμ(xn)]i > 0 if [xn]i > 0). Let supp(x∗) = {1, 2, ..., k} be
the support set of x∗. Denote

δλμ =
3
√

54

4
(λμ)2/3.

We observe that each x∗
i can be obtained from one of the

following three possible ways.

1) There are infinitely many indices {n p} such that
[Bμ(xn p)]i ≤ δλμ (x∗

i = 0).
2) There are infinitely many indices {n p} such that

[Bμ(xn p)]i > δλμ and limp→∞[Bμ(xn p)]i =
[Bμ(x∗)]i > δλμ.(x∗

i �= 0).
3) There are infinitely many indices {n p} such that

[Bμ(xn p)]i > δλμ but limp→∞[Bμ(xn p)]i =
[Bμ(x∗)]i = δλμ (x∗

i �= 0).

Let us express x∗ as

x∗ = (X∗
1 , X∗

2 , X∗
3)ᵀ (56)

where X∗
1 = (x∗

i : x∗
i is deduced from the case 1), X∗

2 =
(x∗

i : x∗
i is deduced from the case 2), and X∗

3 = (x∗
i : x∗

i is
deduced from the case 3), with the dimensions of X∗

1, X∗
2 , X∗

3
being, respectively, N1, N2 and N3.(Here and henceforth, X∗

j ,
j = 1, 2, 3, is understood both as a vector and as a set.) It is
obvious that X∗

1 = 0 and k = N2 + N3 .
Below, we proceed by showing that X∗

3 is an empty set, i.e.,
the 3) case can never happen.

To this end, let us notice that, from the property fλμ,1/2(t) <
t , whenever t > (3/4)(λμ)2/3, we have [xn p+1]i =
fλμ,1/2([Bμ(xn p)]i ) < [Bμ(xn p )]i and therefore, for any x∗

i ∈
X∗

3

x∗
i = ζ = lim

p→∞ fλμ,1/2([Bμ(xn p)]i ) < [Bμ(x∗)]i = δλμ

(57)

where

ζ = lim
t→δλμ+

fλμ,1/2(t) = 9

(
3
√

54)2
(λμ)2/3 = 2

3
δλμ (58)

and

δλμ − ζ = 1
3
√

32
(λμ)2/3. (59)

So, we can further express X∗
3 = ζ E3,, with E3 being the

row vector of dimension N3 whose components are all 1. We
correspondingly split A as

A = [A1, A2, A3], Aᵀ = [Aᵀ
1 , Aᵀ

2 , Aᵀ
3 ]ᵀ.

Then we can calculate Bμ(x∗) by

Bμ(x∗) = x∗ − μAᵀ(Ax∗ − y)

=
⎛
⎝

0 − μAᵀ
1 (A2 X∗

2 + A3 X∗
3 − y)

X∗
2 − μAᵀ

2 (A2 X∗
2 + A3 X∗

3 − y)
X∗

3 − μAᵀ
3 (A2 X∗

2 + A3 X∗
3 − y)

⎞
⎠ . (60)

Now if X∗
3 �= ∅, then, by assumption, we have

X∗
3 − μAᵀ

3 (A2 X∗
2 + A3 X∗

3 − y) = δλμE3.

Thus
ζ E3 − μAᵀ

3 (A2 X∗
2 + A3ζ E3 − y) = δλμE3

or equivalently

(δλμ − ζ )E3 = −μAᵀ
3 (A2 X∗

2 + A3ζ E3 − y) (61)

which implies√
N3(δλμ − ζ ) = (δλμ − ζ ) ‖E3‖F

= μ
∥∥Aᵀ

3 (A2 X∗
2 + A3ζ E3 − y)

∥∥
F

≤ μ
{∥∥Aᵀ

3 A2
∥∥

F

∥∥X∗
2

∥∥
F +√N3ζ

∥∥Aᵀ
3 A3

∥∥
F

}

+μ
{∥∥Aᵀ

3 y)
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F

}
. (62)

Theorem 3 (i) has shown that {Cλ(xn)} is monotonically
decreasing, and particularly

λ ‖xn‖1/2
1/2 = λ

N∑
i=1

|[xn]i |1/2 ≤ Cλ(xn) ≤ Cλ(x0).

So {xn} must be bounded, and, in particular, we can deduce
that for each x∗

i ,

∣∣x∗
i

∣∣ ≤ (
∣∣x∗

i

∣∣1/2
)2 ≤ ( lim

n→∞ ‖xn‖1/2
1/2)

2 ≤ 1

λ2 [Cλ(x0)]2.

From (59) and (62), this then implies

1
3
√

32
(λμ)2/3 = (δλμ − ζ )

≤ μ√
N3

{√
N2
∥∥Aᵀ

3 A2
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F [Cλ(x0)]2

λ2

}

+ μ√
N3

{
9(λμ)2/3√N3

∥∥Aᵀ
3 A3

∥∥
F

(
3
√

54)2
+ ∥∥Aᵀ

3 y
∥∥

F

}

≤ μ

{√
N ‖AᵀA‖F [Cλ(x0)]2

λ2

}

+μ

{
9λ2/3

√
N ‖AᵀA‖F

(
3
√

54)2 ‖A‖4/3
2

+ ∥∥Aᵀy
∥∥

F

}
.

That is

1
3
√

32
λ2/3 ≤ μ1/3

{√
N ‖AᵀA‖F [Cλ(x0)]2

λ2 + ∥∥Aᵀy
∥∥

F

}

+μ1/3

{
9λ2/3

√
N ‖AᵀA‖F

(
3
√

54)2 ‖A‖4/3
2

}
. (63)

However, by assumption

μ1/3 <

λ2/3

3
√

32

{√
N‖Aᵀ A‖F [Cλ(x0)]2

λ2 + 9λ2/3
√

N‖Aᵀ A‖F

(
3√54)2‖A‖4/3

2

+ ‖Aᵀy‖F

}

which implies

μ1/3

{√
N ‖AᵀA‖F [Cλ(x0)]2

λ2 + 9λ2/3
√

N ‖AᵀA‖F

(
3
√

54)2 ‖A‖4/3
2

}

+μ1/3 {∥∥Aᵀy
∥∥

F

}
<

λ2/3

3
√

32
.
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This obviously contradicts (63). This contradiction shows that
X∗

3 = ∅.
From (56), thus, we have x∗ = (X∗

1, X∗
2)ᵀ, and, for each

x∗
i ∈ X∗

1 ∪ X∗
2 , the continuity of fλμ(.) can be directly applied

to derive

x∗
i = lim

p→∞ fλμ([Bμ(xn p)]i ) = fλμ([Bμ(x∗)]i ).

That is, x∗ is a stationary point of (55). This completes the
proof of Theorem 1.
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