Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © Elsevier 2015

SOLUTIONS

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS

CHAPTER 1

Exercise 1.1

(a) Biologists study cells at many levels. The cells are built from organelles
such as the mitochondria, ribosomes, and chloroplasts. Organelles are built of
macromolecules such as proteins, lipids, nucleic acids, and carbohydrates.
These biochemical macromolecules are built simpler molecules such as carbon
chains and amino acids. When studying at one of these levels of abstraction, bi-
ologists are usually interested in the levels above and below: what the structures
at that level are used to build, and how the structures themselves are built.

(b) The fundamental building blocks of chemistry are electrons, protons,
and neutrons (physicists are interested in how the protons and neutrons are
built). These blocks combine to form atoms. Atoms combine to form molecules.
For example, when chemists study molecules, they can abstract away the lower
levels of detail so that they can describe the general properties of a molecule
such as benzene without having to calculate the motion of the individual elec-
trons in the molecule.

Exercise 1.2

(@) Automobile designers use hierarchy to construct a car from major as-
semblies such as the engine, body, and suspension. The assemblies are con-
structed from subassemblies; for example, the engine contains cylinders, fuel
injectors, the ignition system, and the drive shaft. Modularity allows compo-
nents to be swapped without redesigning the rest of the car; for example, the
seats can be cloth, leather, or leather with a built in heater depending on the
model of the vehicle, so long as they all mount to the body in the same place.
Regularity involves the use of interchangeable parts and the sharing of parts be-
tween different vehicles; a 65R14 tire can be used on many different cars.

© 2015 Elsevier, Inc.
SOLUTIONS chapter 1

(b) Businesses use hierarchy in their organization chart. An employee re-
ports to a manager, who reports to a general manager who reports to a vice pres-
ident who reports to the president. Modularity includes well-defined interfaces
between divisions. The salesperson who spills a coke in his laptop calls a single
number for technical support and does not need to know the detailed organiza-
tion of the information systems department. Regularity includes the use of stan-
dard procedures. Accountants follow a well-defined set of rules to calculate
profit and loss so that the finances of each division can be combined to deter-
mine the finances of the company and so that the finances of the company can
be reported to investors who can make a straightforward comparison with other
companies.

Exercise 1.3

Ben can use a hierarchy to design the house. First, he can decide how many
bedrooms, bathrooms, kitchens, and other rooms he would like. He can then
jump up a level of hierarchy to decide the overall layout and dimensions of the
house. At the top-level of the hierarchy, he material he would like to use, what
kind of roof, etc. He can then jump to an even lower level of hierarchy to decide
the specific layout of each room, where he would like to place the doors, win-
dows, etc. He can use the principle of regularity in planning the framing of the
house. By using the same type of material, he can scale the framing depending
on the dimensions of each room. He can also use regularity to choose the same
(or a small set of) doors and windows for each room. That way, when he places
a new door or window he need not redesign the size, material, layout specifica-
tions from scratch. This is also an example of modularity: once he has designed
the specifications for the windows in one room, for example, he need not re-
specify them when he uses the same windows in another room. This will save
him both design time and, thus, money. He could also save by buying some
items (like windows) in bulk.

Exercise 1.4

An accuracy of +/- 50 mV indicates that the signal can be resolved to 100
mV intervals. There are 50 such intervals in the range of 0-5 volts, so the signal
represents log,50 = 5.64 bits of information.

Exercise 1.5

(a) The hour hand can be resolved to 12 * 4 = 48 positions, which represents
log,48 = 5.58 bits of information. (b) Knowing whether it is before or after noon

adds one more bit.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 3

Exercise 1.6

Each digit conveys log,60 = 5.91 bits of information. 4000, = 1 6 40¢q (1
in the 3600 column, 6 in the 60’s column, and 40 in the 1’s column).

Exercise 1.7

216 = 65,536 numbers.

Exercise 1.8

232.1 = 4,294,967,295

Exercise 1.9

(a) 216-1 = 65535; (b) 21°-1 = 32767; (c) 21°-1 = 32767

Exercise 1.10

(a) 2%2-1 = 4,294,967,295; (b) 2%1-1 = 2,147,483,647; (c) 2%1-1 =
2,147,483,647

Exercise 1.11

(a) 0; (b) -21° = -32768; (c) -(21°-1) = -32767

Exercise 1.12

(a) 0; (b) -251 = -2,147,483,648; (c) -(231-1) = -2,147,483,647;

Exercise 1.13

(a) 10; (b) 54; (c) 240; (d) 2215

Exercise 1.14

(a) 14; (b) 36; (c) 215; (d) 15,012

Exercise 1.15

(@) A; (b) 36; (c) FO; (d) 8A7

© 2015 Elsevier, Inc.
SOLUTIONS chapter 1

Exercise 1.16

(@) E; (b) 24; (c) D7; (d) 3AA4

Exercise 1.17

(a) 165; (b) 59; (c) 65535; (d) 3489660928

Exercise 1.18

() 78; (b) 124; () 60,730; (d) 1,077,915, 649

Exercise 1.19

(a) 10100101; (b) 00111011; (c) 1111111111111111;
(d) 11010000000000000000000000000000

Exercise 1.20

(a) 1001110; (b) 1111100; (c) 1110110100111010; (d) 100 0000 0011
1111 1011 0000 0000 0001

Exercise 1.21

(@) -6: (b) -10; (c) 112; (d) -97

Exercise 1.22

(@) -2 (-8+4+2 = -2 or magnitude = 0001+1 = 0010: thus, -2); (b) -29 (-32
+2+1=-29 or magnitude =011100+1 =011101: thus, -29); (c) 78; (d)-75

Exercise 1.23

@) -2; (b) -22; (c) 112; (d) -31

Exercise 1.24

(a) -6; (b) -3; (c) 78; (d) -53

Exercise 1.25

(a) 101010; (b) 111111; (c) 11100101; (d) 1101001101

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 5

Exercise 1.26

(a) 1110; (b) 110100; (c) 101010011; (d) 1011000111

Exercise 1.27

(@) 2A; (b) 3F; () ES5; (d) 34D

Exercise 1.28

(@) E; (b) 34; (c) 153; (d) 2C7;

Exercise 1.29

(a) 00101010; (b) 11000001; (c) 01111100; (d) 10000000; (e) overflow

Exercise 1.30

(a) 00011000; (b) 11000101; (c) overflow; (d) overflow; (e) 01111111\

Exercise 1.31

00101010; (b) 10111111; (c) 01111100; (d) overflow; (e) overflow

Exercise 1.32

(a) 00011000; (b) 10111011; (c) overflow; (d) overflow; (e) 01111111

Exercise 1.33

(a) 00000101; (b) 11111010

Exercise 1.34

(a) 00000111; (b) 11111001

Exercise 1.35

(a) 00000101; (b) 00001010

Exercise 1.36

(a) 00000111; (b) 00001001

Exercise 1.37

© 2015 Elsevier, Inc.
SOLUTIONS chapter 1

() 52; (b) 77; (c) 345; (d) 1515

Exercise 1.38

(a) 0016; (b) 0064; (c) 00339; (d) 001307

Exercise 1.39

(a) 100010, 2246, 3410; (b) 110011y, 3316, 5150; (C) 010101101,, AD4g,
17340; (d) 011000100111,, 62736, 15754

Exercise 1.40

(a) 0b10011; 0x13; 19; (b) 0b100101; 0x25; 37; (C) Ob11111001; OXF;
249; (d) 0010101110000; 0x570; 1392

Exercise 1.41

15 greater than 0, 16 less than 0; 15 greater and 15 less for sign/magnitude

Exercise 1.42

(26-1) are greater than 0; 26 are less than 0. For sign/magnitude numbers,
(26-1) are still greater than 0, but (26-1) are less than 0.

Exercise 1.43

4,8

Exercise 1.44

8

Exercise 1.45

5,760,000

Exercise 1.46

(5 x 109 bits/second)(60 seconds/minute)(1 byte/8 bits) = 3.75 x 1010
bytes

Exercise 1.47

46.566 gigabytes

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS

Exercise 1.48

2 billion
Exercise 1.49

128 kbits

Exercise 1.50

1 T T T T T T T T T 1
4 3 -2 -1 0 1 2 3 4 5 6 7

Unsigned 000 001 010 011 100 101 110 111

100 101 110 111 000 001 010 011 Two's Complement

111 110 101 001 010 011 Sign/Magnitude

Exercise 1.51

Unsigned 00 01 10 11
10 11 00 01 Two's Complement
00 . .
uo, o Sign/Magnitude

Exercise 1.52

(@) 1101; (b) 11000 (overflows)
Exercise 1.53

© 2015 Elsevier, Inc.
SOLUTIONS chapter 1

(a) 11011101; (b) 110001000 (overflows)

Exercise 1.54

(a) 11012, no overflow; (b) 10002, no overflow

Exercise 1.55

(a) 11011101; (b) 110001000

Exercise 1.56

(a) 010000 + 001001 = 011001;

(b) 011011 + 011111 = 111010 (overflowy);
(c) 111100 + 010011 = 001111;

(d) 000011 + 100000 = 100011,

(e) 110000 + 110111 = 100111;

(f) 100101 + 100001 = 000110 (overflow)

Exercise 1.57

(a) 000111 + 001101 = 010100

(b) 010001 + 011001 = 101010, overflow
(c) 100110 + 001000 = 101110

(d) 011111 + 110010 = 010001

(e) 101101 + 101010 = 010111, overflow
(f) 111110 + 100011 = 100001

Exercise 1.58

(a) 10; (b) 3B; (c) E9; (d) 13C (overflow)

Exercise 1.59

(a) 0x2A,; (b) 0x9F; (c) OXFE; (d) 0x66, overflow
Exercise 1.60

(a) 01001 - 00111 = 00010; (b) 01100 - 01111 = 11101; (c) 11010 - 01011
=01111; (d) 00100 - 11000 = 01100

Exercise 1.61

(a) 010010 + 110100 = 000110; (b) 011110 + 110111 = 010101; (c) 100100
+111101 = 100001; (d) 110000 + 101011 = 011011, overflow

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 9

Exercise 1.62

() 3; (b) 01111111; (c) 00000000, = -127;0; 11111111, = 128,

Exercise 1.63

000 001 010 011 100 101 110 111 Biased

Exercise 1.64

(@) 001010001001; (b) 951; (c) 1000101; (d) each 4-bit group represents
one decimal digit, so conversion between binary and decimal is easy. BCD can
also be used to represent decimal fractions exactly.

Exercise 1.65

(a) 0011 0111 0001

(b) 187

(c) 95 =1011111

(d) Addition of BCD numbers doesn't work directly. Also, the representa-
tion doesn't maximize the amount of information that can be stored; for example
2 BCD digits requires 8 bits and can store up to 100 values (0-99) - unsigned 8-
bit binary can store 28 (256) values.

Exercise 1.66

Three on each hand, so that they count in base six.

Exercise 1.67

Both of them are full of it. 42,4 = 101010,, which has 3 1’s in its represen-
tation.

Exercise 1.68

Both are right.

Exercise 1.69

#include <stdio.h>

© 2015 Elsevier, Inc.
SOLUTIONS chapter 1

void main (void)
{
char bin[80];
int i = 0, dec = 0;

printf ("Enter binary number: ");
scanf ("%s", bin);

while (bin[i] != 0) {
if (bin[i] == '0') dec = dec * 2;
else if (bin[i] == '1') dec = dec * 2 + 1;
else printf ("Bad character %c in the number.\n", bin[i]);
i=1i+1;

}

printf ("The decimal equivalent is %d\n", dec);

}
Exercise 1.70

/* This program works for numbers that don't overflow the
range of an integer. */

#include <stdio.h>

void main (void)

{
int bl, b2, digitsl = 0, digits2 = 0;
char numl[80], num2([80], tmp, c;
int digit, num = 0, Jj;

printf ("Enter base #1: "); scanf("%d", &bl);

printf ("Enter base #2: "); scanf ("%d", &b2);

printf ("Enter number in base %d ", bl); scanf("$s", numl);
while (numl[digitsl] != 0) {

c = numl [digitsl++];
if (¢ >= 'a' && c <= '"z2'") ¢ =c¢c + 'A'" - 'a';
if (¢ >= '0' && c <= '9') digit = c - '0';

0
else if (c >= 'A' && c <= 'F') digit = ¢ 'A' + 10;
else printf("Illegal character %c\n", c);
if (digit >= bl) printf("Illegal digit %c\n", c);
num = num * bl + digit;
}
while (num > 0) {
digit = num % b2;
num = num / b2;
num?2 [digits2++] = digit < 10 ? digit + '0' : digit + 'A' -
10;
}
num2 [digits2] = 0;

for (j = 0; j < digits2/2; j++) { // reverse order of digits
tmp = num2[]j];
num2 [j] = num2[digits2-j-1];
num2 [digits2-j-1] = tmp;

}

printf ("The base %d equivalent is %$s\n", b2, num2);

Exercise 1.71

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 11

ORS3 XOR3 XNOR4
A A 2
IS = IA S =D
c c g
Y =A+B+C Y=A®B®C Y=A®B®CHD
A B ClY A B ClyY A C B D|Y
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 1 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 0 1 0 0
0 1 1 1 0 1 1 0 0 0 1 1 1
1 0 0 1 1 0 0 1 0 1 0 0 0
1 0 1 1 1 0 1 0 0 1 0 1 1
1 1 0 1 1 1 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 1 1 0
@ (b) 1 0 0 oo
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
© 1 1 1 11

© 2015 Elsevier, Inc.

chapter 1

SOLUTIONS

12

Exercise 1.72

ABCDE

Y =

A®B®C

Y =

A+B+C+D

Y =

T A A A A A A A A A A A A A

T A A A A A A A A A AAAO

OO0 0 1010100

cNeoR_R _NoloR_R_loloR_R_NoNoi_ Rl

OCOO0O0dATAA 1O OO0

OCOO0OO0O0CO0O0O0dATAdAAAAAA

[eNeojolojojoojojojoojooloNoNe]

pieleoR _NoR R Ne)

O-HdOH1OHO

OCOHA—A OO

OCOO0OO A

(b)

Ocrdrddddddddd

OdO0O—dO0—d0 10101010

OO0 dd00d"d00dA—100 -

OCO0O0O0dAddA 10000 ddd

OCO0OO0O0O0O0O0OO0dATAdAAdAAAA

—~

o

~

OO0 -d0 101010 d0d0

[cNoR_ R ololol_R_Nolok_R_NoNok_§_|

OO0O0O0O A A1 00O0OO A

OO00O00O0O0OO0OTdTdAAddAAdAAA

Tl A A A A A A A A A A A AA

—~
&)

~

Exercise 1.73

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 13

PR RPRROOOOoOD
PR ooRr ool
R oror or ol
=P orooolk

Exercise 1.74

R R ROoOoOoOoOD
R ooRr kK oollm
R oror or ol
R PR o or ol

Exercise 1.75

PR R PR OO OOl
ook oolm
R okror or ol
O ORrOoORrRFRrIK

Exercise 1.76

14

SOLUTIONS

© 2015 Elsevier, Inc.

chapter 1
A B|Y A BlY A BlY A B|Y
0 0] o0 0 01 0 0] o0 0 01
o 1o o 11o 0 1|1 o 1|1
1 o0]o 1 oo 1 0o 1 oo
1 11]o0 1 11]o0 1 11]o0 1 11]o
Zero ANORB AB NOT A
A B|Y A BlY A BlY A B|Y
0 0] o0 0 01 0 0o 0 01
o 11]o o 11o 0o 1|1 o 1|1
1 01 1 0|1 1 0|1 1 0|1
1 11]o0 1 11]o0 1 11]o0 1 110
AB NOT B XOR NAND
A B|Y A BlyY A BlY A B|Y
0 0] o0 0 01 0 0o 0 0|1
o 1|0 o 11]o o 1|1 o 1|1
1 0o 1 o0fo 1 o0fo 1 o0fo
1 1] 1 1 1|1 1 1|1 1 1|1
AND XNOR B A+B
A B|Y A BlY A BlY A B|Y
0 0] o0 0 01 0 0o 0 01
o 11]o o 11o 0o 1|1 o 1|1
1 01 1 0|1 1 0|1 1 0|1
1 1 1 1 1 1 1 1 1 1 1 1
A A+B OR One

Exercise 1.77

2N

2

Exercise 1.78

V]L = 25, V[H: 3, VOL = 15, VOH: 4, NML = 1, NMH: 1

Exercise 1.79

No, there is no legal set of logic levels. The slope of the transfer character-
istic never is better than -1, so the system never has any gain to compensate for
noise.

Exercise 1.80

V]L =2; V]H: 4, VOL =1; VOH: 4.5; NML =1; NMH: 05

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 15

Exercise 1.81

The circuit functions as a buffer with logic levels V;; = 1.5; V;; =1.8; Vg
=1.2; Vg = 3.0. It can receive inputs from LVCMOS and LVTTL gates be-

cause their output logic levels are compatible with this gate’s input levels. How-
ever, it cannot drive LVCMOS or LVTTL gates because the 1.2 V,,; exceeds
the ¥;; of LVCMOS and LVTTL.

Exercise 1.82

(a) AND gate; (b) VIL = 15, V[H: 225, VOL = 0, VOH: 3

Exercise 1.83

(a) XOR gate; (b) V]L = 125, VIH: 2, VOL = 0, VOH: 3

Exercise 1.84

O W
J;A(LA(LJ;
;fTw
:

<
O W >

Ta
|
L J_
L L
-

(@) (b) (c)

Exercise 1.86

© 2015 Elsevier, Inc.
16 SOLUTIONS chapter 1

Exercise 1.87

XOR

Exercise 1.88

R oroRror ol

NSV eoNeoNoNel hN
PR oor ool
coor or ork

Exercise 1.89

weak
Y;# weak ?;#

A
weak A A

2 y B B

A(j) o (C)H

Exercise 1.90

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 17

-

I m| Y
A8 cio
v

Question 1.1

il
!
.l
L

v

Question 1.2

4 times. Place 22 coins on one side and 22 on the other. If one side rises,
the fake is on that side. Otherwise, the fake is among the 20 remaining. From
the group containing the fake, place 8 on one side and 8 on the other. Again,
identify which group contains the fake. From that group, place 3 on one side and
3 on the other. Again, identify which group contains the fake. Finally, place 1
coin on each side. Now the fake coin is apparent.

Question 1.3

17 minutes: (1) designer and freshman cross (2 minutes); (2) freshman re-
turns (1 minute); (3) professor and TA cross (10 minutes); (4) designer returns
(2 minutes); (5) designer and freshman cross (2 minutes).

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

CHAPTER 2

Exercise 2.1

(@) Y = AB+AB+ AB
(b) ¥ = ABC+ ABC

() Y = ABC+ABC + ABC + ABC + ABC
(d)

Y = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
(e)

Y = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Exercise 2.2

(@) Y = AB+AB+ AB

(b) Y = ABC+ABC + ABC + ABC + ABC

(c) Y = ABC+ ABC+ ABC

(d) Y = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

(e) Y = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Exercise 2.3

@ Y= (4+B)

© 2015 Elsevier, Inc.
SOLUTIONS

11

© 2015 Elsevier, Inc.
12 SOLUTIONS chapter 2

(b)

Y= (A+B+C)A+B+C)A+B+C)A+B+C)A+B+C)A+B+C)
€ Y=(4+B+C)(A+B+C)A+B+C)

(d)

Y= (4+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D)

(A+B+C+D)A+B+C+D)A+B+C+D)(A+B+C+D)
©)

Y= (4+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D)
(A+B+C+D)A+B+C+D)A+B+C+D)

Exercise 2.4

@Y=4+B

(b)Y = (4+B+C)(A+B+C)(A+B+C)

(€)Y =(A+B+C)A+B+C)(A+B+C)(A+B+C)A+B+C)
(d)

Y= (4+B+C+D)(A+B+C+D)A+B+C+D)A+B+C+D)
(A+B+C+D)A+B+C+D)A+B+C+D)(A+B+C+D)
(A+B+C+D)

(e)

Y= (4+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D)
(A+B+C+D)(A+B+C+D)A+B+C+D)A+B+C+D)
(A+B+C+D)

Exercise 2.5

@ Y=A+B

(b) Y = ABC + ABC
() Y= AC+AB+AC
) Y = AB+BD+ACD
(e)

Y = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
This can also be expressed as:

= (A®B)(C®D)+(4®B)(C®D)

Exercise 2.6

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

(@) Y=A4+B

(b)Y = AC+AC+BC or Y = AC+AC+AB

() Y = AB+ ABC

(d) Y = BC+BD

(€) Y = AB+ABC+ACD or Y = AB+ ABC+ BCD

Exercise 2.7

(a)
A Y
B
(b)
A
B
C
i5GE
©
AT y
B
(d)
A B C D
— || 1
Y
—
=,

© 2015 Elsevier, Inc.
SOLUTIONS

13

14

SOLUTIONS

chapter 2

(€)

Exercise 2.8

© 2015 Elsevier, Inc.

@)

(b)

©

(d)
ABCD

(€)

Exercise 2.9

ey

or

ABCD

e

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

(a) Same as 2.7(a)
(b)
A R
C L
Y
(©)
A B C

(d)

© 2015 Elsevier, Inc.
SOLUTIONS

15

16

SOLUTIONS

chapter 2

(€)

Exercise 2.10

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 17

=7
oQJO

Y

%%} Y or Y
(b)

)y

Y
©
C
R
B
(d) 0
ABCD
=
= =]
(e) 73

Exercise 2.11

(@)

© 2015 Elsevier, Inc.

18 SOLUTIONS chapter 2
(b)
A
B Y
C
(c)
Ai
c Y
B
(d)
A——(
T Y
D
C
(e)
A
B
B v
——q
C
g
L

Exercise 2.12

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

é:i::}%DXFY
S
N
Y

0 D

@

°<}JO

(b)

>
w
0

C
Y
D
(d)
ABCD
,,ﬂbof)O
==
o D
Exercise 2.13
(@) Y=AC + BC

yy=4
(C)Y=A+BC+BD+BD

Exercise 2.14

(a) Y = 4B
(b)Y = A+B+C = ABC

© 2015 Elsevier, Inc.
SOLUTIONS

19

20 SOLUTIONS chapter 2

()Y = A(B+C+D)+BCD = ABCD + BCD

Exercise 2.15

© 2015 Elsevier, Inc.

(@)
e
B Y
C
(b)
A-{>o—Y
(©
A >@
5 v
C

Exercise 2.16

©

Exercise 2.17

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

@ Y = B+AC

O>w

=Dy

I
N
S5

) Y

A
sl

Y =A+BC+DE

,‘ABCDE

Exercise 2.18

(@ Y=B+C
(b)Y = (4+C)D+B
(c) Y = BDE + BD(A® ()

Exercise 2.19

230 232

4 gigarows = 4 x rows =

Exercise 2.20

rows, so the truth table has 32 inputs.

© 2015 Elsevier, Inc.
SOLUTIONS

21

© 2015 Elsevier, Inc.
22 SOLUTIONS chapter 2

Exercise 2.21

Ben is correct. For example, the following function, shown as a K-map, has
two possible minimal sum-of-products expressions. Thus, although 4CD and

BCD are both prime implicants, the minimal sum-of-products expression does
not have both of them.

AB AB -
cp\. 00 01 11 10 aep cp\ 00 o1 11

10
00| 1 0 1 1 00| 1 0 1 1
0
F\
0
0

ABD ABD
01| o 0 1 0 01| © 0 U‘
1‘\

- ABC = ABC

11 0 0 0 0 11 0 0 0

10 1 0 0 0 10 1 0 0

Y =ABD + ABC + ACD Y =ABD + ABC + BCD

Exercise 2.22

(@)

— ol
= ole

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 23

(b)
B C D |(BeC)+(BeD)|Be(Cc+D)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1
(©)

B c|(Bec)+Be0)

0 0 0

0 1 0

1 0 1

1 1 1

Exercise 2.23

B, B, B,|B,*B,*B, | B,+B, +B,
0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0

Exercise 2.24

Y = AD+ ABC+ ACD + ABCD
7 = ACD + BD

Exercise 2.25

© 2015 Elsevier, Inc.

24 SOLUTIONS chapter 2
Y V4
AB AB
cON. 00 01 11 10 cDN. 00 01 11 10
00 0 0 0 0 00 0 0 1 0
D ACD
01{1 1 1 1 01| o (1 [1 1J“
ABC
11 ‘ 1 1 1 1 11 0 1 1 0
— B - >
10 0 0 0 1 10 0 0 0 0
Y=ABC +D Z=ACD +BD
A B C D
R
—
R
-/
R
L
Y Z
Exercise 2.26
A
B
C
D
E Y

Y=(+B)(C+D)+E

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

Exercise 2.27

© 2015 Elsevier, Inc.

SOLUTIONS

A

B

o

D

Y

E

F

G

Y=ABC+D+ (F+G)E
=ABC+D +EF + EG
Exercise 2.28
Two possible options are shown below:
Y Y
AB AB
cD 00 01 11 10 cD 00 01 11 10
SR
00| X 0 1 1 00| X 0 1 1
01| X X 1 0 01| X X 1 0
1| o0 X 1 1 1| o0 X 1 1
10| X 0 X X 10| X 0 X X
(@) Y=AD + AC + BD (b) Y=AB+C+D)

Exercise 2.29

25

© 2015 Elsevier, Inc.
26 SOLUTIONS chapter 2

Two possible options are shown below:

—|: Y
T

(@) (b)

o
A
D
B

R

[sReleup 2

Exercise 2.30

Option (a) could have a glitch when A=1, B=1, C=0, and D transitions from
1to 0. The glitch could be removed by instead using the circuit in option (b).

Option (b) does not have a glitch. Only one path exists from any given input
to the output.

Exercise 2.31

Y = AD+ABCD+BD+CD = ABCD +D(A + B+ C)

Exercise 2.32

ABCD

Exercise 2.33

The equation can be written directly from the description:
E =8SA+AL+H

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 27

Exercise 2.34

(@)

N2 00 01 11 10 D 00 01 11 10

Y
00 1 1 0 1 00 1 0 0 1
01 1 1 0 1 01 0 0 0

11 1 1 0 0 11 F 0 0 0
10 0 1 0 0 10 1 1 0 0
N

S, =D,D, +D,D, +D,D, Sy =D3D,D, + D;D,D, +
D.D.D,+ D.D,D,D
Se Sf 27170 3727170
D3:2 D3:2
D 00 01 11 10 D 00 01 11 10

01 0 0 0 0 01 0

o
o
=
o
o
= o [I—‘ -
AN /
o
o

11 0 0 0 0 11 0 0 0
10 1 1
S, =D,D,D, + D,D,D, S,=D,D,D, + D,0,D,+ D,D,D, + D,D,D,

© 2015 Elsevier, Inc.

SOLUTIONS chapter 2

00 11 10

1.0

00 0

m
‘Bans
B

11 1

o
o

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 29
(b)
Sa Sb
D3'2 D3'2
DO 00 01 11 10 D 00 01 11 10
00 1 0 X [1 00 [1 1 X 1]
01 0 1 X 1 01 1 0 X 1
11 [1 1 X X 11 [1 1 X X }
10 0 1 X X 10 1 0 X X
Sa = 525150 + DZDU + D3 * DZDl + DlDU Sb = D150 + DlDO + DZ
Sc Sd
D D

32

Do’ 00 @loppld +pA0+p +p, Dy 00 01 11 10

00 1 1 X 1 00 1 0 X 1
01 1 1 X 1 01 0 1 X 0

1] 1 1 X X 1] 1 0 X X
10| © 1 X X 10 [1 1 X x]
S,=D,+D,+D, S,=D,D,D,+ D,Dy+ D,D,+ D,D

30 SOLUTIONS chapter 2

Se
D3'Z

DN>? 00 01 11 10
00| 1 0 X 1
01| o 0 X 0
11| o0 0 X X
10 [1 1 X x]

Se=D2D 1-0

SQ

D D52 00 01 11 10
1:0
00| 0 1 X 1
o1l o 1 X 1
1] 1 0 X X
0] 1 1 X X

01

11

10

¥2 00 o1 11 10
(1 1 X 1
0 1 X 1

0 0 X X

0 1 X X
S,=D,D, + D,D,+ D,D,+ D,

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris

(©)

D, D

3

2

D

1

D

Digital Design and Computer Architecture: ARM Edition

I UU

N

Exercise 2.35

JUTUUUU

© 2015 Elsevier, Inc.
SOLUTIONS

31

32

SOLUTIONS chapter 2

Decimal
value A A, AL A D P
0 0 0 0 O0]0 o0
1 0 0 0 1|0 o0
2 0 0o 1 0|0 1
3 0 0o 1 1|1 1
4 0 1 0 0|0 o0
5 o 1 0 1|0 1
6 0 1 1 0|1 o0
7 0 1 1 1 0 1
8 1 0 o0 0|0 o0
9 1 0 o0 1|1 o
10 1 0 1 oflo0o o0
11 1 0 1 1|0 1
12 1 1 0 0|1 o0
13 1 1 o0 1|0 1
14 1 1 1 oo o
15 1 1 1 1 1 0
P has two possible minimal solutions:
P
A3:2 A3:2
00 01 11 10 A 00 01 11 10
1.0 1:.0
00| O 0 0 00| O 0 0 0
01| O 0 0 01| o0 1 1 0
11 0 0 11| 1 1 0 1
10| 0 0 0 10/ 1 0 0 0
—/

D=AAAA +AAAA +AAAA
+ A3A2E1;0 + A3A2A1A0

P= ’KaAon + Z3A1Ao + 23’52'41
+AAA,

P= ’ZaAle + ’Ka'azAl + ’Z\zAle
+AAA,

© 2015 Elsevier, Inc.

Hardware implementations are below (implementing the first minimal

equation given for P).

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 33

t%gw%%w

Exercise 2.36

A, A, A, AL AL A, A A|Y, Y, Y, NONE
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 X 0 0 1 0
0 0 0 0 0 1 X X 0 1 0 0
0 0 0 0 1 X X X 0 1 1 0
0 0 0 1 X X X X 1 0 0 0
0 0 1 X X X X X 1 0 1 0
0 1 X X X X X X|1 1 o 0
1 X X X X X X X|1 1 1 0

Yz = A7+A6+A5+A4

Y| = A+ Ag+ Agd Ay + AgAdys4,

Y0 = A7+A6A5+A6A4Ag+AeA4A2A1

NONE = A74¢AgA,A3A,4, 4,

34

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 2

JUJ

- NONE

Exercise 2.37

The equations and circuit for Y,.q is the same as in Exercise 2.25, repeated
here for convenience.

A, Ay AL AL AL A A ALY, Y Y,
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 X 0 0 1
0 0 0 0 0 1 X X 0 1 0
0 0 0 0 1 X X X 0 1 1
0 0 0 1 X X X X 1 0 0
0 0 1 X X X X X 1 0 1
0 1 X X X X X X 1 1 0
1 X X X X X X X 1 1 1

Yy = d+dg+dg+d,
Y, = Ag+ A+ AgdyAy + Agdgd,
Yy = A+ Agdg + AgAgdy + AgAAyd,

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 35

j Y2
Y

L/
Y,

- NONE

© 2015 Elsevier, Inc.

chapter 2

SOLUTIONS

36

The truth table, equations, and circuit for Z,.q are as follows.

OCO0O000O0O0-dTdAAdA10 0000 A ddd100 OO0

0000000000000 TdTddddAddd 100000

OO0O0O000O000O00O0O0O0OO0O0O0O0O0O0O0O0OdAdAAAAA

A A A A A AX XX XXX XXX XXX XXX XXXXXX

AOO0OO0O0O0OdAHAHMHHHXXXXXXXXXXXXXXX

OHOO0OO0OO0OO0OHOO0OO0OOOHAAHAAXXXXXXXXXX

OO0OH10000O0OHOOOOHOOOOdAHAHAXXXXXX

O0O0O-HO0O0O00O0OHOODOOHOOOHAOOO XXX

O00O0O-HO0OO0OO0OO0OO0OHOOOOHOOOHOOHOO HA =X

0O000O0O-HOO0OO0OO0OO0O-HOO0OO0OOHO0OO0OOHO0OOHOHO

O00000OHOOOOOHOOOOHOOOHOOHO A

Ay(Ag+ Ag+ Ag) + Ag(Ag+ A7) + Aghy

Z;

Ay(Ag+ A, +Ag+Ag+As) +

As(Ag+Ag+Ag+Ag) + Aghg

2y

AL(A,+Ag+ A, +Ag+AG+A)+
Ag(Ag+Ag+Ag+Ag)+ Ag(Ag+Ag)

Zo

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 37

2

JUJ U

Fibs
1>

V4
Z

Exercise 2.38
Yo = Apd;d,
Y5 = A4y
Yy = Ay + 454,
Y3 = 4,
Yy = dy+ A4y
Y] = A,+ 4,

Yo =A,+4,+4,

38

SOLUTIONS

chapter 2

Exercise 2.39

© 2015 Elsevier, Inc.

Y=A+C®D = A+CD+CD

Exercise 2.40

Y = CD(A® B)+AB = ACD +BCD + AB

Exercise 2.41

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 39

ABC A BJ|lY Aly
A B C Y ‘L‘\L 0 0 C 0 | BC
0o 0 o0]1 000 0 1 (0 1 | BC
0o 0 110 001 10710
0 1 o0]o0 010 1 11¢C
0o 1 110 g A
1 0 oo B — dJ
1 0 1 0 C g
1 1 oo Y
101 11 J7 .
(@ ()
Exercise 2.42
ABC A C|lY A Y
A B cly g 0 0|1 o |B+C
o 0o o0]|1 [—000 0o 1|B 1| B
o 0o 110 — 001 1 0|8
0 1 o021 010 1 118
0 1 1|1 011
1 0 o0]o0 1100 [Y AC
1 0 1 0 — 101 00
1 1 0|1 110 B 01
101 11 111 10 Y
11
L
(@ (b) (c)

Exercise 2.43

tpa = 31,4 NAND2 = 60 ps
lea = tea NAND2 = 15 ps
Exercise 2.44

tyd = tpd AND2 * 2lpq NOR2 + pd NAND2
=[30 + 2 (30) + 20] ps
=110 ps
fed = 2t NAND2 T Lcd NOR?2
=[2 (15) + 25] ps
=55ps

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition
40 SOLUTIONS chapter 2

Exercise 2.45

© 2015 Elsevier, Inc.

tpa = tpa NOT + tpa AND3
=15ps + 40 ps
=55 ps

Ied = tcd AND3
=30 ps

X<

X

o<

=<

=<

<

JIJUUUUL

<

Exercise 2.46

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 41

A3 Ay AlA,

fen ool

|

Ipd = tpd NOR2 t Ipd AND3 T Ipd NOR3 + Ipd NAND2
=[30 + 40 + 45 + 20] ps
=135 ps
led = 2tcqg NAND2 * fed OR2
=[2 (15) + 30] ps
=60 ps

Exercise 2.47

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
42 SOLUTIONS chapter 2

A AAAAAAA

77767 57 747 737 27 "17 70

=
D,

o

o
D D NONE
B

tpd = tha INV + 31 NAND2 * 1pd NAND3
=[15 + 3 (20) + 30] ps
=105 ps
fed = e NOT T Lcd NAND2
=[10 + 15] ps
=25ps

Exercise 2.48

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 43

bpd dy = tpd TRI_AY
=50 ps

Note: the propagation delay from the control (select) input to the output is
the circuit’s critical path:
Ipd sy = tpd NOT * Ipa AND3 t Ipd TRI_SY
=[30 + 80 + 35] ps
=145 ps
However, the problem specified to minimize the delay from data inputs to
output, tpdﬁdy'

Sarah L. Harris and David Money H: Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
44 SOLUTIONS chapter 2

Question 2.1

A
B Y
Question 2.2
Y
A,

%2 00 01 11 10
Month A, A, A A/l Y 1o
Jan 0 0 0 1 1 00 X 0 1 1
Feb 0 0 1 o]0 { J
Mar 0 0 1 1 1
Apr 0 1 0 0 0
May 0 1 o0 11 011 1 1 X 0 A
Jun o 1 1 o0]o A3 jD Y
Jul 0 1 1 111 o
Aug 1 0 0 o0 [1 1] 1 1 X 0
Sep 1 0 0 1]0
Oct 1 0 1 0|1
Nov 1 0 1 1 0
Dec 1 1 0 o0]1 10| © 0 X 1

Y=AA +AA, =A®A,
Question 2.3

A tristate buffer has two inputs and three possible outputs: 0, 1, and Z. One
of the inputs is the data input and the other input is a control input, often called
the enable input. When the enable input is 1, the tristate buffer transfers the data
input to the output; otherwise, the output is high impedance, Z. Tristate buffers
are used when multiple sources drive a single output at different times. One and
only one tristate buffer is enabled at any given time.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 45

Question 2.4

(@ An AND gate is not universal, because it cannot perform inversion
(NOT).

(b) The set {OR, NOT?} is universal. It can construct any Boolean function.
For example, an OR gate with NOT gates on all of its inputs and output per-
forms the AND operation. Thus, the set {OR, NOT} is equivalent to the set
{AND, OR, NOT} and is universal.

(c) The NAND gate by itself is universal. A NAND gate with its inputs tied
together performs the NOT operation. A NAND gate with a NOT gate on its
output performs AND. And a NAND gate with NOT gates on its inputs per-
forms OR. Thus, a NAND gate is equivalent to the set {AND, OR, NOT} and
is universal.

Question 2.5

A circuit’s contamination delay might be less than its propagation delay be-
cause the circuit may operate over a range of temperatures and supply voltages,
for example, 3-3.6 V for LVCMOS (low voltage CMOS) chips. As temperature
increases and voltage decreases, circuit delay increases. Also, the circuit may
have different paths (critical and short paths) from the input to the output. A gate
itself may have varying delays between different inputs and the output, affect-
ing the gate’s critical and short paths. For example, for a two-input NAND gate,
a HIGH to LOW transition requires two nMOS transistor delays, whereas a
LOW to HIGH transition requires a single pMOS transistor delay.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 41

CHAPTER 3

Exercise 3.1

J [)
Loy A WA A
g \ /\

Exercise 3.2

-

SRWA /o
g (WA
a SN

Exercise 3.3

Sarah L. Harris and David Money Harris Digital Design and Coputer Architecture: ARM Edition © 2015 Elsevier, Inc.
42 SOLUTIONS chapter 3

« /0 /S
S AL U A W
VA [/

Exercise 3.4

CLK /7
Ly VAR R S AV
: \

Exercise 3.5

« /0 /S
S AL U A W
e /

Exercise 3.6

CLK /7
Ly VAR R S AV

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 43

Exercise 3.7

The circuit is sequential because it involves feedback and the output de-
pends on previous values of the inputs. This is a SR latch. When S =0 and R =
1, the circuit sets O to 1. When S =1 and R = 0, the circuit resets Q to 0. When
both S and R are 1, the circuit remembers the old value. And when both S and R
are 0, the circuit drives both outputs to 1.

Exercise 3.8

Sequential logic. This is a D flip-flop with active low asynchronous set and
reset inputs. If S and R are both 1, the circuit behaves as an ordinary D flip-flop.
If S =0, O is immediately set to 0. If R = 0, Q is immediately reset to 1. (This
circuit is used in the commercial 7474 flip-flop.)

Exercise 3.9

clk
e{le

Exercise 3.10

K clk

H Q
clk

clk
D N1
@ (b) I’ Q (o Q

Exercise 3.11

il

If 4 and B have the same value, C takes on that value. Otherwise, C retains
its old value.

© 2015 Elsevier, Inc.
SOLUTIONS chapter 3

Exercise 3.12

Make sure these next ones are correct too.

ok —] > RQ
2

. o

Exercise 3.13

25

Exercise 3.14

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 45
C‘LK
D
D L
Set D Q
Q,
CHK
] . Q
2T > ’
Set
Exercise 3.15
CHK
iz Set Set
> Q
Db | ?
Set Set
Exercise 3.16
From to 1

2thd 2Nt '

Exercise 3.17

If N is even, the circuit is stable and will not oscillate.

Exercise 3.18

46

SOLUTIONS

© 2015 Elsevier, Inc.

chapter 3

(a) No: no register. (b) No: feedback without passing through a register. (c)
Yes. Satisfies the definition. (d) Yes. Satisfies the definition.

Exercise 3.19

The system has at least five bits of state to represent the 24 floors that the
elevator might be on.

Exercise 3.20

The FSM has 5* = 625 states. This requires at least 10 bits to represent all
the states.

Exercise 3.21

The FSM could be factored into four independent state machines, one for
each student. Each of these machines has five states and requires 3 bits, so at
least 12 bits of state are required for the factored design.

Exercise 3.22

This finite state machine asserts the output Q for one clock cycle if 4 is
TRUE followed by B being TRUE.

encoding
S1:0
SO 00
S1 01
S2 10

TABLE 3.1 State encoding for Exercise 3.22

current state inputs next state
S S0
0 0 0 X 0 0
0 0 1 X 0 1

TABLE 3.2 State transition table with binary encodings for Exercise 3.22

© 2015 Elsevier, Inc.
SOLUTIONS

Digital Design and Computer Architecture: ARM Edition
47

Sarah L. Harris and David Money Harris

next state

current state inputs

TABLE 3.2 State transition table with binary encodings for Exercise 3.22

TABLE 3.3 Output table with binary encodings for Exercise 3.22

Sy = SyB
S'O = S_']_S_OA
0=35
CLK
B \ S %7 S, Q
L/
\ S Sy
A
L/ ‘rr
Reset
S, S,

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
48 SOLUTIONS chapter 3

Exercise 3.23

This finite state machine asserts the output Q when 4 AND B is TRUE.

encoding
S1:0
S0 00
S1 01
S2 10

TABLE 3.4 State encoding for Exercise 3.23

current state inputs

0

0
1 0 1 1 1 0 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0

TABLE 3.5 Combined state transition and output table with binary encodings for Exercise 3.23

Sy = §,SyB+S,4B
So = 51504

Q' = S4B

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 49

A B
4 CéK
Sy S, Q
\ S'0 SO
L/ r
L
Reset
S1 SO
Exercise 3.24

Reset

S1
L,: yellow
Ly: red

L,: green
Ly: red

encoding
S1:0
SO 000
S1 001
S2 010

TABLE 3.6 State encoding for Exercise 3.24

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
50 SOLUTIONS chapter 3

encoding
S1:0

N

TABLE 3.6 State encoding for Exercise 3.24

current state inputs next state

S92 Sq S0 tu tb S'2 S'l S'O
o | o | o Jolxf oo [o | 1

¢!
o
|

= 5505+ S

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

current state

outputs

© 2015 Elsevier, Inc.
SOLUTIONS

0 0
1 0 1 1 0 0 1
1 1 0 1 0 1 0
TABLE 3.8 Output table for Exercise 3.24
Ly = 8155+ 5,8,
L, =85,8
40 220
S (3.1)
Ly = 8581 +515
Lpo = 55815,
T T
bS ss CLK
279) s, ~ S,
)
) S‘l Sl
S0 SO
r
R;get
R
L/

FIGURE 3.1 State machine circuit for traffic light controller for Exercise 3.21

51

Sarah L. Harris and David Money Harris

52

SOLUTIONS chapter 3

Exercise 3.25

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.

encoding
S1:0
S0 000
S1 001
S2 010
S3 100
S4 101

TABLE 3.9 State encoding for Exercise 3.25

current state

next state

TABLE 3.10 Combined state transition and output table with binary encodings for Exercise 3.25

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

current state

© 2015 Elsevier, Inc.

SOLUTIONS

next state

53

q
0
0
0 0
0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1
1 0 1 0 1 0 0 1
1 0 1 1 1 0 1 0
TABLE 3.10 Combined state transition and output table with binary encodings for Exercise 3.25
S = 555150+ 55515,
Sy = 5,5,5,4
So = A(5,50+ $,5)

0 = $,5,5,4 +5,5,54

CLK

s, Ms

s, | |s

s, | |s
r

-
Reset

© 2015 Elsevier, Inc.

54 SOLUTIONS chapter 3

Exercise 3.26

Dispense
ReturnDime

Dispense
ReturnNickel

S40
Dispense
ReturnDime
ReturnNickel

Dispense
ReturnTwoDimes|

Note: N e De Q = Nickel e Dime Quarter

FIGURE 3.2 State transition diagram for soda machine dispense of Exercise 3.23

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

encoding
S9:0

SO 0000000001
S5 0000000010
S10 0000000100
S25 0000001000
S30 0000010000
S15 0000100000
S20 0001000000
S35 0010000000
S40 0100000000
S45 1000000000

FIGURE 3.3 State Encodings for Exercise 3.26

current inputs
state

s nickel dime quarter

SO 0 0 1 S25
SO 0 1 0 S10
SO 1 0 0 S5
S5 0 0 0 S5
S5 0 0 1 S30
S5 0 1 0 S15
B 1 0 0 S10
S10 0 0 0 S10

TABLE 3.11 State transition table for Exercise 3.26

© 2015 Elsevier, Inc.
SOLUTIONS

55

Sarah L. Harris and David Money Harris

56

SOLUTIONS

chapter 3

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.

current inputs
state
s nickel dime quarter
S10 0 0 1 S35
S10 0 1 0 S20
S10 1 0 0 S15
S25 X X X SO
S30 X X X SO
S15 0 0 0 S15
S15 0 0 1 S40
S15 0 1 0 S25
S15 1 0 0 S20
S20 0 0 0 S20
S20 0 0 1 S45
S20 0 1 0 S30
S20 1 0 0 S25
S35 X X X SO
S40 X X X SO
S45 X X X SO

TABLE 3.11 State transition table for Exercise 3.26

current inputs next state
state s
s nickel dime quarter
0000000001 0 0 0 0000000001
0000000001 0 0] 1 0000001000
0000000001 0 1 0 0000000100
0000000001 1 0 0 0000000010

TABLE 3.12 State transition table for Exercise 3.26

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 57

current inputs next state
state L
s nickel dime quarter
0000000010 0 0 0 0000000010
0000000010 0 0 1 0000010000
0000000010 0 1 0 0000100000
0000000010 1 0 0 0000000100
0000000100 0 0 0 0000000100
0000000100 0 0 1 0010000000
0000000100 0 1 0 0001000000
0000000100 1 0 0 0000100000
0000001000 X X X 0000000001
0000010000 X X X 0000000001
0000100000 0 0 0 0000100000
0000100000 0 0 1 0100000000
0000100000 0 1 0 0000001000
0000100000 1 0 0 0001000000
0001000000 0 0 0 0001000000
0001000000 0 0 1 1000000000
0001000000 0 1 0 0000010000
0001000000 1 0 0 0000001000
0010000000 X X X 0000000001
0100000000 X X X 0000000001
1000000000 X X X 0000000001

TABLE 3.12 State transition table for Exercise 3.26

%
©
I

S0

58

SOLUTIONS

chapter 3
§7 = 5,0
Sg = SyD + SgN + SeNDQ
S's = §,D + S,N + ScNDQ

Sy = 8,0+ SgD

Sy = SoD+ SN+ S,NDQ
SoN + S;NDQ

%
-
I

So = SyNDQ + Sy + S, + S, + S + S

Dispense = S3+8,+8;+S8g+ 8
ReturnNickel = S, + Sg
ReturnDime = S, + Sg

ReturnTwoDimes = Sg

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 59

Quarter
Dime
Nickel

© 2015 Elsevier, Inc.
SOLUTIONS chapter 3

s

ReturnTwoDimes

1
D ReturnDime

(@)
i~y

0 So D ReturnNickel

[0

)

Reset i .
} > Dispense

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 61

Exercise 3.27

Reset

FIGURE 3.4 State transition diagram for Exercise 3.27

62

SOLUTIONS

chapter 3
current next state
state S oy
$2:0
000 001
001 011
011 010
010 110
110 111
111 101
101 100
100 000
TABLE 3.13 State transition table for Exercise 3.27
S2 = $150+ 5,5
§1= 5580+ 515
S0 = 5,98
0, =5
01=5

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 63

CLK
s, M, 0
2
—q
Sll Sl Q
1
—q
s, | |s
[ot
r
S,/S4S, Reset

FIGURE 3.5 Hardware for Gray code counter FSM for Exercise 3.27

Exercise 3.28

64

SOLUTIONS

chapter 3

Reset

FIGURE 3.6 State transition diagram for Exercise 3.28

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 65

current input next state

state s'2:0

$2:0
000 1 001
001 1 011
011 1 010
010 1 110
110 1 111
111 1 101
101 1 100
100 1 000
000 0 100
001 0 000
011 0 001
010 0 011
110 0 010
111 0 110
101 0 111
100 0 101

TABLE 3.14 State transition table for Exercise 3.28

S2 = UPS S+ UPS; Sy + 5,8,
S'y = 8,8, + UPS,Sy + UPS,S;
So= UP®S,®S,

0 =5,

0, =5

o = So

66

© 2015 Elsevier, Inc.

SOLUTIONS chapter 3
UP
CLK
7
S S
2 2 QZ
S S
1 1 Ql
——q
SIO SO
J}DC r QO
S351S, R;get
FIGURE 3.7 Finite state machine hardware for Exercise 3.28
Exercise 3.29
(@)
(R S R SN AN S
/ / \ / \
5 /
2 [/

FIGURE 3.8 Waveform showing Z output for Exercise 3.29

(b) This FSM is a Mealy FSM because the output depends on the current

value of the input as well as the current state.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS

©

BAIO BAIL

FIGURE 3.9 State transition diagram for Exercise 3.29
(Note: another viable solution would be to allow the state to transition from
S0 to S1 on BA/0. The arrow from SO to SO would then be BA/0)

current state inputs next state output

51:0 5'1:0

00 X 0 00 0
00 0 1 11 0
00 1 1 01 1
01 0 0 00 0
01 0 1 11 1
01 1 0 10 1
01 1 1 01 1
10 0 X 00 0
10 1 0 10 0

TABLE 3.15 State transition table for Exercise 3.29

67

68 SOLUTIONS

chapter 3

current state

$1:0

inputs

nextstate
s'1:0

10 1 1 01
11 0 0 00
11 0 1 11
11 1 0 10
11 1 1 01

TABLE 3.15 State transition table for Exercise 3.29

Sy = BA(S, +Sy) + BA(S, + S;)

S'o = A(S;+Sy+B)

Z = BA+Sy(A+B)

B A

FIGURE 3.10 Hardware for FSM of Exercise 3.26

© 2015 Elsevier, Inc.

Note: One could also build this functionality by registering input 4, pro-
ducing both the logical AND and OR of input 4 and its previous (registered)

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

value, and then muxing the two operations using B. The output of the mux is Z:

Z=Adprev (if B=0); Z=A4 + Aprev (if B=1).

Exercise 3.30

reset

> |

FIGURE 3.11 Factored state transition diagram for Exercise 3.30

current

next state
state 800
S7:0
00 0 00
00 1 01
01 0 00

TABLE 3.16 State transition table for output Y for Exercise 3.30

© 2015 Elsevier, Inc.
SOLUTIONS

69

70

SOLUTIONS chapter 3

current next state
state Sll'O
SI1:0
01 1 11
11 X 11

TABLE 3.16 State transition table for output ¥ for Exercise 3.30

current input next state

state '1:0
Ii:0

00 0 00

00 1 01

01 0 01

01 1 10

10 0 10

10 1 11

11 X 11

TABLE 3.17 State transition table for output X for Exercise 3.30

S = Sp(S;+4)
So = 814 +55(S; +4)

Ty = A(T, +T,) +2T0+ 7,7,
X = T,T,

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 71

A
CLK
T O s, s, y
L
S'O SO
r
L]
SIS, Reset
CLK
D_H_\ T %7 T,
y
—]
T'O TO
1
r
L]
Reset
TlTO

FIGURE 3.12 Finite state machine hardware for Exercise 3.30

Exercise 3.31

This finite state machine is a divide-by-two counter (see Section 3.4.2)
when X = 0. When X =1, the output, Q, is HIGH.

TABLE 3.18 State transition table with binary encodings for Exercise 3.31

72

SOLUTIONS

chapter 3

© 2015 Elsevier, Inc.

TABLE 3.19 Output table for Exercise 3.31

Exercise 3.32

current state

next state

TABLE 3.20 State transition table with binary encodings for Exercise 3.32

Sarah L. Harris and David Money Harris

current state

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.

SOLUTIONS

next state

Q asserts whenever 4 is HIGH for two or more consecutive cycles.

Exercise 3.33

1 0 0
1 1 0 0
TABLE 3.20 State transition table with binary encodings for Exercise 3.32

O

A

W

FIGURE 3.13 State transition diagram for Exercise 3.32

thd = 3lpd XOR

Next, we calculate the cycle time:

T

c

f =1/430ps=2.33 GHz

(b)

Te 2 tyeg ttpa t tsetup T Iskew

=3x 100 ps
=300 ps

>t

= 'pcq + tpd + tsetup
2> [70 + 300 + 60] ps

=430 ps

Thus,

fskew < Te = (peg + tpa + Iserup), Where T = 1/2 GHz = 500 ps
< [500 — 430] ps =70 ps

©

(a) First, we calculate the propagation delay through the combinational log-

73

© 2015 Elsevier, Inc.
74 SOLUTIONS chapter 3

First, we calculate the contamination delay through the combinational log-

fed = lcd XOR
=55ps

tccq *led > thold + Lskew

Thus,

Iskew < (tccq + tcd) = Ihold
< (50 + 55) - 20
<85 ps

(d)

Bk

5

FIGURE 3.14 Alyssa’s improved circuit for Exercise 3.33

First, we calculate the propagation and contamination delays through the
combinational logic:
tpd = 2thq XOR
=2 x 100 ps
=200 ps
tea = 2leq XOR
=2x55ps
=110 ps

Next, we calculate the cycle time:
Tc 2 tpcq + tpd + tsetup

2 [70 + 200 + 60] ps

=330 ps
f =1/330ps=3.03 GHz

lskew < (tccq + tcd) = Ihold
< (50 + 110 - 20
<140 ps

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

Exercise 3.34

(@) 9.09 GHz
(b) 15 ps
(c) 26 ps

Exercise 3.35

(@ 7T,=1/40MHz=25ns

Tc 2 tpcq + NtCLB + tsetup
25ns >[0.72 + N(0.61) + 0.53] ps
Thus, N < 38.9

N=38

(b)

tskew < (teeq T tca cLB) - Thold
<[(0.5+0.3)-0]ns
< 0.8 ns =800 ps

Exercise 3.36

1.138 ns

Exercise 3.37

P(failure)/sec = 1/MTBF = 1/(50 years * 3.15 x 10" sec/year) = 6.34 x
101" (EQ 3.26)

P(failure)/sec waiting for one clock cycle: N*(T,/T)*e (Tc-tsetup)/Tau
= 0.5 * (110/1000) * ¢-(1000-70)100 — 5 5 106
P(failure)/sec waiting for two clock cycles: N*(T/T,)*[e (Tc-tsetup)/Tauy2

= 0.5 * (110/1000) * [e-(1000-70)/10012 = 4 6§ x 1010

This is just less than the required probability of failure (6.34 x
10'10). Thus, 2 cycles of waiting is just adequate to meet the MTBF.

© 2015 Elsevier, Inc.
SOLUTIONS

75

© 2015 Elsevier, Inc.
76 SOLUTIONS chapter 3

Exercise 3.38

() You know you've already entered metastability, so the probability that
the sampled signal is metastable is 1. Thus,

P(failure) = 1xe
Solving for the probability of still being metastable (failing) to be 0.01:
t

P(failure) = ¢ * = 0.01
Thus,
t = —tx In(P(failure)) = =20 x In((0.01)) = 92 seconds

(b) The probability of death is the chance of still being metastable after 3

minutes
P(failure) = 1 x ¢ (3 min x60sec)/20sec = ¢ 90123

Exercise 3.39

We assume a two flip-flop synchronizer. The most significant impact on
the probability of failure comes from the exponential component. If we ignore
the T,/T, term in the probability of failure equation, assuming it changes little

with increases in cycle time, we get:
t

T

P(failure) = e
Tc—tsetug
_ 1 _ T
MTBE = P(failure) - ¢
TCZ_Tcl
MTBFZ =10 = e 30ps
MTBF,

Solving for T, - T4, we get:

T,,-T, = 69ps

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 77

Thus, the clock cycle time must increase by 69 ps. This holds true for cycle
times much larger than TO (20 ps) and the increased time (69 ps).

Exercise 3.40

Alyssa is correct. Ben’s circuit does not eliminate metastability. After the
first transition on D, D2 is always 0 because as D2 transitions from 0 to 1 or 1
to 0, it enters the forbidden region and Ben’s “metastability detector” resets the
first flip-flop to 0. Even if Ben’s circuit could correctly detect a metastable out-
put, it would asynchronously reset the flip-flop which, if the reset occurred
around the clock edge, this could cause the second flip-flop to sample a transi-
tioning signal and become metastable.

Question 3.1

78

SOLUTIONS

chapter 3

reset

I 1010 l
=1 A

> S0
A Q

A

FIGURE 3.15 State transition diagram for Question 3.1

current input next state
State S'5.0
S5:0
000001 0 000010
000001 1 000001

TABLE 3.21 State transition table for Question 3.1

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

current input next state

state s"5.0
S5:0

000010 0 000010
000010 1 000100
000100 0 001000
000100 1 000001
001000 0 000010
001000 1 010000
010000 0 100000
010000 1 000001
100000 0 000010
100000 1 000001

TABLE 3.21 State transition table for Question 3.1

S = S,4
Sy = Sy4

'3 = S,4

S, = 5,4

Sy = A(Sy+ S5+ Ss)

S0 = A(Sy+S,+S,+Ss)

0 = S;

© 2015 Elsevier, Inc.
SOLUTIONS

79

80

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 3

EQC%UU JU

FIGURE 3.16 Finite state machine hardware for Question 3.1

Question 3.2

The FSM should output the value of A4 until after the first 1 is received. It
then should output the inverse of 4. For example, the 8-bit two’s complement
of the number 6 (00000110) is (11111010). Starting from the least significant
bit on the far right, the two’s complement is created by outputting the same val-
ue of the input until the first 1 is reached. Thus, the two least significant bits of
the two’s complement number are “10”. Then the remaining bits are inverted,
making the complete number 11111010.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

Start

FIGURE 3.17 State transition diagram for Question 3.2

current input next state

state s'7:0

S1:0
00 0 00
00 1 01
01 0 11
01 1 10
10 0 11
10 1 10
11 0 11
11 1 10

TABLE 3.22 State transition table for Question 3.2

9
—
I

!
o
|

= AD(5)+Sp

0 =35

© 2015 Elsevier, Inc.
SOLUTIONS

81

82

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 3

-
L\D S, rso o

FIGURE 3.18 Finite state machine hardware for Question 3.2

Question 3.3

A latch allows input D to flow through to the output O when the clock is
HIGH. A flip-flop allows input D to flow through to the output Q at the clock
edge. A flip-flop is preferable in systems with a single clock. Latches are pref-
erable in two-phase clocking systems, with two clocks. The two clocks are used
to eliminate system failure due to hold time violations. Both the phase and fre-
quency of each clock can be modified independently.

Question 3.4

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 83

reset

S00000
S00001
S00010

FIGURE 3.19 State transition diagram for Question 3.4

current nextstate
state

S4:0
00000 00001

s'4:0

00001 I 00010
TABLE 3.23 State transition table for Question 3.4

84

SOLUTIONS

chapter 3

current next state
state S'y.0
S4:0
00010 00011
00011 00100
00100 00101
11110 11111
11111 00000

TABLE 3.23 State transition table for Question 3.4

S'0=STO

Q4:0 = Sa0

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 85

= s s o
= D | o
St In

S S
e
S' S
} 0 0 QO
r
T
Reset

FIGURE 3.20 Finite state machine hardware for Question 3.4

Question 3.5

Reset

>|

>|

A

FIGURE 3.21 State transition diagram for edge detector circuit of Question 3.5

© 2015 Elsevier, Inc.

SOLUTIONS chapter 3
current input next state
state 'y
S7:0

00 0 00

00 1 01

01 0 00

01 1 10

10 0 00

10 1 10

TABLE 3.24 State transition table for Question 3.5
S|1 = ASl
So = A48,
0=35
A C%L7K
\ S'l Sl Q
L/
\ S'O SO
r
I
Reset

FIGURE 3.22 Finite state machine hardware for Question 3.5

Question 3.6

Pipelining divides a block of combinational logic into N stages, with a reg-
ister between each stage. Pipelining increases throughput, the number of tasks
that can be completed in a given amount of time. Ideally, pipelining increases
throughput by a factor of N. But because of the following three reasons, the

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 87

speedup is usually less than N: (1) The combinational logic usually cannot be
divided into N equal stages. (2) Adding registers between stages adds delay
called the sequencing overhead, the time it takes to get the signal into and out
of the register, fseryp + £ycq- (3) The pipeline is not always operating at full ca-
pacity: at the beginning of execution, it takes time to fill up the pipeline, and at
the end it takes time to drain the pipeline. However, pipelining offers significant
speedup at the cost of little extra hardware.

Question 3.7

A flip-flop with a negative hold time allows D to start changing before the
clock edge arrives.

Question 3.8

We use a divide-by-three counter (see Example 3.6 on page 155 of the text-
book) with 4 as the clock input followed by a negative edge-triggered flip-flop,
which samples the input, D, on the negative or falling edge of the clock, or in
this case, 4. The output is the output of the divide-by-three counter, Sg, OR the
output of the negative edge-triggered flip-flop, N1. Figure 3.24 shows the
waveforms of the internal signals, Sy and N1.

T

FIGURE 3.23 Hardware for Question 3.8

N1

FIGURE 3.24 Waveforms for Question 3.8

88

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 3

Question 3.9

Without the added buffer, the propagation delay through the logic, 7,;, must
be less than or equal to 7, - (,¢4 * fsetup). HOwever, if you add a buffer to the

clock input of the receiver, the clock arrives at the receiver later. The earliest
that the clock edge arrives at the receiver is teq gy after the actual clock edge.

Thus, the propagation delay through the logic is now given an extra ., gyg- So,

1, NOW must be less than 7. + 7.4 BUF - ({peq * Isetup)-

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 85

CHAPTER 4

Note: the HDL files given in the following solutions are available on the
textbook’s companion website at:
http://textbooks.elsevier.com/9780123704979

Exercise 4.1

a—— :
C

:

Exercise 4.2

© 2015 Elsevier, Inc.

86 SOLUTIONS chapter 4
Exercise 4.3
SystemVerilog
module xor_4 (input logic [3:0] a,
output logic y)
assign y = "a;

endmodule

Exercise 4.4

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity xor_4 is
port(a: in STD_LOGIC_VECTOR (3 downto 0);
y: out STD LOGIC);
end;

architecture synth of xor_4 is
begin

y <= a(3) xor a(2) xor a(l) xor a(0);
end;

ex4_4.tv file:

0000_0
0001_1
0010_1
0011 0
0100_1
01010
0110 0
0111 1
1000 1
1001 0
1010 0
1011 1
1100 0
1101 1
1110 1
1111 0

© 2015 Elsevier, Inc.
SOLUTIONS 87

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

SystemVerilog
module ex4_4_ testbench();
logic clk, reset;
logic [3:0] a;
logic yexpected;
logic vy
logic [31:0] vectornum, errors;

logic [4:0] testvectors[10000:0];
// instantiate device under test
xor_ 4 dut(a, y);

// generate clock
always
begin
clk = 1; #5; clk = 0; #5;
end

// at start of test, load vectors
// and pulse reset

initial
begin
$readmemb("ex4_4.tv", testvectors);
vectornum = 0; errors = 0;
reset = 1; #27; reset = 0;
end

// apply test vectors on rising edge of clk
always @ (posedge clk)
begin
#1; {a, yexpected} =
testvectors[vectornum];
end

// check results on falling edge of clk
always @ (negedge clk)
if (~reset) begin // skip during reset
if (y !== yexpected) begin
$display ("Error: inputs = %h", a);

Sdisplay ("™ outputs = $b (%b expected)",
y, yexpected);
errors = errors + 1;
end
vectornum = vectornum + 1;
if (testvectors[vectornum] === 5'bx) begin

Sdisplay ("%d tests completed with %d errors",
vectornum, errors);
Sfinish;
end
end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use work.txt util.all

entity ex4_4_ testbench is -- no inputs or outputs
end;

architecture sim of ex4_4_ testbench is
component sillyfunction
port(a: in STD_LOGIC_VECTOR(3 downto 0);
y: out STD LOGIC);
end component;
signal a: STD_LOGIC_VECTOR(3 downto 0);
signal y, clk, reset: STD LOGIC;
signal yexpected: STD_LOGIC;
constant MEMSIZE: integer := 10000;
type tvarray is array(MEMSIZE downto 0) of
STD LOGIC_VECTOR (4 downto 0);
signal testvectors: tvarray;
shared variable vectornum, errors: integer;
begin
-- instantiate device under test
dut: xor 4 port map(a, y);

-- generate clock
process begin
clk <= '1'; wait for 5 ns;
clk <= '0'; wait for 5 ns;
end process;

-- at start of test, load vectors
-- and pulse reset
process is
file tv: TEXT;
variable i, j: integer;
variable L: line;
variable ch: character;
begin
-- read file of test vectors
i :=0;
FILE_OPEN (tv, "eX474.tV", READ MODE) ;
while not endfile(tv) loop
readline(tv, L);
for j in 4 downto 0 loop
read (L, ch);

if (ch = '_') then read(L, ch);
end if;
if (ch = '0') then
testvectors (i) (j) <= '0';
else testvectors(i) (j) <= '1';
end if;
end loop;
i =1+ 1;
end loop;
vectornum := 0; errors := 0;
reset <= '1 wait for 27 ns; reset <= '0';

wait;
end process;

(VHDL continued on next page)

88 SOLUTIONS chapter 4

Exercise 4.5

© 2015 Elsevier, Inc.

(continued from previous page)
VHDL

-- apply test vectors on rising edge of clk
process (clk) begin
if (clk'event and clk = '1') then

a <= testvectors (vectornum) (4 downto 1)
after 1 ns;
yexpected <= testvectors (vectornum) (0)
after 1 ns;
end if;
end process;

-- check results on falling edge of clk
process (clk) begin
if (clk'event and clk = '0' and reset = '0') then
assert y = yexpected
report "Error: y = " & STD LOGIC'image (y);
if (y /= yexpected) then
errors := errors + 1;
end if;
vectornum := vectornum + 1;
if (is_x(testvectors(vectornum))) then
if (errors = 0) then
report "Just kidding -- " &
integer'image (vectornum) &
" tests completed successfully."
severity failure;

else
report integer'image (vectornum) &
" tests completed, errors = " &
integer'image (errors)
severity failure;
end if;
end if;
end if;
end process;

end;

SystemVerilog

module minority(input logic a, b, c¢
output logic y);

assign y = ~a & ~b | ~a & ~c | ~b & ~c;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity minority is
port(a, b, c: in STD_LOGIC;
v out STD_LOGIC) ;
end;

architecture synth of minority is
begin
y <= ((not a) and (not b)) or ((not a) and (not c))
or ((not b) and (not c));
end;

Exercise 4.6

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

SystemVerilog

VHDL

© 2015 Elsevier, Inc.

SOLUTIONS

library IEEE; use IEEE.STD LOGIC 1164.all;

STD_LOGIC_VECTOR (3 downto 0)
segments: out STD_LOGIC_VECTOR (6 downto 0)

architecture synth of seven_seg decoder is

segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments
segments

module sevenseg(input logic [3:0] data,
output logic [6:0] segments);
entity seven_seg decoder is
always_comb port (data: in
case (data)
// abc_defg end;
4'h0: segments = 7'bl111 1110;
4'hl: segments = 7'b011_0000;
4'h2: segments = 7'b110_1101; begin
4'h3: segments = 7'bl11 1001; process (all) begin
4'h4: segments = 7'b011_0011; case data is
4'h5: segments = 7'b101_1011; -
4'h6: segments = 7'b101 1111; when X"0" =>
4'h7: segments = 7'bl11l 0000; when X"1" =>
4'h8: segments = 7'bl11 1111; when X"2" =>
4'h9: segments = 7'bl1l1l 0011; when X"3" =>
4'ha: segments = 7'b111_0111; when X"4" =>
4'hb: segments = 7'b001_1111; when X"5" =>
4'hc: segments = 7'b000_1101; when X"6" =>
4'hd: segments = 7'b011_1101; when X"7" =>
4'he: segments = 7'b100_1111; when X"8" =>
4'hf: segments = 7'b100_0111; when X"9" =>
endcase when X"A" =>
endmodule when X"B" =>
when X"C" =>
when X"D" =>
when X"E" =>
when X"F" =>
when others =>
end case;
end process;
end;
Exercise 4.7
ex4_7.tv file:

0000 111 1110
0001_011_0000
0010 110 1101
0011 111 1001
0100_011_0011
0101 101 1011
0110 101 1111
0111_ 1110000
1000 111 1111
1001 111 1011
1010_111 0111
1011 001 1111
1100_000_1101
1101 011 1101
1110 100 1111
1111100 0111

abcdefg
<= "1111110";
<= "0110000";
<= "1101101";
<= "1111001";
<= "0110011";
<= "1011011";
<= "1011111";
<= "1110000";
<= "l111111";
<= "1110011";
<= "1110111";
<= "(0O0l1l111";
<= "0001101";
<= "(0l11101";
<= "1001111";
<= "1000111";
<= "0000000";

)

89

7

90

SOLUTIONS

chapter 4

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris

Option 1:
SystemVerilog
module ex4_7_testbench();
logic clk, reset;
logic [3:0] data;
logic [6:0] s_expected;
logic [6:0] s;
logic [31:0] vectornum, errors;
logic [10:0] testvectors[10000:0];

// instantiate device under test
sevenseg dut (data, s);

// generate clock
always
begin
clk = 1; #5; clk = 0; #5;
end

// at start of test, load vectors
// and pulse reset

initial
begin
$readmemb("ex477.tv", testvectors) ;
vectornum = 0; errors = 0;
reset = 1; #27; reset = 0;
end

// apply test vectors on rising edge of clk
always @ (posedge clk)
begin
#1; {data, s_expected}
testvectors[vectornum];

end

// check results on falling edge of clk
always @ (negedge clk)
if (~reset) begin // skip during reset
if (s !== s_expected) begin
Sdisplay ("Error: inputs = %h", data);

Sdisplay (" outputs = %b (%b expected)",
s, s_expected);
errors = errors + 1;
end
vectornum = vectornum + 1;
if (testvectors[vectornum] === 11'bx) begin

S$display ("%d tests completed with %d errors"
vectornum, errors);
Sfinish;
end
end
endmodule

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS 91

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

entity ex4_7_testbench is -- no inputs or outputs
end;

architecture sim of ex4_7_testbench is
component seven_seg_decoder
port (data: in STD LOGIC_VECTOR(3 downto 0);
segments: out STD LOGIC_VECTOR (6 downto 0));
end component;
signal data: STD_LOGIC_VECTOR(3 downto 0);
signal s: STD_LOGIC_VECTOR (6 downto 0);
signal clk, reset: STD_LOGIC;
signal s_expected: STD_LOGIC_VECTOR(6 downto 0);
constant MEMSIZE: integer := 10000;
type tvarray is array (MEMSIZE downto 0) of
STD_LOGIC_VECTOR (10 downto 0);
signal testvectors: tvarray;
shared variable vectornum, errors: integer;
begin
-- instantiate device under test
dut: seven_seg_decoder port map(data, s);

-- generate clock
process begin
clk <= '1l'; wait for 5 ns;
clk <= '0'; wait for 5 ns;
end process;

-- at start of test, load vectors
-- and pulse reset
process is
file tv: TEXT;
variable i, j: integer;
variable L: line;
variable ch: character;
begin
-- read file of test vectors
i := 0;
FILE _OPEN(tv, "ex4_ 7.tv", READ MODE) ;
while not endfile(tv) loop
readline (tv, L);
for j in 10 downto 0 loop
read (L, ch);

if (ch = '_') then read(L, ch);
end if;
if (ch = '0') then
testvectors (i) (j) <= '0';

else testvectors(i) (j) <= '1';
end if;

end loop;

i =1 + 1;

end loop;

(VHDL continued on next page)

92

SOLUTIONS

© 2015 Elsevier, Inc.

chapter 4

(continued from previous page)
VHDL

vectornum := 0; errors := 0;
reset <= 'l'; wait for 27 ns; reset <= '0';
wait;

end process;

-- apply test vectors on rising edge of clk
process (clk) begin
if (clk'event and clk = '1l') then

data <= testvectors (vectornum) (10 downto 7)
after 1 ns;
s_expected <= testvectors (vectornum) (6 downto 0)
after 1 ns;
end if;
end process;

-- check results on falling edge of clk
process (clk) begin
if (clk'event and clk = '0' and reset = '0') then
assert s = s_expected
report "data = " &
integer'image (CONV_INTEGER (data)) &
"; s =" &
integer'image (CONV_INTEGER(s)) &
"; s_expected = " &
integer'image (CONV_INTEGER (s_expected));
if (s /= s_expected) then
errors := errors + 1;
end if;
vectornum := vectornum + 1;
if (is_x(testvectors(vectornum))) then
if (errors = 0) then
report "Just kidding -- " &
integer'image (vectornum) &
" tests completed successfully."
severity failure;

else
report integer'image (vectornum) &

" tests completed, errors =" &
integer'image (errors)
severity failure;

end if;

end if;
end if;

end process;
end;

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

Option 2 (VHDL only):
VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use work.txt util.all;

entity ex4_7_testbench is -- no inputs or outputs
end;

architecture sim of ex4_7_testbench is
component seven_ seg decoder
port (data: in STD_LOGIC_VECTOR (3 downto 0);
segments: out STD _LOGIC_VECTOR (6 downto 0));
end component;
signal data: STD_LOGIC_VECTOR (3 downto 0);
signal s: STD_LOGIC_VECTOR (6 downto 0);
signal clk, reset: STD_LOGIC;
signal s_expected: STD_LOGIC_VECTOR (6 downto 0);
constant MEMSIZE: integer := 10000;
type tvarray is array(MEMSIZE downto 0) of
STD_LOGIC_VECTOR (10 downto 0);
signal testvectors: tvarray;
shared variable vectornum, errors: integer;
begin
-- instantiate device under test
dut: seven_seg_decoder port map(data, s

-- generate clock
process begin
clk <= '1'; wait for 5 ns;
clk <= '0'; wait for 5 ns;
end process;

-- at start of test, load vectors
-- and pulse reset
process 1is
file tv: TEXT;
variable i, j: integer;
variable L: line;
variable ch: character;
begin
-- read file of test vectors
i = 0;
FILE OPEN (tv, "ex4 7.tv", READ MODE);
while not endfile(tv) loop
readline (tv, L);
for j in 10 downto 0 loop
read (L, ch);

if (ch = ' ') then read(L, ch);
end if;
if (ch = '0') then
testvectors (i) (j) <= '0';
else testvectors (i) (j) <= '1';
end if;
end loop;
i :=1 + 1;
end loop;
vectornum := 0; errors := 0;

reset <= 'l'; wait for 27 ns; reset <= '0';

SOLUTIONS 93

wait;
end process;

-- apply test vectors on rising edge of clk
process (clk) begin
if (clk'event and clk = '1') then

data <= testvectors(vectornum) (10 downto 7)
after 1 ns;
s_expected <= testvectors (vectornum) (6 downto 0)
after 1 ns;
end if;
end process;

-- check results on falling edge of clk
process (clk) begin

if (clk'event and clk = '0' and reset = '0') then
assert s = s_expected
report "data = " & str(data) &

"; s =" & str(s) &
"; s_expected = " & str(s_expected);
if (s /= s_expected) then
+

errors := errors 1;
end if;
vectornum := vectornum + 1;
if (is_x(testvectors(vectornum))) then
if (errors = 0) then
report "Just kidding -- " &
integer'image (vectornum) &
" tests completed successfully."
severity failure;
else
report integer'image (vectornum) &
" tests completed, errors = " &
integer'image (errors)
severity failure;
end if;
end if;
end if;

end process;

end;

(see Web site for file: txt_util.vhd)

94 SOLUTIONS chapter 4

Exercise 4.8

© 2015 Elsevier, Inc.

SystemVerilog

module mux8
(parameter width = 4)
(input logic [width-1:0] d0, di, dz, d3,
d4, d5, de, d7,
input logic [2:0] s,
output logic [width-1:0] y);

always_comb

case (s)
0: y = do0;
1: y = dil;
2: y = d2;
3: y = d3;
4: y = d4;
5: y = d5;
6: y = d6;
7: y = d7;

endcase

endmodule

Exercise 4.9

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity mux8 is
generic (width: integer := 4);
port (do,

end;

di1,
dz,
das,
d4,
ds,
de,
d7:
s:
y:

in STD LOGIC VECTOR(width-1 downto 0);
in STD LOGIC VECTOR(2 downto 0);
out STD_LOGIC VECTOR(width-1 downto 0));

architecture synth of mux8 is
begin
with s select y <=

end;

do
d1
dz2
d3
d4
ds
de
d7

when
when
when
when
when
when
when
when

"0o0o0",
"oo1",
"o1o",
"o11",
"io00",
"101",
"1i1o",
others;

Sarah L. Harris and David Money Harris

SystemVerilog

module ex4_9
(input logic a, b, c,
output logic y);

mux8 #(1) mux8 1(1'bl, 1'bO,
1'bl, 1'bl,

{a,b,c}, v)i

endmodule

1'b0,
1'bO,

Digital Design and Computer Architecture: ARM Edition

1'b1,
1'b0,

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4 9 is
port (a,
b,
c: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (0 downto 0));
end;

architecture struct of ex4_9 is
component mux8
generic (width: integer);
port (d0, d1, d2, d3, d4, d5, de,

© 2015 Elsevier, Inc.

95

d7: in STD_LOGIC_VECTOR(width-1 downto 0);

s: in STD LOGIC VECTOR(2 downto 0);

y: out STD_LOGIC VECTOR (width-1 downto 0));

end component;

signal sel: STD _LOGIC VECTOR(2 downto 0);
begin

sel <= a & b & c;

mux8_1: mux8 generic map (1)

port map("1", "0", wov, "in,
nyn, wiw, wgn owgw,
sel, y);

end;

© 2015 Elsevier, Inc.
96 SOLUTIONS chapter 4

Exercise 4.10

SystemVerilog VHDL
module ex4 10 library IEEE; use IEEE.STD LOGIC 1164.all;
(input 1logic a, b, c,
output logic y); entity ex4 10 is
port (a,
mux4 #(1) mux4_1(~c, c, 1'bl, 1'D0O, {a, b}, y); b,
endmodule c: in STD_LOGIC;
y: out STD LOGIC VECTOR (0 downto 0));
module mux4 end;
(parameter width = 4)
(input logic [width-1:0] d0, di, d2, d3, architecture struct of ex4 10 is
input logic [1:0] s, component mux4
output logic [width-1:0] y); generic (width: integer);
port(do, di, dz2,
always_comb d3: in STD_LOGIC_VECTOR(width-1 downto 0);
case (s) s: in STD_LOGIC_VECTOR(1 downto 0);
0: y = do; y: out STD LOGIC VECTOR (width-1 downto 0));
1: y = di; end component;
2: y = d2; signal cb: STD LOGIC VECTOR (0 downto 0);
3: y = d3; signal c vect: STD LOGIC VECTOR(O downto 0);
endcase signal sel: STD_LOGIC_VECTOR (1 downto 0);
endmodule begin

c _vect(0) <= c;
cb(0) <= not c;
sel <= (a & b);
mux4 1: mux4 generic map (1)
port map (cb, c_vect, "1", "0", sel, y);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
generic (width: integer := 4);
port (dO,
d1,
dz,
d3: in STD LOGIC VECTOR(width-1 downto 0);
s: in STD LOGIC VECTOR (1l downto 0);
y: out STD LOGIC_VECTOR (width-1 downto 0));
end;

architecture synth of mux4 is
begin
with s select y <=
d0 when "00",
dl when "O1",
d2 when "10",
d3 when others;
end;

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 97
Exercise 4.11
A shift register with feedback, shown below, cannot be correctly described
with blocking assignments.
CLK
Exercise 4.12
SystemVerilog VHDL
module priority(input logic [7:0] a, library IEEE; use IEEE.STD LOGIC 1164.all;
output logic [7:0] y);
entity priority is
always_comb port(a: in STD LOGIC VECTOR(7 downto 0);
casez (a) y: out STD_LOGIC_VECTOR (7 downto 0));
8'bl??22?2?22??: y = 8'b10000000; end;
8'b01??222?2?: y = 8'b01000000;
8'b001??2???: y = 8'b00100000; architecture synth of priority is
8'b0001????: y = 8'b00010000; begin
8'b00001???: y = 8'b00001000; process (all) begin
8'p000001??: yv = 8'b00000100; if a(7) = '"1l' then y <= "10000000";
8'b0000001?: y = 8'b00000010; elsif a(6) = 'l' then y <= "01000000";
8'pb00000001: y = 8'b00000001; elsif a(5) = '1l' then y <= "00100000";
default: y = 8'b00000000; elsif a(4) = '1' then y <= "00010000";
endcase elsif a(3) = 'l' then y <= "00001000";
endmodule elsif a(2) = '1l' then y <= "00000100";
elsif a(l) = '1l' then y <= "00000010";
elsif a(0) = '1l' then y <= "00000001";
else y <= "00000000";
end if;
end process;
end;

Exercise 4.13

98 SOLUTIONS chapter 4

SystemVerilog

module decoder2 4 (input logic [1:0] a,
output logic [3:0] y);
always_comb

case (a)
2'p00: y = 4'b0001;
2'p01l: y = 4'b0010;
2'bl0: y = 4'b0100;
2'pll: y = 4'b1000;
endcase
endmodule

Exercise 4.14

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder2 4 is
port(a: in STD_LOGIC_VECTOR(1l downto 0);
y: out STD LOGIC_VECTOR (3 downto 0));
end;

architecture synth of decoder2_4 is
begin
process (all) begin
case a is

when "00" => y <= "0001";
when "01" =>y <= "0010";
when "10" => y <= "0100";
when "11" => y <= "1000";
when others => y <= "0000";
end case;
end process;

end;

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris

SystemVerilog

module decoder6 64 (input
output
logic [11:0] y2 4;
decoder2 4 decO(a[l:0],
decoder2 4 decl(a[3:2],
decoder2_ 4 dec2(al[5:4],

assign y[0] = y2 4[0] &
assign y[l] = y2 4[1] &
assign y[2] = y2 4[2] &
assign y[3] = y2 4[3] &
assign y[4] = y2_4[0] &
assign y[5] = y2 4[1] &
assign y[6] = y2 4[2] &
assign y[7] = y2_4[3] &
assign y[8] = y2 4[0] &
assign y[9] = y2 4[1] &
assign y[10] = y2 4[2]
assign y[11l] = y2 4[3]
assign y[12] = y2 4([0]
assign y[13] = y2 4[1]
assign y[14] = y2 4[2]
assign y[15] = y2 4[3]
assign y[16] = y2 4[0]
assign y[17] = y2 4[1]
assign y[18] = y2 4[2]
assign y[19] = y2 4[3]
assign y[20] = y2 4([0]
assign yl[21] = y2 4[1]
assign y[22] = y2 4[2]
assign y[23] = y2 4([3]
assign y[24] = y2 4[0]
assign y[25] = y2 4[1]
assign y[26] = y2 4[2]
assign y[27] = y2_4[3]
assign y[28] = y2 4[0]
assign y[29] = y2 4[1]
assign y[30] = y2 4[2]
assign y[31] y2_41[3]

MR RRD DR R R R

logic [5:0] a,
logic [63:0]1 vy);
y2_4[3:0]);
y2_4[7:41);
y2_4[11:8]1);
y2_4[4] & y2_4[8];
y2_4[4] & y2_41[8];
y2_4[4] & y2_41[8];
y2_4[4] & y2_4[8];
v2_415] & y2_418];
y2_4[5] & y2_4[8];
y2_4[5] & y2_4[8];
v2_415] & y2_418];
y2_4[6] & y2_4[8];
y2_4[6] & y2 4[8];
v2_4161 & y2_418];
y2_4[6] & y2 4[8];
v2_4[7] & y2_4[8];
v2_4171 & y2_418];
y2_4[7] & y2 _4[8];
v2_4[7] & y2_4[8];
v2_414] & y2_4[9];
y2_4(4] & y2 4[9];
y2_414] & y2_419];
v2_414] & y2_4[9];
v2_4[5] & y2 4[9];
vy2_4[5] & y2_419];
v2 4151 & y2_4[9];
y2_4[5] & y2 4[9];
y2_4[6] & y2_4[9];
v2_416] & y2_4[9];
y2_4[6] & y2 4[9];
y2_4[6] & y2_41[9];
v2_417] & y2_419];
y2_4[7] & y2_4[9];
v2_4[7) & y2_419];
v2_417] & y2_419];

Digital Design and Computer Architecture: ARM Edition

VHDL

© 2015 Elsevier, Inc.

SOLUTIONS

library IEEE; use IEEE.STD LOGIC 1164.all;

entity decoder6_64 is
port(a: in

STD_LOGIC_VECTOR (5 downto 0);

y: out STD_LOGIC_VECTOR (63 downto 0));

end;

architecture struct of decoder6_64 is

component decoder2_4
STD_LOGIC VECTOR(1 downto 0);
yv: out STD_LOGIC_VECTOR(3 downto 0));

port (a: in

end component;
signal y2 4:
begin
decO:
decl:

dec2:

STD_LOGIC VECTOR(11l downto 0);

decoder2 4 port map(a(l downto 0),

y2 4 (3 downto 0));

decoder2_4 port map(a(3 downto 2),

y2 4 (7 downto 4));

decoder2 4 port map(a(5 downto 4),

y2_4 (11 downto 8));

(continued on next page)

y(0) <= y2 4(0) and
y(1l) <= y2 4(1) and
y(2) <= y2 4(2) and
y(3) <= y2 4(3) and
y(4) <= y2 4(0) and
y(5) <= y2 4(1) and
y(6) <= y2 4(2) and
y(7) <= y2 4(3) and
y(8) <= y2 4(0) and
y(9) <= y2 4(1) and
y(10) <= y2 4(2) and
y(11l) <= y2 4(3) and
y(12) <= y2 4(0) and
y(13) <= y2 4(1) and
y(14) <= y2 4(2) and
y(15) <= y2 4(3) and
y(16) <= y2 4(0) and
y(17) <= y2 4(1) and
y(18) <= y2 4(2) and
y(19) <= y2 4(3) and
y(20) <= y2 4(0) and
y(21) <= y2 4(1) and
y(22) <= y2 4(2) and
y(23) <= y2 4(3) and
y(24) <= y2_4(0) and
y(25) <= y2 4(1) and
y(26) <= y2 4(2) and
y(27) <= y2_4(3) and
y(28) <= y2 4(0) and
y(29) <= y2 4(1) and
y(30) <= y2 4(2) and
y(31) <= y2 4(3) and

y2 4(4) and y2 4(8);
y2_4(4) and y2 4(8);
y2_4(4) and y2 4(8);
y2 4(4) and y2 4(8);
v2 4(5) and y2 4(8);
y2_4(5) and y2 4(8);
y2_4(5) and y2_4(8);
y2_4(5) and y2_4(8);
y2_4(6) and y2 4(8);
y2_4(6) and y2_4(8);
y2_4(6) and y2 4(8);
y2_4(6) and y2 4(8)
y2 4(7) and y2 4(8)
v2 4(7) and y2 4(8)
y2_4(7) and y2_ 4(8)
y2_4(7) and y2_ 4(8)
y2_4(4) and y2_4(9)
y2_4(4) and y2_ 4(9)
y2_4(4) and y2_ 4(9)
y2_4(4) and y2_4(9)
y2_4(5) and y2 4(9)
y2 4(5) and y2 4(9)
y2_4(5) and y2_4(9)
y2_4(5) and y2 4(9)
y2_4(6) and y2_4(9)
y2_4(6) and y2_4(9)
y2_4(6) and y2 4(9)
y2_4(6) and y2_4(9)
y2_4(7) and y2_4(9)
y2_4(7) and y2 4(9)
y2 4(7) and y2 4(9)
y2_4(7) and y2_4(9)

99

© 2015 Elsevier, Inc.
100 SOLUTIONS chapter 4

(continued from previous page)

SystemVerilog VHDL
assign y[32] y2_4[0] & y2_4[4] & y2_4[10]; y(32) <= y2 4(0) and y2_4(4) and y2_4(10);
assign y[33] = y2 4[1] & y2 4[4] & y2_4[10]; y(33) <= y2_4(1) and y2_4(4) and y2_4(10);
assign y[34] = y2 4[2] & y2 4[4] & y2 4[10]; y(34) <= y2 4(2) and y2 4(4) and y2 4(10);
assign y[35] = y2_ 4[3] & y2_4[4] & y2_4[10]; y(35) <= y2 4(3) and y2_4(4) and y2_4(10);
assign y[36] = y2 4[0] & y2 4[5] & y2_4[10]; y(36) <= y2 4(0) and y2_4(5) and y2_4(10);
assign y[37] = y2 4[1] & y2 4[5] & y2 4[10]; y(37) <= y2 4(1) and y2 4(5) and y2 4(10);
assign y[38] = y2_ 4[2] & y2_4[5] & y2_4[10]; y(38) <= y2 4(2) and y2_4(5) and y2_4(10);
assign y[39] = y2 4[3] & y2_4[5] & y2_4[10]; y(39) <= y2 4(3) and y2_4(5) and y2_4(10);
assign y[40] = y2 4[0] & y2 4[6] & y2 4[10]; y(40) <= y2 4(0) and y2 4(6) and y2 4(10);
assign y[41] = y2 4[1] & y2_4[6] & y2_4[10]; y(41) <= y2 4(1) and y2_4(6) and y2 4(10);
assign yl[42] = y2 4[2] & y2 4[6] & y2 4[10]; y(42) <= y2 4(2) and y2 4(6) and y2 4(10);
assign yl[43] = y2 4[3] & y2 4[6] & y2 4[10]; y(43) <= y2 4(3) and y2 4(6) and y2 4(10);
assign yl[44] = y2 4[0] & y2_4[7] & y2_4[10]; y(44) <= y2 4(0) and y2_4(7) and y2_ 4(10);
assign y[45] = y2 4[1] & y2 4[7] & y2_4[10]; y(45) <= y2 4(1) and y2 4(7) and y2 4(10);
assign y[46] = y2 4[2] & y2 4[7] & y2 4[10]; y(46) <= y2 4(2) and y2 4(7) and y2 4(10);
assign yl[47] = y2_ 4[3] & y2_4[7] & y2_4[10]; y(47) <= y2 4(3) and y2_4(7) and y2_ 4(10);
assign y[48] = y2 4[0] & y2 4[4] & y2 4[11]; y(48) <= y2 4(0) and y2 4(4) and y2 4(11);
assign y[49] = y2 4[1] & y2 4[4] & y2 4[11]; y(49) <= y2 4(1) and y2 4(4) and y2 4(11);
assign y[50] = y2 4[2] & y2_4[4] & y2_4[11]; y(50) <= y2 4(2) and y2_4(4) and y2_4(11);
assign y[51] = y2 4[3] & y2 4[4] & y2_4[11]; y(51) <= y2 4(3) and y2 4(4) and y2 4(11);
assign y[52] = y2 4[0] & y2 4[5] & y2 4[11]; y(52) <= y2 4(0) and y2 4(5) and y2 4(11);
assign y[53] = y2 4[1] & y2_4[5] & y2_4[11]; y(53) <= y2 4(1) and y2_4(5) and y2_4(11);
assign y[54] = y2 4[2] & y2 4[5] & y2_ 4[11]; y(54) <= y2 4(2) and y2 4(5) and y2 4(11);
assign y[55] = y2 4[3] & y2 4[5] & y2 4[11]; y(55) <= y2 4(3) and y2 4(5) and y2 4(11);
assign y[56] = y2 4[0] & y2_4[6] & y2_4[11]; y(56) <= y2 4(0) and y2_4(6) and y2_4(11);
assign y[57] = y2 4[1] & y2 4[6] & y2 4[11]; y(57) <= y2 4(1) and y2 4(6) and y2 4(11);
assign y[58] = y2 4[2] & y2 4[6] & y2 4[11]; y(58) <= y2 4(2) and y2 4(6) and y2 4(11);
assign y[59] = y2 4[3] & y2_4[6] & y2_ 4[11]; y(59) <= y2 4(3) and y2_ 4(6) and y2 4(11);
assign y[60] = y2 4[0] & y2 4[7] & y2 4[11]; y(60) <= y2 4(0) and y2 4(7) and y2 4(11);
assign y[61] = y2 4[1] & y2 4[7] & y2 4[11]; y(61) <= y2 4(1) and y2 4(7) and y2 4(11);
assign yl[62] = y2 4[2] & y2_ 4[7] & y2_4[11]; y(62) <= y2 4(2) and y2_4(7) and y2 4(11);
assign y[63] = y2 4[3] & y2 4[7] & y2 4[11]; y(63) <= y2 4(3) and y2 4(7) and y2 4(11);
endmodule end;

Sarah L. Harris and David Money Harris

Exercise 4.15

Digital Design and Computer Architecture: ARM Edition

(@)Y = AC+ ABC
SystemVerilog

module ex4_15a(input logic a, b, c,
output logic y);

assign y =
endmodule

(a & c) | (~a & ~b & c);

() Y = AB+ABC + (A4 + C)
SystemVerilog

module ex4 15b(input logic a, b, c,
output logic y);

assign y =
endmodule

(~a & ~b) | (~a & b & ~c)

©
SystemVerilog

module ex4_15c(input logic a, b, ¢, d,
output logic y);
assign y = (~a & ~b & ~c & ~d) | (a
(a & ~b & c & ~d) | (a &
(~a & ~b & ¢ & ~d) | (
endmodule

Y = ABCD + ABC + ABCD + ABD + ABCD + BCD + A4

© 2015 Elsevier, Inc.

SOLUTIONS 101
VHDL
library IEEE; use IEEE.STD_LOGIC 1164.all;
entity ex4_15a is
port(a, b, c: in STD LOGIC;
y: out STD_LOGIC) ;
end;
architecture behave of ex4_15a is
begin
y <= (not a and not b and c) or (not b and c);
end;
VHDL
library IEEE; use IEEE.STD LOGIC 1164.all;
entity ex4 15b is
port(a, b, c: in STD LOGIC;
v: out STD_LOGIC) ;
end;
architecture behave of ex4 15b is
begin
y <= ((not a) and (not b)) or ((not a) and b and
(not c¢)) or (not(a or (not c)));
end;
VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
entity ex4 15c is
port(a, b, ¢, d: in STD_LOGIC;
y: out STD LOGIC);
end;
architecture behave of ex4_15c is
begin
y <= ((not a) and (not b) and (not c) and (not d)) or
(a and (not b) and (not c)) or
(a and (not b) and c¢ and (not d)) or
(a and b and d) or
((not a) and (not b) and c and (not d)) or
(b and (not c) and d) or (not a);

end;

102 SOLUTIONS chapter 4

Exercise 4.16

© 2015 Elsevier, Inc.

SystemVerilog

module ex4 16 (input logic a, b, ¢, d, e,
output logic y);

assign y = ~(~(~(a & b) & ~(c & d)) & e);
endmodule

Exercise 4.17

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity ex4_16 is
port(a, b, ¢, d, e: in STD LOGIC;
y: out STD LOGIC) ;
end;

architecture behave of ex4 16 is

begin
y <= not ((not ((not(a and b)) and
(not (c and d)))) and e);
end;

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 103
SystemVerilog
module ex4 17 (input logic a, b, ¢, d, e, f, g
output logic y);

logic nl, n2, n3, n4, n5;

assign nl = ~(a & b & c); VHDL

assign n2 = ~(nl & d);

assign n3 = ~(f & g); library IEEE; use IEEE.STD_LOGIC_1164.all;

assign n4 = ~(n3 | e);

assign n5 = ~(n2 | n4); entity ex4 17 is

assign y = ~(n5 & nb5); port(a, b, ¢, d, e, £, g: in STD_LOGIC;
endmodule y: out STD_LOGIC) ;

end;

architecture synth of ex4_ 17 is
signal nl, n2, n3, n4, n5: STD LOGIC;
begin
nl <= not(a and b and c);
n2 <= not(nl and d);
n3 <= not(f and g);
n4 <= not(n3 or e);
n5 <= not(n2 or n4);
y <= not (n5 or nb)
end;

7

Exercise 4.18

104

Verilog

module ex4 18 (input

SOLUTIONS chapter 4

logic a, b, ¢, 4,
output logic y);

always_comb

casez ({a, b, c, d})

// note: outputs cannot be assigned don’t care
0: y = 1'00;

l1: y = 1'b0;

2: y = 1'b0;

3: y = 1'b0;

4: y = 1'b0;

5: y = 1'b0;

6: y = 1'b0;

7: y = 1'b0;

8: y = 1'bl;

9: y = 1'b0;
10: y = 1'b0;
11: y = 1'bl;
12: y = 1'bl;
13: y = 1'bl;
14: y = 1'b0;
15: y = 1'b1l;

endcase
endmodule

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity ex4 18 is
port(a, b, ¢, d: in STD_LOGIC;
y: out STD_LOGIC) ;
end;

architecture synth of ex4 17 is
signal vars: STD_LOGIC_VECTOR (3 downto 0);
begin
vars <= (a & b & ¢ & d);
process (all) begin
case vars is

© 2015 Elsevier, Inc.

-- note: outputs cannot be assigned don’t care
when X"0" =>y <= '0';
when X"1" =>y <= '0';
when X"2" =>y <= '0';
when X"3" =>y <= '0';
when X"4" => y <= '0';
when X"5" =>y <= '0';
when X"6" =>y <= '0';
when X"7" =>y <= '0';
when X"8" =>y <= '1"';
when X"9" => y <= '0';
when X"A" => y <= '0';
when X"B" => vy <= '1"';
when X"C" => y <= '1";
when X"D" => vy <= '1";
when X"E" => vy <= '0';
when X"F" => y <= '1';
when others => y <= '0';--should never happen

end case;
end process;
end;

Sarah L. Harris and David Money Harris

Exercise 4.

19

Digital Design and Computer Architecture: ARM Edition

SystemVerilog

module exd4 18 (input

always_comb

case (a)
0: {p,
1: {p,
2: {p,
3: {p,
4: {p,
5: {p,
6: {p,
7: {p,
8: {p,
9: {p,
10: {p,
11: {p,
12: {p,
13: {p,
14: {p,
15: {p,

endcase

endmodule

logic

output logic

d}
d}
d}
d}
d}
d}
d}
d}
d}
d}
d}
d}
d}
d}
d}
d}

= 2'b00;

2'b00;
2'bl0;
2'bll;
2'b00;

= 2'bl0;
= 2'b01;

2'bl0;

= 2'b00;
= 2'b01;

2'b00;
2'bl0;
2'b01;
2'bl0;

= 2'b00;
= 2'b01;

[3:0]

ay
1

d);

VHDL

© 2015 Elsevier, Inc.

SOLUTIONS

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4 18 is

port(a: in STD_LOGIC_VECTOR(3 downto 0);
p, d: out STD_LOGIC);

end;

architecture synth of ex4_ 18 is
signal vars: STD_LOGIC_VECTOR(1 downto 0);

begin
p <= vars(1l);
d <= vars(0);
process (all) begin
case a is

when X"0" =>
when X"1" =>
when X"2" =>
when X"3" =>
when X"4" =>
when X"5" =>
when X"6" =>
when X"7" =>
when X"8" =>
when X"9" =>
when X"A" =>
when X"B" =>
when X"C" =>
when X"D" =>
when X"E" =>
when X"F" =>
when others =>
end case;

end process;
end;

vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars
vars

= "00";

"00";
"10";
"1ln;
"00";
"10";
"o1";
"10";
"00";
"o1";
"00";
"10";
"o1";
"10";
"00";
"o1";

= "00";

105

106 SOLUTIONS

SystemVerilog

module priority encoder (input

always_comb

casez (a)
8'b00000000:
8'b00000001:
8'b00000017:
8'b00000127:
8'b00001227?:

endcase
endmodule

chapter 4

Exercise 4.20

© 2015 Elsevier, Inc.

logic [7:0] a,

output logic [2:0] vy,

output logic none) ;
begin y = 3'd0; none = 1'bl;
begin y = 3'd0; none = 1'b0;
begin y = 3'dl; none = 1'b0;
begin y 3'd2; none = 1'b0;
begin y = 3'd3; none = 1'b0;
begin y 3'd4; none = 1'b0;
begin y 3'd5; none = 1'b0;
begin y 3'd6; none = 1'b0;
begin y = 3'd7; none = 1'b0;

Exercise 4.21

end
end
end
end
end
end
end
end
end

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority encoder is
in STD_LOGIC_VECTOR(7 downto 0);
out STD_LOGIC VECTOR (2 downto 0);
none: out STD_LOGIC) ;

port (a:
y:

end;

architecture synth of priority encoder is

begin

process (all) begin
case? a is

when
when
when
when
when
when
when
when
when
when

"00000000" =

"00000001"
"0000001-"
"000001--"
"00001---"
"0001----"

end case?;
end process;

end;

I S S

= "000";

"000";
"001";
"010";
"O11";
"100";
"101";
"110";
"111n;

= "000";

none
none
none
none
none
none
none
none
none
none

1,
'
r;
0r;
'
r;
0r;
'
r;
0r;

Sarah L. Harris and David Money Harris

SystemVerilog

module priority_encoder2 (input

always_comb
begin

casez

(a)

8'00000000:
8'b00000001:
8'b00000017:
8'000000122:
8'b00001?2?7:

endcase

casez

end

(a)

8'b00000011:
8'pb00000101:
8'b00001001:
8'b00010001:
8'pb00100001:
8'p01000001:
8'b10000001:
8'pb00000117:
8'pb00001017:
8'b00010017?:
8'p00100017:
8'p01000017:
8'b10000017?:
8'b00001127:
8'b000101727:
8'b00100127:
8'p01000127:
8'b10000127:
8'b00011?227:
8'b001017222:
8'b010017?727:
8'b10001?27:

default:

endmodule

N NNNDNNNNNDNNDNNDNDNNNNDNDNNNRNNN

30
30
30
30
3
30
30
3
30
30
3
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
3
30

logic
output logic
output logic

3'do;
none
none
none
none
none
none
3'd6; none
3'd7;

KKK KKKRKRKK

b000;
b000;
b000;
b000;
b000;
b000;
b000;
b001;
b001;
b001;
b001;
b001;
b001;
b010;
b010;
b010;
b010;
b010;
b011;
b011;
b011;
b011;
b100;
b100;
b100;
bl01;
b1l01;
b110;
b000;

[7:
[2:

none =

none =

a,
Yr 2,
none)

Digital Design and Computer Architecture: ARM Edition

7

end
end
end
end
end
end
end
end
end

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority encoder2 is

port(a: in STD_LOGIC_VECTOR (7 downto 0)
y, z: out STD LOGIC_VECTOR (2 downto 0)
none: out STD LOGIC) ;

end;

architecture synth of
begin

priority encoder is

process (all) begin
case? a is
when "00000000"™ => y <= "000"; none <=
when "00000001" => y <= "000"; none <=
when "0000001-" => y <= "001"; none <=
when "000001--" => y <= "010"; none <=
when "00001---" => y <= "011"; none <=
when =>y <= "100"; none <=
when =>y <= "101"; none <=
when => y <= "110"; none <=
when =>y <= "111"; none <=
when others => y <= "000"; none <=
end case?;
case? a is
when "00000011" => z <= "Q00";
when "00000101" => z <= "000";
when "00001001" => z <= "000";
when "00001001" => z <= "Q00";
when "00010001" => z <= "000";
when "00100001" => z <= "000";
when "01000001" => z <= "Q00";
when "10000001" => z <= "000";
when "0000011-" => z <= "001";
when "0000101-" => z <= "Q01";
when "0001001-" => z <= "001";
when "0010001-" => z <= "001";
when "0100001-" => z <= "Q01";
when "1000001-" => z <= "0Q01";
when "000011--" => z <= "0Q10";
when "000101--" => z <= "010";
when "001001--" => z <= "010";
when "010001--" => z <= "010";
when "100001--" => z <= "010";
when "00011---" => z <= "Q11";
when "00101---" => z <= "Q11";
when "01001---" => z <= "011";
when "10001---" => z <= "Q11";
when => z <= "100";
when => z <= "100";
when => z <= "100";
when => z <= "101";
when => z <= "101";
when => z <= "110";
when others => z <= "000";

end case?;
end process;
end;

© 2015 Elsevier, Inc.

’

7

v,
0r;
'
r;
0r;
'
r;
0r;
0
r;

107

© 2015 Elsevier, Inc.

108 SOLUTIONS chapter 4
Exercise 4.22
SystemVerilog VHDL
module thermometer (input logic [2:0] a, library IEEE; use IEEE.STD_LOGIC_1164.all;

output logic [6:0] y);
entity thermometer is

always_comb port(a: in STD_LOGIC_VECTOR (2 downto 0);
case (a) y: out STD_LOGIC_VECTOR (6 downto 0));
0: y = 7'00000000; end;
1: y = 7'b0000001;
2: y = 7'b0000011; architecture synth of thermometer is
3: y = 7'b0000111; begin
4: y = 7'b0001111; process (all) begin
5: y = 7'b0011111; case a is
6: y = 7'b0111111; when "000" => y <= "0000000";
7: y = 7'bl111111; when "001" => y <= "0000001";
endcase when "010" => y <= "0000011";
endmodule when "011" => y <= "0000111";
when "100" => y <= "0001111";
when "101" => y <= "0011111";
when "110" => y <= "0111111";
when "111" => y <= "1111111";
when others => y <= "0000000";

end case;
end process;
end;

Exercise 4.23

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.

SOLUTIONS

library IEEE; use IEEE.STD_LOGIC 1164.all;

in STD_LOGIC_VECTOR(3 downto 0);

v,
o',
s,
r;
1,
T
v,
1,
T
v,
o',
T
o'

SystemVerilog VHDL
module month3ldays (input logic [3:0] month,
output logic V)
entity month3ldays 1is
always_comb port(a:
casez (month) y: out STD_LOGIC) ;
1: y = 1'bl; end;
2: y = 1'b0;
3: y = 1'bl; architecture synth of month3ldays is
4: y = 1'b0; begin
5: y = 1'bl; process (all) begin
6: y = 1'b0; case a is
7 y = 1'bl; when X"1" => vy
8: y = 1'bl; when X"2" =y
9: y = 1'b0; when X"3" =y
10: y = 1'bl; when X"4" =>y
11: y = 1'b0; when X"5" =y
12: y = 1'bl; when X"6" =>y
default: y = 1'b0; when X"7" => vy
endcase when X"8" =y
endmodule when X"9" =>y
when X"A" => vy
when X"B" =>y
when X"C" =y
when others => y
end case;
end process;
end;
Exercise 4.24
A®B A+B

Exercise 4.25

109

110 SOLUTIONS chapter 4

reset

s2 taken

if (back)
predicttaken

S3
predicttaken

S4
predicttaken
taken

FIGURE 4.1 State transition diagram for Exercise 4.25

Exercise 4.26

© 2015 Elsevier, Inc.

SystemVerilog VHDL

module srlatch(input logic s, r, library IEEE; use IEEE.STD_LOGIC_1164.all;
output logic q, gbar);
entity srlatch is

always_comb port(s, r: in STD_LOGIC;

case ({s,r}) q, gbar: out STD LOGIC) ;
2'b01: {g, gbar} = 2'b01; end;
2'b10: {g, gbar} 2'b10;
2'bll: {qgq, gbar} = 2'b00; architecture synth of srlatch is

endcase signal ggbar: STD_LOGIC_VECTOR (1 downto 0);

endmodule signal sr: STD_LOGIC_VECTOR (1 downto 0);
begin

q <= qggbar(1l);
gbar <= ggbar (0);
sr <= s & r;
process (all) begin

if s = "'l" and r = '0"'
then ggbar <= "10";

elsif s = '0' and r 1
then ggbar <= "01";

elsif s = '1l' and r = '1"'
then ggbar <= "00";

end if;

end process;

end;

Exercise 4.27

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

SystemVerilog

module jkflop(input logic j, k,
output logic q);

always @ (posedge clk)
case ({3j,k})
2'pb01: g <= 1'b0;
2'p10: g <= 1'bl;
2'bll: g <= ~q;

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity jkflop is
port(j, k, clk: in STD_LOGIC;
q: inout STD_LOGIC);
end;

architecture synth of jkflop is

endcase signal jk: STD_LOGIC_VECTOR (1 downto 0);
endmodule begin
jk <= 3§ & k;
process (clk) begin
if rising_edge(clk) then
if § = '1' and k = '0"
then g <= '1"';
elsif j = '0' and k = '1"
then g <= '0"';
elsif j = '1l'" and k = '1"'
then g <= not g;
end if;
end if;
end process;
end;
Exercise 4.28
SystemVerilog VHDL

module latch3_ 18 (input logic d,
output logic q);

logic nl, n2, clk_b;

assign #1 nl = clk & d;

assign clk_b = ~clk;

assign #1 n2 = clk b & q;

assign #1 g = nl | n2;
endmodule

This circuit is in error with any delay in the inverter.

Exercise 4.29

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity latch3_18 is
port(d, clk: in STD_LOGIC;
q: inout STD_LOGIC) ;
end;

architecture synth of latch3_18 is
signal nl, clk_b, n2: STD_LOGIC;
begin
nl <= (clk and d) after 1 ns;
clk b <= (not clk);
n2 <= (clk b and g) after 1 ns;
q <= (nl or n2) after 1 ns;
end;

© 2015 Elsevier, Inc.

111

© 2015 Elsevier, Inc.

112 SOLUTIONS chapter 4
SystemVerilog VHDL
module trafficFSM(input logic clk, reset, ta, tb, library IEEE; use IEEE.STD_LOGIC_1164.all;

output logic [1:0] la, 1b);
entity trafficFSM is

typedef enum logic [1:0] {SO, Ss1, S2, S3} port(clk, reset, ta, tb: in STD LOGIC;
statetype; la, 1lb: inout STD LOGIC VECTOR (1 downto 0));
statetype [1:0] state, nextstate; end;
parameter green = 2'b00; architecture behave of trafficFSM is
parameter yellow = 2'b01; type statetype is (SO0, S1, S2, S3);
parameter red = 2'bl0; signal state, nextstate: statetype;
signal lalb: STD_LOGIC_VECTOR(3 downto 0);
// State Register begin
always_ff @ (posedge clk, posedge reset) -- state register
if (reset) state <= S0; process (clk, reset) begin
else state <= nextstate; if reset then state <= S0;
elsif rising edge(clk) then
// Next State Logic state <= nextstate;
always_comb end if;
case (state) end process;
S0: if (ta) nextstate = S0;
else nextstate = S1; -- next state logic
S1: nextstate = S52; process(all) begin
S2: if (tb) nextstate = S2; case state is
else nextstate = S3; when SO0 => if ta then
S3: nextstate = S0O; nextstate <= S0;
endcase else nextstate <= S1;
end if;
// Output Logic when S1 => nextstate <= S2;
always_comb when S2 => if tb then
case (state) nextstate <= S2;
S0: {la, 1lb} = {green, red}; else nextstate <= S3;
Sl: {la, 1lb} = {yellow, red}; end if;
S2: {la, 1lb} = {red, green}; when S3 => nextstate <= S0;
S3: {la, 1lb} = {red, yellow}; when others => nextstate <= S0;
endcase end case;
endmodule end process;

-- output logic

la <= lalb (3 downto 2);

1b <= lalb(1l downto 0);

process (all) begin
case state is

when S0 => lalb <= "0010";

when S1 => lalb <= "0110";

when S2 => lalb <= "1000";

when S3 => lalb <= "1001";

when others => lalb <= "1010";
end case;

end process;
end;

Sarah L. Harris and David Money Harris

Exercise 4.30

Digital Design and Computer Architecture: ARM Edition

SOLUTIONS

Mode Module
SystemVerilog

module mode (input logic clk,
output logic m);

reset, p, r,

typedef enum logic {S0, S1} statetype;

statetype state, nextstate;

// State Register

always_ ff @ (posedge clk, posedge

if (reset) state <= S0;

else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0: if (p) nextstate =

else nextstate =

Sl: if (r) nextstate =

else nextstate =
endcase

// Output Logic
assign m = state;
endmodule

S1;
S0;
s0;
s1;

reset)

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mode is
port (clk, reset, p, r: in STD_LOGIC;
m: out STD_LOGIC) ;
end;

architecture synth of mode is
type statetype is (S0, S1);
signal state, nextstate: statetype;
begin
-- state register
process (clk, reset) begin
if reset then state <= S50;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is
when S0 => if p then
nextstate <= S1;
else nextstate <= S0;
end if;
when S1 => if r then
nextstate <= S0;
else nextstate <= S1;
end if;
when others => nextstate <= S0;
end case;
end process;

-- output logic
m <= 'l' when state = S1 else '0';
end;

(continued on next page)

© 2015 Elsevier, Inc.

113

114 SOLUTIONS chapter 4

Lights Module
SystemVerilog

module lights (input logic clk, reset, ta, tb, m,
output logic [1:0] la, 1b);

typedef enum logic [1:0] {SO, S1, S2, S3}
statetype;

statetype [1:0] state, nextstate;

parameter green = 2'b00;
parameter yellow = 2'b01;
parameter red = 2'bl0;

// State Register

always_ff @(posedge clk, posedge reset)
if (reset) state <= S0O;
else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0: if (ta) nextstate = S0;

else nextstate = S1;

Sl: nextstate = S2;

S2: if (tb | m) nextstate = S52;

else nextstate = S3;

S3: nextstate = S0;
endcase

// Output Logic
always_comb
case (state)
S0: {la, 1lb} {green, red};
Sl: {la, 1lb} = {yellow, red};
S2: {la, 1lb} = {red, green};
S3: {la, 1lb} = {red, yellow};
endcase
endmodule

© 2015 Elsevier, Inc.

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity lights is
port (clk, reset, ta, tb, m: in STD_LOGIC;
la, 1lb: out STD_LOGIC_ VECTOR(1 downto 0));
end;

architecture synth of lights is
type statetype is (SO0, S1, S2, S3);
signal state, nextstate: statetype;
signal lalb: STD_LOGIC_VECTOR(3 downto 0);
begin
-- state register
process (clk, reset) begin
if reset then state <= S0;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is
when S0 => if ta then
nextstate <= 50;
else nextstate <= S1;

end if;
when S1 => nextstate <= 52;
when S2 => if ((tb or m) = '1') then

nextstate <= S2;
else nextstate <= S3;
end if;
when S3 => nextstate <= S0;
when others => nextstate <= S0;
end case;
end process;

-- output logic

la <= lalb (3 downto 2);

1b <= lalb(1l downto 0);

process (all) begin
case state is

when S0 => lalb <= "0010";
when S1 => lalb <= "0110";
when S2 => lalb <= "1000";
when S3 => lalb <= "1001";
when others => lalb <= "1010";
end case;
end process;

end;

(continued on next page)

Sarah L. Harris and David Money Harris

Controller Module
SystemVerilog

module controller (input

output logic

mode modefsm(clk,
lights lightsfsm(clk,
endmodule

Exercise 4.31

reset,

Digital Design and Computer Architecture: ARM Edition

logic clk,

P,
reset,

r,

[1:

Iy
ta,

ta,
0]

m) ;

tb,

tb,

la,

m,

reset, p,

1b);

la,

1b) ;

© 2015 Elsevier, Inc.
SOLUTIONS

115

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;
entity controller is
port(clk, reset: in
p, r, ta: in STD LOGIC;
thb: in STD_LOGIC;
la, out STD LOGIC VECTOR(1 downto 0));

STD_LOGIC;

1b:
end;

architecture struct of controller is
component mode
port (clk, reset, p, r: in STD LOGIC;
m: out STD LOGIC) ;
end component;
component lights
port (clk, reset, ta, tb, m: in STD LOGIC;
la, 1lb: out STD_LOGIC VECTOR(1 downto 0));
end component;

begin
modefsm:
lightsfsm:

mode port map(clk,
lights port map(clk,
m, la,

reset,
reset,
1b) ;

r, m);

ta, tb,

end;

116 SOLUTIONS chapter 4

SystemVerilog

module fig3 42 (input logic clk, a, b, ¢, d,
output logic x, y);

logic nl, n2;
logic areg, breg, creg, dreg;

always_ff @ (posedge clk) begin
areg <= a;

breg <= b;

creg <= c;

dreg <= d;

X <= n2;

y <= ~(dreg | n2);
end

assign nl = areg & breg;
assign n2 = nl | creg;
endmodule

Exercise 4.32

© 2015 Elsevier, Inc.

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity fig3_42 is
port(clk, a, b, ¢, d: in STD_LOGIC;
X, y: out STD LOGIC) ;
end;

architecture synth of fig3 40 is
signal nl, n2, areg, breg, creg, dreg: STD_LOGIC;
begin
process (clk) begin
if rising_edge(clk) then
areg <= a;

breg <= b;

creg <= c;

dreg <= d;

x <= n2;

y <= not (dreg or n2);
end if;

end process;

nl <= areg and breg;
n2 <= nl or creg;
end;

Sarah L. Harris and David Money Harris

SystemVerilog

module fig3 69 (input logic clk, reset, a, b,
output logic q);

typedef enum logic [1:0] {SO, S1, S2} statetype;

statetype [1:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb
case (state)
S0: if (a) nextstate = S1;

else nextstate = S0O;

Sl: if (b) nextstate = S2;

else nextstate = S0;

S2: nextstate = S0O;

default: nextstate = S0;
endcase

// Output Logic
assign g = state[l];
endmodule

Exercise 4.33

Digital Design and Computer Architecture: ARM Edition

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity fig3_69 is
port (clk, reset, a, b: in STD_LOGIC;
q: out STD_LOGIC) ;
end;

architecture synth of fig3 69 is
type statetype is (S0, S1, S2);
signal state, nextstate: statetype;
begin
-- state register
process (clk, reset) begin
if reset then state <= S50;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is
when SO => if a then
nextstate <= S1;
else nextstate <= S0;
end if;
when S1 => if b then
nextstate <= 52;
else nextstate <= S0;
end if;
when S2 => nextstate <= S0;
when others => nextstate <= S0;
end case;
end process;

-- output logic
g <= 'l' when state = 52 else '0';
end;

© 2015 Elsevier, Inc.

117

118 SOLUTIONS chapter 4

SystemVerilog

module fig3 70 (input logic clk, reset, a, b,
output logic q);
typedef enum logic [1:0] {SO, S1, S2} statetype;
statetype [1:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0: if (a) nextstate = S1;
else nextstate S0;
S1l: if (b) nextstate S2;
else nextstate s0;
S2: 1if (a & b) nextstate S2;
else nextstate s0;
default: nextstate = S0;
endcase

// Output Logic

always_comb

case (state)
SO: q = 0;
Sl: g = 0;
S2: if (a & b) g = 1;
else q = 0;
default: g = 0;
endcase
endmodule

Exercise 4.34

© 2015 Elsevier, Inc.

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity fig3_70 is
port(clk, reset, a, b: in STD_LOGIC;
q: out STD_LOGIC) ;
end;

architecture synth of fig3 70 is
type statetype is (S0, S1, S2);
signal state, nextstate: statetype;
begin
-- state register
process (clk, reset) begin
if reset then state <= S50;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is
when SO => if a then

nextstate <= S1;
else nextstate <= S0;
end if;
when S1 => if b then
nextstate <= 52;
else nextstate <= S0;
end if;
when S2 => if (a = 'l' and b = '1") then
nextstate <= 52;
else nextstate <= S0;
end if;
when others => nextstate <= S0;
end case;
end process;
-- output logic
q <= '1' when (state = S2) and
(a ="'1l'" and b = '1"))
else '0';

end;

Sarah L. Harris and David Money Harris

SystemVerilog

module ex4 34 (input logic clk, reset, ta, tb,

VHDL

output logic [1:0] la, 1b);
typedef enum logic [2:0] {SO, S1,

statetype;
statetype [2

:0]

parameter green

parameter yellow

parameter red

state, nextstate;

= 2'b00;
2'b01;
2'b10;

// State Register
always_ff @ (posedge clk, posedge

if (reset)

else

state <= S0;
state <= nextstate;

// Next State Logic
always_comb

case (stat
S0: 1if (
else
Sl:
S2:
S3: if (
else
S4:
S5:
endcase

e)
ta)

tb)

// Output Logic
always_comb

case (stat
S0: {la,
Sl: {la,
s2: {la,
S3: {1la,
S4: {la,
s5: {la,

endcase

endmodule

e)
1b}
1b}
1b}
1b}
1b}
1b}

nextstate = SO;
nextstate = S1;
nextstate = S2;
nextstate = S3;
nextstate = S3;
nextstate = S4;
nextstate = S5;
nextstate = S0;

= {green, red};
= {yellow, red};
= {red, red};
= {red, green};
= {red, yellow};
= {red, red};

Digital Design and Computer Architecture: ARM Edition

s2, S3, sS4, S5} entity ex4_34 is
reset, ta, tb
1b: out STD LOGIC VECTOR (1 downto 0));

port (clk,

la,
end;

© 2015 Elsevier, Inc.

SOLUTIONS

: in

library IEEE; use IEEE.STD_LOGIC 1164.all;

STD_LOGIC;

architecture synth of ex4 34 is
type statetype is (SO,

signal state,
signal lalb:

reset) begin

s1,
nextstate:

s2, S3, sS4, S5);

statetype;

STD_LOGIC VECTOR(3 downto 0);

-- state register
set) begin
if reset then state <= S0;

process (clk,

elsif rising edge (clk)

re

state <= nextstate;

end if;
end process;

-- next state
process (all)
case state

lo
be
is

gic
gin

when S0 => if ta =
nextstate <= 50;
else nextstate <= S1;

when
when
when

when
when

when others =>

S1
S2
S3

S4
S5

end case;

end process;

=>
=>
=>

=>
=>

-- output logic
la <= lalb(3 downto 2);
1b <= lalb (1l downto 0);

process (all)

be

case state is

when
when
when
when
when
when
when

end process;

end;

S0 =

S1
S2
S3
sS4

S5 =

end if;

1

then

then

nextstate <= 52;
nextstate <= S3;

if tb =

1

then

nextstate <= S3;
else nextstate <= S4;

end if;

nextstate <= S5;
nextstate <= S0;

gin

lalb
lalb
lalb
lalb
lalb
lalb

others => lalb
end case;

nextstate <= S0;

= "0010";

"0110";
"1010";
"1000";
"1001";
"1010";

= "1010";

119

© 2015 Elsevier, Inc.
120 SOLUTIONS chapter 4

Exercise 4.35

Sarah L. Harris and David Money Harris

SystemVerilog

module daughterfsm(input logic clk, reset, a,
output logic smile);

typedef enum logic [1:0] {SO, S1, S2, S3, sS4}
statetype;
statetype [2:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb

case (state)
S0: if (a) nextstate = S1;
else nextstate = S0;
Sl: if (a) nextstate = S2;
else nextstate = S0;
S2: if (a) nextstate = S4;
else nextstate = S3;
S3: if (a) nextstate = S1;
else nextstate = S0;
S4: if (a) nextstate = S4;
else nextstate = S3;
default: nextstate = S0;
endcase

// Output Logic
assign smile = ((state == S3) & a)
((state == S4) & ~a);
endmodule

Digital Design and Computer Architecture: ARM Edition

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity daughterfsm is
port (clk, reset, a: in STD_LOGIC;
smile: out STD_LOGIC) ;
end;

architecture synth of daughterfsm is

type statetype is (S0, S1, S2, S3, S4);

signal state, nextstate: statetype;
begin

-- state register

process (clk, reset) begin

if reset then state <= S50;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is

when SO => if a then

nextstate <= S1;
else nextstate <= S0;
end if;
if a then

nextstate <= 52;
else nextstate <= S0;
end if;
if a then

nextstate <= S4;
else nextstate <= S3;
end if;
if a then

nextstate <= S1;
else nextstate <= S0;
end if;
if a then

nextstate <= 54;
else nextstate <= S3;
end if;

when others => nextstate <= S0;
end case;

end process;

when S1 =>

when S2 =>

when S3 =>

when S4 =>

-- output logic
smile <= 'l1' when (((state = S3)

((state = S4)

and
and

(a =
(a =
else '0';
end;

© 2015 Elsevier,

nc

1))
'0')))

121

or

© 2015 Elsevier, Inc.
122 SOLUTIONS chapter 4

Exercise 4.36

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 123

(starting on next page)

124

SystemVerilog

module ex4 36 (i
o

typedef enum

statetype;
statetype [3:

// State Regi

always ff @ (posedge clk, posedge

if (reset)
else

// Next State
always_comb
case (state

S0:
else
else
else
S5:
else
else
else
S10:
else
else
else
525:
S30:
S15:
else
else
else
S20:
else
else
else
S$35:
S40:
S45:
default:
endcase

SOLUTIONS

nput logic
utput logic

clk,

chapter 4

reset, n, d, q,

dispense,

return5, returnlO,
return2_ 10);
logic [3:0] {SO = 4'b0000,
S5 = 4'b0001,
510 = 4'b0010,
525 = 4'b0011,
S30 = 4'b0100,
S15 = 4'b0101,
520 = 4'b0O110,
S35 = 4'b0111,
5S40 = 4'b1000,
S45 = 4'b1001}
0] state, nextstate;
ster

state <= S0;

reset)

state <= nextstate;

Logic
)
if (n) nextstate
if (d) nextstate
if (g) nextstate
nextstate
if (n) nextstate
if (d) nextstate
if (g) nextstate
nextstate
if (n) nextstate
if (d) nextstate
if (g) nextstate
nextstate
nextstate
nextstate
if (n) nextstate
if (d) nextstate
if (g) nextstate
nextstate
if (n) nextstate
if (d) nextstate
if (g) nextstate
nextstate
nextstate
nextstate
nextstate
nextstate =

= S5;
= S10;
= S525;
= S0;
= S10;
= S15;
= S30;
= S5;
= S15;
= S520;
= S35;
= S10;
= S0;
= 50;
= S20;
= S25;
= S540;
= S15;
= S25;
= S30;
= S45;
= S520;
= 50;
= S0;
= S0;
sS0;

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity ex4_36 is

port (clk,

end;

architecture synth of ex4 36 is
(s0,

dispense,
return2_10:

type statetype is

signal state,

begin
-- state register

process (clk,

elsif rising edge(clk) then
state <= nextstate;
end if;
end process;
next state logic
process (all) begin
case state is
when S0 =>
if n then nextstate
elsif d then nextstate
elsif g then nextstate
else nextstate
end if;
when S5 =>
if n then nextstate
elsif d then nextstate
elsif g then nextstate
else nextstate
end if;
when S10 =>
if n then nextstate
elsif d then nextstate
elsif g then nextstate
else nextstate
end if;
when S25 => nextstate
when S30 => nextstate
when S15 =>
if n then nextstate
elsif d then nextstate
elsif g then nextstate
else nextstate
end if;
when S20 =>
if n then nextstate
elsif d then nextstate
elsif g then nextstate
else nextstate
end if;
when S35 => nextstate
when S40 => nextstate
when S45 => nextstate
when others => nextstate

reset, n,
return5,

nextstate:

reset)

d, g: in

S5,
s35, sS40,

begin

if reset then state <= 50;

end case;

end process;

STD_LOGIC;
returnlO: out STD_LOGIC;

s10,

© 2015 Elsevier, Inc.

out STD_LOGIC) ;

S25,

sS45) ;

statetype;

= S5;

S10;
525;

= S0;

= S10;

S15;
S30;

= S5;

= S15;

S20;
S35;

= S10;

= S0;
= S0;

= S20;

S25;
S40;

= S15;

= S25;

S30;
S45;

= S20;

= S0;

S0;
S0;

= S0;

s15,

520,

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 125
(continued from previous page)
SystemVerilog VHDL
// Output Logic -- output logic
assign dispense = (state == S25) | dispense <= 'l' when ((state = S25) or
(state == S30) | (state = S30) or
(state == S35) | (state = S35) or
(state == S40) | (state = S40) or
(state == S45); (state = S545)
assign return5 = (state == S30) | else '0';
(state == S540); returnb <= '1l' when ((state = S30) or
assign returnlO = (state == S35) | (state = S540)
(state == S40); else '0';
assign return2_10 = (state == S545); returnlO <= 'l' when ((state = S35) or
endmodule (state = S40)
else '0';
return2_10 <= 'l' when (state = S45)
else '0';

end;

Exercise 4.37

© 2015 Elsevier, Inc.

126 SOLUTIONS chapter 4
SystemVerilog VHDL
module ex4 37 (input logic clk, reset, library IEEE; use IEEE.STD_LOGIC 1164.all;
output logic [2:0] q);
typedef enum logic [2:0] {SO = 3'b000, entity ex4_37 is
s1 = 3'b001, port (clk: in STD_LOGIC;
S2 = 3'b011, reset: in STD_LOGIC;
S3 = 3'b010, q: out STD_LOGIC_VECTOR(2 downto 0));
S4 = 3'bl10, end;
S5 = 3'bll1,
S6 = 3'bl01, architecture synth of ex4 37 is
S7 = 3'b100} signal state: STD_LOGIC_VECTOR (2 downto 0);
statetype; signal nextstate: STD LOGIC VECTOR(2 downto 0);
begin
statetype [2:0] state, nextstate; -- state register
process (clk, reset) begin
// State Register if reset then state <= "000";
always_ff @ (posedge clk, posedge reset) elsif rising edge(clk) then
if (reset) state <= S0; state <= nextstate;
else state <= nextstate; end if;

end process;
// Next State Logic

always_comb -- next state logic
case (state) process(all) begin
S0: nextstate = S1; case state is
S1l: nextstate = S2; when "000" => nextstate <= "001";
S2: nextstate = S3; when "001" => nextstate <= "011";
S3: nextstate = S4; when "011" => nextstate <= "010";
S4: nextstate = S5; when "010" => nextstate <= "110";
S5: nextstate = S6; when "110" => nextstate <= "111";
S6: nextstate = S7; when "111" => nextstate <= "101";
S7: nextstate = S0; when "101" => nextstate <= "100";
endcase when "100" => nextstate <= "000";
when others => nextstate <= "000";
// Output Logic end case;
assign g = state; end process;
endmodule

-- output logic
g <= state;
end;

Exercise 4.38

Sarah L. Harris and David Money Harris

SystemVerilog VHDL
module ex4 38 (input logic clk, reset, up, library IEEE; use IEEE.STD LOGIC 1164.all;
output logic [2:0] q);
entity ex4_38 is
typedef enum logic [2:0] { port (clk: in STD LOGIC;
S0 = 3'b000, reset: in STD_LOGIC;
S1 = 3'b001, up: in STD_LOGIC;
S2 = 3'b011, q: out STD LOGIC VECTOR(2 downto 0));
S3 = 3'b010, end;
sS4 = 3'bllo0,
s5 = 3'bll1, architecture synth of ex4 38 is
S6 = 3'bl01, signal state: STD_LOGIC_VECTOR (2 downto 0);
S7 = 3'b1l00} statetype; signal nextstate: STD_LOGIC_VECTOR (2 downto 0);
statetype [2:0] state, nextstate; begin

// State Register

always_ ff @ (posedge clk, posedge
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb

Digital Design and Computer Architecture: ARM Edition

SOLUTIONS

-- state register
process (clk, reset) begin
if reset then state <=
elsif rising_ edge (clk)
state <= nextstate;
end if;
end process;

"0o0o";
then

reset)

© 2015 Elsevier, Inc.

case (state) -- next state logic
S0: if (up) nextstate = S1; process (all) begin
else nextstate = S7; case state is
S1: if (up) nextstate = S52; when "000" => if up then
else nextstate = S0; nextstate
S2: if (up) nextstate = S3; else
else nextstate = S1; nextstate
S3: if (up) nextstate = S4; end if;
else nextstate = S2; when "001" => if up then
S4: if (up) nextstate = S5; nextstate
else nextstate = S3; else
S5: if (up) nextstate = S6; nextstate
else nextstate = S4; end if;
S6: if (up) nextstate = S7; when "011" => if up then
else nextstate = S5; nextstate
S7: if (up) nextstate = S0; else
else nextstate = S6; nextstate
endcase end if;
when "010" => if up then
// Output Logic nextstate
assign g = state; else
endmodule nextstate
end if;

(continued on next page)

"001";

"100";

"o11m;

"000";

"010";

"001";

"110";

"o11";

127

© 2015 Elsevier, Inc.
128 SOLUTIONS chapter 4

(continued from previous page)

VHDL
when "110" => if up then
nextstate <= "111";
else
nextstate <= "010";
end if;
when "111" => if up then
nextstate <= "101";
else
nextstate <= "110";
end if;
when "101" => if up then
nextstate <= "100";
else
nextstate <= "111";
end if;
when "100" => if up then
nextstate <= "000";
else
nextstate <= "101";
end if;

when others => nextstate <= "000";
end case;
end process;

-- output logic

q <= state;
end;

Exercise 4.39

Sarah L. Harris and David Money Harris

Option 1
SystemVerilog

module ex4 39 (input logic clk,

output logic z);

typedef enum logic [1:0] {SO,
statetype;

statetype [1:0] state, nextstate;

// State Register

reset, a, b,

s1,

always_ ff @ (posedge clk, posedge

if (reset) state <= S0;

else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0: case ({b,a})
2'b00: nextstate =
2'b01l: nextstate =
2'p1l0: nextstate =
2'bll: nextstate =

endcase

Sl: case ({b,a})
2'b00: nextstate =
2'b01l: nextstate =
2'p10: nextstate =
2'bll: nextstate =

endcase

S2: case ({b,a})
2'b00: nextstate =
2'b01l: nextstate =
2'p1l0: nextstate =
2'bll: nextstate =

endcase
S3: case ({b,a})
2'b00: nextstate =
2'b01l: nextstate =
2'b10: nextstate =
2'bll: nextstate =
endcase
default: nextstate =
endcase
// Output Logic
always_comb
case (state)
S0: z =a & b;
S1: z =a | b;
S2: z = a & b;
S3: z =a | b;
default: z = 1'b0;
endcase
endmodule

s0;
S3;
S0;
S1;

s0;
S3;
S2;
S1;

sS0;
S3;
S2;
S1;

s0;
sS3;
S2;
S1;

s0;

Digital Design and Computer Architecture: ARM Edition

s2, S3}

reset)

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity ex4_39 is
port (clk: in STD_LOGIC;
reset: in STD_LOGIC;
a, b: in STD_LOGIC;
Z: out STD _LOGIC) ;
end;

architecture synth of ex4 39 is
type statetype is (SO0, S1, S2, S3);
signal state, nextstate: statetype;
signal ba: STD_LOGIC VECTOR(1 downto 0);
begin
-- state register
process (clk, reset) begin
if reset then state <= S0;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
ba <= b & a;
process (all) begin
case state is
when SO0 =>
case (ba) is

when "00" => nextstate <= S0;

when "01" => nextstate <= S3;

when "10" => nextstate <= S0;

when "11" => nextstate <= S1;

when others => nextstate <= S0;
end case;

when S1 =>
case (ba) is

when "00" => nextstate <= S0;

when "01" => nextstate <= S3;

when "10" => nextstate <= S2;

when "11" => nextstate <= S1;

when others => nextstate <= S0;
end case;

when S2 =>
case (ba) is

when "00" => nextstate <= S0;
when "01" => nextstate <= S3;
when "10" => nextstate <= S2;
when "11" => nextstate <= S1;

when others => nextstate <= S0;
end case;
when S3 =>
case (ba) is

when "00" => nextstate <= S0;
when "01" => nextstate <= S3;
when "10" => nextstate <= S2;
when "11" => nextstate <= S1;

when others => nextstate <= S0;
end case;
when others =>
end case;
end process;

nextstate <= S0;

© 2015 Elsevier, Inc.

129

© 2015 Elsevier, Inc.

130 SOLUTIONS chapter 4
(continued from previous page)
VHDL
-- output logic
process (all) begin
case state is
when SO => if (a = '1l' and b = '1")
then z <= '1"';
else z <= '0"';
end if;
when S1 => if (a = 'l' or b = '1"
then z <= "'1"';
else z <= '0"';
end if;
when S2 => if (a = 'l' and b = '1")
then z <= '1"';
else z <= '0"';
end if;
when S3 => if (a = 'l' or b = '1")
then z <= '1"';
else z <= '0"';
end if;
when others => z <= '0"';
end case;
end process;
end;
Option 2
SystemVerilog VHDL
module ex4_ 37 (input logic clk, a, b, library IEEE; use IEEE.STD_LOGIC_1164.all;

output logic z);
entity ex4 37 is

logic aprev; port (clk: in STD_LOGIC;

a, b: in STD_LOGIC;
// State Register z: out STD LOGIC);
always_ff @ (posedge clk) end;

aprev <= a;
architecture synth of ex4 37 is
assign z = b ? (aprev | a) : (aprev & a); signal aprev, nland, n2or: STD_LOGIC;
endmodule begin

-- state register

process (clk) begin
if rising edge(clk) then

aprev <= a;

end if;

end process;

z <= (a or aprev) when b = 'l' else
(a and aprev) ;
end;

Sarah L. Harris and David Money Harris

Exercise 4.40

Digital Design and Computer Architecture: ARM Edition

SOLUTIONS

SystemVerilog

module fsm_y(input clk, reset, a,
output y);
typedef enum logic [1:0] {S0=2'b00, S1=2'b01,
S11=2"b1l1l} statetype;
statetype [1:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb
case (state)
S0: 1if (a) nextstate = S1;

else nextstate = S0;
Sl: 1if (a) nextstate = S11;

else nextstate = S0;
S11: nextstate = S11;
default: nextstate = S0O;

endcase
// Output Logic

assign y = state[l];
endmodule

(continued on next page)

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm y is
port (clk, reset, a: in STD_LOGIC;
v out STD_LOGIC);
end;

architecture synth of fsm y is
type statetype is (S0, S1, S11);
signal state, nextstate: statetype;
begin
-- state register
process (clk, reset) begin
if reset then state <= S50;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is
when SO => if a then
nextstate <= S1;
else nextstate <= S0;
end if;
when S1 => if a then
nextstate <= S11;
else nextstate <= S0;
end if;
nextstate <= S11;
nextstate <= S0;

when S11 =>
when others =>
end case;
end process;

-- output logic
y <= '1l' when (state = S11) else '0';
end;

© 2015 Elsevier, Inc.

131

132 SOLUTIONS chapter 4

SystemVerilog

module fsm x(input logic clk, reset, a,
output logic x);
typedef enum logic [1:0] {SO0, S1, S2, S3}
statetype;
statetype [1:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0: if (a) nextstate = S1;
else nextstate = S0;
S1: if (a) nextstate = S2;
else nextstate = S1;
S2: if (a) nextstate = S3;
else nextstate = S2;
S3: nextstate = S3;
endcase

// Output Logic
assign x = (state == S3);
endmodule

Exercise 4.41

VHDL

© 2015 Elsevier, Inc.

(continued from previous page)

library IEEE; use IEEE.STD LOGIC 1164.all;

entity fsm x is

port(clk, reset, a: in STD LOGIC;

x:
end;

out STD_LOGIC) ;

architecture synth of fsm x is
type statetype is (SO0, S1, S2, S3);

signal state,

begin

nextstate: statetype;

-- state register

process (clk,

reset) begin

if reset then state <= S0;
elsif rising edge(clk) then

state <=
end if;
end process;

-- next state
process (all)
case state

nextstate;

logic
begin
is

when S0 => 1if a then

nextstate <= S1;
else nextstate <= S52;
end if;

when S1 => 1if a then

nextstate <= S52;
else nextstate <= S1;
end if;

when S2 => if a then

when S3 =>
when others =>

end case;
end process;

nextstate <= S3;
else nextstate <= S2;
end if;
nextstate <= S3;
nextstate <= S0;

-- output logic

x <= 'l' when

end;

(state = S3) else '0';

Sarah L. Harris and David Money Harris

SystemVerilog

module ex4 41 (input logic clk, start, a,
output logic q);
typedef enum logic [1:0] {SO, S1, S2, S3}
statetype;
statetype [1:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge start)
if (start) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0: if (a) nextstate = S1;
else nextstate = S0;
Sl: if (a) nextstate = S2;
else nextstate = S3;
S2: if (a) nextstate = S2;
else nextstate = S3;
S3: if (a) nextstate = S2;
else nextstate = S3;
endcase

// Output Logic
assign g = state[0];
endmodule

Exercise 4.42

Digital Design and Computer Architecture: ARM Edition

VHDL

entity ex4_41 is

port (clk, start,

q:
end;

© 2015 Elsevier, Inc.

SOLUTIONS

architecture synth of ex4 41 is
type statetype is (S0, S1, S2,

signal state,
begin

-- state register
process (clk, start) begin

state <= nextstate;

end if;
end process;

-- next state logic
process (all) begin

case state is

when S0 =>

when S1 =>

when S2 =>

when S3 =>

when others

end case;
end process;

-- output logic

library IEEE; use IEEE.STD_LOGIC_1164.
a: in STD_LOGIC;
out STD LOGIC) ;
S$3);
nextstate: statetype;
if start then state <= S0;
elsif rising edge(clk) then
if a then
nextstate <= S1;
else nextstate <= S0;
end if;
if a then
nextstate <= S2;
else nextstate <= S3;
end if;
if a then
nextstate <= S52;
else nextstate <= S3;
end if;
if a then
nextstate <= S2;
else nextstate <= S3;
end if;
=> nextstate <= S0;
((state = S1) or (state

g <= 'l' when
else '0';
end;

all;

s3))

133

134 SOLUTIONS chapter 4

SystemVerilog

module ex4 42 (input logic clk, reset, x,
output logic q);
typedef enum logic [1:0] {SO, S1, S2, S3}
statetype;
statetype [1:0] state, nextstate;

// State Register

always_ff @ (posedge clk, posedge reset)
if (reset) state <= S00;
else state <= nextstate;

// Next State Logic
always_comb
case (state)
S00: if (x) nextstate = S11;
else nextstate = S01;
S01: if (x) nextstate = S10;

else nextstate = S00;

S510: nextstate = S01;

S11: nextstate = S01;
endcase

// Output Logic
assign g = state[0] | state[l];
endmodule

Exercise 4.43

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity ex4_42 is
port(clk, reset, x: in STD LOGIC;
q: out STD LOGIC) ;
end;

architecture synth of ex4 42 is
type statetype is (S00, SO01, sS10, S11);
signal state, nextstate: statetype;
begin
-- state register
process (clk, reset) begin
if reset then state <= S500;
elsif rising edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process (all) begin
case state is
when S00 => 1if x then
nextstate <= S11;
else nextstate <= S501;
end if;
when S01 => 1if x then
nextstate <= S10;
else nextstate <= S00;
end if;
when S10 => nextstate <= S01;
when S11 => nextstate <= S01;
when others => nextstate <= S00;
end case;
end process;

-- output logic
q <= '0' when (state = S00) else 'l';
end;

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris

SystemVerilog

module ex4_ 43 (inp
out

typedef enum lo
statetype [1:0]

// State Regist

always_ff @ (posedge clk, posedge
state <= S0;
ate <= nextstate;

if (reset)
else st

// Next State L
always_comb

case (state)
S0: if (a)
else
S1l: if (a)
else
S2: if (a)
else
default:
endcase

// Output Logic
assign g = stat
endmodule

Exercise 4.44

ut clk, reset,

put q);

gic [1:0] {sO,
state, nextstate;

er

ogic

nextstate
nextstate
nextstate
nextstate
nextstate
nextstate
nextstate

e[1];

= S1;

S0;
S2;
s0;
S2;
s0;

= S0;

Digital Design and Computer Architecture: ARM Edition

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

S2} statetype; entity ex4_43 is
port (clk,
q:
end;
reset)

reset,

© 2015 Elsevier, Inc.
SOLUTIONS

a: in

STD_LOGIC;

out STD LOGIC);

architecture synth of ex4 43 is

type statetype is
nextstate:

signal state,
begin

(s0, s1,

-- state register

process (clk,
if reset then

elsif rising edge (clk)

reset)

begin
state <= S0;
then

state <= nextstate;

end if;
end process;

-- next state logic

process (all)
case state is
when S0 =>

when S1 =>

when S2 =>

when others
end case;
end process;

-- output logic
q <= 'l' when
end;

(state = S52)

begin

if a then
nextstate

else nextstate

end if;

if a then
nextstate

else nextstate

end if;

if a then
nextstate

else nextstate

end if;

=> nextstate

52) ;
statetype;

else

= S1;
507

S2;
S0;

S2;

= S0;

S0;

r;

135

136 SOLUTIONS chapter 4

(@)
SystemVerilog

module ex4 44a(input logic clk, a, b, ¢, d,
output logic q);

logic areg, breg, creg, dreg;

always_ff @ (posedge clk)

begin
areg <= a;
breg <= b;
creg <= c;
dreg <= d;
a <= ((areg ” breg) ” creg) " dreg;
end
endmodule
(d)
SystemVerilog

module ex4 44d(input logic clk, a, b, ¢, d,
output logic q);

logic areg, breg, creg, dreg;

always_ff @ (posedge clk)

begin
areg <= a;
breg <= b;
creg <= c;
dreg <= d;
q <= (areg " breg) " (creg ” dregq);
end
endmodule

Exercise 4.45

© 2015 Elsevier, Inc.

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity ex4_44a is
port(clk, a, b, ¢, d: in STD_LOGIC;
q: out STD_LOGIC) ;
end;

architecture synth of ex4_44a is
signal areg, breg, creg, dreg: STD_LOGIC;
begin
process (clk) begin
if rising edge(clk) then
areg <= a;

breg <= b;
creg <= c;
dreg <= d;
g <= ((areg xor breg) xor creg) xor dreg;
end if;
end process;
end;
VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity ex4 44d is
port(clk, a, b, ¢, d: in STD_LOGIC;
q: out STD_LOGIC) ;
end;

architecture synth of ex4 44d is
signal areg, breg, creg, dreg: STD_LOGIC;
begin
process (clk) begin
if rising edge(clk) then
areg <= a;

breg <= b;
creg <= c;
dreg <= d;
g <= (areg xor breg) xor (creg xor dreg);
end if;
end process;

end;

Sarah L. Harris and David Money Harris

SystemVerilog
module ex4 45 (input logic clk,
input logic [1:0] a, b,
output logic [1:0] s);
logic [1:0] areg, breg;
logic creg;
logic [1:0] sum;
logic cout;
always_ff @ (posedge clk)
{areg, breg, creg, s} <= {a, b, c,
fulladder fulladdl (areg[0], breg[0]
sum[0], cout);
fulladder fulladd2(areg[l], breg[l],
sum(1],);
endmodule
Exercise 4.46

Digital Design and Computer Architecture: ARM Edition

Cr

sum};

creg,

cout,

SOLUTIONS

VHDL

library IEEE; use IEEE.STD_LOGIC 1164.all;

entity ex4_45 is

port(clk, c: in STD LOGIC;
a, b: in STD LOGIC VECTOR(1l downto
s: out STD_LOGIC_VECTOR(1 downto

end;

architecture synth of ex4 45 is
component fulladder is
port(a, b, cin: in STD LOGIC;
s, cout: out STD_LOGIC) ;
end component;

© 2015 Elsevier, Inc.

137

0);
0));

signal creg: STD LOGIC;

signal areg, breg, cout: STD LOGIC_VECTOR (1 downto
0) 7

signal sum: STD_LOGIC_VECTOR (1 downto 0);
begin

process (clk) begin
if rising edge (clk)
areg <= aj;

then

breg <= b;

creg <= c;

s <= sum;
end if;

end process;

fulladdl: fulladder

port map (areg(0), breg(0), creg, sum(0), cout(0));

fulladd2: fulladder
port map (areg(l),
cout (1)) ;
end;

breg(l), cout(0),

A signal declared as tri can have multiple drivers.

Exercise 4.47

sum (1),

138 SOLUTIONS chapter 4

SystemVerilog

module syncbad (input logic clk,
input logic d,
output logic q);

logic nl;

always_ff @ (posedge clk)
begin
g <= nl;// nonblocking
nl <= d; // nonblocking
end
endmodule

Exercise 4.48

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
port(clk: in STD_LOGIC;
d: in STD LOGIC;
q: out STD_LOGIC) ;
end;

architecture bad of syncbad is
begin
process (clk
variable nl: STD_LOGIC;

begin
if rising edge(clk) then
g <= nl; -- nonblocking
nl <= d; -- nonblocking
end if;
end process;
end;

© 2015 Elsevier, Inc.

They have the same function.

Exercise 4.49

CLK

A
s T

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 139

They do not have the same function.

codel

CLK
) 7
a1) x
Y
C L
code2 CLK
7

Exercise 4.50

(a) Problem: Signal d is not included in the sensitivity list of the always

statement. Correction shown below (changes are in bold).

module latch(input logic clk,
input logic [3:0] d,
output logic [3:0] q);

always_latch
if (clk) g <= d;
endmodule
(b) Problem: Signal b is not included in the sensitivity list of the always
statement. Correction shown below (changes are in bold).

module gates (input logic [3:0] a, b,
output logic [3:0] yl, vy2, y3, v4, y5);

always_comb
begin

end
endmodule

(c) Problem: The sensitivity list should not include the word “posedge”.
The always statement needs to respond to any changes in s, not just the pos-
itive edge. Signals d0 and d1 need to be added to the sensitivity list. Also, the
always statement implies combinational logic, so blocking assignments should
be used.

© 2015 Elsevier, Inc.
140 SOLUTIONS chapter 4

module mux2 (input logic [3:0] d0, di,
input logic s,
output logic [3:0] y);

always_comb

if (s) y = di;
else y = do;
endmodule

(d) Problem: This module will actually work in this case, but it’s good prac-
tice to use nonblocking assignments in always Statements that describe se-
quential logic. Because the always block has more than one statement in it, it

requires a begin and end.

module twoflops (input logic clk,
input logic 40, di,
output logic g0, gl);

always_ff @ (posedge clk)

begin
ql <= di; // nonblocking assignment
g0 <= d0; // nonblocking assignment
end
endmodule

(e) Problem: outl and out2 are not assigned for all cases. Also, it would be
best to separate the next state logic from the state register. reset is also missing

in the input declaration.

module FSM(input logic clk,
input logic reset,
input logic a,
output logic outl, out2);

logic state, nextstate;

// state register
always_ff @ (posedge clk, posedge reset)
if (reset)
state <= 1"b0;
else
state <= nextstate;

// next state logic
always_comb
case (state)
1"b0: if (a) nextstate = 1"b1l;
else nextstate = 1"b0;
1"bl: if (~a) nextstate = 1°b0;
else nextstate = 1"bl;
endcase

// output logic (combinational)
always_comb

if (state == 0) {outl, out2} = {1"bl, 1"b0};
else {outl, out2} = {1"b0, 1"bl};
endmodule

(f) Problem: A priority encoder is made from combinational logic, so the
HDL must completely define what the outputs are for all possible input combi-

nations. So, we must add an else statement at the end of the always block.
module priority(input logic [3:0] a,

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 141

output logic [3:0] y);

always_comb

if (a[3]) y = 4'b1000;

else if (a[2]) y = 4'b0100;

else if (a[l]) y = 4'b0010;

else if (a[0]) y = 4'b0001;

else y = 4%b0000;
endmodule

(9) Problem: the next state logic block has no default statement. Also, state
S2 is missing the S.

module divideby3FSM(input logic clk,
input logic reset,
output logic out);

logic [1:0] state, nextstate;
parameter SO0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'bl0;

// State Register

always_fFf @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

// Next State Logic
always_comb
case (state)

S0O: nextstate = S1;

Sl: nextstate = S2;

S2: nextstate = S0;

default: nextstate = SO;
endcase

// Output Logic
assign out = (state == S2);
endmodule

(h) Problem: the ~ is missing on the first tristate.

module mux2tri (input logic [3:0] 40, di,
input logic s,
output logic [3:0] y);

tristate t0(d0, ~s, y);
tristate tl(dl, s, y);

endmodule

(i) Problem: an output, in this case, g, cannot be assigned in multiple al-
ways or assignment statements. Also, the flip-flop does not include an enable,
so it should not be named floprsen.

module floprs(input logic clk,
input logic reset,
input logic set,

input logic [3:0] d,
output logic [3:0] q);

always_ff @ (posedge clk, posedge reset, posedge set)

142

SOLUTIONS

© 2015 Elsevier, Inc.

chapter 4
if (reset) q <= 0;
else if (set) q <= 1;
else g <= d;
endmodule

(j) Problem: this is a combinational module, so nonconcurrent (blocking)
assignment statements (=) should be used in the always statement, not concur-
rent assignment statements (<=). Also, it's safer to use always @(*) for combi-
national logic to make sure all the inputs are covered.

module and3 (input logic a, b, c,
output logic y);

logic tmp;

always_comb

endmodule

Exercise 4.51

It is necessary to write
g <= 'l' when state = S0 else '0';

rather than simply
g <= (state = S5S0);

because the result of the comparison (state = S0) isoftype Boolean
(true and false) and g must be assigned a value of type STD_LOGIC ("1
and '0").

Exercise 4.52

(a) Problem: both clk and d must be in the process statement.

architecture synth of latch is

begin
process (clk, d) begin
if clk = '1' then g <= d;
end if;
end process;
end;

(b) Problem: both a and b must be in the process statement.

architecture proc of gates is
begin
process (all) begin
vyl <= a and b;
y2 <= a or b;
y3 <= a xor b;

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 143

y4 <= a nand b;
y5 <= a nor b;
end process;
end;

(c) Problem: The end if and end process statements are missing.
architecture synth of flop is
begin
process (clk)
if clk'event and clk = '1l' then
q <= d;
end if;
end process;
end;

(d) Problem: The final else statement is missing. Also, it’s better to use
“process(all)” instead of “process(a)”

architecture synth of priority is

begin
process (all) begin
if a(3) = 'l' then y <= "1000";
elsif a(2) = '1' then y <= "0100";
elsif a(l) = '1l' then y <= "0010";
elsif a(0) = '1' then y <= "0001";
else y <= "0000";
end if;
end process;
end;

(e) Problem: The default statement is missing in the nextstate case
statement. Also, it’s better to use the updated statements: “if reset”, “ris-
ing_edge(clk)”, and “process(all)”.

architecture synth of divideby3FSM is
type statetype is (S0, S1, S2);
signal state, nextstate: statetype;
begin
process (clk, reset) begin
if reset then state <= S0;
elsif rising_edge(clk) then
state <= nextstate;
end if;
end process;

process (all) begin
case state is

when S0 => nextstate <= S51;

when S1 => nextstate <= S2;

when S2 => nextstate <= S0;

when others => nextstate <= SO;
end case;

end process;

g <= 'l' when state = S0 else '0';
end;
(f) Problem: The select signal on tristate instance tO must be inverted.
However, VHDL does not allow logic to be performed within an instance dec-
laration. Thus, an internal signal, sbar, must be declared.

architecture struct of mux2 is
component tristate

144

© 2015 Elsevier, Inc.
SOLUTIONS chapter 4

port (a: in STD_LOGIC_VECTOR(3 downto 0);
en: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (3 downto 0));
end component;
signal sbar: STD_LOGIC;
begin
sbar <= not s;
t0: tristate port map(d0, sbar, vy);
tl: tristate port map(dl, s, vy);
end;

(9) Problem: The g output cannot be assigned in two process or assignment
statements. Also, it’s better to use the updated statements: “if reset”, and “ris-
ing_edge(clk)”.

architecture asynchronous of flopr is
begin
process (clk, reset, set) begin
if reset then
q <= '0';
elsif set then
q <= "17;
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

Question 4.1

SystemVerilog VHDL

assign result

= sel ? data : 32'b0;
result <= data when sel = '1l' else X"00000000";

Question 4.2

HDLs support blocking and nonblocking assignments in an always /
process statement. A group of blocking assignments are evaluated in the or-
der they appear in the code, just as one would expect in a standard programming

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS

145

language. A group of nonblocking assignments are evaluated concurrently; all
of the statements are evaluated before any of the left hand sides are updated.

SystemVerilog

In a SystemVerilog always statement, = indicates a
blocking assignment and <= indicates a nonblocking
assignment.

Do not confuse either type with continuous assign-
ment using the assign statement. assign state-
ments are normally used outside always statements
and are also evaluated concurrently.

VHDL

InaVHDL process statement, : = indicates a block-
ing assignment and <= indicates a nonblocking assign-
ment (also called a concurrent assignment). This is the
first section where : = is introduced.

Nonblocking assignments are made to outputs and
to signals. Blocking assignments are made to vari-
ables, which are declared in process statements (see
the next example).

<= can also appear outside process statements,
where it is also evaluated concurrently.

See HDL Examples 4.24 and 4.29 for comparisons of blocking and non-
blocking assignments. Blocking and nonblocking assignment guidelines are

given on page 206.

Question 4.3

The SystemVerilog statement performs the bit-wise AND of the 16 least
significant bits of data with 0xC820. It then ORs these 16 bits to produce the 1-

bit result.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 139

CHAPTER 5

Note: the HDL files given in the following solutions are available on the
textbook’s companion website at:
http://textbooks.elsevier.com/9780123704979 .

Exercise 5.1

(a) From Equation 5.1, we find the 64-bit ripple-carry adder delay to be:

lipple = Niga = 64(450 ps) = 28.8 ns

(b) From Equation 5.6, we find the 64-bit carry-lookahead adder delay to

be:
_ N_4
tcra = tog ¥ fpg_block T\ 3 ~1)?aND_OR * KfEA 150
t . = [150 + (6 x 150) + (6—4- 1)300 +(4x 450)} = 7.35ns
CLA ~ 7 =17.
(Note: the actual delay is only 7.2 ns because the first AND_OR gate only
has a 150 ps delay.)

(c) From Equation 5.11, we find the 64-bit prefix adder delay to be:
Ipg = tpg + |Og ZN([pg_prefix) + IxoR
tpy = [150 +6(300) + 150] = 2.1 ns

140

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 5

Exercise 5.2

(a) The fundamental building block of both the ripple-carry and carry-loo-
kahead adders is the full adder. We use the full adder from Figure 4.8, shown
again here for convenience:

D

D2

g S
cin
o T

p
FIGURE 5.1 Full adder implementation

The full adder delay is three two-input gates.
tpy = 3(50) ps = 150 ps

The full adder area is five two-input gates.
2 2
Apy = 5(15 pm™) = 75 um

The full adder capacitance is five two-input gates.
Cpy = 5(20 fF) = 100 fF

Thus, the ripple-carry adder delay, area, and capacitance are:

Lripple = Ntgp = 64(150 ps) = 9.6 ns

2 2
Ajipple = NApa = 64(75 um™) = 4800 um
Cripple = NCgp = 64(100 fF) = 6.4 pF

Using the carry-lookahead adder from Figure 5.6, we can calculate delay,
area, and capacitance. Using Equation 5.6:

tcry = [50+6(50) +15(100) + 4(150)] ps = 2.45 ns

Sarah L. Harris and David Money Harris

(The actual delay is only 2.4 ns because the first AND_OR gate only con-

tributes one gate delay.)

For each 4-bit block of the 64-bit carry-lookahead adder, there are 4 full ad-
ders, 8 two-input gates to generate P; and G;, and 11 two-input gates to generate

P;.;and G;.;. Thus, the area and capacitance are:

Digital Design and Computer Architecture: ARM Edition

2 2
Acpapioer = [4(75) +19(15)] um™ = 585 pm

Apy, = 16(585) pm® = 9360 pm’

Cerapiock = [4(100) +19(20)] fF = 780 fF

Cepyg = 16(780) fF = 12.48 pF

Now solving for power using Equation 1.4,
denamic_ripple

_1 _1 2 _
Pyynamic CLA = ECVIZDD/’ = 5(12.48 pF)(1.2 V)"(100MHz) = 0.899 m ¥

(b) Compared to the ripple-carry adder, the carry-lookahead adder is almost
twice as large and uses almost twice the power, but is almost four times as fast.
Thus for performance-limited designs where area and power are not constraints,
the carry-lookahead adder is the clear choice. On the other hand, if either area
or power are the limiting constraints, one would choose a ripple-carry adder if
performance were not a constraint.

Exercise 5.3

= %CV%D/’ = %(6.4 PF)(1.2 V)2(100MHz) = 0.461 m W

© 2015 Elsevier, Inc.
SOLUTIONS

ripple- carry-lookahead cla/ripple
carry
Area (um?) 4800 9360 1.95
Delay (ns) 9.6 2.45 0.26
Power (mW) 0.461 0.899 1.95

TABLE 5.1 CLA and ripple-carry adder comparison

141

© 2015 Elsevier, Inc.
142 SOLUTIONS chapter 5

A designer might choose to use a ripple-carry adder instead of a carry-loo-
kahead adder if chip area is the critical resource and delay is not the critical con-
straint.

Exercise 5.4

Sarah L. Harris and David Money Harris

SystemVerilog

module prefixaddl6 (input logic [15:0] a, b,
input logic cin,
output logic [15:0] s,

output logic cout) ;
logic [14:0] p, g;
logic [7:0] pij 0, gij_0, pij_1, gij_1,
pij_2, gij_2, pij_3, gij_3;

logic [15:0] gen;

pgblock pgblock_top(a

pgblackblock pgblackblock 0 ({p[14], p[12],
pl81, pl6l, pl4], pl2], plO]},

{gl14], gl12], g[10], gl8], gle]l, gl4], gl2

{p(13], p[11], p[9], p[7], p[5], pP[3], pP[1

gl

)i

[14:0], b[14:0], p, 9);
pl10],

1, gl0]},
1, 1'b0},
{gl131, gl11l]l, gl9), g9l7], gl5], g9l3], 1], cin},
pij 0, gij_ 0 ;
pgblackblock pgblackblock 1({pij 0[7], p[13],
pij_0([5], p[9], pij_0I[31, pI5], pij_O[1], p[1l]},
{gij_o0(7], g9l13], gij_0[5], gl9], gij 0[3],
gl5], gij_0[1], gll1l},
{ {2{pij_O[61}}, {2{pij_O0I[41}},
{2{pij_0[01}} 1},
{ {2{gij_O0fl6l1}}, {2{gij_0l[41}},
{2{gij_0I[01}} 1},

{2{pij_0[2]}},
{2{gij_0[2]1}},

pij_1, gij_1);
pgblackblock pgblackblock 2 ({pij_1[7], pij 1161,

pij_oflel, pl11l], pij_1[3], pij_1(2], pij_0[2]1, p[3]},

{gij_1071, gij_1[e6], gij_O0[6], g[11l], gij_1[3],

gij_1[2], gij_0r[2], gIl31},

{ {4{pij_1151}}, {4{pij_1I

{ {4{gij_1151}}, {4{gij_1I
pij_2, gij_2);

113} 4,
113} 1,

pgblackblock pgblackblock 3({pij_2[7], pij_2[6],
pij_2[5], pij_2[4], pij_1I[5], pij_1I[4],
pij_0[4]1, p[71},
{gij_2171, gij_2[e6], gij_2[5],
gij_2([4], gij_1I[5], gij_1([4], gij_O[4], gl7]},
{ 8{pij 2I[31} },{ 8{gij 2[31} }, pij 3, gij 3);

sumblock sum _out(a, b, gen, s);

assign gen = {gij_3, gij_2[3:0],
gij_1[1:0], gij_0[0], cin};
assign cout = (a[l5] & b[15]) |

(gen[15] & (a[l5] | b[15]));

endmodule

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS

143

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity prefixaddlé is
port(a, b: in STD LOGIC VECTOR (15 downto 0);

cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR(15 downto 0);
cout: out STD_LOGIC) ;

end;

architecture synth of prefixaddl6 is
component pgblock
port(a, b: in STD_LOGIC_VECTOR (14 downto 0);
p, g: out STD LOGIC VECTOR (14 downto 0));
end component;

component pgblackblock is
port (pik, gik: in STD_LOGIC_VECTOR(7 downto 0);
pkj, gkj: in STD_LOGIC_VECTOR(7 downto 0);
pij: out STD LOGIC VECTOR (7 downto 0);
gij: out STD_LOGIC_VECTOR(7 downto 0));
end component;

component sumblock is
port (a, b, g: in STD_LOGIC_VECTOR(15 downto 0);
s: out STD_LOGIC_VECTOR (15 downto 0));
end component;

signal p, g:
signal pij_0,
pij_2,

STD_LOGIC VECTOR(14 downto 0);
gij_0, pij_1, gij_1,

gij_2, gij 3:

STD_LOGIC VECTOR(7 downto 0);
STD_LOGIC_VECTOR (15 downto 0);
pik 1, pik 2, pik_3,

gik 1, gik 2, gik 3,

pkj_1, pkj_2, pkj_3,

gkj_1, gkj_2, gkj_3, dummy:
STD_LOGIC VECTOR(7 downto 0);

signal gen:

signal pik_ 0,
gik 0,
pkj_0,
gkj_0,

begin

pgblock_top: pgblock

port map(a(l4 downto 0), b(l4 downto 0), p, g);:

&p (12) &p (10) &p (8) &p (6) &p (4) &p (2) &p (0)) ;
&g(12)&g(10) &g (8) &g (6) &g (4) &g(2) &g(0));
&p(11)&p (9) &p(7) &p(5) & p(3)& p(1)&'0");
&g (11)&g(9)&g(7)&g(5)& g(3)& g(l)& cin);
pgblackblock 0:

port map (pik_0,
pij_0, gij_0);

pgblackblock

gik 0, pkj_0, gkj_o0,

© 2015 Elsevier, Inc.

144 SOLUTIONS chapter 5
(continued from previouspage)
Verilog VHDL
pik 1 <= (pij 0(7)&p(13)&pij 0(5)&p(9)&
pij_0(3)&p(5)&pij_0(1)&p(1));
gik 1 <= (gij_0(7)&g(13)sgij_0(5)&g(9)&
gij_0(3)&g(5)&gij_0(1)&g (1))
pkj_1 <= (pij_0(6)&pij_0(6)&pij _0(4)&pij_0(4)s&
pij_0(2)&pij_0(2)&pij_0(0)&pij_0(0));
gkj_1 <= (gij_0(6)&gij_0(6)&gij_0(4)&gij_0(4)&
913_0(2) &gij_0(2) &gij_0(0) &gij_0(0));

pgblackblock 1: pgblackblock
port map(pik_1, gik_ 1, pkj_1, gkj_1,
pij_1, gij_1);

pik 2 <= (pij _1(7)&pij 1(6)&pij 0(6)&
p(ll)&pij_1(3)&pij_1(2)&
piji_0(2)&p(3));

gik 2 <= (gij _1(7)&gij_1(6)&gij 0(6)&
g(11l)s&gij_1(3)&gij _1(2)&
9ij_0(2)&g(3));

pkj_2 <= (pij 1(5)&p13 _1(5)&pij _1(5)&pij 1(5)&

pij_1(1)&pij_1(1)&pij_1(1)&pij_1(1));

gkj_2 <= (gij_1(5)&gij_1(5)&gij_1(5)&gij_1(5)&

gij_1(1)&gij_1(1)&gij_1(1)&gij_1(1));

pgblackblock 2: pgblackblock

port map(pik_2, gik_2, pkj_2, gkj_2, pij_2, gij_2);

pik 3 <= (pij 2(7)&pij 2(6)&pij 2(5)&

pij_2(4)&pij_1(5)&pij_1(4)s
pij_0(4 (7))

gik 3 <= (gij 2(7)&gij 2(6)&gij 2(5)&
gij_2(4
gij _0(4 (7))

pkj_3 <= (pij_2(3),pij_2
pij_2(3),pij_2(3),pij_

gkj_3 <= (gij_2(3),g9ij_2
gij_2(3),913_2(3),9ij_

), pij_2(3),pij_2(3),
),pij_2(3));
),gij_2(3),9i3_2(3),

(
)
)
(
)
)
(
2
(
2(3),913_2(3));

6
&
&p
6
&gij_1(5)&gij_1(4)&
&g
3
(3
3
(3

pgblackblock 3: pgblackblock
port map(pik 3, gik 3, pkj 3, gkj 3, dummy,
gij_3);

sum_out: sumblock
port map(a, b, gen, s);

gen <= (gij_3&gij_2(3 downto 0)&gij_1(1 downto 0)&
gij_0(0)&cin);
cout <= (a(1l5) and b(1l5)) or
(gen(15) and (a(l5) or b(l5)));
end;

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 145
(continued from previous page)
SystemVerilog VHDL
module pgblock (input logic [14:0] a, b, library IEEE; use IEEE.STD LOGIC 1164.all;
output logic [14:0] p, 9g);
entity pgblock is
assign p = a | b; port(a, b: in STD LOGIC VECTOR (14 downto 0);
assign g = a & b; p, g: out STD_LOGIC_VECTOR(14 downto 0));
end;
endmodule
architecture synth of pgblock is
module pgblackblock (input logic [7:0] pik, gik, begin
pkj, gkj, p <= a or b;
output logic [7:0] pij, gij); g <= a and b;
end;

assign pij = pik & pkj;
assign gij = gik | (pik & gkj);
library IEEE; use IEEE.STD_LOGIC_1164.all;
endmodule
entity pgblackblock is
module sumblock (input logic [15:0] a, b, g, port (pik, gik, pkj, gkj:
output logic [15:0] s); in STD LOGIC VECTOR(7 downto 0);
pij, gij:
assign s = a ~ b " g; out STD_LOGIC_VECTOR(7 downto 0));
end;

endmodule
architecture synth of pgblackblock is
begin
pij <= pik and pkj;
gij <= gik or (pik and gkj);
end;

library IEEE; use IEEE.STD LOGIC 1164.all;

entity sumblock is
port(a, b, g: in STD LOGIC VECTOR(15 downto 0);
s: out STD_LOGIC_VECTOR(15 downto 0));
end;

architecture synth of sumblock is
begin

s <= a xor b xor g;
end;

Exercise 5.5

© 2015 Elsevier, Inc.
146 SOLUTIONS chapter 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1

10:7] 97 : : 2:-1] 11

14:-1113:-1|12:-1[11:-1| 10:-1| 9:-1| 8:-1f 7:-1

iij iij

Ai Bi Pi:kPk-l:jGi:k Gk-l:j G':k Pi:k Gk-l:j Gi-l:-ljj
Pi G KH \ / @ U
IDi:j Gi:j Gi:j
S

FIGURE 5.2 16-hit prefix adder with “gray cells”

Exercise 5.6

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 147

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1

S
B\

\

W = g\ g
B\ Em
e g\ g g

2

Legend i [| @
ij

-
S
~

a
2

Ai Bi Pi:kPk»l:jGi:k Gk-l:j Gi-l:-lﬁ
Pii G w
Pi:j Gi:j
S

FIGURE 5.3 Schematic of a 16-bit Kogge-Stone adder

Exercise 5.7

(2) We show an 8-bit priority circuit in Figure 5.4. In the figure X7 = 45,
X7.6 = A74g, X7.5 = A7AgAs, and so on. The priority encoder’s delay is log,N 2-
input AND gates followed by a final row of 2-input AND gates. The final stage
is an (N/2)-input OR gate. Thus, in general, the delay of an N-input priority en-
coder is:

tha_priority = (1092N+1)t,5 AnD2 * Yo ORNI2

chapter 5

Al AZ A3 A4 A5 AG A7
X7

X7:6

71 73

A A3 AL A A A,

| | | | |
Yo Yy Yo Yo Y Yo Y7

Y,Y.Y.Y, Y,Y,Y.Y, Y.V,

WW

FIGURE 5.4 8-input priority encoder

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris

SystemVerilog
module priorityckt (input logic [7:0] a,
output logic [2:0] z);

logic [7:0] y;

logic x7, x76, x75, x74, x73, x72, x71;

logic x32, x54, x31;

logic [7:0] abar;

// row of inverters

assign abar = ~a;

// first row of AND gates

assign x7 = abar[7];

assign x76 = abar[6] & x7;

assign x54 = abar[4] & abar[5];

assign x32 = abar([2] & abar[3];

// second row of AND gates

assign x75 = abar([5] & x76;

assign x74 = x54 & x76;

assign x31 = abar[l] & x32;

// third row of AND gates

assign x73 = abar[3] & x74;

assign x72 = x32 & x74;

assign x71 = x31 & x74;

// fourth row of AND gates

assign y = {al[7], al6] & x7, al5] & x76,

al4] & x75, al[3] & x74, al[2] & x73,
all] & x72, a[0] & x71};
// row of OR gates
assign z = { |[{y[7:41},
[{y[7:6], y[3:21},
I{y[1], yI[3], yI[5], yI[7]1} };

endmodule

Exercise 5.8

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.

SOLUTIONS

VHDL

library IEEE; use IEEE.STD LOG

entity priorityckt is
port(a: in STD_LOGIC_VECTOR
z: out STD_LOGIC_VECTOR
end;

IC 1164.all;

(7 downto 0);
(2 downto 0));

architecture synth of priorityckt is

signal y, abar:
signal x7, x76, x75, x74, x7
x32, x54, x31: STD_LO
begin

-- row of inverters
abar <= not a;

-- first row of AND gates
x7 <= abar(7);

x76 <= abar (6) and x7;

x54 <= abar(4) and abar(5);
x32 <= abar(2) and abar(3);

-- second row of AND gates
x75 <= abar(5) and x76;
x74 <= x54 and x76;

x31 <= abar(l) and x32;

-- third row of AND gates
x73 <= abar(3) and x74;
x72 <= x32 and x74;

x71 <= x31 and x74;

-- fourth row of AND gates

y <= (a(7) & (a(6) and x7) &
(a(4) and x75) & (a(3)
x73) &
(a(l) and x72) & (a(0)
-- row of OR gates
z <= ((y(7) or y(6) or y(5)
(y(7) or y(6) or y(3)
(y(l) or y(3) or y(5)
end;

3, x72,
GIC;

x71,

(a(5)
and x74) &

and x76) &
(a(2)

and x71));

149

STD_LOGIC_VECTOR (7 downto 0);

and

© 2015 Elsevier, Inc.

150 SOLUTIONS chapter 5
(@)
D
B31
Not
Equal
(b)
(c)

Exercise 5.9

151 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(a) Answers will vary.
3and5: 3-5=0011,-0101,=0011, + 1010, + 1 = 1110, (= -21¢). The sign bit (most
significant bit) is 1, so the 4-bit signed comparator of Figure 5.12 correctly computes
that 3 is less than 5.

(b) Answers will vary.
-3and6:-3-6=1101-0110=1101 + 1001 +1=01112 (=-7, but overflow occurred —
the result should be -9). The sign bit (most significant bit) is 0, so the 4-bit signed
comparator of Figure 5.12 incorrectly computes that -3 is not less than 6.

(c) Inthe general, the N-bit signed comparator of Figure 5.12 operates incorrectly upon
overflow.

Exercise 5.10

If no overflow occurs, connect the sign bit (i.e., most significant bit) of the result to the
LessThan output.
If overflow occurs, invert the sign bit of the result and connect it to the LessThan output.

Overflow occurs when (1) the two inputs have different signs, AND (2) the sign of the
subtraction result has a different sign than the A input, as shown in the figure below.

A B ResuItN.1 AN.1 BN.1
N N

N
Result
Overflow

Resulty.1

LessThan

We could also have built this as: LessThan = N @ V, where N is Resulty.; and V is the Overflow
signal.

Exercise 5.11

SystemVerilog

module alu(input logic [31:0] a, b,
input logic [1:0] ALUControl,
output logic [31:0] Result);

logic [31:0] condinvb;
logic [32:0] sum;

assign condinvb = ALUControl[0] ? ~b : Db;
assign sum = a + condinvb + ALUControl[0];

always_comb
casex (ALUControl[1l:0])

152 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

2'b0?: Result = sum;

2'b1l0: Result = a & b;
2'bll: Result = a | b;
endcase
endmodule
VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity alu is

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(1l downto 0);
Result: buffer STD_LOGIC_VECTOR (31 downto 0));

end;

architecture behave of alu is
signal condinvb: STD_LOGIC_VECTOR(31 downto 0);
signal sum: STD_LOGIC_VECTOR (32 downto 0);
begin
condinvb <= not b when ALUControl (0) else b;
sum <= ('0', a) + ('0', condinvb) + ALUControl(O0);

process(all) begin
case? ALUControl(l downto 0) is

when "0-" => result <= sum(31 downto 0);
when "10" => result <= a and b;

when "11" => result <= a or b;

when others => result <= (others => '-");

end case?;
end process;
end;

Exercise 5.12

© 2015 Elsevier, Inc.

SystemVerilog

module alu(input logic [31:0] a, b,
input logic [1:0] ALUControl,
output logic [31:0] Result,
output logic [3:0] ALUFlags);

logic neg, zero, carry, overflow;
logic [31:0] condinvb;
logic [32:0] sum;

assign condinvb = ALUControl[0] ? ~b : Db;
assign sum = a + condinvb + ALUControl[0];

always_comb
casex (ALUControl[1:0])
2'b0?: Result = sum;
2'bl0: Result = a & b;
2'bll: Result = a | b;

endcase
assign neg = Result[31];
assign zero = (Result == 32'b0);
assign carry = (ALUControl[l] == 1'b0) & sum[32];

assign overflow = (ALUControl[l] == 1'b0) &
~(a[31] ~ b[31] ~ ALUControl[0]) &
(a[31] ~ sum([31]1);

153 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

assign ALUFlags = {neg, zero, carry, overflow};
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(1 downto 0);
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of alu is
signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

signal sum: STD_LOGIC_VECTOR (32 downto 0);

signal neg, zero, carry, overflow: STD_LOGIC;
begin

condinvb <= not b when ALUControl (0) else b;

sum <= ('0', a) + ('0', condinvb) + ALUControl(O0);

process(all) begin
case? ALUControl(l downto 0) is

when "0-" => result <= sum(31 downto 0);
when "10" => result <= a and b;

when "11" => result <= a or b;

when others => result <= (others => '-");

end case?;
end process;

neg <= Result (31);
zZero <= '1l' when (Result 0) else '0';
carry <= (not ALUControl (1 and sum(32);

)

overflow <= (not ALUControl(1l)

(not (a(31l) xor b(3

(a(31) xor sum(31))

ALUFlags <= (neg, zero, carry, overflow);
end;

)
) and
1) xor ALUControl(0))) and

’

Exercise 5.13

© 2015 Elsevier, Inc.

SystemVerilog

module testbench();
logic clk;
logic [31:0] a, b, y, y_expected;
logic [1:0] ALUControl;

logic [31:0] vectornum, errors;
logic [99:0] testvectors[10000:0];

// instantiate device under test
alu dut(a, b, ALUControl, v);

// generate clock
always begin

clk = 1; #50; clk = 0; #50;
end

// at start of test, load vectors

initial begin
Sreadmemh ("ex5.13_alu.tv", testvectors);
vectornum = 0; errors = 0;

end

154 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

// apply test vectors at rising edge of clock
always @ (posedge clk)
begin
#1;
ALUControl = testvectors[vectornum] [97:96];
a = testvectors|[vectornum] [95:64];
b = testvectors[vectornum] [63:32];
y_expected = testvectors|[vectornum] [31:0];
end

// check results on falling edge of clock
always @ (negedge clk)
begin
if (y !== y_expected) begin
Sdisplay ("Error in vector %d", vectornum);

© 2015 Elsevier, Inc.

Sdisplay (" Inputs : a = %$h, b = %$h, ALUControl = %b", a, b, ALUControl);
h

Sdisplay (" Outputs: y = %
y, y_expected);

(%h expected)",

errors = errors+l;
end
vectornum = vectornum + 1;
if (testvectors|[vectornum] [0] === 1'bx) begin
Sdisplay("%d tests completed with %d errors", vectornum, errors);
Sstop;
end
end
endmodule
VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

entity testbench is -- no inputs or outputs

end;

architecture sim of testbench is
component alu

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR (1 downto 0);
Result: buffer STD_LOGIC_VECTOR(31 downto 0));

end component;

signal a, b, Result, Result_expected: STD_LOGIC_VECTOR (31 downto 0);

signal ALUControl: STD_LOGIC_VECTOR(1l downto 0);
signal clk, reset: STD_LOGIC;
constant MEMSIZE: integer := 99;

type tvarray is array (MEMSIZE downto 0) of STD_LOGIC_VECTOR (99 downto O0);

shared variable testvectors: tvarray;

shared variable vectornum, errors: integer;
begin

—-— instantiate device under test

dut: alu port map(a, b, ALUControl, Result);

—-— generate clock
process begin
clk <= '1"'"; wait for 5 ns;
clk <= '0'; wait for 5 ns;
end process;

-— at start of test, pulse reset

155 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

process begin
reset <= 'l'; wait for 27 ns; reset <= '0';
wait;

end process;

—— run tests
—— at start of test, load vectors
process is
file tv: TEXT;
variable i, index, count: integer;
variable L: line;
variable ch: character;
variable readvalue: integer;

begin
—-— read file of test vectors
i = 0;
index := 0;

FILE_OPEN(tv, "ex5.13_alu.tv", READ_MODE);
report "Opening file\n";
while (not endfile(tv)) loop
readline(tv, L);
readvalue := 0;
count := 3;
for i in 1 to 28 loop
read (L, ch);
report "Line: " & integer'image (index) &
integer'image (i) & " char = " &
character'image (ch)
severity error;

if '0' <= ch and ch <= '9' then

readvalue := readvalue*16 + character'pos(ch)

— character'pos('0");
elsif 'a' <= ch and ch <= 'f' then

readvalue := readvalue*16 + character'pos(ch)
— character'pos('a')+10;
else report "Format error on line " &
integer'image(index) & " i = " &
integer'image (i) & " char = " &

character'image (ch)
severity error;
end if;

—-— load vectors

—-— assign first 4 bits (will be used for ALUControl)

if (i = 1) then

© 2015 Elsevier, Inc.

testvectors (index) (99 downto 96) := CONV_STD_LOGIC_VECTOR (readvalue, 4);
count := count - 1;
readvalue := 0; —-- reset readvalue

-- assign a, b, and Result (in testvectors)

—— 32-bit increments
elsif ((i = 10) or (i =
testvectors (index) ((
CONV_STD_LOGIC_VECTOR (readvalue, 32);

count := count - 1;
readvalue := 0; —-- reset readvalue
end 1if;
end loop;
index := index + 1;
end loop;

vectornum := 0; errors := 0;

19) or (i1 = 28)) then

count*32 + 31) downto (count*32))

156 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

reset <= 'l1'; wait for 27 ns; reset <= '0';
wait;
end process;

—-— apply test vectors on rising edge of clk
process (clk) begin
if (clk'event and clk = '1l') then
ALUControl <= testvectors (vectornum) (97 downto 96)
after 1 ns;
a <= testvectors (vectornum) (95 downto 64)
after 1 ns;
b <= testvectors (vectornum) (63 downto 32)
after 1 ns;
Result_expected <= testvectors(vectornum) (31 downto 0)
after 1 ns;
end 1if;
end process;

—— check results on falling edge of clk
process (clk) begin
if (clk'event and clk = '0' and reset = '0') then
if (is_x(testvectors (vectornum))) then
if (errors = 0) then

© 2015 Elsevier, Inc.

report "Just kidding -- " & integer'image (vectornum) & " tests completed

successfully. NO ERRORS." severity failure;
else
report integer'image (vectornum) & " tests completed, errors
integer'image (errors) severity failure;
end if;
end if;

assert Result = Result_expected
report "Error: vectornum = " &
integer'image (vectornum) &
", a =" & integer'image (CONV_INTEGER (a)) &
", b =" & integer'image (CONV_INTEGER (b)) &
", Result = " & integer'image (CONV_INTEGER (Result)) &
", ALUControl = " & integer'image (CONV_INTEGER (ALUControl));
if (Result /= Result_expected) then
errors := errors + 1;
end 1if;
vectornum := vectornum + 1;
end if;
end process;
end;

Testvector file (ex5.13_alu.tv)

0_00000000_00000000_00000000
0_O0OO0OO0OOO0O0_ffffffff fEffffff
0_00000001_ffffffff 00000000
0_000000££_00000001_00000100
1.00000000_00000000_00000000
1_00000000_ff£f£f£f£££f 00000001
1.00000001_00000001_00000000
1_.00000100_00000001_000000£fE
2_fEfFEfff fEEFFFFf FEFFFEFF
2_fEffffff 12345678_12345678
2_12345678_87654321_02244220
2_00000000_ffff£f£fff 00000000
3B_fEfffffff fEEFfFfff FEFFFEFF
3_12345678_87654321_97755779

=" g

157 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

3_00000000_ffffffff ffFFfffff
3_.00000000_00000000_00000000

Exercise 5.14

SystemVerilog
module testbench();
logic clk;
logic [31:0] a, b, y, y_expected;
logic [1:0] ALUControl;
logic [3:0] ALUFlags, ALUFlags_expected;

logic [31:0] vectornum, errors;
logic [103:0] testvectors[10000:0];

// instantiate device under test
alu dut(a, b, ALUControl, y, ALUFlags);

// generate clock
always begin

clk = 1; #50; clk = 0; #50;
end

// at start of test, load vectors

initial begin
Sreadmemh ("ex5.14_alu.tv", testvectors);
vectornum = 0; errors = 0;

end

// apply test vectors at rising edge of clock
always @ (posedge clk)
begin
#1;
ALUControl = testvectors[vectornum] [101:100];
a = testvectors|[vectornum] [99:68];
b = testvectors[vectornum] [67:36];
y_expected = testvectors[vectornum] [35:4];
ALUFlags_expected = testvectors|[vectornum] [3:0]
end

// check results on falling edge of clock
always @ (negedge clk)
begin

if (y !== y_expected || ALUFlags !== ALUFlags_expected)

Sdisplay ("Error in vector %d", vectornum);

’

$display (" Inputs : a = %$h, b = %h, ALUControl = %b", a,
Sdisplay (" Outputs: y = %$h (%h expected), ALUFlags = %h

y, y_expected, ALUFlags, ALUFlags_expected);

errors = errors+l;

end

vectornum = vectornum + 1;

if (testvectors|[vectornum] [0] === 1'bx) begin
Sdisplay("%d tests completed with %d errors",
Sstop;

end

end
endmodule

VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

vectornum,

begin

b, ALUControl);
(%h expected)",

errors) ;

158 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

use IEEE.STD_LOGIC_ARITH.all;
entity testbench is -- no inputs or outputs
end;

architecture sim of testbench is
component alu

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(1 downto 0);
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end component;

signal a, b, Result, Result_expected: STD_LOGIC_VECTOR (31 downto 0);

signal ALUControl: STD_LOGIC_VECTOR(1l downto 0);

signal ALUFlags, ALUFlags_expected: STD_LOGIC_VECTOR (3 downto 0);

signal clk, reset: STD_LOGIC;
constant MEMSIZE: integer := 99;

© 2015 Elsevier, Inc.

type tvarray is array (MEMSIZE downto 0) of STD_LOGIC_VECTOR(103 downto 0);

shared variable testvectors: tvarray;

shared variable vectornum, errors: integer;
begin

-— instantiate device under test

dut: alu port map(a, b, ALUControl, Result, ALUFlags);

-— generate clock
process begin
clk <= '1'; wait for 5 ns;
clk <= '0'; wait for 5 ns;
end process;

—-— at start of test, pulse reset

process begin
reset <= 'l'; wait for 27 ns; reset <= '0';
wait;

end process;

—-— run tests
—-— at start of test, load vectors
process is
file tv: TEXT;
variable i, index, count: integer;
variable L: line;
variable ch: character;
variable readvalue: integer;

begin
—-— read file of test vectors
i := 0;
index := 0;

FILE_OPEN(tv, "ex5.14_alu.tv", READ_MODE) ;
report "Opening file\n";
while (not endfile(tv)) loop
readline (tv, L);
readvalue := 0;
count := 3;
for 1 in 1 to 30 loop
read (L, ch);
report "Line: " & integer'image(index) & " i
integer'image (i) & " char = " &
character'image (ch)
severity error;

if '0' <= ch and ch <= '9' then
readvalue := readvalue*16 + character'pos(ch)
- character'pos('0"'");

159 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

elsif 'a' <= ch and ch <= 'f' then

readvalue := readvalue*16 + character'pos(ch)
— character'pos('a')+10;
else report "Format error on line " &
integer'image(index) & " i = " &
integer'image (i) & " char = " &

character'image (ch)
severity error;
end if;

—-— load vectors
—-— assign first 4 bits (will be used for ALUControl)
if (i = 1) then

testvectors (index) (103 downto 100) := CONV_STD_LOGIC_VECTOR (readvalue,
count := count - 1;
readvalue := 0; —-- reset readvalue

-—- assign a. b, and Result (in testvectors) in
—— 32-bit increments
elsif ((i = 10) or (i = 19) or (i = 28)) then
testvectors (index) ((count*32 + 35) downto (count*32+4)) :=
CONV_STD_LOGIC_VECTOR (readvalue, 32);
count := count - 1;
readvalue := 0; —-- reset readvalue
—-— assign ALUFlags (in testvectors)
elsif (i1i=30) then

testvectors (index) (3 downto 0) := CONV_STD_LOGIC_VECTOR (readvalue,
end if;
end loop;
index := index + 1;
end loop;
vectornum := 0; errors := 0;
reset <= 'l1'; wait for 27 ns; reset <= '0';

wait;
end process;

-— apply test vectors on rising edge of clk
process (clk) begin
if (clk'event and clk = '1l') then
ALUControl <= testvectors (vectornum) (101 downto 100)
after 1 ns;
a <= testvectors(vectornum) (99 downto 68)
after 1 ns;
b <= testvectors (vectornum) (67 downto 36)
after 1 ns;
Result_expected <= testvectors(vectornum) (35 downto 4)
after 1 ns;
ALUFlags_expected <= testvectors(vectornum) (3 downto 0)
after 1 ns;
end if;
end process;

—— check results on falling edge of clk
process (clk) begin

if (clk'event and clk = '0' and reset = '0') then
if (is_x(testvectors(vectornum))) then
if (errors = 0) then
report "Just kidding -- " & integer'image (vectornum) & " tests completed
successfully. NO ERRORS." severity failure;
else
report integer'image (vectornum) & " tests completed, errors = " &

integer'image (errors) severity failure;

SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition

end if;
end 1if;

assert Result = Result_expected

report "Error: vectornum = " &

integer'image (vectornum) &

", a =" & integer'image (CONV_INTEGER (a)) &

", b =" & integer'image (CONV_INTEGER (b)) &

", Result = " & integer'image (CONV_INTEGER (Result)) &

", ALUControl = " & integer'image (CONV_INTEGER (ALUControl));
assert ALUFlags = ALUFlags_expected

© 2015 Elsevier, Inc.

report "Error: ALUFlags = " & integer'image (CONV_INTEGER (ALUFlags));

if ((Result /= Result_expected) or
(ALUFlags /= ALUFlags_expected)) then

errors := errors + 1;
end if;

vectornum := vectornum + 1;

end if;
end process;
end;

Testvectors file (ex5.14_alu.tv)

0_00000000_00000000_00000000_4
0_O0O0OO0OOO0O0_ffffffff fEffffff 8
0_00000001_ffffffff 00000000_6
0_000000££_00000001_00000100_0
1.00000000_00000000_00000000_6
1_00000000_fff£f£f£f£f£f 00000001_0
1.00000001_00000001_00000000_6
1.00000100_00000001_000000££_2
2_fEfFFffff fEFFFFfff FEFFFFFFf 8
2_ffffffff 12345678_12345678_0
2_.12345678_87654321_02244220_0
2_00000000_ff£f£££f£f£f 00000000_4
3B_fEfffffff ffFffffff FFFFFFff 8
3_12345678_87654321_97755779_8
3_00000000_ffffffff fEEffffff 8
3_.00000000_00000000_00000000_4

Exercise 5.15

(@) HS=C
LS=7Z+C
HI =7ZC=1S
LO =C =HS
(b)
ZC

~

HS

LS

HI

161 SOLUTIONS chapter 5

Exercise 5.16

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

(@) GE=N@V
LE=Z+(N®YV)
GT=LE=Z(N@®V)
LT=GE=N®V

NZV

GE

>
Rt

)

(b)

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS

Exercise 5.17

A 2-bit left shifter creates the output by appending two zeros to the least
significant bits of the input and dropping the two most significant bits.

IN]
©
s

> >>>
8

N
@©

o

W eas

iy

>>>>
o N
SN X Xwes XX

T

FIGURE 5.6 2-hit left shifter, 32-bit input and output

2-bit Left Shifter

SystemVerilog VHDL
module leftshift2 32 (input logic [31:0] a, library IEEE;
output logic [31:0] vy); use IEEE.STD_LOGIC_l1l64.all;

assign y = {a[29:0], 2'b0};
entity leftshift2 32 is
endmodule port(a: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture synth of leftshift2 32 is
begin

y <= a(29 downto 0) & "00";
end;

Exercise 5.18

162

163 SOLUTIONS chapter 5

(@)

Rotate
Left
A, Al A, rotamt,
00 Slo
01
Y
10
11
00 S10
01
Y
10
11
00 Slo
01
Y
10
11
00 SlO
01
10 [Y
11

3

Rotate
Right
A; A, A A, rotamt,,
0 S
01 ’
10 [Y3
11
© s
o 1 Y
10 [T2
11
00 Sl.
01
10 [Yl
11
© 5"
o1 1 Y
10 [To
11
(b) v

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 164

4-bit Left and Right Rotator
SystemVerilog

module ex5_ 14 (a, right_rotated, left_rotated,
shamt) ;
input logic [3:0
output logic [3:0
output logic [3:0
input logic [1:0

1 a;
] right rotated;
] left_rotated; VHDL
] shamt;
library IEEE;
// right rotated use IEEE.STD LOGIC 1164.all;
always_comb
case (shamt) entity ex5_14 is
2'pb00: right rotated a; port(a: in STD_LOGIC_VECTOR (3 downto 0);
2'b01: right rotated right rotated, left rotated: out
{al0l, al3], al2], alll}; STD_LOGIC_VECTOR (3 downto 0);
2'pb10: right rotated = shamt: in STD_LOGIC_VECTOR (1 downto 0));
{alll, al0l, al31, al2l}; end;
2'bll: right_rotated =
{a[2], all]l, al0], al3]}; architecture synth of ex5 14 is
default: right rotated = 4'bxxxx; begin
endcase

-- right-rotated
// left rotated process (all) begin
case shamt is

always_comb
when "00" => right rotated <= a;

case (shamt)

2'b00: left rotated = a; when "01" => right rotated <=
2'b01: left rotated = (a(0), a(3), a(2), a(l));:
{al2], all]l, al0]l, al31}; when "10" => right rotated <=
2'bl0: left rotated = (a(l), a(0), a(3), a(2));
{alll, al0l, al31, al21}; when "11" => right rotated <=
2'bll: left rotated = (a(2), a(l), a(0), a(3)):;
{al[0], al3], al2], alll}; when others => right rotated <= "XXXX";
default: left rotated = 4'bxxxx; end case;
endcase end process;
endmodule -- left-rotated
process (all) begin
case shamt is
when "00" => left rotated <= a;
when "01" => left rotated <=
(a(2), a(l), a(0), a(3));
when "10" => left rotated <=
(a(l), a(0), a(3), a(2));
when "11" => left rotated <=
(a(0), a(3), a(2), a(l));

when others => left rotated <= "XXXX";
end case;
end process;
end;

© 2015 Elsevier, Inc.
165 SOLUTIONS chapter 5

Exercise 5.19

shamt,
A, —0 shamt;
A —1
6 0 shamt,
A, —0 Wk —l—o
%
A, —1 P 1 !
A, —0 W Lo
%
A, —1 P —1 °
A, —o0 HE Lo
-y,
A, —1 15 ot ?
A, — 0 s Lo ,
["1
A, —1 o ot
A, —0 s lo
%
A, 1 P 1 °
A, o ! Lo
%
A —1 P o)
A, —0 2 Lo
7Y2
g1t Lo 1t
<1t Hp
7Y0
1
iy

FIGURE 5.7 8-bit left shifter using 24 2:1 multiplexers

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 166

Exercise 5.20

Any N-bit shifter can be built by using log,N columns of 2-bit shifters. The

first column of multiplexers shifts or rotates 0 to 1 bit, the second column shifts
or rotates O to 3 bits, the following 0 to 7 bits, etc. until the final column shifts
or rotates 0 to N-1 bits. The second column of multiplexers takes its inputs from
the first column of multiplexers, the third column takes its input from the second
column, and so forth. The 1-bit select input of each column is a single bit of the
shamt (shift amount) control signal, with the least significant bit for the left-
most column and the most significant bit for the right-most column.

Exercise 5.21

@ B=0,C=4,k=shamt
(b) B = A1 (the most significant bit of 4), repeated N times to fill all N bits

of B
(c)B=4,C=0,k=N - shamt
(d)B=4,C=A4, k=shamt
(e)B=A4,C=A4,k=N - shamt
Exercise 5.22

thd MULT4 = IAND t 8174

For N=1, the delay is t,xp. For N> 1, an N X N multiplier has N-bit operands,
N partial products, and N-1 stages of 1-bit adders. The delay is through the
AND gate, then through all N adders in the first stage, and finally through 2
adder delays for each of the remaining stages. So the propagation is:

pd MULTN = taND t [N+ 2(N-1)]tp4

Exercise 5.23

tha DIva =4 (41py + ivmux) = 16154 + diyux
A2
td DIVN = Ntpy + Ntyux

Exercise 5.24

© 2015 Elsevier, Inc.
167 SOLUTIONS chapter 5

Recall that a two’s complement number has the same weights for the least

significant N-1 bits, regardless of the sign. The sign bit has a weight of -2N-1.
Thus, the product of two N-bit complement numbers, y and x is:

N-2 N-2
_ N-1 ' N-1 i
P =|-yy_12 + ZijI —Xy_12 + inZ
j=0 i=0
Thus,
N-2N-2 N-2 N-2
it+j 2N-2 i+N-1 j+N-1
DD w2 T Hxy_1yo? - > xwy_12 - S ay_w2
i=0/=0 i=0 j=0

The two negative partial products are formed by taking the two’s comple-
ment (inverting the bits and adding 1). Figure 5.8 shows a 4 x 4 multiplier.
Figure 5.8 (b) shows the partial products using the above equation. Figure 5.8
(c) shows a simplified version, pushing through the 1’s. This is known as a mod-
ified Baugh-Wooley multiplier. It can be built using a hierarchy of adders.

A4 84 A3 A2 Al AO AB AZ Al AO
x B, B, B, B x B, B, B By
X AZBO AlBO AOBD 1 EAZBO AlBO AOBD
/N/E AZBl AlBl AOBI AIBS AZBl Alsl A051
: A,B, AB, AB, ABs AB, AB, AB,
AB; +1 A;B; AB,AB, ABy
1 1 AB,AB;AB, 1 1 1 P, Pe Py P, Py P, P Py
1
1 1 AB,AB/AB, 1 1 1
. 1
P, P, P, P, P, P, P, P,

() (b) (c)

FIGURE 5.8 Multiplier: (a) symbol, (b) function, (c) simplified function

Exercise 5.25

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 168

3]

4 K 8
A3:0ﬁ;| Sign Extend |—— Y,

@ (b)
FIGURE 5.9 Sign extension unit (a) symbol, (b) underlying hardware

R P S SIS S

> > > >
N

o

SystemVerilog

module signextd 8 (input logic [3:0] a, VHDL
output logic [7:0] y);
library IEEE;
assign y = { {4{al31}}, a}; use IEEE.STD_LOGIC_1164.all;

endmodule entity signext4 8 is
port(a: in STD_LOGIC VECTOR(3 downto 0);
y: out STD_LOGIC_VECTOR (7 downto 0));
end;

architecture synth of signext4 8 is
begin

Exercise 5.26

Y7

Ye

Ys

Ys

A A—Y;

Asq ﬁ;|4 Zero Extend ﬁgg Y70 S
Al Y

A Y

(a) (b)

FIGURE 5.10 Zero extension unit (a) symbol, (b) underlying hardware

169 SOLUTIONS chapter 5

SystemVerilog

module zeroext4 8 (input 1logic [3:0] a,
output logic [7:0] y);

assign y = {4'b0, a};

endmodule

Exercise 5.27

VHDL

library IEEE;
use IEEE.STD LOGIC 1164.all;

entity zeroext4 8 is
port(a: in STD_LOGIC_VECTOR(3 downto 0);

y: out STD_LOGIC_VECTOR (7 downto 0));

end;

architecture synth of zeroext4 8 is
begin

y <= "0000" & a(3 downto 0);
end;

© 2015 Elsevier, Inc.

Exercise 5.28

100.110

1100 [111001.000
11004 4 ¥
001001 0
- 1100
11 00
- 1100
0

(@) {0, (

(b) [—[

© [_[211 N

12
1+2 1;1]}
2

22_1) (.n 212 _
2) 27 -1+ 12
2 2
2_, ")12 _
2) 27 -1+ 12
2 2

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 170

Exercise 5.29

(a) 1000 1101 . 1001 0000 = 0x8D90
(b) 0010 1010 . 0101 0000 = 0x2A50
(c) 1001 0001 . 0010 1000 = 0x9128

Exercise 5.30

(a) 111110.100000 = OXxFAO
(b) 010000.010000 = 0x410
(c) 101000.000101 = OxAO05

Exercise 5.31

(2) 1111 0010 . 0111 0000 = OxF270
(b) 0010 1010 . 0101 0000 = 0x2A50
(c) 1110 1110 . 1101 1000 = OXEEDS

Exercise 5.32

(a) 100001.100000 = 0x860
(b) 010000.010000 = 0x410
(c) 110111.111011 = OxDFB

Exercise 5.33

(a) -1101.1001 = -1.1011001 x 23
Thus, the biased exponent = 127 + 3 = 130 = 1000 0010,

In IEEE 754 single-precision floating-point format:
11000 0010 101 1001 0000 0000 0000 0000 = 0xC1590000

(b) 101010.0101 = 1.010100101 x 2°
Thus, the biased exponent = 127 + 5 = 132 = 1000 0100,

In IEEE 754 single-precision floating-point format:
0 1000 0100 010 1001 0100 0000 0000 0000 = 0x42294000

(c) -10001.00101 = -1.000100101 x 2*
Thus, the biased exponent = 127 + 4 = 131 = 1000 0011,

In IEEE 754 single-precision floating-point format:
11000 0011 000 1001 0100 0000 0000 0000 = 0xC1894000

171

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 5

Exercise 5.34

(a) -11110.1 = -1.111101 x 2*
Thus, the biased exponent = 127 + 4 = 131 = 1000 0011,

In IEEE 754 single-precision floating-point format:
11000 0011 111 1010 0000 0000 0000 0000 = 0xC1F40000

(b) 10000.01 = 1.000001 x 2*
Thus, the biased exponent = 127 + 4 = 131 = 1000 0011,

In IEEE 754 single-precision floating-point format:
01000 0011 000 0010 0100 0000 0000 0000 = 0x41820000

(c) -1000.000101 = -1.000000101 x 23

Thus, the biased exponent = 127 + 3 = 130 = 1000 0010,

In IEEE 754 single-precision floating-point format:

11000 0010 000 0001 0100 0000 0000 0000 = 0xC1014000

Exercise 5.35

(@) 5.5
(b) -0000.0001, = -0.0625
(c)-8

Exercise 5.36

(a) 29.65625
(b) -25.1875
(c) -23.875

Exercise 5.37

When adding two floating point numbers, the number with the smaller ex-
ponent is shifted to preserve the most significant bits. For example, suppose we
were adding the two floating point numbers 1.0 x 29 and 1.0 x 2°27. We make
the two exponents equal by shifting the second number right by 27 bits. Because
the mantissa is limited to 24 bits, the second number (1.000 0000 0000 0000
0000 x 2°27) becomes 0.000 0000 0000 0000 0000 x 20, because the 1 is shifted
off to the right. If we had shifted the number with the larger exponent (1.0 x 2°)
to the left, we would have shifted off the more significant bits (on the order of
20 instead of on the order of 2727).

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS

Exercise 5.38

(a) C0123456
(b) D1E072C3
(c) 5F19659A

Exercise 5.39

(@)
0xC0D20004 = 1 1000 0001 101 0010 0000 0000 0000 0100

=-1.101 0010 0000 0000 0000 01 x 22
0x72407020 = 01110 0100 100 0000 0111 0000 0010 0000

= 1.100 0000 0111 0000 001 x 2101

When adding these two numbers together, 0xC0D20004 becomes:
0 x 2191 hecause all of the significant bits shift off the right when making

the exponents equal. Thus, the result of the addition is simply the second num-

ber:

0x72407020

(b)
0xC0D20004 = 1 1000 0001 101 0010 0000 0000 0000 0100

=-1.101 0010 0000 0000 0000 01 x 22
0x40DC0004 = 0 1000 0001 101 1100 0000 0000 0000 0100

=1.101 1100 0000 0000 0000 01 x 22

1.101 1100 0000 0000 0000 01 x 22
-1.101 0010 0000 0000 0000 01 x 22
= 0.000 1010 x 22
1.010 x 22

00111 1101 010 0000 0000 OOOO 0000 0000
= 0x3EA00000

©
O0x5FBE4000 =01011 1111 011 1110 0100 0000 0000 0000 0000

= 1.011 111001 x 2%4
0x3FF80000 = 0 0111 1111 111 1000 0000 0000 0000 0000

= 1.1111x2°
0xDFDE4000 = 1 1011 1111 101 1110 0100 0000 0000 0000 0000

=-1.101 111001 x 254

172

© 2015 Elsevier, Inc.
173 SOLUTIONS chapter 5

Thus, (1.011 1110 01 x 284+ 1.111 1 x 2% = 1.011 1110 01 x 28

And, (1.011 111001 x 2% +1.111 1 x 29) - 1.101 1110 01 x 254 =

-0.01x 2%4=-1.0 x 264
=11011 1101 000 0000 0000 0000 0000 0000
= 0xDE800000

This is counterintuitive because the second number (0x3FF80000) does not

affect the result because its order of magnitude is less than 228 of the other num-
bers. This second number’s significant bits are shifted off when the exponents
are made equal.

Exercise 5.40

We only need to change step 5.
1. Extract exponent and fraction bits.
Prepend leading 1 to form the mantissa.
Compare exponents.

Shift smaller mantissa if necessary.

a ~ w DN

If one number is negative: Subtract it from the other number. If the result
is negative, take the absolute value of the result and make the sign bit 1.

If both numbers are negative: Add the numbers and make the sign bit 1.
If both numbers are positive: Add the numbers and make the sign bit 0.

6. Normalize mantissa and adjust exponent if necessary.
7. Round result

8. Assemble exponent and fraction back into floating-point number

Exercise 5.41

() 2231 - 1-223) = 2322 - 224 = 4,278,190,078
(b) 2(2%1 - 1) = 22 - 2 = 4,294,967,294

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS

(c) +oo and NaN are given special representations because they are often used in

calculations and in representing results. These values also give useful information to the
user as return values, instead of returning garbage upon overflow, underflow, or divide
by zero.

Exercise 5.42

(a) 245 = 11110101 = 1.1110101 x 27
=0 1000 0110 111 0101 0000 0000 0000 0000
= 0x43750000

0.0625 = 0.0001 = 1.0 x 24

=00111 1011 000 0000 0000 0000 0000 0000
= 0x3D800000

(b) 0x43750000 is greater than 0x3D800000, so magnitude comparison
gives the correct result.

(©

1.1110101 x 27 = 00000 0111 111 0101 0000 0000 0000 0000
= 0x03F50000

1.0 x 24 =01111 1100 000 0000 0000 0000 0000 0000
= 0x7E000000

(d) No, integer comparison no longer works. 7E000000 > 03F50000 (indi-

cating that 1.0 x 27 iis greater than 1.1110101 x 2/, which is incorrect.)

(e) Itis convenient for integer comparison to work with floating-point num-
bers because then the computer can compare numbers without needing to ex-
tract the mantissa, exponent, and sign.

Exercise 5.43

174

175 SOLUTIONS chapter 5
A3l:0 B31:0
32 32
[30:23] [22:0] [30:23) [22:0]
24 24
ExpA,., MantA,,., ExpB,., MantB, .,
EXpB?:O EXpA7:O
8 J(8
Exponent
Compare
T
Exp,, ExpA<ExpB shamt,
EXpA<ExpB MantA,,, MantB,,.
24 J(24 J(
Shift
Mantissa
24
ShiftedMant,,.,
ExpA<ExpB ShiftedMant,, MantA,, ,MantB,,
‘ 24 J(2 J(2 J(
Add Mantissas
and Normalize
24 J(
Fract,,,
Expzo Fract,,
[31] [30:23] [22:0)
L
(@ Saro

FIGURE 5.11 Floating-point adder hardware: (a) block diagram, (b) underlying hardware

EXpB?'O EXpA7:0
&

Exp;, ExpA < ExpB shamt,

ExpA < ExpB MantA,, ;MantB,, , shamt,.,

ShiftedMant

23:.0

MantB,;, ;MantA.,, ,

ShiftedMant

23:.0

+
25

[23:1]|[22:0]

23

Fract,,.,

(b)

© 2015 Elsevier, Inc.

aledwo) jusuodx3y

esshueN JIys

9ZI[eWION pue Sessiue ppyY

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS

176

SystemVerilog VHDL
module fpadd(input logic [31:0] a, b, library IEEE; use IEEE.STD LOGIC 1164.all;
output logic [31:0] s); use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;
logic [7:0] expa, expb, exp pre, exp, shamt;
logic alessb; entity fpadd is
logic [23:0] manta, mantb, shmant; port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
logic [22:0] fract; s: out STD_LOGIC_ VECTOR(31 downto 0));
end;
assign {expa, manta} = {a[30:23], 1'bl, a[22:0]};
assign {expb, mantb} = {b[30:23], 1'bl, b[22:0]}; architecture synth of fpadd is
assign s = {1'b0, exp, fract}; component expcomp
port (expa, expb: in STD_LOGIC_VECTOR (7 downto 0);
expcomp expcompl (expa, expb, alessb, exp pre, alessb: inout STD LOGIC;
shamt) ; exp,shamt: out STD_LOGIC_VECTOR(7 downto 0));
shiftmant shiftmantl (alessb, manta, mantb, end component;
shamt, shmant);
addmant addmantl (alessb, manta, mantb, component shiftmant
shmant, exp_pre, fract, exp); port(alessb: in STD_LOGIC;
manta: in STD LOGIC VECTOR(23 downto 0);
endmodule mantb: in STD_LOGIC_VECTOR (23 downto 0);
shamt : in STD_LOGIC_VECTOR (7 downto 0);
shmant: out STD LOGIC VECTOR(23 downto 0));

end component;

compone
port (

nt addmant

alessb: in STD_LOGIC;

manta: in STD _LOGIC_VECTOR(23 downto 0);
mantb: in STD LOGIC VECTOR(23 downto 0);
shmant: in STD_LOGIC_VECTOR (23 downto 0);
exp_pre: in STD LOGIC_VECTOR (7 downto 0);
fract: out STD LOGIC VECTOR (22 downto 0);
exp: out STD_LOGIC_VECTOR(7 downto 0));

end component;

signal
signal
signal
signal
signal
signal
signal
signal
begin

expa <=

manta <
expb <

mantb <=

s <

expcomp
port

shiftma
port

addmant
port

end;

expa, expb: STD_LOGIC_VECTOR (7 downto 0);
exp _pre, exp: STD LOGIC_VECTOR (7 downto 0);
shamt: STD _LOGIC_VECTOR (7 downto 0);
alessb: STD_LOGIC;

manta: STD_LOGIC_VECTOR (23 downto 0);
mantb: STD_LOGIC_VECTOR (23 downto 0);
shmant: STD_LOGIC_VECTOR (23 downto 0);
fract: STD_LOGIC_VECTOR (22 downto 0);

a (30 downto 23);
= '1l'" & a(22 downto 0);
= b (30 downto 23);

'l1'" & b(22 downto 0);
= '0" & exp & fract;
1l: expcomp
map (expa, expb, alessb, exp pre, shamt);
ntl: shiftmant
map (alessb, manta, mantb, shamt, shmant);
1: addmant
map (alessb, manta, mantb, shmant,
exp_pre, fract, exp);

177 SOLUTIONS chapter 5

SystemVerilog

module expcomp (input logic [7:0] expa, expb,
output logic alessb,
output logic [7:0] exp, shamt);
logic [7:0] aminusb, bminusa;

assign aminusb = expa - expb;
assign bminusa = expb - expa;
assign alessb = aminusb[7];

always_comb
if (alessb) begin

exp = expb;
shamt = bminusa;
end

else begin
exp = expa;
shamt = aminusb;
end
endmodule

© 2015 Elsevier, Inc.

(continued from previous page)
VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity expcomp is
port (expa, expb: in STD_LOGIC_VECTOR (7 downto 0);
alessb: inout STD LOGIC;
exp,shamt: out STD_LOGIC_VECTOR (7 downto 0));
end;

architecture synth of expcomp is
signal aminusb: STD_LOGIC_VECTOR(7 downto 0);
signal bminusa: STD LOGIC VECTOR(7 downto 0);
begin
aminusb <= expa - expb;
bminusa <= expb - expa;
alessb <= aminusb(7);

exp <= expb when alessb = 'l' else expa;
shamt <= bminusa when alessb = 'l' else aminusb;
end;

(continued on next page)

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS 178

(continued from previous page)

SystemVerilog

module shiftmant (input logic alessb,
input logic [23:0] manta, mantb,
input logic [7:0] shamt,
output logic [23:0] shmant);

logic [23:0] shiftedval;

assign shiftedval = alessb ?
(manta >> shamt) (mantb >> shamt) ;

always_comb
if (shamt[7] | shamt[6] | shamt[5] |
(shamt [4] & shamt[3]))
shmant = 24'b0;
else
shmant = shiftedval;

endmodule

module addmant (input logic alessb,
input logic [23:0] manta,
mantb, shmant,
input 1logic [7:0] exp_pre,
output logic [22:0] fract,
output logic [7:0] exp);

logic [24:0] addresult;
logic [23:0] addval;

assign addval = alessb ? mantb

assign addresult = shmant + addval;

assign fract = addresult[24] ?
addresult[23:1]
addresult[22:0];

manta;

assign exp = addresult[24] ?
(exp_pre + 1)
exp_pre;
endmodule

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;
use ieee.numeric_std.all;
use IEEE.std_logic_unsigned.all;

entity shiftmant is
port (alessb: in STD_LOGIC;

manta: in STD LOGIC VECTOR(23 downto 0);
mantb: in STD_LOGIC_VECTOR (23 downto 0);
shamt : in STD_LOGIC_VECTOR (7 downto 0);

shmant: out STD LOGIC VECTOR(23 downto 0));
end;

architecture synth of shiftmant is

signal shiftedval: unsigned (23 downto 0);

signal shiftamt vector: STD_LOGIC VECTOR (7 downto
0) 7
begin

shiftedval <= SHIFT RIGHT(unsigned(manta), to in-

teger (unsigned (shamt))) when alessb = '1'
else SHIFT RIGHT (unsigned(mantb), to_in-
teger (unsigned(shamt))) ;

shmant <= X"000000" when (shamt > 22)
else STD LOGIC_VECTOR (shiftedval);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD LOGIC ARITH.all;

entity addmant is
port (alessb: in STD LOGIC;
manta: in STD_LOGIC_VECTOR (23 downto 0
mantb: in STD_LOGIC_VECTOR (23 downto 0
shmant: in STD LOGIC_VECTOR (23 downto
exp_pre: in STD_LOGIC_VECTOR(7 downto
fract: out STD LOGIC_VECTOR (22 downto 0
exp: out STD LOGIC VECTOR(7 downto 0));

;

)i
):

7

0
0

;

)
)
)
end;

architecture synth of addmant is

signal addresult: STD_LOGIC_VECTOR (24 downto 0);
signal addval: STD_LOGIC_VECTOR (23 downto 0);

begin
addval <= mantb when alessb = 'l' else manta;
addresult <= ('0'&shmant) + addval;
fract <= addresult (23 downto 1)

when addresult(24) = '1"'

else addresult (22 downto O0);
exp <= (exp_pre + 1)

when addresult(24) = '1"'

else exp_pre;

end;

© 2015 Elsevier, Inc.

179 SOLUTIONS chapter 5

Exercise 5.44

(@)
Extract exponent and fraction bits.
Prepend leading 1 to form the mantissa.
Add exponents.
Multiply mantissas.
Round result and truncate mantissa to 24 bits.

Assemble exponent and fraction back into floating-point number

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

(b)

31.0

[30:23] 22:0]

24 24
EXxpA.., MantA,,., ExpB,., MantB,,.,

ExpB,, EXpA;, ExpB,, ExpA,,
8 J(8
Add
Exponents
°|
EXp7:O
MantAyyo MantBy, MantB,,, MantA,,,
24 J(24 24Jf ’ o ’
Multiply Mantissas, ' X '
Round, and Truncate
48} Result,,.,
23 J(23} 23
[46:24] [45:23]
Fract, "o Result,, -
47
\
Fract,,.,
Exp,, Fract,,
31] [30:23] [22:0]}
v JFZ
@ S0 (b)

FIGURE 5.12 Floating-point multiplier block diagram

sjuauodx3 ppy

sessnuey Aldinin

© 2015 Elsevier, Inc.
SOLUTIONS

180

© 2015 Elsevier, Inc.
181 SOLUTIONS chapter 5

(©

SystemVerilog VHDL
module fpmult (input logic [31:0] a, b, library IEEE; use IEEE.STD LOGIC 1164.all;
output logic [31:0] m); use IEEE.STD_LOGIC_UNSIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

logic [7:0] expa, expb, exp;
logic [23:0] manta, mantb; entity fpmult is
logic [22:0] fract; port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
logic [47:0] result; m: out STD_LOGIC VECTOR(31 downto 0));
end;
assign {expa, manta} = {a[30:23], 1'bl, af[22:0]};
assign {expb, mantb} = {b[30:23], 1'bl, b[22:0]}; architecture synth of fpmult is
assign m = {1'b0, exp, fract}; signal expa, expb, exp:
STD_LOGIC_VECTOR (7 downto 0);
assign result = manta * mantb; signal manta, mantb:
assign fract = result[47] ? STD_LOGIC_VECTOR (23 downto 0);
result[46:24] : signal fract:
result[45:23]; STD_LOGIC VECTOR(22 downto 0);
signal result:
assign exp = result[47] ? STD_LOGIC_VECTOR (47 downto 0);
(expa + expb - 126) : begin
(expa + expb - 127); expa <= a (30 downto 23);
manta <= 'l' & a(22 downto 0);
endmodule expb <= b (30 downto 23);

mantb <= '1' & b (22 downto 0);

m <= '0' & exp & fract;
result <= manta * mantb;
fract <= result (46 downto 24)

when (result(47) = '1")
else result (45 downto 23);
exp <= (expa + expb - 126)
when (result(47) = '1")

else (expa + expb - 127);

end;

Exercise 5.45

(a) Figure on next page

© 2015 Elsevier, Inc.

chapter 5

SOLUTIONS

's

A

0

'a'v" o

9"

puaba

T-GT | T-:9T | T-LT | T-:8T | T-'6T | T-:0C | T-'TC [T-:¢C | T-:€C | T-¥C | T-:GC | T-'9C | T-:,C | T-'8C | T-'6C | T-:0€
G moy
T-2L [T-8 |T-'6 [T-OT|T-TT|T-CT |T-€T |T-¥T GT:€2|ST:¥2|ST:5¢| ST:92|GT:L2|ST:82| ST:62|ST-0€
¥ moy
T-€ LTT 22T |L'€T (29T ST:6T[ST:02|ST:TC|ST:2e €2:/2|€2:82|€T'62|€2:0E
€ Moy
T-T |12 L6 [L0T TTET|TT:HT STILT|ST:8T 6T:1Z|6T:CC £2:52| €2:92 12:62|.2:08
¢ Moy
1-:0 TC L8 6:0T TT:2T ETVT ST:9T LT:8T 61:0C Teiee (XA 74 §2:9¢] 12'8¢] 62:0€
A e

0 T 4 € 14 S 9 L 8 6 0T T 7 T €T T ST 9T LT 8T 6T 0c TC cc | €2 7 ve 7 Se 7 9z 7 YA 7 8¢ 7 62 7 0g 7 1€ _

182

Sarah L. Harris and David Money Harris

5.45 (b)
SystemVerilog
module prefixadd(input logic [31:0] a, b,
input logic cin,
output logic [31:0] s,
output logic cout) ;

logic [30:0] p, g;

// p and g prefixes for rows 1 - 5
logic [15:0] pl, p2, p3, p4, pP5;
logic [15:0] g1, g2, g3, g4, g5;

pandg rowO(a, b, p, 9);

blackbox rowl ({p[30],p[28],p[26],p[24],p([22],
pl20],pl18],p[16],p[14],p[12],
pl10],p(8],p[6],p[4],p[2],p[0]},
{p[29],p[27],p[25],p[23],p[21L
pl19],p[17],p[15],p[13],p[11],
pl9],p[71,p[5],p[3],p[1],1'b0O},
{gl30],9[28], [26] [24], (227,
gl20],9(18],9(16],9([14],9([12],
g[10],9(8],g[1,9041,9021,9[01},
{gl29],9027], 9[25],q[23], [21L
gl19],9(17]1,9(15],9(13],g9([11],
gl91,9171,9[51,9[31,9l1],cin),
pl, gl);

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS 183

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity prefixadd is
port(a, b: in STD LOGIC VECTOR (31 downto 0);
cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR (31 downto 0);
cout: out STD_LOGIC) ;
end;

architecture synth of prefixadd is
component pgblock
port(a, b: in STD_LOGIC_VECTOR (30 downto 0);
p, g: out STD LOGIC VECTOR (30 downto 0));
end component;

component pgblackblock is
port (pik, gik: in STD LOGIC_VECTOR (15 downto 0);
pkj, gkj: in STD LOGIC_VECTOR (15 downto 0);
pij: out STD LOGIC VECTOR (15 downto 0);
gij: out STD_LOGIC VECTOR(15 downto 0));
end component;

component sumblock is
port (a, b, g: in STD_LOGIC_VECTOR(31 downto 0);
s: out STD_LOGIC_ VECTOR (31 downto 0));
end component;

signal p, g: STD_LOGIC_VECTOR (30 downto 0);
signal pik_1, pik_2, pik_3, pik_4, pik_5,
gik 1, gik 2, gik 3, gik 4, gik 5,
pkj_1, pkj_2, pkj_3, pkj_4, pkj_5,
gkj_1, gkj_2, gkj_3, gkj_4, gkj_5,
pl, p2, p3, p4, p5,
gl, g2, 93, g4, g5:
STD_LOGIC_VECTOR (15 downto 0);
signal g6: STD_LOGIC_VECTOR(31 downto 0);
begin
row0O: pgblock
port map(a(30 downto 0), b (30 downto 0), p, 9g);:

pik 1 <=
(P (30) &p (28) &p (26) &p (24) &p (22) &p (20) &p (18) &p (16) &
p(14)sp(12)&p (10) &p (8) &p (6) &p (4) &p (2) &p (0)) ;
gik 1 <=
(g(30) &g (28) &g (26) &g (24) &g (22) &g(20) &g (18) &g (16) &
g(14)&g(12) &g (10) &g (8) &g (6) &g (4) &g (2) &g (0));
pkj 1 <=
(p(29)&p(27) &p (25) &p (23) &p (21) &p (19) &p (17) &p (15) &
p(13)&p (11)&p (9) &p (7) &p(5) &p(3) &p (1) &'0") ;
gkj 1 <=
(9(29)&g(27)&g(25) &g(23) &g(21) &g(19) &g(17) &g (15) &
g(13)&g(11)&g(9)&g(7)&g(5)& g(3)& g(1)& cin);

rowl: pgblackblock
port map(pik_1, gik 1, pkj_1, gkj_1,
pl, gl);

© 2015 Elsevier, Inc.
184 SOLUTIONS chapter 5

(continued on next page)
(continued from previous page)

SystemVerilog VHDL

pik 2 <= pl(15)&p(29)&pl (13)&p(25)&pl (11)&

blackbox row2 ({pl[15],p[29],p1[13],p[25],p1([11], p(21)&pl (9)&p (17) &pl (7) &p (13) &
pl21],pl[9],p[17],p1[7],p[13], pl(5)&p(9)&pl (3)&p (5) &pl (1) &p (1)
pl(5],p[9],p1[3],p[5],p1[1],p[1]},
{{2{p1[141}},{2{p1[12]}},{2{pl[10]}}, gik_2 <= gl(15)&g(29)&gl(13)&g(25)&gl(1l)&
{2{p1l81}},{2{pll6]}},{2{pll4]}}, g(21) &gl (9) &g (17) &gl (7) &g (13) &
{2{pll21}},{2{pl[01}}}, gl (5)&g(9) &gl (3)&g(5)&gl(1)&g(l);

{g1[15]1,9[29],91[13],9[25],91([11],

gl21],91([9],9[17],91([7],9[13], pkj_2 <=
gl(5],9091,91(3]1,9[5]1,91[1],9[11}, pl(14)&pl(14)&pl(12)&pl(12)&pl (10)&pl(10)&
{{2{gl[14]1}},{2{gl[12]}},{2{gl[10]}}, pl(8)&pl(8)&pl (6)&pl (6)&pl (4)&pl (4)&
{2{gl(8]1}},{2{gl[6]1}},{2{gl[4]}}, pl(2)&pl(2) &pl(0)&pl (0);
{2{g12]1}},{2{gl[01}}},
P2, 92); gkj_2 <=
gl(14) &gl (14) &gl (12) &gl (12) &gl (10) &gl (10) &
blackbox row3 ({p2[15],p2[14],p1[14],p[27],p2([11], g1 (8) &gl (8) &gl (6) &gl (6) &gl (4) &gl (4)&

gl (2) &gl (2) &gl (0) &gl (0) ;

1
p2[101,p1[10],p[19],p2([7],p2[6],
pll6],pl[11],p2[3],p2(2],p1[2],p[3]},
{{4{p2[131}}, {4{p2[91}}, {4{p2[5]}}, row2: pgblackblock
{4{p2[11}}1}, port map(pik_2, gik 2, pkj_2, gkj_2,
{g2[15],92[14], 1[14],9[27] 2[11], P2, 92);
g2[101,91[10]1,9[19]1,92[71, [1,
gll6l,9l111,92[31,92[2],91[2] gl31}, pik_3 <= p2(15)&p2(14)s&pl(14)sp(27)&p2(11)&
{{4{g2[131}},{4{ 2[9]}),{4{92[5]}}, p2(10) &pl (10) &p (19) &p2 (7) &p2 (6) &
{4{g2([11}}}, pl(6)&p(11)&p2(3) &p2 (2) &pl (2) &p (3);
p3, 93); gik 3 <= g2(15)&g2(14)&gl(14)&g(27)&g2(11)s&
g2 (10) &g1 (10) &g (19) &g2 (7) &92 (6) &
gl (6) &g (11)&g2(3)&g2(2) &gl (2)&g(3);
pkj_3 <= p2(13)&p2(l3)&p2(3)&p2(13) &
p2(9) &p2(9) &p2 (9) &p2 (9) &
P2 (5) &p2 (5) &p2 (5) &p2 (5) &
p2 (1) &p2 (1) &p2 (1) &p2 (1) ;
gkj 3 <= g2(13)&g2(13)&g2(13)&g2(13)&
92 (9) &g2(9) &92(9) &92 (9) &
92 (5) &92 (5) &92 (5) &92 (5) &
g2 (1)&g2 (1) &92 (1) &g2 (1) ;

row3: pgblackblock
port map (pik 3, gik 3, pkj_ 3, gkj_3, p3, g3);:

(continued on next page)

Sarah L. Harris and David Money Harris

SystemVerilog

blackbox rowd ({p3[15:12],p2([13:12],
1[12],p[23],p317:41,

p2[5:4],p1[4],p[7]},
{{8{p3[111}},{8{p3[31}}},
{g3[15:12],g2[13:12],
glll2],g[23],93[7:4],
g2[5:4]1,91[4]1,9[71},
({8{93[11}},1{8{g3[31}}},
p4, g4);

blackbox row5 ({p4[15:8],p3[11:8],p2[9:8],
pl[8],p[15]},
{{16{pa[71}}},
{g4[15:81,93[11:8]1,92[9:87,
gl[8],9[15]}
{{16{g4[71}}
p5,95);

b

sum row6 ({g5,94[7:0]1,93[3:0]1,92[1:0],91[0],

a, b, s);

// generate cout
assign cout = (a[31] & b[31]) |
(g5[15] & (al31] | b[31]));

endmodule

Digital Design and Computer Architecture: ARM Edition

cin},

SOLUTIONS

VHDL

pik 4 <= p3
1(12)&p(23) &p3 (7 downto 4)&
p2 5 downto 4)&pl(4)&p(7);
gik 4 <= g3
1(12)&g(23)&g3 (7 downto 4)&
5 downto 4) &gl (4)&g(7);
1) &p3(11) &p3(11) &p3(11) &
11) &p3(11) &p3(11) &p3 (11) &
3)&p3(3) &p3(3) &p3(3) &
3)&p3(3) &p3(3) &p3(3) ;
11)&g3(ll)&g3(ll)&g3(ll)&
11)&g3(11) &g3(11) &g3(11) &
3)&q3(3)&g3()&93() &
3) &g3(3) &93(3) &g3(3);

g2
pkj 4 <= p3(1
p3
p3
p3
gkj_4 <= g3
g3
g3
g3

row4: pgblackblock

© 2015 Elsevier, Inc.

15 downto 12)&p2 (13 downto 12)&

15 downto 12)&g2 (13 downto 12)&

185

port map(pik_4, gik_4, pkj_4, gkj_4, p4, g4);

pik 5 <= p4 (15 downto 8)&p3 (11l downto 8)&
P2 (9 downto 8)&pl(8)&p(15);

gik75 <= g4 (15 downto 8)&g3 (11l downto 8)&
2 (9 downto 8)&gl(8)&g(15);

pkj_5 <= p4d(7)&p4d(7) &pd (7) &pd (7) &

p4 (7) &p4 (7) &p4 (7) &p4 (7) &

p4 (7) &p4 (7) &p4 (7) &p4 (7) &

p4 (7) &p4 (7) &p4 (7) &p4 (7) ;

gkj_ 5 <= g4(7)&g4(7)&g4(7)&g4(7)s&

g4 (7) &g4 (7) &g4 (7) &g4 (7) &

g4 (7)&94(7) &4 (7) &g4(7) &

g4 (7)&g4(7)&g4(7) &g4(7) ;

row5: pgblackblock

port map(pik 5, gik 5, pkj_5,
g6 <= (g5 & g4 (7 downto 0) & g3 (3 downto 0)
g2 (1 downto 0) & gl(0) & cin);

row6: sumblock
port map (g6, a, b, s);

-- generate cout
cout <= (a(31) and b(31)) or
(g6(31) and (a(31l) or b(31)));

end;

(continued on next page)

gkj_5, p5,

g5) ;

186 SOLUTIONS chapter 5

SystemVerilog

module pandg(input logic [30:0] a, b,
output logic [30:0] p, 9);

assign p = a | b;
assign g a & b;

endmodule
module blackbox (input logic [15:0] pleft, pright,
gleft, gright,
output logic [15:0] pnext, gnext);
assign pnext = pleft & pright;

assign gnext = pleft & gright | gleft;
endmodule

module sum(input logic [31:0] g, a, b,
output logic [31:0] s);
assign s = a ~ b * g;

endmodule

© 2015 Elsevier, Inc.

(continued from previous page)

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity pgblock is
port(a, b: in STD LOGIC VECTOR (30 downto 0);
p, g: out STD_LOGIC_VECTOR (30 downto 0))

end;

architecture synth of pgblock is
begin

p <= a or b;

g <= a and b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity pgblackblock is
port (pik, gik, pkj, gkj:
in STD LOGIC VECTOR(15 downto 0);
pij, gij:
out STD_LOGIC_VECTOR(15 downto 0));
end;

architecture synth of pgblackblock is
begin

pij <= pik and pkj;

gij <= gik or (pik and gkj);
end;

library IEEE; use IEEE.STD LOGIC 1164.all;

entity sumblock is
port(g, a, b: in STD LOGIC VECTOR (31 downto 0);
s: out STD LOGIC_VECTOR (31 downto 0));
end;

architecture synth of sumblock is
begin

s <= a xor b xor g;
end;

© 2015 Elsevier, Inc.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition
SOLUTIONS 187

5.41 (c) Using Equation 5.11 to find the delay of the prefix adder:
Ipg = tpg + |Og ZN([pg_prefix) + IxoR

We find the delays for each block:
tog =100 ps

Iyg_prefix = 200 ps

txor = 100 ps

Thus,
tp4 = [100 + 5(200) + 100] ps = 1200 ps = 1.2 ns

5.41 (d) To make a pipelined prefix adder, add pipeline registers between
each of the rows of the prefix adder. Now each stage will take 200 ps plus the

© 2015 Elsevier, Inc.
188 SOLUTIONS chapter 5

sequencing overhead, ¢,,
sign can run at 3.57 GHz.

+ fsetup= 80ps. Thus each cycle is 280 ps and the de-

© 2015 Elsevier, Inc.

SOLUTIONS

Digital Design and Computer Architecture: ARM Edition

Sarah L. Harris and David Money Harris

189

J

_m _<Ht

)

H‘_o

[:1-

f1

9

_”_n_

sl

V_H_O_a‘xn_x._n_

ko)

]

ey Hy
'‘a'v

]

puaba

<— 1915160y

3000000000000000008000008000000000

«— 1918169y

T-'GT | T-9T | 12T |T-'8T | T-6T {T-'0C | T-*TC | T-'¢C | T-'€C | T-¥¢ | T-'GC | 1-'9C | T2 | 1-'8C | T-'6C | T-'0€

T-TT | T-¢T | T-€T | T- VT

T-T |T-C €5 €9 16 20T

L8 6:0T

H
S
=]
&
«
<
)
©

11T

LTT | L°CT |L:€T LT
TTET| TTPT

ETVT

GT:6T

ST:0¢

LY.,

ST:TC

ST:LT

\

ST:9T

ST:8T

L1:8T

6T:0C

ST'€2|ST'¥C|ST'Ge|ST'9¢2| ST:22[{ST'82|S

<«— 1915160y
T:62|ST08

<«— 1915160y

GT:¢C

6T:1¢)|6T:2C

12:2¢

£2'G¢

\

£eve

¥

£¢:,2]1€2:82| €

c6¢|€20E

<— 1915169y

£2:9¢

A4

.

2:62].,2:0€

<«— 1915160y

1282

g

6¢:0€

<«— 1915160y

7H.707HiNiWiduimiw7m7w7m7oa7HH7NH7mai<a7ma7wﬁ7z7waima7ON7HN7Nwimw7vN7mN7®N7hwiwwimwiomiﬁm_

© 2015 Elsevier, Inc.
190 SOLUTIONS chapter 5

5.45 (e)

SystemVerilog

module prefixaddpipe (input logic clk, cin,
input logic [31:0] a, b,
output logic [31:0] s, output cout);

// p and g prefixes for rows 0 - 5
logic [30:0] pO, pl, p2, pP3, p4, p5;
logic [30:0] g0, gl, g2, g3, g4, g5;
logicp 1 0, p 11, p12, p13, p14, p125,
910,911, 912, 913,914, 9gl15;
// pipeline values for a and b
logic [31:0] a0, al, a2, a3, a4, a5,
b0, bl, b2, b3, b4, b5;

// row 0
flop #(2) flop0_pg 1(clk, {1'b0,cin}, {p_1 0,91 _0})
pandg row0 (clk, a[30:0], b[30:0], pO, g0);

// row 1
flop #(2) flopl pg 1l(clk, {p 1 0,9 1 0}, {p 1 1,9 1 1});
flop #(30) flopl pg(clk,
{p0[29],p0[27],p0[25],p0([23],p0[21],p0[19],p0[17],p0[15],
p0[13],p0[11],p0([9], po[1,p0[5],p0[3],p0[1],

g0[29]1,90(27],90([25],90[23],90([21],90(19],90[17],90[15]
g0(13]1,90[11],90([9],90([71,90[5]1,90(3]1,90([1]},

{pl[29],p1[27],p1[25],p1([23],p1[21],p1[19],p1([17],p1[15],
pl[13],p1[11],p1[9],p1[7],p1[5],p1[3],p1[1],

gl[29],91(27],91125],91([23],91(21],91[19],91[17],91[15]
91(13]1,91[11],91(9],91(7]1,91[5]1,91[3],91[1]1});

blackbox rowl (clk,

{p0[30],p0[28],p0[26],p0([24],p0[22],
p0[20],p0[18],p0[16],p0([14],p0[12],
p0[10],p0[8],p0[6],p0[4],p0[2],p0[0]},

{p0[29],p0[27],p0([25],p0[23],p0[21]
p0[19],p0[1],p0[15],p0[13],p [117,
p0[9],p0[7],p0[5],p0[3],p0[1],1'bO},
{g0[301,90([28],90[26],90([24],90[22],
g0[20],90([18],90[16],90[14],90[12],
g0[10],90([8],90([6],90[41,90[2],g0[01},

{g0[29]1,90([27],90[25],90([23],90[21]
g0[19],90([17],90[15],90[13]1,90([11],
g0[91,90([71,90[5]1,90([3]1,90([1],9_1_0},

{p1[30],p1([28],p1[26],p1[24],p1[22],p1[20],
1[18],pl[l6],p1[14],p1[12],p1[10],p1[8],
pll6],pl[4],p1[2],p1[0]},

{91[30],91(28],91[26],91[24],91[22],91[20],
1[(18],91(16],91[14],91[12],91[10],91[8],
gllel,gl(4]1,9112],91[0]});

// row 2
flop #(2) flop2 pg_l(clk, {p_1 1,9 1 1}, {p_1.2,9.1 2});
flop #(30) flop2 pg(clk,
{pl(28:27],p1[24:23],p1(20:19],p1[16:15]),p1[12:11],

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 191

pl(8:7],p1[4:3],pl[0],
gl[28:27],91[24:23]1,91[20:19],91[16:15],9g1[12:11],
gl[8:7],91[4:3],91[0]},
{p2[28:27],p2[24:23],p2[20:19],p2[16:15],p2[12:11],
p2[8:7],p2[4:3],p2[0],
g2[28:27]1,92[24:23]1,92[20:19],92[16:15],92([12:11],
g2(8:7]1,92[4:3]1,92[0]});
blackbox row?2 (clk,

(p1[30:29],p1[26:25],p1[22:21],p1[18:17],pLl[14:13],pl[10:9],pl[6:5],pl[2:1]
I

{ (2{pll[281}}, {2{pl[24]}}, {2{pl[20]}}, {2{plll6]}}, {2{pll12]}},
{2{p1(8]}1},
{2{pl[4]}}, {(2{pl[0]}} },

{g1[30:29],91[26:25],91[22:21],91([18:17],91[14:13],91[10:9],91([6:5],91[2:1]
b

{ {2{gll28]}}, {2{gll24]}}, {2{9l[20]1}}, {2{9l[16]}}, {2{gl[12]}},
{2{gl[8]}},
{2{91[4]}}, {2{g1[0]}} },

{p2[30:29],p2[26:25],p2(22:21],p2[18:17],p2[14:13],p2([10:9],p2[6:5],p2([2:1]
b

{g2[30:29]1,92[26:25]1,92[22:21],92[18:17],92[14:13]1,92[10:9]1,92[6:5],92[2:1]
b

// row 3
flop #(2) flop3 pg 1l(clk, {p_1 2,

g 12}, {p_1 3,91 3});
flop #(30) flop3_pg(clk, {p2[26: 23]

0]

]

]

1
p2[18:15],p2[10:7],p2[2:07,
g2[26:23],92([18:15],92[10:7],92[2 ,
{p3[26:23],p3[18:15],p3[10:7], p3[2
g3[26:23]1,93([18:15],93[10:7],93[2:
blackbox row3 (clk,
{p2[30:27],p2([22:19],p2[14:11],p2([6:3]1},
{ {4{p2[261}}, {4{p2[181}}, {4(p2[01}}, {4{p2[2]}} },
{g2[30:27],92([22:19],92[14:11],92([6:3]},
{ {4{92[26]}}, {4{g2[18]}}, {4(92[101}), {4{g2[2]}} 1},
[6
3[6

}
01,
0117

<p3[3o:27],p3[22:191,p3[14:11],p3 313,
(93030:27],93[22:19],g3[14:11], 311);

// row 4
flop #(2) flop4 pg 1(clk, {p_1 3,9 1 3}, {p_1 4,9 1 4});
flop #(30) flop4 pg(clk, {p3[22:15],p3[6:0],
g3[22:15],93[6:0]},
{p4(22:15],p4[6:0],
g4[22:15]1,941[6:01});

blackbox row4 (clk,
{p3[(30:23]1,p3[14:71},
{ {8{p3[22]}}, {8{p3[6]}} },
(93030:23],93[14:71},
{ {8{g3[221}}, {8{g3[6l}} 1},
{p4[30:23]1,p4[14:7]},
{g4[30:23],94[14:71});

// row 5

flop #(2) flop5 pg 1(clk, {p 1 4,9 1 4}, {p 1 5,g 1 5});

flop #(30) flop5 pg(clk, {p4[14:0],g4[14:07},
{p5(14:0]1,95[14:0]1});

© 2015 Elsevier, Inc.
192

SOLUTIONS chapter 5

blackbox rowb (clk,

p4130:157,
{l16{pd4[14]}},
g4[30:15],
{16{g4[141}},
p5[30:15], g5[30:15]);

// pipeline registers for a and b

flop #(64) flopO_ab(clk, {a,b}, {a0,b0});
flop #(64) flopl ab(clk, {a0,b0}, {al,bl});
flop #(64) flop2_ab(clk, {al,bl}, {a2,b2});
flop #(64) flop3_ab(clk, {a2,b2}, {a3,b3});
flop #(64) flop4 ab(clk, {a3,b3}, {a4,b4d});
flop #(64) flop5_ ab(clk, {a4,bd}, {a5,b5});
sum row6 (clk, {g5,g9 1 5}, a5, b5, s);
// generate cout
assign cout = (a5[31] & b5[31]1) | (g5[30] & (a5[31] | b5([31]));
endmodule
// submodules
module pandg (input logic clk,
input logic [30:0] a, b,
output logic [30:0] p, 9);
always_ff @ (posedge clk)
begin
p <=a | b;
g <= a & b;
end
endmodule
module blackbox (input 1logic clk,
input logic [15:0] pleft, pright, gleft, gright,
output logic [15:0] pnext, gnext);
always_ff @ (posedge clk)
begin
pnext <= pleft & pright;
gnext <= pleft & gright | gleft;
end
endmodule
module sum(input logic clk,
input logic [31:0] g, a, b,
output logic [31:0] s);
always_ff @ (posedge clk)
s <=a b " g;
endmodule
module flop
(parameter width = 8)
(input logic clk,
input logic [width-1:0] d,
output logic [width-1:0] q);

always ff @(posedge clk)
q <= d;
endmodule

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

5.45 (e)
VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity prefixaddpipe is
port(clk: in STD_LOGIC;
a, b: in STD LOGIC VECTOR (31 downto 0);
cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR(31 downto 0);
cout: out STD LOGIC);
end;

architecture synth of prefixaddpipe is
component pgblock
port (clk: in STD_LOGIC;
a, b: in STD_LOGIC_VECTOR(30 downto 0);
p, g: out STD_LOGIC_VECTOR(30 downto 0));
end component;
component sumblock is

port (clk: in STD_LOGIC;
a, b, g: in STD_LOGIC_VECTOR (31 downto 0);
S: out STD_LOGIC VECTOR(31 downto 0));

end component;
component flop is generic(width: integer);
port(clk: in STD LOGIC;
d: in STD_LOGIC VECTOR(w1dth 1 downto 0);
q: out STD_LOGIC_ VECTOR (width-1 downto 0));
end component;
component flopl is

port (clk: in STD_LOGIC;
d: in STD_LOGIC;
q: out STD_LOGIC) ;

end component;
component rowl is
port (clk: in STD_LOGIC;
p0, g0: in STD LOGIC_VECTOR (30 downto 0);
p 10, g1 0: in STD LOGIC;
pl, gl: out STD_LOGIC VECTOR(30 downto 0));
end component;
component row2 is
port (clk: in STD_LOGIC;
pl, gl: in STD LOGIC_VECTOR (30 downto 0);
P2, g2: out STD LOGIC VECTOR(30 downto 0));
end component;
component row3 is
port (clk: in STD_LOGIC;
p2, g2: in STD_LOGIC_VECTOR (30 downto 0);
p3, g3: out STD LOGIC_VECTOR(30 downto 0));
end component;
component rowd is
port(clk: in STD LOGIC;
p3, g3: in STD_LOGIC_VECTOR (30 downto 0);
p4, g4: out STD LOGIC_VECTOR (30 downto 0));
end component;
component row5 is
port (clk: in STD_LOGIC;
p4, g4: in STD LOGIC VECTOR (30 downto 0);
p5, g5: out STD_LOGIC_VECTOR(30 downto 0));
end component;

© 2015 Elsevier, Inc.

SOLUTIONS

193

© 2015 Elsevier, Inc.
194 SOLUTIONS chapter 5

-- p and g prefixes for rows 0 - 5
signal p0, pl, p2, p3, p4, p5: STD_LOGIC_VECTOR (30 downto 0);
signal g0, gl, g2, g3, g4, g5: STD_LOGIC_VECTOR (30 downto 0);

-- p and g prefixes for column -1, rows 0 - 5
signal p 1 0, p 1.1, p 1 2, p 13, p 14, p15,
g 10, g 1.1, g 1.2, g 13, g1 4, g 1 5: STD_LOGIC;

-- pipeline values for a and b
signal a0, al, a2, a3, a4, a5,
b0, bl, b2, b3, b4, b5: STD LOGIC_VECTOR (31 downto 0);

-- final generate signal
signal g5_all: STD_LOGIC_VECTOR(31 downto 0);

begin

-- p and g calculations
row0_reg: pgblock port map(clk, a(30 downto 0), b(30 downto 0), pO, g0);
rowl reg: rowl port map(clk, pO, g0, p.1 0, g 1 0, pl, gl);

row2_reg: row2 port map(clk, pl, gl, p2, g2)
row3_reg: row3 port map(clk, p2, g2, p3, g3)
rowd _reg: rowd port map(clk, p3, g3, p4, g4);
row5_reg: row5 port map(clk, p4, g4, p5, g5)

-- pipeline registers for a and b

flop0_a: flop generic map(32) port map (clk, a, a0);
flop0_b: flop generic map(32) port map (clk, b, b0)
flopl_a: flop generic map(32) port map (clk, a0, al);
flopl b: flop generic map(32) port map (clk, b0, bl);
flop2 a: flop generic map(32) port map (clk, al, a2);
flop2 b: flop generic map(32) port map (clk, bl, b2

)
)
)
)
)
flop3_a: flop generic map(32) port map
)
)
)
)
)

flop3_b: flop generic map(32) port map (clk, b2, b3);
flop4_a: flop generic map(32) port map (clk, a3, a4);
flop4_b: flop generic map(32) port map (clk, b3, b4);
flop5 a: flop generic map(32) port map (clk, a4, ab);
flop5 b: flop generic map(32) port map (clk, b4, b5);

-- pipeline p and g for column -1

p 1 0 <="'0"; flop 1 g0: flopl port map (clk, cin, g 1 0);
flop_1 pl: flopl port map (clk, p_ 1 0, p 1 1);

flop 1 gl: flopl port map (clk, g 1 0, g 1 1);

flop 1 p2: flopl port map (clk, p 1 1, p 1 2);

flop_1 g2: flopl port map (clk, g 1 1, g 1 2);

flop 1 p3: flopl port map (clk, p 1 2, p 1 3); flop 1 g3:
flopl port map (clk, g 1 2

(
(
(
(

’ ;
flop_1 pd4: flopl port map (clk, p_1 3, p 1 4);
flop 1 g4: flopl port map (clk, g 1 3, g 1 4);
flop_1 p5: flopl port map (clk, p_1 4, p_ 1 5);
flop_ 1 g5: flopl port map (clk, g_1_ 4, g 1 5);

—-—- generate sum and cout
g5_all <= (g5&g_1_5);
row6: sumblock port map(clk, g5_all, a5, b5, s);

—-- generate cout
cout <= (a5(31) and b5(31)) or (g5(30) and (a5(31) or b5(31)));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity pgblock is
port(clk: in STD LOGIC;

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 195

a, b: in STD_LOGIC_VECTOR(30 downto 0);
p, g: out STD_LOGIC_VECTOR(30 downto 0));
end;

architecture synth of pgblock is
begin
process (clk) begin
if rising_edge(clk) then
p <= a or b;
g <= a and b;
end if;
end process;
end;

library IEEE; use IEEE.STD LOGIC 1164.all;

entity blackbox is
port(clk: in STD_LOGIC;
pik, pkj, gik, gkj:
in STD LOGIC_VECTOR (15 downto 0);
pij, gij:
out STD_LOGIC_VECTOR(15 downto 0));
end;

architecture synth of blackbox is
begin
process (clk) begin
if rising_edge(clk) then
pij <= pik and pkj;
gij <= gik or (pik and gkj);
end 1if;
end process;
end;

library IEEE; use IEEE.STD LOGIC 1164.all;

entity sumblock is
port(clk: in STD_LOGIC;
g, a, b: in STD _LOGIC_VECTOR (31 downto 0);
s: out STD LOGIC VECTOR (31 downto 0));
end;

architecture synth of sumblock is
begin
process (clk) begin
if rising_edge(clk) then
s <= a xor b xor g;
end if;
end process;
end;

library IEEE; use IEEE.STD LOGIC 1164.all; wuse IEEE.STD LOGIC ARITH.all;

entity flop is -- parameterizable flip flop
generic (width: integer);
port (clk: in STD LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width—l downto 0));
end;

architecture synth of flop is
begin
process (clk) begin
if rising edge(clk) then
q <= d;

© 2015 Elsevier, Inc.
196 SOLUTIONS chapter 5

end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;

entity flopl is -- 1-bit flip flop
port (clk: in STD LOGIC;
d: in STD_LOGIC;
q: out STD_LOGIC) ;
end;

architecture synth of flopl is
begin
process (clk) begin
if rising edge (clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD LOGIC_1164.all;

entity rowl is
port (clk: in STD_LOGIC;
p0, g0: in STD _LOGIC VECTOR(30 downto 0);
p 1.0, g1 0: in STD_LOGIC;
pl, gl: out STD_LOGIC_VECTOR(30 downto 0));
end;

architecture synth of rowl is
component blackbox is
port (clk: in STD_LOGIC;
pik, pkj: in STD_LOGIC VECTOR(15 downto 0);
gik, gkj: in STD LOGIC VECTOR (15 downto 0);
pij: out STD LOGIC_VECTOR (15 downto 0);
gij: out STD_LOGIC_VECTOR(15 downto 0)
end component;
component flop is generic(width: integer);
port (clk: in STD_LOGIC;
d: in STD LOGIC VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(widthfl downto 0));
end component;

7

)i

-- internal signals for calculating p, g
signal pik 0, gik 0, pkj_0, gkj_O0,
pij_0, gij_0: STD_LOGIC_VECTOR (15 downto 0);

-- internal signals for pipeline registers
signal pg0_in, pgl_out: STD_LOGIC_VECTOR (29 downto 0);

begin
pg0_in <= (p0(29)&p0(27)&p0(25) &p0(23) &p0(21) &p0 (19) &p0 (17) &p0 (15) &
PO (13) &p0(11) &p0(9) &p0 (7) &p0 (5) &p0 (3) &p0 (1) &
g0(29) &g0(27) &g0(25) &90(23) &g0 (21) &g0(19) &g0 (17) &g0(15) &
g0(13) &g0(11)&g0(9)&g0(7) &g0 (5) &g0 (3) &g0 (1)) 7
flopl pg: flop generic map(30) port map (clk, pg0_in, pgl out);

pl(29) <= pgl_out(29); pl(27)<= pgl_out(28); pl(25)<= pgl out (27);

pl(23) <= pgl_out(26);

pl(21) <= pgl out(25); pl(1l9) <= pgl out(24); pl(1l7) <= pgl out(23);
1(15) <= pgl _out(22); pl(13) <= pgl out(21); pl(1) <= pgl_out(20);
1(9) <= pgl _out(19); pl(7) <= pgl_out(18); pl(5) <= pgl_out(1l7);

pl(3) <= pgl out(16); pl(l) <= pgl out(l5);

gl(29) <= pgl_out(14); gl(27) <= pgl_out(13); gl(25) <= pgl out(12);

gl(23) <= pgl_out(ll); gl(21) <= pgl_out(10); gl(19) <= pgl_out(9);

gl(17) <= pgl_out(8); gl(1l5) <= pgl out(7); gl(l3) <= pgl out (6);

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

gl(1ll) <= pgl out(5);
gl(5) <= pgl_out(2);

g1 (9)
gl(3)

<= pgl_out (4);
<= pgl_out(l);

gl (7)
gl(1)

<= pgl_out(3);
<= pgl_out (0);

-- pg calculations

pik 0 <= (p0(30)&p0(28)&p0(26)&p0(24) &p0(22) &p0 (20) &p0 (18) &p0 (16) &
p0(14) &p0(12) &p0(10) &p0 (8) &p0 (6) &p0 (4) &p0 (2) &p0 (0)) 7
gik 0 <= (g0(30)&g0(28)&gO(26)&g0(24)&gO(22)&g0(20)&g0(18)&g0(16)
g0 (14)&g0(12) &g0(10) &g0 (8) &g0 (6) &g0 (4) &g0 (2) &g0 (0)
pkj_0 <= (p0(29)&p0 (27)&p0(25)&p0(23)&p0(21)& p0(19) & pO(17)& 0(15) &
PO (13)&p0(11)&p0(9) &p0(7) &p0(5) &p0(3) &p0 (1) &p_1_0);
gkj_0 <= (g0(29)&g0 (27)&gO(25)&g0(23)&g0(2l)&g0(19)&g0(l7)&g0(5)&
g0(13)&g0(11)&g0(9)&g0(7)&g0(5)& g0(3)&g0(1)&g_1 0);
rowl: blackbox port map(clk, pik_0, pkj_0, gik 0, gkj_0, pij_0, gij 0);
pl(30) <= pij 0(15); pl(28) <= pij 0(14); pl(26) <= pij 0(1
pl(24) <= pij_0(12); pl(22) <= pij _0(11); pl(20) <= pij O0(1)
pl(18) <= pij _0(9); pl(le) <= pij 0(8); pl(l4) <= pljfo()i
pl(12) <= pij _0(6); pl(10) <= pij 0(5); pl(8) <= pij 0(4);
pl(6) <= le_O()i pl(4) <=pij 0(2); pl(2) <=pij 0(1); pl(0) <= pij 0(0);
gl(30) <= gij 0(15); gl(28) <= gij 0(14); g1(2) <= gij 0(1
gl(24) <= gij_0(12); gl(22) <= gij_0(11); gl(20) <= gij 0(1)
g1(18) <= gij_0(9); gl(16) <= gij 0(8); g (4) <= gij_0(7);
gl(12) <= gij _0(6); gl(10) <= gij 0(5); g1(8) = gij_0(4);
gl(6) <= gij _0(3); gl(4) <= gij_0(2); gl(2) <= gij _0(1); gl(0) <= gij_0(0);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row2 is

port (clk: in STD_LOGIC;
pl, gl: in STD_LOGIC_VECTOR (30 downto 0);
P2, g2: out STD LOGIC_VECTOR(30 downto 0));
end;

architecture synth of row2 is
component blackbox is

port (clk: in STD_LOGIC;
pik, pkj: in STD_LOGIC_ VECTOR(15 downto O0);
gik, gkj: in STD_LOGIC_VECTOR (15 downto 0);
pij: out STD_LOGIC_VECTOR(15 downto 0);
gij: out STD_LOGIC VECTOR(15 downto 0));

end component;
component flop is generic (width:
port(clk: in STD LOGIC;
d: in STD _LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));
end component;

integer);

-- internal signals for calculating p, g
signal pik 1, gik 1, pkj 1, gkj 1,
pij_1, gij_1: STD_LOGIC_VECTOR(15 downto 0);

-- internal signals for pipeline registers
signal pgl_in, pg2 out: STD_LOGIC_VECTOR (29 downto 0);

begin
pgl_in <= (pl(28 downto 27)&pl (24 downto 23)&pl (20 downto 19) &
pl(l6 downto 15)&
pl (12 downto 11)&pl (8 downto 7)&pl (4 downto 3)&pl (0)&
(28 downto 27) &gl (24 downto 23) &gl (20 downto 19)&
gl (16 downto 15)&
gl (12 downto 11)&gl (8 downto 7)&gl (4 downto 3)&gl(0));

flop2 pg: flop generic map(30) port map (clk, pgl_in, pg2_ out);

© 2015 Elsevier, Inc.

SOLUTIONS

197

© 2015 Elsevier, Inc.
198 SOLUTIONS chapter 5

p2 (28 downto 27
p2 (24 downto 23

<= pg2_out (29 downto 28);
<= pg2_out (27 downto 26);
p2 (20 downto 19) <= pg2_out(25 downto 24);
p2 (16 downto 15) <= pg2 out (23 downto 22);
p2 (12 downto 11) <= pg2_out (21 downto 20);
p2 (8 downto 7) <= pg2_out (19 downto 18);

p2 (4 downto 3) <= pg2 out(l7 downto 16);
p2(0) <= pg2_out(15);

g2 (28 downto 27) <= pg2_out (14 downto 13);
g2 (24 downto 23) <= pg2 out (12 downto 11);
g2 (20 downto 19) <= pg2_out (10 downto 9);
g2 (16 downto 15) <= pg2_out (8 downto 7);

g2 (12 downto 11) <= pg2 out (6 downto 5);

g2 (8 downto 7) <= pg2_out (4 downto 3);

g2 (4 downto 3) <= pg2_out (2 downto 1); g2(0) <= pg2_out(0);

-- pg calculations
pik71 <= (pl(30 downto 29)&pl (26 downto 25)&pl (22 downto 21)&

pl (18 downto 17)&pl (14 downto 13)&pl (10 downto 9)&
pl (6 downto 5)&pl (2 downto 1));
gik_ 1 <= (gl(30 downto 29)&gl (26 downto 25) &gl (22 downto 21)&
gl (18 downto 17) &gl (14 downto 13)&gl (10 downto 9)&
gl (6 downto 5)&gl (2 downto 1));
pkj_1 <= (pl(28)&pl(28)s&pl(24)&pl(24)&pl(20)&pl (20)&pl (16)&pl (16)&
pl(12)&pl(12)&pl(8)&pl(8)&pl(4)&pl (4)&pl (0)&pl (0));
gkj_1 <= (g1(28)&gl(28)&gl(24) &gl (24) &gl (20) &gl (20)&gl(16)&gl (16)s
g1 (12)&gl(12)&g1(8) &gl (8) &gl (4) &gl (4) &gl (0) &gl (0));

row2: blackbox
port map(clk, pik 1, pkj 1, gik 1, gkj_1, pij_ 1, gij_1);

p2 (30 downto 29) <= pij_1(15 downto 14);

p2 (26 downto 25) <= pij 1(13 downto 12);

p2(22 downto 21) <= pij 1(11 downto 10);

p2 (18 downto 17) <= pij_1(9 downto 8);

p2 (14 downto 13) <= pij 1(7 downto 6); p2 (10 downto 9) <= pij 1(5 downto 4);
p2 (6 downto 5) <= pij 1(3 downto 2); p2(2 downto 1) <= pij 1(1 downto 0);

g2 (30 downto 29
g2 (26 downto 25

<= gij_1(15 downto 14);

<= gij 1(13 downto 12);

g2 (22 downto 21) <= gij_1(11 downto 10);

g2 (18 downto 17) <= gij_1(9 downto 8);

g2 (14 downto 13) <= gij 1(7 downto 6); g2 (10 downto 9) <= gij 1(5 downto 4);
g2 (6 downto 5) <= gij_1(3 downto 2); g2(2 downto 1) <= gij_1(1 downto 0);

end;
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row3 is
port (clk: in STD LOGIC;
p2, g2: in STD_LOGIC_VECTOR (30 downto 0);
p3, g3: out STD_LOGIC_VECTOR(30 downto 0));
end;

architecture synth of row3 is
component blackbox is
port (clk: in STD_LOGIC;
pik, pkj: in STD_LOGIC_VECTOR (15 downto 0)
gik, gkj: in STD LOGIC_VECTOR (15 downto 0);
pij: out STD_LOGIC_VECTOR (15 downto 0);
gij: out STD_LOGIC_VECTOR(15 downto 0))
end component;
component flop is generic(width: integer);
port(clk: in STD_LOGIC;
d: in STD LOGIC_VECTOR(width-1 downto 0);

7

7

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS

q: out STD_LOGIC_VECTOR (width-1 downto 0));
end component;

-- internal signals for calculating p, g
signal pik 2, gik 2, pkj 2, gkj 2,
pij_2, gij_2: STD_LOGIC_VECTOR(15 downto 0);

-- internal signals for pipeline registers
signal pg2_in, pg3_out: STD_LOGIC_VECTOR (29 downto 0);

begin
pg2_in <= (p2(26 downto 23)&p2 (18 downto 15)&p2 (10 downto 7)&
p2(2 downto 0)&
g2 (26 downto 23)&g2 (18 downto 15) &g2 (10 downto 7) &g2 (2 downto 0));

flop3 pg: flop generic map(30) port map (clk, pg2_in, pg3_out);
p3 (26 downto 23) <= pg3_out (29 downto 26);
p3(18 downto 15) <= pg3_out (25 downto 22);

3(10 downto 7) <= pg3_out (21 downto 18);
p3(2 downto 0) <= pg3 out (17 downto 15);

3(26 downto 23) <= pg3_out(l4 downto 11);

3(18 downto 15) <= pg3_out (10 downto 7);
g3(10 downto 7) <= pg3_out (6 downto 3);
g3 (2 downto 0) <= pg3_out (2 downto 0);

-- pg calculations
pik_2 <= (p2(30 downto 27)&p2 (22 downto 19)&
14 downto 11)&p2(6 downto 3));

gik 2 <= (g2 30 downto 27)&g2 (22 downto 19)
14 downto 11)&g2 (6 downto 3)
pkj_2 <= ()&p2(26)&p2 26) &p2(26) &

) &p2 (18) &p2 (18) &p2 (18) &
)&p2(10)&p2(10)&p2(1) &
&p2(2) &p2(2) &p2 (2
) &92(26) &92 (26) &g2
) &92(18) &g2 (18) &g2
)&g2(10)&g2(10)&g2
&92(2) &92(2) &92(2)) ;

)) i
gkj_2 <= (26)
(18)
(10

2(
(
2
2(
2
2(
2(
2(
2
2()&
2

26
18
10
2)
26
18
10
2)

row3: blackbox
port map(clk, pik 2, pkj 2, gik 2, gkj 2, pij 2, gij 2);

p3 (30 downto 27) <= pij 2(15 downto 12);
p3 (22 downto 19) <= pij 2(11 downto 8);
p3 (14 downto 11) <= pij_ 2(7 downto 4); p3(6 downto 3) <= pij 2 (3 downto 0);
g3 (30 downto 27) <= gij_2(15 downto 12);
g3 (22 downto 19) <= gij 2(11 downto 8);
g3 (14 downto 11) <= gij_2(7 downto 4); g3 (6 downto 3) <= gij_2(3 downto 0);

library IEEE; use IEEE.STD LOGIC_1164.all;

entity row4d is
port (clk: in STD_LOGIC;
p3, g3: in STD_LOGIC_VECTOR (30 downto 0);
p4, g4: out STD_LOGIC_VECTOR (30 downto 0));
end;

architecture synth of row4d is
component blackbox is
port (clk: in STD_LOGIC;

pik, pkj: in STD_LOGIC_VECTOR (15 downto 0);
gik, gkj: in STD LOGIC_VECTOR (15 downto 0);
pij: out STD_LOGIC_VECTOR (15 downto 0);
gij: out STD_LOGIC_VECTOR (15 downto 0)

end component;

;

)i

199

200

SOLUTIONS

chapter 5

component flop is generic(width: integer);
port(clk: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD LOGIC VECTOR(width-1 downto 0));
end component;

-- internal signals for calculating p, g
signal pik_3, gik_3, pkj_3, gkj_3,
pij_3, gij_3: STD_LOGIC_VECTOR (15 downto 0);

-- internal signals for pipeline registers
signal pg3_in, pg4_out: STD LOGIC_VECTOR (29 downto 0);

begin

© 2015 Elsevier, Inc.

pg37in <= (p3(22 downto 15) &p3 (6 downto 0) &g3 (22 downto 15) &g3 (6 downto 0));

flop4 pg: flop generic map(30) port map (clk, pg3_in, pg4_out);
p4 (22 downto 15) <= pgd_out (29 downto 22);
p4 (6 downto 0) <= pg4_out (21 downto 15);
g4 (22 downto 15) <= pg4 out (14 downto 7);
4(6 downto 0) <= pgd4_out (6 downto 0);

-- pg calculations
pik_3 <= (p3(30 downto 23)&p3 (14 downto 7)) ;

(
gik 3 <= (g3(30 downto 23)&g3 (14 downto 7));
pkj:3 <= (3(22)&p3(22) &p3(22) &p3(22) &p3(22) &p3(22) &p3(22) &p3(22) &
3(6)&p3(6)sp3 (6)&p3() &p3(6) &p3 (6) &p3 (6) &p3(6)) ;
gkj_3 <= (3(22)&g3(22)&g3(22)&g3(22) &g3(22) &g3(22) &93(22) &g3(22) &
3(6)&g3(6) &g3 (6)&g3() &93 (6) &93 (6) &93 (6) &g3(6)) 7

row4: blackbox
port map(clk, pik 3, pkj 3, gik 3, gkj 3, pij_ 3, gij_3);

p4 (30 downto 23) <= pij_3(15 downto 8);

p4 (14 downto 7) <= pij 3(7 downto 0);

g4 (30 downto 23) <= gij_3(15 downto 8);
(

14 downto 7) <= gij_3(7 downto 0);

library IEEE; use IEEE.STD LOGIC 1164.all;

entity rowb is
port (clk: in STD LOGIC;
p4, g4: in STD _LOGIC_VECTOR (30 downto 0);
p5, g5: out STD_LOGIC VECTOR(30 downto 0));
end;
architecture synth of row5 is
component blackbox is
port (clk: in STD LOGIC;
pik, pkj: in STD_LOGIC_VECTOR (15 downto 0);
gik, gkj: in STD_LOGIC_VECTOR (15 downto 0);
pij: out STD_LOGIC_VECTOR (15 downto 0);
gij: out STD_LOGIC_VECTOR (15 downto 0));
end component;
component flop is generic(width: integer);
port(clk: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));
end component;

-- internal signals for calculating p, g
signal pik 4, gik 4, pkj_4, gkj_4,
pij 4, gij 4: STD LOGIC VECTOR(15 downto 0);

-- internal signals for pipeline registers
signal pg4_in, pg5 out: STD_LOGIC_VECTOR(29 downto 0);

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

begin

SOLUTIONS 201

pg4_in <= (p4 (14 downto 0)&g4 (14 downto 0));
flop4 pg: flop generic map(30) port map (clk, pg4 in, pg5 out);
p5(14 downto 0) <= pg5_out(29 downto 15); g5(14 downto 0) <= pg5_out(1l4

downto 0);

-- pg calculations

pik 4 <= p4 (30 downto 15);

gik_4 <= g4 (30 downto 15);

pkj_4 <= p4(14)&pd(14)sp4(14)s&p4d(14)s
P4 (14)&p4 (14) sp4 (14) &pd (14) &
P4 (14)&p4 (14) «p4d (14) &pd (14) &
p4(14)&p4(14) ap4d (14) &p4 (14) ;

gkj 4 <= g4(14)&g4(14)&g4d(14)&g4d(14)s&
g4 (14) &g4 (14) &g4 (14) &g4 (14) &
g4 (14) &g4 (14) &g4 (14) &g4 (14) &
g4 (14) &g4 (14) &gd4 (14) &g4 (14);

row5: blackbox

end;

port map(clk, pik 4, gik 4, pkj 4, gkj_4, pij 4, gij 4);
p5(30 downto 15) <= pij_4; g5(30 downto 15) <= gij 4;

Exercise 5.46

Reset CLK

Q7:0

FIGURE 5.13 Incrementer built using half adders

Exercise 5.47

202

SOLUTIONS chapter 5

QN-1:0

FIGURE 5.14 Up/Down counter

Exercise 5.48

© 2015 Elsevier, Inc.

QN-1:0

FIGURE 5.15 32-hit counter that increments by 4 on each clock edge

Exercise 5.49

QN—l:O

FIGURE 5.16 32-bit counter that increments by 4 or loads a new value, D

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 203

Exercise 5.50

()
0000
1000
1100
1110
1111
0111
0011
0001
(repeat)

(b)
2N. 1’s shift into the left-most bit for N cycles, then 0°s shift into the left bit
for N cycles. Then the process repeats.

David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture, © 2007 by Elsevier Inc.
Exercise Solutions

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
204 SOLUTIONS chapter 5
5.50 (c)

SEEPO

QO Q]_ Q2 Q3 Q4

U W

FIGURE 5.17 10-bit decimal counter using a 5-bit Johnson counter

(d) The counter uses less hardware and could be faster because it has a short
critical path (a single inverter delay).

Exercise 5.51

Sarah L. Harris and David Money Harris

SystemVerilog

module scanflop4 (input logic clk, test,
input logic [3:0] d,
output logic [3:0] g,
output logic sout) ;

sin,

always_ff @ (posedge clk)
if (test)
q <= d;
else
q <= {ql2:0], sin};

assign sout = q[3];

endmodule

Exercise 5.52

Digital Design and Computer Architecture: ARM Edition

SOLUTIONS

VHDL

library IEEE; use IEEE.STD LOGIC 1164.all;

entity scanflop4 is
port(clk, test, sin: in
d: in STD_LOGIC_VECTOR (3 downto 0);
g: inout STD _LOGIC_VECTOR (3 downto 0);

sout: out STD LOGIC) ;

STD_LOGIC;

end;

architecture synth of scanflop4 is
begin

process (clk, test) begin
if rising edge(clk) then
if test then
q <= d;
else
q <= g (2 downto 0) & sin;
end if;
end if;

end process;
sout <= q(3);

end;

@

encoding
Ya:0
00 00001
01 01010
10 10100
11 11111

TABLE 5.2 Possible encodings

The first two pairs of bits in the bit encoding repeat the value. The last bit

is the XNOR of the two input values.

© 2015 Elsevier, Inc.

205

206

SOLUTIONS

© 2015 Elsevier, Inc.
chapter 5

5.52 (b) This circuit can be built using a 16 x 2-bit memory array, with the
contents given in Table 5.3.

address

ayq:0

00001 00
00000 00
00011 00
00101 00
01001 00
10001 00
01010 01
01011 01
01000 01
01110 01
00010 01
11010 01
10100 10
10101 10
10110 10
10000 10
11100 10
00100 10
11111 11
11110 11
11101 11
11011 11
10111 11

TABLE 5.3 Memory array values for Exercise 5.48

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 207

address
aq.0
01111 11
others I XX

TABLE 5.3 Memory array values for Exercise 5.48
5.48 (c¢) The implementation shown in part (b) allows the encoding to

change easily. Each memory address corresponds to an encoding, so simply
store different data values at each memory address to change the encoding.

Exercise 5.53

http://www.intel.com/design/flash/articles/what.htm

Flash memory is a nonvolatile memory because it retains its contents after
power is turned off. Flash memory allows the user to electrically program and
erase information. Flash memory uses memory cells similar to an EEPROM,
but with a much thinner, precisely grown oxide between a floating gate and the
substrate (see Figure 5.18).

Flash programming occurs when electrons are placed on the floating gate.
This is done by forcing a large voltage (usually 10 to 12 volts) on the control
gate. Electrons quantum-mechanically tunnel from the source through the thin
oxide onto the control gate. Because the floating gate is completely insulated by
oxide, the charges are trapped on the floating gate during normal operation. If
electrons are stored on the floating gate, it blocks the effect of the control gate.
The electrons on the floating gate can be removed by reversing the procedure,
i.e., by placing a large negative voltage on the control gate.

The default state of a flash bitcell (when there are no electrons on the float-
ing gate) is ON, because the channel will conduct when the wordline is HIGH.
After the bitcell is programmed (i.e., when there are electrons on the floating
gate), the state of the bitcell is OFF, because the floating gate blocks the effect
of the control gate. Flash memory is a key element in thumb drives, cell phones,
digital cameras, Blackberries, and other low-power devices that must retain
their memory when turned off.

© 2015 Elsevier, Inc.

208 SOLUTIONS chapter 5

wordline

! source

VGND

FIGURE 5.18 Flash EEPROM

Exercise 5.54

@
U B S G
OR ARRAY
(V V V V \ (\
SG
UBS
USG
UBS
. J . J
AND ARRAY
M Vo

FIGURE 5.19 4 x 4 x 3 PLA implementing Exercise 5.44

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 209

5.54 (b)

4:16

Decoder |

0000

0001 o

0010

oo g

4

U,B,S,G—— 0101
0110

0111, ¢ ¢ |
1000
1001
1010
1011 ¢ o |
1100
1101
1110

1111 % f F

M J vV

FIGURE 5.20 16 x 3 ROM implementation of Exercise 5.44

(©
SystemVerilog VHDL

module ex5_ 44c(input logic u, b, s, g,

library IEEE; use IEEE.STD_LOGIC_1164.all;
output logic m, j, Vv);

entity ex5 44c is

assign m = s&g | us&bss; port(u, b, s, g: in STD_LOGIC;
assign j = ~u&b&~s | s&g; m, j, Vv: out STD_LOGIC) ;
assign v = u&bé&s | ~u&~s&g; end;

endmodule

architecture synth of ex5_44c is
begin

m <= (s and g) or (u and b and s);

j <= ((not u) and b and (not s)) or (s and g);

v <= (u and b and s) or ((not u) and (not s) and g);
end;

Exercise 5.55

© 2015 Elsevier, Inc.
210 SOLUTIONS chapter 5

4:16
Decoder

0000
0001
0010
0100
4
A,B,C,D— 0101 4‘7
0110
0111
1000
1001 ’
1010
1011
1100
1101
1110
1111

Exercise 5.56

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 211

OR ARRAY

AB

BCD

AB

BD

\ J . J
AND ARRAY

FIGURE 5.21 4 x 8 x 3 PLA for Exercise 5.52

Exercise 5.57

(@) Number of inputs =2 x 16 + 1 = 33
Number of outputs =16 + 1 =17

Thus, this would require a 233 x 17-bit ROM.

(b) Number of inputs = 16
Number of outputs = 16

Thus, this would require a 216 x 16-bit ROM.

(c) Number of inputs = 16
Number of outputs = 4

© 2015 Elsevier, Inc.
212 SOLUTIONS chapter 5

Thus, this would require a 216 x 4-bit ROM.

All of these implementations are not good design choices. They could all
be implemented in a smaller amount of hardware using discrete gates.

Exercise 5.58

(a) Yes. Both circuits can compute any function of K inputs and K outputs.

(b) No. The second circuit can only represent 2X states. The first can rep-
resent more.

(c) Yes. Both circuits compute any function of 1 input, N outputs, and 25
states.

(d) No. The second circuit forces the output to be the same as the state en-
coding, while the first one allows outputs to be independent of the state encod-

Ing.
Exercise 5.59
(3) 1LE
(A) (B (C) (D) [§4]
data 1 data 2 data 3 data 4| LUT output
0 0 0 0
A — data1
c B — data 2
<D7 data 3 ﬂ X
D — data 4 LUT

LE

PRPRPRPRPRPPRPRPOO0O0O0O0O0O
PP RPPRPO0OO0OO0OORRRERELOOO
PP OORRPROORRFROOR RO
POROFROFROROROR OR
PORrROORRPRERPRERERRERRRE

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS

(b) 2 LEs
(B) © (D) (B) (X) A (X))
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
0 0 0 0 1 0 0 X X 0
0 0 0 1 1 0 1 X X 1
0 0 1 0 1 1 0 X X 1
0 0 1 1 1 1 1 X X 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
A —| data 1 A —| data 1
B — data 2 e T S e —— —| data 2
e b R B L B
D —(data4 . 0 —|data4 .

LE 2

213

214

© 2015 Elsevier, Inc.

SOLUTIONS chapter 5
(c) 2 LEs
A (B) ©) (D)) A (B) ©) (D))
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output

0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0
0 1 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 1 1
0 1 1 0 0 0 1 1 0 0
0 1 1 1 1 0 1 1 1 1
1 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 1
1 0 1 0 1 1 0 1 0 0
1 0 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 0 0 0
1 1 0 1 1 1 1 0 1 1
1 1 1 0 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1

A —| data 1 A —| data 1

B — data 2 B — data 2

C<D7 data 3 ﬂy C<D7 data 3 ﬂz
D — data 4 LuT D —|data4 LuT

LE 2

Sarah L. Harris and David Money Harris

Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
SOLUTIONS

(d) 2 LEs
(A) (A) (A) (A) (D) (A) (A) (A) (A) P)
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 1 1
0 1 1 0 1 0 1 1 0 0
0 1 1 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0
1 0 1 0 0 1 0 1 0 0
1 0 1 1 0 1 0 1 1 1
1 1 0 0 1 1 1 0 0 0
1 1 0 1 0 1 1 0 1 1
1 1 1 0 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0

A, —| data 1 A, data 1

A, — data 2 A, — data?2

A1<D27 data 3 ﬂD A1<D27 data 3 ﬂp
A, — data 4 LuT A, data 4 LuT
LE 1 LE 2

215

216

© 2015 Elsevier, Inc.

SOLUTIONS chapter 5
(e) 2 LEs
(A (A) (A) (Ay (Yo (A) (A) (A) (A) (Y,
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0
0 1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 1 0 1
0 1 1 1 0 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1
1 0 0 1 1 1 0 0 1 1
1 0 1 0 1 1 0 1 0 1
1 0 1 1 1 1 0 1 1 1
1 1 0 0 1 1 1 0 0 1
1 1 0 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1
A, — data 1 A, data 1
A A, —| data 2 A A, — data2
FD— data 3 ‘D Y, 1‘D— data 3 ‘D Y,
A, —| data 4 LuT A, data 4 LuT

Exercise 5.60

LE 2

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 217

(@) 8 LEs (see next page for figure)

© 2015 Elsevier, Inc.

218 SOLUTIONS chapter 5
LE1 LE 2 LE 3
(A) (A) (A) (Yo (A) (A) (A) (YD) (A) (A) (A (Yy)
data 1 data2 data3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
X 0 0 0 1 X 0 0 0 0 X 0 0 0 0
X 0 0 1 0 X 0 0 1 1 X 0 0 1 0
X 0 1 0 0 X 0 1 0 0 X 0 1 0 1
X 0 1 1 0 X 0 1 1 0 X 0 1 1 0
X 1 0 0 0 X 1 0 0 0 X 1 0 0 0
X 1 0 1 0 X 1 0 1 0 X 1 0 1 0
X 1 1 0 0 X 1 1 0 0 X 1 1 0 0
X 1 1 1 0 X 1 1 1 0 X 1 1 1 0
LE 4 LE 5 LE 6
(A) (A) (Ay) (Yy) (A) (A) (Ay) (Y, (A) (A) (A) (Ys)
data 1 _data 2 data 3 data 4| LUT output data 1 data2 data3 data4| LUT output data 1 data 2 data 3 data 4| LUT output
X 0 0 0 0 X 0 0 0 0 X 0 0 0 0
X 0 0 1 0 X 0 0 1 0 X 0 0 1 0
X 0 1 0 0 X 0 1 0 0 X 0 1 0 0
X 0 1 1 1 X 0 1 1 0 X 0 1 1 0
X 1 0 0 0 X 1 0 0 1 X 1 0 0 0
X 1 0 1 0 X 1 0 1 0 X 1 0 1 1
X 1 1 0 0 X 1 1 0 0 X 1 1 0 0
X 1 1 1 0 X 1 1 1 0 X 1 1 1 0
LE 7 LE 8
(A) (A) (A (Y (A) (A) Ay)
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
X 0 0 0 0 X 0 0 0 0
X 0 0 1 0 X 0 0 1 0
X 0 1 0 0 X 0 1 0 0
X 0 1 1 0 X 0 1 1 0
X 1 0 0 0 X 1 0 0 0
X 1 0 1 0 X 1 0 1 0
X 1 1 0 1 X 1 1 0 0
X 1 1 1 0 X 1 1 1 1
4 N [N [N
—| data 1 0 —data1 0 —data1
A, —data?2 A, —data?2 A, —data?2
Ay <D7 data 3 ﬂyo Ay data 3 ﬂyl Ay <D7 data 3 ﬂyZ
A, —|datad . A, —|data4 . A, —|data4 .
_ LE1 / _ LE2 J _ LE3 /J
4 N [N [N
0 —data1 0 —data1 0 —data1
A, — data?2 A, — data2 A, — data2
& <D7 data 3 Ys A <D7 data 3 Y A <D7 data 3 ﬂys
A, — data 4 LuT A, — data 4 LuT A, — data 4 LuT
_ LE4 / U LE5 J _ LE6 /
4 N [N
0 —data1 0 —data1
A, —| data2 A, —| data 2
A 2 A 2
1 ‘D— data 3 Yo 1 data 3 ‘Dﬁ
A, —|datad . A, —|datad .
_ LE7 J U LEs /J

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 219

(b) 8 LEs (see next page for figure)

© 2015 Elsevier, Inc.

220 SOLUTIONS chapter 5
LE7 LE 6 LES
(A) (A) (A (¥7) (A) (A) (A (Yo (A) (A) (A) 8A)
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
X 0 0 0 0 X 0 0 0 0 X 0 0 0 0
X 0 0 1 0 X 0 0 1 0 X 0 0 1 0
X 0 1 0 0 X 0 1 0 0 X 0 1 0 0
X 0 1 1 0 X 0 1 1 0 X 0 1 1 0
X 1 0 0 0 X 1 0 0 0 X 1 0 0 0
X 1 0 1 0 X 1 0 1 0 X 1 0 1 1
X 1 1 0 0 X 1 1 0 1 X 1 1 0 0
X 1 1 1 1 X 1 1 1 0 X 1 1 1 0
LE 4 LE 3 LE 2
(A) (A) (A Y, (A) (A) (A) (Y5 (A) (A) (A (Y2)
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
X 0 0 0 0 X 0 0 0 0 X 0 0 0 0
X 0 0 1 0 X 0 0 1 0 X 0 0 1 0
X 0 1 0 0 X 0 1 0 0 X 0 1 0 1
X 0 1 1 0 X 0 1 1 1 X 0 1 1 0
X 1 0 0 1 X 1 0 0 0 X 1 0 0 0
X 1 0 1 0 X 1 0 1 0 X 1 0 1 0
X 1 1 0 0 X 1 1 0 0 X 1 1 0 0
X 1 1 1 0 X 1 1 1 0 X 1 1 1 0
LE1 LEO
(A) (A) (A) (Y) (A) (A) (A) (Yo)
data 1 data 2 data 3 data4| LUT output data 1 data 2 data 3 data 4| LUT output
X 0 0 0 0 X 0 0 0 1
X 0 0 1 1 X 0 0 1 0
X 0 1 0 0 X 0 1 0 0
X 0 1 1 0 X 0 1 1 0
X 1 0 0 0 X 1 0 0 0
X 1 0 1 0 X 1 0 1 0
X 1 1 0 0 X 1 1 0 0
X 1 1 1 0 X 1 1 1 0
4) 4) 4 I
/C\)—data1 /C‘)—data1 /‘(\)—data1
2— data 2 2— data 2 2—| data 2
A1<D7 data 3 <DHY7 A1<D7 data 3 W‘i Ar data 3 W5
Ay data4 . Ay;—|data4 . Ay— data4 .
_ LE7 J g LE6 J _ LE5 /
4) 4) 4 I
;\J—data1 ;‘J—data1 ;\)—data1
2— data 2 >— data 2 2—| data 2
A1<D7 data 3 <DHY4 A1<D7 data 3 <DHY3 Ar data 3 WZ
Ay —| data4 . Ay —|data4 . Ay — data4 .
_ LE4 J _ LE3 J _ LE2 J
X—data1 /(‘)—data1
2—| data 2 >—| data 2
ATD— data 3 ‘Dﬂl ATD— data 3 ‘Dﬂo
Ay—|data4 | . Ay—|data4 | .
LE1 LEO

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SOLUTIONS 221

(c) 6 LEs (see next page for figure)

© 2015 Elsevier, Inc.

222 SOLUTIONS chapter 5
LE1 LE 2 LE 3
(A) (By) (Sp) (A) (By) (A) B) (S) (A) (By) (A) (B) c)
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output
X X 0 0 0 0 0 0 0 0 0 0 0 0 0
X X 0 1 1 0 0 0 1 1 0 0 0 1 0
X X 1 0 1 0 0 1 0 1 0 0 1 0 0
X X 1 1 1 0 0 1 1 1 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 1 0
0 1 1 0 1 0 1 1 0 0
0 1 1 1 1 0 1 1 1 1
1 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0
1 0 1 0 1 1 0 1 0 0
1 0 1 1 1 1 0 1 1 1
1 1 0 0 1 1 1 0 0 0
1 1 0 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1
LE 4 LES5 LE 6
(A) (B, ((=H] (S,) (A) (B,) € (C) (A) (By) (C) (Sy)
data 1 data 2 data 3 data 4| LUT output data 1 data 2 data 3 data 4| LUT output data 1 data2 data 3 data 4| LUT output
X 0 0 0 0 X 0 0 0 0 X 0 0 0 0
X 0 0 1 1 X 0 0 1 0 X 0 0 1 1
X 0 1 0 1 X 0 1 0 0 X 0 1 0 1
X 0 1 1 0 X 0 1 1 1 X 0 1 1 0
X 1 0 0 1 X 1 0 0 0 X 1 0 0 1
X 1 0 1 0 X 1 0 1 1 X 1 0 1 0
X 1 1 0 0 X 1 1 0 1 X 1 1 0 0
X 1 1 1 1 X 1 1 1 1 X 1 1 1 1
4 N
0 —| data 1 Ay | data 1
0 —data?2 s B, — data 2
A0<D7 data 3 ﬂ 0 data 3 ﬂsl
B, —|data4 . B, data 4 .
_ LE1 J LE2 /
4 N
A, —| datat 0 —datat
B, — data2 A, —|{data2
A 0 2
data 3 G, <D7 data 3 ﬂsz
B, —|data 4 T data 4 T
_ LE3 J LE4 J
0 —datat A, —|data1
A, —|data2 A, —| data 2
A eaes (3G, B s [T
data 4 LT e I —| data 4 LT

LE6

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

SOLUTIONS 223
(d) 2 LEs
(A) Sy (S) (Sy)
data 1 data 2 data 3 data 4| LUT output e
clk)
X 0 0 0 0 0 — data 1 s
O 0 A — data 2 o
X 0 ! 0 0 data 3
X 0 1 1 0 T
% 1 0 0 1 Sl —] data 4 LUT Reset
X 1 0 1 0
LE1
X 1 1 0 0 /
X 1 1 1 0
d clk N
(8 (S (sy) ‘ 0 — data 1 s
data 1 _data 2 data 3 data 4| LUT output 0 — data2 1—& Q
X X 0 0 0 BDi data 3
X X 0 1 0 Sg—|data 4 . Reset
X X 1 0 0
X X 1 1 1 L LE2 J
(e) 3LEs

(S9 (S, (s) (S,)
data 1 data 2 data 3 data 4| LUT output
0 0 0

0 —{data1
cota 4}&@4}%
data 3
S

data 4 LT Reset

LE1

DD XXX XX
R REROOO

HHR OORKFO
O ORr O
HOoOOoOror o

1 1 1

SO
(Sp) (S (S,) (S)) Ik
data 1 data 2 data 3 data4| LUT output [0 —| data 1 ¢

0 0 0 data 2 S—‘l %Ql
. | —{data3

data 4 LT Reset

LE 2

XXX XX X XX
el e NeNe!
B OORKEO
HO R OR O
O ORRPRRFP OO

Sy (S) (Sy) clk
data 1 data 2 data 3 data 4| LUT output

X X 0 0

0 — data 1

 ~0 —data 2
D— data 3
77777777777 —|datad .

&
7

Py
03
%3
@
-

= O o

X X 0 1
X X 1 0
X X 1 1

-
m
w

© 2015 Elsevier, Inc.
224 SOLUTIONS chapter 5

Exercise 5.61

(a) 5 LEs (2 for next state logic and state registers, 3 for output logic)
(b)
tpa = tpd_LE T twire

= (381+246) ps

=627 ps
Tc 2 tpcq + tpd + tsetup
2>[199 + 627 + 76] ps
=902 ps
f =1/902ps=1.1 GHz
(c)
First, we check that there is no hold time violation with this amount of clock
skew.

led LE = lpq 1E = 38Lps
lea = [cdiLE *lyire = 627 ps

lskew < (tccq + tcd) = Ihold

< [(199 + 627) - 0] ps

<826 ps
3 ns is less than 826 ps, so there is no hold time violation.
Now we find the fastest frequency at which it can run.

T,z Ipeqg T tpd T tsetup T Tskew
>1[0.902 + 3] ns

=3.902 ns
f =17/3.902 ns =256 MHz
Exercise 5.62

(a) 2 LEs (1 for next state logic and state register, 1 for output logic)
(b) Same as answer for Exercise 5.57(h)
(c) Same as answer for Exercise 5.57(c)

Exercise 5.63

First, we find the cycle time:

T,=1/f=1/100 MHz = 10 ns
T, 2 tpcq + Nt Evwire T tsetup
10 ns > [0.199 + N(0.627) + 0.076] ns

Thus, N<15.5
The maximum number of LEs on the critical path is 15.

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

With at most one LE on the critical path and no clock skew, the fastest the
FSM will run is:
T, =1[0.199 + 0.627 + 0.076] ns
2>0.902 ns
f =1/0.902ns=1.1 GHz

Question 5.1

(ZN'].)(ZN'].) - 22N_ 2N+1 +1

Question 5.2

A processor might use BCD representation so that decimal numbers, such
as 1.7, can be represented exactly.

Question 5.3

@ (b)

FIGURE 5.22 BCD adder: (a) 4-bit block, (b) underlying hardware, (c) 8-bit BCD adder

© 2015 Elsevier, Inc.
SOLUTIONS

225

226 SOLUTIONS chapter 5

SystemVerilog

nodule bcdadd_8 (input logic [7:0] a, b,
input logic cin,
output logic [7:0] s,
output logic cout) ;

logic cO;

bcdadd_4 bcd0(a[3:0], b[3:0], cin, s[3:0], c0);
bcdadd 4 bedl(al7:4], b[7:4], c0, s[7:4], cout);

=ndmodule

nodule bcdadd 4 (input logic [3:0] a, b,
input logic cin,
output logic [3:0] s,
output logic cout) ;

logic [4:0] result, sublO;

assign result = a + b + cin;
assign subl0 = result - 10;

assign cout = ~sublO[4];

assign s = subl0[4] ? result[3:0] subl0[3:0];

andmodule

© 2015 Elsevier, Inc.

(continued from previous page)

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity bcdadd 8 is
port(a, b: in STD LOGIC VECTOR (7 downto 0
cin: in STD_LOGIC;
s: out STD LOGIC_VECTOR (7 downto 0
cout: out STD_LOGIC) ;

end;

architecture synth of bcdadd 8 is
component bcdadd_4
port(a, b: in STD LOGIC VECTOR (3 downto 0);
cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR(3 downto 0
cout: out STD LOGIC) ;
end component;
signal cO: STD_LOGIC;
begin

bcd0: bcdadd 4
port map(a(3 downto 0), b (3 downto 0), cin, s(3
downto 0), cO0);
bcdl: bcdadd 4
port map (a (
downto 4), cout)

7 downto 4), b(7 downto 4), cO0, s(7

7

end;

library IEEE; use IEEE.STD LOGIC 1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity bcdadd 4 is
port(a, b: in STD_LOGIC_VECTOR (3 downto 0);
cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR (3 downto 0);
cout: out STD_LOGIC) ;
end;

architecture synth of bcdadd 4 is
signal result, subl0, a5, b5: STD LOGIC VECTOR (4
downto 0);
begin
a5 <= '0' & a;
b5 <= '0' & b;
result <= a5 + b5 + cin;
subl0 <= result - "01010";

cout <= not (subl0(4));
s <= result (3 downto 0) when subl0(4) = '1'
else sublO (3 downto 0);

end;

227 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CHAPTER 6

Exercise 6.1

(1) Regularity supports simplicity

e Each instruction has a 2-bit opcode.

e FEach instruction has a 4-bit condition code.

¢ ARM has 3 instruction formats for the most common instructions (Data-processing
format, Memory format, and Branch format).

¢ The Data-processing and Memory instruction formats have a similar number and
order of operands.

¢ Each instruction is the same size, making decoding hardware simple.

(2) Make the common case fast

e Registers make the access to most recently accessed variables fast.

e The RISC (reduced instruction set computer) architecture, makes the common/simple
instructions fast because the computer must handle only a small number of simple
instructions.

® Most instructions require all 32 bits of an instruction, so all instructions are 32 bits
(even though some would have an advantage of a larger instruction size and others a
smaller instruction size). The instruction size is chosen to make the common
instructions fast.

(3) Smaller is faster
¢ The register file has only 16 registers.
e The ISA (instruction set architecture) includes only a small number of commonly
used instructions. This keeps the hardware small and, thus, fast.
¢ The instruction size is kept small to make instruction fetch fast.

(4) Good design demands good compromises

e ARM uses three instruction formats (instead of just one).

e [deally all accesses would be as fast as a register access, but ARM architecture also
supports main memory accesses to allow for a compromise between fast access time
and a large amount of memory.

e Because ARM is a RISC architecture, it includes only a set of simple instructions, but
it provides pseudocode to the user and compiler for commonly used operations, like
NOP.

® ARM provides three formats to encode immediate values (and four if you count the 5-
bit immediate encoding for a shift, shamt5):

= {rots.), imm8;.y} for data-processing instructions
* imm12,) for memory instructions

228 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

= imm24,3.¢ for branch instructions

Exercise 6.2

Yes, it is possible to design a computer architecture without a register set. For example, an
architecture could use memory as a very large register set. Each instruction would require a
memory access. For example, an add instruction might look like this:

ADD 0x10, 0x20, 0x24

This would add the values stored at memory addresses 0x20 and 0x24 and place the result in
memory address 0x10. Other instructions would follow the same pattern, accessing memory
instead of registers. Some advantages of the architecture are that it would require fewer
instructions. Load and store operations are now unnecessary. This would make the decoding
hardware simpler and faster. Some disadvantages of this architecture over the MIPS architecture
is that each operation would require a memory access. Thus, either the processor would need to
be slow or the memory small. Also, because the instructions must encode memory addresses
instead of register numbers, the instruction size would be large in order to access all memory
addresses. Or, alternatively, each instruction can only access a smaller number of memory
addresses. For example, the architecture might require that one of the source operands is also a
destination operand, reducing the number of memory addresses that must be encoded.

Exercise 6.3

(a)42x4=42x22=1010102 << 2 =101010002 = 0xA8
(b) OxAS8 through OxAB

(0

Big-Endian Little-Endian

Word
Byte Address A8 A9 AAAB Address ABJAAA9/A8 Byte Address

Data Value |FF|22(33|44 OxA8 FF|22|33|44| Data Value
MSB LSB MSB LSB

Exercise 6.4

(@) 15x4=42x22=11112<<2=1111002 = 0x3C
(b) 0x3C through 0x3F

(0

229 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition

Byte Address 3C;3D,3E

Data Value |FF|22|33

Big-Endian
3F
44

MSB LSB

Exercise 6.5

Word
Address

OxA8

Little-Endian

3F|3E

3D

3C

FF|22

33

44

MSB

LSB

© 2015 Elsevier, Inc.

Byte Address
Data Value

In big-endian format, the bytes are numbered from 100 to 103 from left to right. In little-endian
format, the bytes are numbered from 100 to 103 from right to left. Thus, the load byte instruction
(LDRB) returns a different value depending on the endianness of the machine. At the end of the
program R2 contains 0xBC on a big-endian machine and 0xD8 on a little-endian machine.

Exercise 6.6

(a) 0x53 4F 53 00
(b) 0x43 6F 6F 6C 21 00

(c) 0x41 6C 79 73 73 61 00 (depends on the person's name)

Exercise 6.7

(a) 0x68 6F 77 64 79 00
(b) 0x6C 69 6F 6E 73 00

(c) 0x54 6F 20 74 68 65 20 72 65 73 63 75 65 21 00

Exercise 6.8

230 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
Little-Endian Memory
Word Address Data Word Address Data Word Address Data
T
\ \ \ \ \ \
| | | | | |
| 10001010 00| 21 10001010 00| 61| 73 ‘
1000100C | 00 | 53 | 4F | 53 1000100C | 6C | 6F | 6F | 43 1000100C | 73 | 79 | 6C | 41 |
: } : | : | | : | }
| | | | | |
I Byte 3 Byte O | Byte 3 Byte 01 | Byte 3 Byte 0|
@ (b) (c)
Big-Endian Memory
Word Address Data Word Address Data Word Address Data
T : | T : | T : |
\ \ \ \ \ \
| | | | | |
\ 10001010 | 21| 00 10001010 | 73| 61 | 00 ‘
1000100C \ 53 \ 4F \ 53 \ 00 1000100C | 43 | 6F | 6F | 6C 1000100C | 41 |6C | 79| 73 \
) | : |) | | : | |
| | | | | |
I Byte 0 Byte 31 | Byte O Byte 31 | Byte O Byte 31
@ (b) (c)
Exercise 6.9
Word Address Data
Little-Endian Memory) | |
|
Word Address Data Word Address Data | ‘
. ; . ; . ; . ; 10001018 00| 21|65
) |) | : | : 10001014 |75 | 63 | 73 | 65
10001010 l ‘ 00| 79 10001010 00| 73 10001010 | 72 | 20| 65| 68
1000100C ‘ 64 | 77 ‘ 6F | 68 1000100C | 6E | 6F | 69 | 6C 1000100C | 74 | 20 | 6F | 54
) ;) ;) | | : | |
| | | | | |
| Byte 3 Byte O | | Byte 3 Byte O | | Byte 3 Byte 0|
(a) (b) (c)
Word Address Data
Big-Endian Memory) | |
Word Address Data Word Address Data) ‘
. } . } . } . } 10001018 | 65| 21 | 00
. } . } . } } 10001014 | 65| 73 | 63 | 75
10001010 | 79 ‘ 00 ‘ ‘ 10001010 | 73 | 00 10001010 |68 | 65| 20| 72
1000100C | 68 ‘ 6F ‘ 77 ‘ 64 1000100C | 6C | 69 | 6F | 6E 1000100C | 54 | 6F | 20 | 74
- : | - | o |
| Byte 0 Byte 31 I Byte O Byte 31 | Byte O Byte 31
(a) (b) (c)

Exercise 6.10

OxE3AOAB3E

231 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

0xE1A09386
0xE78B4008
0xE1IA06357

Exercise 6.11

0xE0808001
0xE593B004
0xE2475058
O0xE1A03702

Exercise 6.12

(a) MOV R10, #63488
(b) rot =11, imm8 = 0x3E (binary: 00111110), 32-bit immediate = 0x0000F800

Exercise 6.13

(a) SUB R5, R7, #0x58
(b) rot =0, imm8 = 0x58

Exercise 6.14

ARM Assembly
MOV R2, #0
MOV R3, R1

L1
CMP R1, RO
BHI DONE
ADD R2, R2, #1
ADD R1, R1, R3

B L1
DONE

MOV RO, R2
C Code

// RO = A (dividend) and quotient, R1 = B (divisor)
// R2
int i = 0;

i, R3 = temp

int quotient;
int temp = divisor;

while (dividend >= temp) {
i=1i4+ 1;
temp = temp + divisor;

232 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition

}

quotient = 1i;

In words
This code performs integer division: quotient = A/B.

Exercise 6.15

© 2015 Elsevier, Inc.

ARM Assembly
; RO = decimal number, Rl = base address of array,
; R2 = val, R3 = tmp
MOV R2, #31
L1l LSR R3, RO, R2
AND R3, R3, #1
STRB R3, [R1], #1
SUBS R2, R2, #1
BPL L1
L2 MOV PC, LR

C Code

void convert2bin(int num, char binarray[]) {
int 1i;
char tmp, val = 31;

for (i=0; 1<32; i++)

A~
[
~

tmp = (num >> val)
binarray[i] = tmp;
val——;

In words

This program converts an unsigned integer (R0O) from decimal to binary and stores it in an array

pointed to by R1.

Exercise 6.16

ORR RO, R1, R2
MVN RO, RO

Exercise 6.17

233 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
AND RO, R1, R2
MVN RO, RO

Exercise 6.18

(@)

@)
CMP RO, RI1 ; g >= h?
BLT ELSE
ADD RO, RO, RI1 ; g =g + h
B DONE

ELSE SUB RO, RO, RI1 ; g =g — h

DONE

(i)
CMP RO, RI1 ; g < h?
BGE ELSE
ADD R1, R1, #1 ; h=h + 1
B DONE

ELSE LSL R1, R1, #1 ; h =h * 2

DONE

(b)

@
CMP RO, RI1 ; g >= h?
ADDGE RO, RO, RI1 ; g =g + h
SUBLT RO, RO, R1 ; g =g — h

(i1)
CMP RO, RI1 ; g < h?
ADDLT R1, R1, #1 ; h =nh 1
LSLGE R1, R1, #1 ; h=h * 2

(©) When conditional execution is available for all instructions, it takes 3 instructions,

compared to 5 instructions when conditional execution is allowed only for branch instructions.
So, in this case, allowing conditional execution for all instructions results in a 40% decrease in

the number of instructions.

Thus, the advantages of conditional execution are (1) 40% less memory required for instruction
storage, and (2) potentially decreased execution time. The execution time of the code in part (a)

234

SOLUTIONS

chapter 6

S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

is 3-4 instructions, whereas it is 3 instructions in part (b). As will be seen in Chapter 7, the
number of instructions fetched in part (a) can be even higher when using a pipelined processor.

A disadvantage of (b) over (a) is that all instructions require a condition code, which uses four
bits of encoding that could be used for something else. However, as shown, this cost in bits used
for encoding the condition is usually well worth it.

Exercise 6.19

(a)
()

ELSE
DONE

(ii)

ELSE
DONE

(b)

(ii)

(©

CMP RO, R1
BLE ELSE
ADD RO, RO
B DONE
SUB RO, R1

CMP RO, R1
BGT ELSE
MOV RO, #0
B DONE
MOV R1, #0

CMP
ADDGT
SUBLE

CMP
MOVLE
MOVGT

RO,
RO,
R1,

RO,
RO,
R1,

’

’

R1
RO
R1

R1
#1
#0

#1

, #1
, #1

g <

g
h

h?
g + 1
h -1

h?

When conditional execution is available for all instructions, it takes 3 instructions,

compared to 5 instructions when conditional execution is allowed only for branch instructions.
So, in this case, allowing conditional execution for all instructions results in a 40% decrease in
the number of instructions.

235 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Thus, the advantages of conditional execution are (1) 40% less memory required for instruction
storage, and (2) potentially decreased execution time. The execution time of the code in part (a)
is 3-4 instructions, whereas it is 3 instructions in part (b). As will be seen in Chapter 7, the

number of instructions fetched in part (a) can be even higher when using a pipelined processor.

A disadvantage of (b) over (a) is that all instructions require a condition code, which uses four
bits of encoding that could be used for something else. However, as shown, this cost in bits used
for encoding the condition is usually well worth it.

Exercise 6.20

(a)
ADD R3, R1, #0x190 ; R3 = end of arrayl

FOR CMP R1, R3 ; reached end of arrayl?
BGE DONE
LDR RO, [R1] ; RO = arrayl[i]
STR RO, [R2] ; array2[i] = arrayl[i]
ADD R1, R1, #4 ; Rl points to next arrayl entry
ADD R2, R2, #4 ; R2 points to next array2 entry
B FOR

DONE

(b)
ADD R3, R1, #0x190 ; R3 = end of arrayl

FOR CMP R1, R3 ; reached end of arrayl?
BGE DONE
LDR RO, [R1], #4 ; RO = arrayl[i] and R1 update
STR RO, [R2], #4 ; array2[i] = arrayl[i] and R2 update
B FOR

DONE

(c) part (a) has 8 instructions and part (b) has 6 instructions. The loop code particularly decreases
from 7 instructions to 5 instructions. This is a 25% decrease in the number of instructions and a
29% decrease in loop instructions. The advantages are: (1) 25% lower memory requirements for
code storage and (2) decreased execution time (approximately 29% decrease because most of the
execution time is spent in the loop). The disadvantage is the number of bits required for encoding
the indexing mode.

Exercise 6.21

(a)

236 SOLUTIONS chapter 6

ADD R2, R3, #0x190
FOR CMP R3, RZ

BGE DONE

LDR R1, [R3]

LSL R1, R1, #5

STR R1, [R3]

ADD R3, R3, #4

B FOR
DONE
(b)

ADD R2, R3, #0x190
FOR CMP R3, RZ2

BGE DONE

LDR R1, [R3]

LSL R1, R1, #7

STR R1, [R3], #4

B FOR
DONE

(c) part (a) has 8 instructions and part (b) has 7 instructions. The loop code particularly decreases
from 7 instructions to 6 instructions. This is a 12.5% decrease in the number of instructions and a
14% decrease in loop instructions. The advantages are: (1) 12.5% lower memory requirements
for code storage, and (2) decreased execution time (approximately 14% decrease because most of
the execution time is spent in the loop). The disadvantage is the number of bits required for

encoding the indexing mode.

S. Harris and D.M. Harris, DDCA: ARM® Edition

14

R2 =
reached end of array?

end of array

R1 = array[i]
Rl = array[i] * 32
arrayl[i] = arrayl[i] * 32

R3 points to next array entry

R2 =
reached end of array?

end of array

R1 = array[i]
Rl = array[i] * 128
arrayl[i] = array[i] * 128

R3 points to next array entry

Exercise 6.22
(a) Yes.
(b)
(1)
MOV R1, #0 ; 1 =0
FOR CMP R1, #200 ; reached end of array?
BGE DONE
STR R1, [RO, R1l, LSL #2] ; arrayl[i] =i
ADD R1, R1, #1 ;1= 1 + 1
B FOR

(i)

© 2015 Elsevier, Inc.

237 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

MOV R1, #199 ; 1 =199

FOR STR R1l, [RO, R1l, LSL #2] ; array[i] = 1
SUBS R1, R1, #1 ; 1 =1 - 1 and set flags
BPL FOR

(c) The second code snippet (ii), the decremented loop, uses fewer instructions and is faster.
Each loop iteration in code snippet (ii) requires 3 instead of the 5 instructions required for code
snippet (i). Code snippet ii combines checking the loop condition with updating the loop
variable, 1.

Exercise 6.23

(a) Yes.

(b)

(1)
MOV R1, #0 ; 1 =0

FOR CMP R1, #10 ; reached end of array?
BGE DONE
LDR R2, [RO, R1, LSL #2] ; R2 = nums|[i]
LSR R2, R2, #1 ; R2 = nums[i]/2
STR R2, [RO, R1l, LSL #2] ; nums[i] = nums[1]/2
ADD R1, R1, #1 ; 1 =1 + 1
B FOR

DONE

(i1)
MOV R1, #9 ; 1 =9

FOR LDR R2, [RO, R1l, LSL #2] ; R2 = nums[i]
LSR R2, R2, #1 ; R2 = nums[1]/2
STR R2, [RO, R1, LSL #2] ; nums[i] = nums[i]/2
SUBS R1, R1, #1 ; 1 =1 - 1 and set flags
BPL FOR

(c) The second code snippet (ii), the decremented loop, uses fewer instructions and is faster.
Each loop iteration in code snippet (ii) requires 5 instead of the 7 instructions required for code
snippet (i). Code snippet ii combines checking the loop condition with updating the loop
variable, 1.

Exercise 6.24

int find42(int array[], int size) {
int i; // index into array

238 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition
for (i = 0; 1 < size; 1 i+1)
if (array[i] == 42)

return 1;

return -1;

Exercise 6.25

© 2015 Elsevier, Inc.

(a)

; ARM assembly code

; base address of array dst
; base address of array src =

; 1 = R4
STRCPY
PUSH {R4}
MOV R4, #0
LOOP
LDRB R2, [R1,
STRB R2, [RO,
CMP R2, #0
ADD R4, R4,
BNE LOOP
DONE
POP {R4}
MOV PC, LR

R4]
R4]

#1

= RO
R1

; save R4 on stack

; 1 =0

; R2 = src[i]

; dst[i] = srcl[i]
; arrayl[i] == 07
;oi++

; 1f not, repeat

; restore R4
; return

(end of string?)

(b) The stack (i) before, (ii) during, and (iii) after the st rcpy procedure.

Address Data Address Data Address Data
O0xBFFFF000 <SP O0xBFFFF000 O0xBFFFF000 <SP
OxXxBFFFEFFC OxBEFFFEFFEC R4 <—SP 0xBFFFEFFC
OxBFFFEFFS OxBFFFEFES OxBFFFEFFS
OxBFFFEFF4 OxBFFFEFF4 OxXBFFFEFF4

| | | |
[[[
. ‘ ‘ e ‘ ‘ wan
(i) (i) (iii)
Exercise 6.26
; ARM assembly
; RO = base address of array
; Rl = number of elements in array
; R2 = 1
MOV R2, #0 ; 1 =0
LOOP
CMP R2, R1 ; 1 < size?
BGE DONE

239 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

LDR R3, [RO, R2, LSL #2]
CMP R3, #42

ADDNE R2, R2, #1

BNE LOOP

MOV RO, R2

MOV PC, LR

R3 = array[i]
array[i] == 427
if not equal, increment i
and repeat loop
if EQ return i

Ne Ne Ne Ne N

DONE
MOV RO, #0 ; return -1
SUB RO, RO, #1
MOV PC, LR ; return

Exercise 6.27

(a)

funcl: 8 words (for R4-R10 and LR)
func2: 3 words (for R4-R5 and LR)
func3: 4 words (for R7-R9 and LR)
func4: 1 word (for R11)

(b)

240 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Address | Data |
I I
| |
[BFFFFFO00 LR
BFFFFEFC R10
BFFFFEFS R9
%s BFFFFEF4 R8
%5 BFFFFEFOQ R7
’ BFFFFEEC R6
BFFFFEES R5
| BFFFFEE4 R4
¢ | BFFFFEEQ LR = 0x91024
;—)g BFFFFEDC R5
& | BFFFFEDS R4
| BFFFFEDA LR = 0x91180
ég BFFFFEDO R9
gé BFFFFECC R8
» | BFFFFECS R7
%E[BFFFFECA R11 «—SP
7 | ’ !
| : |
Exercise 6.28
(a)
fib(0) =0
fib(-1) =1
(b)

int fib(int n) {
int result = 0; // £ib(0)
int prevresult = 1; // fib(-1)

// Calculate Fibonacci numbers from 0 - n

while (n != 0) {
result = result + prevresult; // fib(n) = fib(n-1) + fib(n-2)
prevresult = result - prevresult; // fib(n-1) = fib(n) - fib(n-2)
n=n-1;

}

return result;

241 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(©)
; fib.s
; The fib() function computes the nth Fibonacci number.
; n is passed to fib() in RO, and fib() returns the result in RO.
MAIN
MOV RO, #9 ; n =9
BL FIB ; call Fibonacci function

; Rl = result; R2 = prevresult

FIB
MOV R1, #1 ; R1 = result = £ib(0)
MOV R2, #0 ; R2 = prevresult = fib(-1)
CMP RO, #0 ; n == 07
BEQ DONE
LOOP
ADD R1, R1, R2 ; result = result + prevresult
SUB R2, R1, R2 ; prevresult = result - prevresult
SUBS RO, RO, #1 ; n =n - 1
BPL LOOP
DONE
MOV RO, R2 ; return result
MOV PC, LR
Exercise 6.29
(a) 120
(b) (2)

© @ (3) returned value is R1*
(i) (3) returned value is R1*

(1) 4

Exercise 6.30

(a) 19. Yes, it correctly computes 2a + 3b.
(b) (2)
(¢)) B)RO=17
(i) 4
(iii) (4) But the calling function may have a problem because R4 doesn't hold the value it had
when it was called. Instead it holds the value 5.
(@iv) (1)
V) (2
(vi) 3) RO=17
(vii) (1)

242 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
Exercise 6.31
(a) 0xa0000001
(b) 0xaa00000e
(c) Ox8afff841
(d) 0xeb00391d
(e) Oxeaffe3fc
Exercise 6.32
(a)
Machine Code Address/ARM Assembly
E1A04001 0x000A0028 FUNC1 MOV R4, R1
E0835125 0x000A002C ADD R5, R3, R5, LSR #2
E0404473 0x000A0030 SUB R4, RO, R3, ROR R4
EBFFFFEFFE 0x000A0034 BL FUNC2
E5902004 0x000A0038 FUNC2 LDR R2, [RO, #4]
E7012002 0x000A0Q3C STR R2, [R1, -R2]
E3530000 0x000A0040 CMP R3, #0
1A000000 0x000A0044 BNE ELSE
E1AQOFO00E 0x000A0048 MOV PC, LR
E2433001 0x000A004C ELSE SUB R3, R3, #1
EAFFFFFS8 0x000A0050 B FUNC2
(b)
Addressing Mode Address/ARM Assembly
Register (Register only) 0x000A0028 FUNC1 MOV R4, RI1
Register (Immediate-shifted reg) | 0x000A002C ADD R5, R3, R5, LSR #2
Register (Register-shifted reg) 0x000A0030 SUB R4, RO, R3, ROR R4
PC-Relative 0x000A0034 BL FUNC2
Base (Immediate offset) 0x000A0038 FUNC2 LDR R2, [RO, #4]
Base (Register offset) 0x000A003C STR R2, [R1, -R2Z]
Immediate 0x000A0040 CMP R3, #0
PC-Relative 0x000A0044 BNE ELSE
Register (Register only) 0x000A0048 MOV PC, LR
PC-Relative 0x000A0050 B FUNC2
Exercise 6.33
(a)
; R4 =1, R5 =
SETARRAY
PUSH {R4, LR} ; save R4, R5, and LR on the stack
SUB SP, #40 ; allocate space on stack for array

243 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

MOV R4, #0 ; 1 =0

MOV R5, RO ; R5 = num
LOOP MOV R1, R4 ; set up input arguments

BL COMPARE ; call compare function

STR RO, [SP, R4, LSL #2] ; array[i] = return value

ADD R4, R4, #1 ; increment i

MOV RO, RS ; arg0 = num

CMP R4, #10 ; 1 < 107

BLT LOOP

ADD SP, SP, #40 ; deallocate space on stack for array

POP {R4, R5, LR} ; restore registers

MOV PC, LR ; return to point of call
COMPARE

PUSH {LR} ; save LR

BL SUBFUNC ; call sub function

CMP RO, #0 ; returned value >= 07

MOVGE RO, #1 ; 1if yes, RO =1

MOVLT RO, #0 ; if no, RO =0

POP {LR} ; restore LR

MOV PC, LR ; return to point of call
SUBFUNC

SUB RO, RO, R1 ; return a-b

MOV PC, LR ; return to point of call

(b)

244 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Before setArray During setArray During compare/sub
SP >

LR LR
R4 R4

array[9] array([9]

array[8] array/[8]

array[7] array([7]

array[6] array|[6]

array(5] array(5]

array[4] array[4]

array[3] array[3]

array[2] array[2]

array[1] array[1]

SP —»> array[0] array[0]
SP —»> LR

(c) The code would enter an infinite loop and eventually crash. When the compare function
returns (MOV PC, LR), instead of returning to its point of call in the setArray function, the
compare function would continue executing at the instruction just after the call to sub (BL
SUBFUNC). Because of the POP {LR} instruction, the program would eventually crash when it
went beyond the stack space available (i.e., the stack pointer was decremented past the allocated
dynamic data segment).

Exercise 6.34
(a)
;R4 =D

;Address ARM Assembly

S. Harris and D.M. Harris, DDCA: ARM® Edition

245 SOLUTIONS chapter 6
0x8100 F PUSH {R4,
0x8104 ADD R4,
0x8108 CMP RO,
0x810c BNE ELSE
0x8110 MOV R4,
0x8114 B DONE
0x8118 ELSE PUSH {RO,
0x811lc SUB RO,
0x8120 ADD RI1,
0x8124 BL F
0x8128 MOV R2,
0x812c POP {RO,
0x8130 MUL R3,
0x8134 ADD R2,
0x8138 ADD R4,
0x813c DONE MUL RO,
0x8140 POP {R4,
0x8144 MOV PC,

LR}
R1,
#0

#2

#10

R1}
RO,
R1,

#1
#1

RO
R1}
RO,
R2,
R2,
R4,
LR}
LR

RO
R3
R4
R1

store R4 and LR on stack

b=k + 2
n == 072
if yes, b =10

branch to end of function
store n and k on stack
set up args: n = n-1

k = k+1

recursively call F

move return value to R2
restore values of n and k
R3 = n*n

R2 = (n*n)+f(n-1,k+1)

b = b+(n*n)+f(n-1,k+1)

RO = b*k

restore R4 and LR

© 2015 Elsevier, Inc.

; return to point of call

(b) The stack (i) after the last recursive call, and (ii) after return. The final value of RO is 1400.

Address

0100
00FC
00F8
00F4
00F0
00EC
00E8
00E4
00EO
00DC
00D8
00D4

BFFO
BFFO
BFFO
BFFO
BFFO
BFFO
BFFO
BFFO
BFFO
BFFO
BFFO
BFFO

Exercise 6.35

Daja

LR = 0x8010

R4 = OXxABCD

R1=4

RO =2

SP

LR = 0x8128

R4 =6

R1=5

RO =1

SP

LR =0x8128

R4=7

«— SP

@

R4 =6 + 2*2 + 340 = 350
RO =350 * 4 = 1400

R4=7+1*1+60 =68
RO = 68 *5 =340

RO= 10x6 =60

Add.ress | Data |
i - i <— SP RO =1400

BFFO 0100 LR =0x8010
BFFO 00FC R4 = OXABCD
BFFO 00F8 R1=4
BFFO 00F4 RO=2 <« SP
BFFO 00FO LR = 0x8128
BFFO 00EC R4 =6
BFFO 0O0ES8 R1=5
BFFO 00E4 RO =1 Sp
BFFO O0OEO LR = 0x8128
BFFO 00DC R4=7 < R4 =10
BFFO 00DS8
BFFO 00D4

(i)

The largest address offset (imm?24) a branch instruction (B or BL) can encode is 2.1 =
16,777,215. Since the offset adds to the address 2 instructions ahead of the current instruction
(i.e., at PC + 8), a branch can branch forward at most (224—1) + 2 =16,777,217 instructions.
Because instructions are relative to PC + 4, it can branch forward between 0 and 16,777,217
instructions relative to the current instruction. So, if the current instruction address is 0x0. The

246 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

farthest it can branch forward is to instruction address 16,777,217 * 4 = 67,108,868 =
0x4000004.

Exercise 6.36

(a) Because branches in the ARM architecture are relative to PC + 8, the limitation on branch
range is independent of the current instruction address. The range of a forward branch is (22*-1)
+2 =16,777,217 instructions. So a forward branch can branch from 0 to 16,777,217
instructions relative to the branch instruction. So, if the current instruction address is 0x0. The
farthest it can branch forward is to instruction address 16,777,217 * 4 = 67,108,868 =
0x4000004.

(b) Same as (a).

(c) Again, the limitation on branch range is independent of the current instruction address. The
range of a backward branch is (224) -2 =16,777,214 instructions. So a backward branch can
branch from 0 to 16,777,214 instructions relative to the branch instruction. For example, a
branch at address Ox3ffffff8 (16,777,214 * 4) could branch back to instruction address 0x0.

(d) Same as (c).

Exercise 6.37

It is advantageous to have a large address field in the machine format for branch instructions to
increase the range of instruction addresses to which the instruction can branch.

Exercise 6.38

To branch to an instruction 2°° instructions from the branch instruction, the target address will be
at: 0x8000 + (2°°*4) = 0x8000 + (2*%) = 0x8000 + 0x400000 = 0x408000. (imm24 must have the
value 2% — 8 = 0xOOFFF8.)

;Address ;ARM Assembly

0x00008000 B DEST

0x00408000 DEST ...

Exercise 6.39

// High-Level Code
void little2big(int[] array) {
int i;

for (i = 0; i < 10; 1 =1 + 1) {

array[i] = ((array[i] << 24) |
((array[i] & OxFF00) << 8) |
((array[i] & OxFF0000) >> 8) |

247 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition

((array[i] >> 24) & OxFF));

; ARM Assembly Code

© 2015 Elsevier, Inc.

; RO = base address of array, R12 = 1
1little2BIG
MOV R12, #0 ; 1=0
LOOP
CMP R12, #10 ; 1 < 107
BGE DONE
LDR R2, [RO, R12, LSL #2] ; R2 = arrayl[i]
LSL R3, R2, #24 ; R3 = array[i] << 24
AND R4, R2, #O0xFFO0O ; R4 = (array[i] & OxFFO00)
ORR R3, R3, R4, LSL #8 ; R3 = top two bytes
AND R4, R2, #0xFF0000 ; R4 = (array[i] & OxFF0000)
ORR R3, R3, R4, LSR #38 ; R3 = top three bytes
ORR R3, R3, R2, LSR #24 ; R3 = all four bytes
STR R3, [RO, R12, LSL #2] ; array[i] = R3
ADD R12, R12, #1 ; increment i
B LOOP
DONE

MOV PC, LR

Exercise 6.40

(a)

void concat (char[] stringl, char[] string2, char[] stringconcat) {

int i, 35

i = 0;
j = 0;
while (stringl[i] != 0) {
stringconcat[i] = stringl[i];
i=1+1;
}
while (string2[j] != 0) {
stringconcat[i] = string2[j];
i=1+1;
J=31+1
}
stringconcat[i] = 0; // append null at end of string
}
(b)

CONCAT

248 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
LDRB R3, [RO], #1 R3 = stringl[i]
CMP R3, #0 stringl[i] != 07
BEQ STR2
STRB R3, [R2], #1 stringconcat[i] = stringl[i]
B CONCAT
STR2
LDRB R3, [R1], #1 R3 = string2[j]
CMP R3, #0 string2[j] != 07
BEQ DONE
STRB R3, [R2], #1 stringconcat[i] = string2[j]
B STR2
MOV R3, #0
STRB R3, [R2] append null at end of string
MOV PC, LR return to point of call
Exercise 6.41
; R4, R5 = mantissas of a, b, R6, R7 = exponents of a, b
FLPADD
PUSH {R4, R5, R6, R7, R8} save registers that will be used
LDR R2, =0x007fffff load mantissa mask
LDR R3, =0x7£800000 load exponent mask
AND R4, RO, R2 extract mantissa from RO (a)
AND R5, R1, R2 extract mantissa from R1 (b)
ORR R4, R4, #0x800000 insert implicit leading 1
ORR R5, R5, #0x800000 insert implicit leading 1
AND R6, RO, R3 extract exponent from RO (a)
LSR R6, R6, #23 shift exponent right
AND R7, R1, R3 extract exponent from R1 (b)
LSR R7, R7, #23 shift exponent right
MATCH
CMP R6, R7 compare exponents
BEQ ADDMANTISSA if equal, skip to adding mantissas
BHI SHIFTB if a's exponent is bigger, shift b
SHIFTA
SUB R8, R7, R6 R8 = b's exponent - a's exponent
ASR R4, R4, RS right-shift a's mantissa
ADD R6, R6, RS update a's exponent
B ADDMANTISSA now add the mantissas
SHIFTB
SUB R8, R6, R7 R8 = a's exponent - b's exponent
ASR R5, R5, RS right-shift b's mantissa
ADDMANTISSA
ADD R4, R4, R5 R4 = sum of mantissas

249 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
NORMALIZE
ANDS R5, R4, #0x1000000 ; extract overflow bit
BEQ DONE ; branch to DONE if bit 24 == 0
LSR R4, R4, #1 ; right-shift mantissa by 1 bit
ADD R6, R6, #1 ; 1lncrement exponent
DONE
AND R4, R4, R2 ; mask fraction
LSL R6, R6, #23 ; shift exponent into place
ORR RO, R4, R06 ; combine mantissa and exponent
POP {R4, R5, R6, R7, RS8} ; restore registers
MOV PC, LR ; return to caller
Exercise 6.42
(a)
; ARM Assembly Code
0x08400 MAIN PUSH {LR}
0x08404 LDR R2, =L1
0x0840c LDR RO, [R2]
0x08410 LDR R1, [R2, #4]
0x08414 BL DIFF
0x08418 POP {LR}
0x0841c MOV PC, LR
0x08420 DIFF SUB RO, RO, R1
0x08424 MOV PC, LR
0x9024 Ll
(b)
Symbol Table
Address Label
0x8400 MAIN
0x8420 DIFF
0x9024 Ll
()
; machine code ;address ARM assembly
e52de004 ;0x08400 MAIN PUSH {LR} ; STR R14, [R13,#-4]!
e59f2cls8 ;0x08404 LDR R2, =L1
5920000 ;0x08408 LDR RO, [R2]
5921004 ;0x0840c¢ LDR R1, [R2, #4]
eb000001 ;0x08410 BL DIFF
e49de004 ;0x08414 POP {LR} ; LDR R14, [R13],#4
ela0f00e ;0x08418 MOV PC, LR
e0400001 ;0x0841c DIFF SUB RO, RO, R1
ela0f00e ;0x08420 MOV PC, LR
;0x09024 Ll ; holds address of the data

250 SOLUTIONS

(d)
Text Segment:
Data segment:

Exercise 6.43

chapter 6

10*4 = 40 bytes
4 bytes

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

(a)

; ARM assembly code

0x8534 MAIN PUSH {R4,LR}

0x8538 MOV R4, #15

0x853c¢c LDR R3, =L2

0x8540 STR R4, [R3]

0x8544 MOV R1, #27

0x8548 STR R1, [R3, #4]

0x854c LDR RO, [R3]

0x8550 BL GREATER

0x8554 POP {R4,LR}

0x8558 MOV PC, LR

0x855¢c GREATER CMP RO, R1

0x8560 MOV RO, #0

0x8564 MOVGT RO, #1

0x8568 MOV PC, LR

0x9305 L2

(b)

Symbol Table

Address Label

0x8534 MAIN

0x8550 GREATER

0x9305 L2

(c)

; machine code ;address ARM assembly

E92D4010 ; 0x8534 MAIN PUSH {R4, LR}
; STMDB R13!, {R4,R14}

E3AQ0400F ;0x8538 MOV R4, #15

E59F3DC1 ; 0x853c¢c LDR R3, =L2

E5834000 ;0x8540 STR R4, [R3]

E3A0101B ;0x8544 MOV R1, #27

E5831004 ;0x8548 STR R1, [R3, #4]

251 SOLUTIONS chapter 6
E5930000 ;0x854c¢
EBO00OOO1 ; 0x8550
E8BD4010 ; 0x8554
7
E1AOFOOE ; 0x8558
E1500001 ;0x855¢ GREATER
E3A00000 ; 0x8560
C3A00001 ;0x8564
E1AQFO00E ;0x8568
;0x9305 L2
(d)
Text Segment: 15*4 = 60 bytes

Data segment:

Exercise 6.44

4 bytes

S. Harris and D.M. Harris, DDCA: ARM® Edition

LDR RO, [R3]

BL GREATER

POP {R4,LR}

LDMIA R13!, {R4,R14}
MOV PC, LR

CMP RO, R1

MOV RO, #0

MOVGT RO, #1

MOV PC, LR

1. Scaled register offset for accessing memory:
Accessing an array of integers using an index in R3 starting at a base address in RO:
Without scaled register offset:

LSL R4,

LDR R5, [RO,

With scaled register offset:
LDR R5, [RO,

R3, #2
R4] ;

R3,

; multiply index 1 by 4

LSL #21 ;

2. Pre-indexing or Post-indexing:

Accessing an array of characters at base address in RO:

Without pre-indexing:

REPEAT LDR
ADD
BLT
Without pre-indexing:
REPEAT LDR

BLT

R5,
RO,

[RO, #1]
RO, #1

REPEAT

R5, [RO, #1]!

REPEAT

access array

access array

; access array

; adccess array

© 2015 Elsevier, Inc.

252 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition

3. Conditional execution
Executing an if statement that sets R4 to 10 when R2 and R3 are equal
Without conditional execution:

CMP R2, R3 ; R2 == R3?
BNE L3
MOV R4, #10 ; R4 = 10

L3

With conditional execution:
CMP R2, R3 ; R2 == R37?

MOVEQ R4, #10 ; R4 10 when R2 == R3

L3

Exercise 6.45

© 2015 Elsevier, Inc.

Advantages of conditional execution:
e Potentially decreased code size (increased code density)
e Potentially decreased execution time (improved performance)

Disadvantages:
® More complex hardware required to implement it
e Requires 4 instruction bits to encode

Question 6.1

EOR RO, RO, R1 ; RO RO XOR R1
EOR R1, RO, R1 ; R1 original value of RO
EOR RO, RO, R1 ; RO = original value of Rl

Question 6.2

C Code
// Find subset of array with largest sum

int max = -2,147,483,648; // -2731
int start 0;

int end = 0O;

for (i=0; i<length; i++) {

sum = 0O;
for (j=i; j<length; J++) {
sum = sum + arrayl[j];

if (sum > max) {

253 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

max = sum;
start = 1i;
end = j;

}

count = 0;

for (i = start; 1 <= end; i++) {
array2[count] = arrayl[i];
count = count + 1;

ARM Assembly Code
; RO = base address of array, Rl = length of array
; R2 = base address of resulting array
; R3 = max, R4 = start, R5 = end
; R6 = i, R7 = j and count, R8 = sum
PUSH {R4,R5,R6,R7,R8,R9} ; save registers

MOV R3, #0x80000000 ; R3 = large negative number
MOV R4, #0 ; start = 0
MOV R5, #0 ; end = 0
MOV R6, #0 ;1 =20
LSL R1, R1, #2 ; length = length * 4
LOOPFORI
CMP R6, R1 ; 1 < length?
BGE ENDLOOP
MOV R8, #0 ; reset sum
MOV R7, R6 ;0 =1
LOOPFORJ
CMP R7, RI1 ; J < length?
BGE INCREMENTI
LDR R9, [RO, R7] ; R9 = arrayl[j]
ADD R8, R8, R9 ; sum = sum + array/[j]
CMP R3, RS8 ; max < sum?
BGE INCREMENTJ
MOV R3, RS ; max = sum
MOV R4, RG6 ; start = i
MOV R5, R7 ; end = J
INCREMENTJ
ADD R7, R7, #4 i =3+ 4
B LOOPFORJ
INCREMENTI
ADD R6, R6, #4 ;1 =1+ 4
B LOOPFORI

ENDLOOP

254 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

MOV R6, R4 ; 1 = start
MOV R7, #0 ; count = 0
LOOP3
CMP R5, R6 ; end < 17
BLT RETURN
LDR R9, [RO, R6] ; R9 = array[i]
STR R9, [R2, R7] ; array2[count] = arrayl[i]
ADD R7, R7, #4 ; count = count + 4
ADD R6, R6, #4 ;1 =1+ 4
B LOOP3
RETURN
POP {R4,R5,R6,R7,R8,R9} ; restore registers

MOV PC, LR

Question 6.3

C Code
void reversewords (char[] array) {
int i, j, length;

// find length of string
for (i = 0; arrayl[i] !'= 0; 1 =1 + 1)

7
length = 1i;

// reverse characters in string
reverse (array, length-1, 0);

// reverse words in string
i=0;3=0;

// check for spaces or end of string
while (i <= length) {

if ((1 '= length) && (arrayl[i] !'= 0x20)) {
i =1+ 1;
}
else {
reverse (array, i-1, 7J);
i=1+1; // j and i at start of next word
j = 1i;
}
}
}
void reverse(char[] array, int i, int 7J) {

char tmp;

while (1 > J) {
tmp = arrayl[i];

255 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition

array([i] = arrayl[j];
array[j] = tmp;
i =1-1;
j = 3+1;
}
}
ARM Assembly

; R4 =i, R5 = j, R6 = length

REVERSEWORDS

PUSH {R4,R5,R6}

MOV R4, #0
GETLENGTH

LDRB R1, [RO, R4]

CMP R1, #0

ADDNE R4, R4, #1

BNE GETLENGTH
STRINGREVERSE

MOV R6, R4

SUB R1l, R6, #1

MOV ~ R2, #0

BL REVERSE

MOV R4, #0

MOV R5, #0
WHILE19

CMP R4, R6

BGT DONE19

BEQ ELSE19

LDRB R1, [RO, R4]

CMP R1, #0x20

BEQ ELSE19

ADD R4, R4, #1

B WHILE19
ELSE19

SUB R1, R4, #1

MOV R2, R5

BL REVERSE

ADD R4, R4, #1

MOV R5, R4

B WHILE19
DONE19

POP {R4,R5,R6}

MOV PC, LR

REVERSE
CMP R1, R2
BLE RETURN19
LDRB R3, [RO, R1]
LDRB R12, [RO, R2]
STRB R12, [RO, R1]

© 2015 Elsevier, Inc.

save registers on stack

i=0

Rl = array[i]

end of string?
i=1+1

length = 1

argl = length-1

arg2 = 0

call reverse function
i=0

j =0

i <= length?
; 1f at end of string, return

; 1f (1 == length), do else block
Rl = array[i]
array[i] != 0x207?
; 1f (array[i] == 0x20), do else block

repeat while loop

argl = i-1
argz2 = j
; call reverse function
i = i+1
j =1
repeat while loop

restore registers from stack
retrn to calling function

i > g7

R3 = array[i]

R12 = array[j]
array[i] = array[j]

256 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
STRB R3, [R0O, R2] ; arrayl[j] = tmp
SUB R1, R1, #1 ;i =1 -1
ADD R2, R2, #1 ;=3 + 1
B REVERSE ; continue while loop
RETURN19
MOV PC, LR
Question 6.4
C Code
int count = 0;
while (num != 0) {
if (num & 1)
count = count + 1;
num = num >> 1;
}
ARM Assembly Code
; RO = num, R1 = count
LDR R3, =0x345
MOV R1, #0 ; count = 0
CMP R3, #0 ; num == 07
BEQ DONE
COUNTONES
ANDS R2, R3, #1 ; R2 = num & 1, set flags
BEQ SHIFT ; 1f result of AND is 0, shift only
ADD R1, R1, #1 ; else increment count
SHIFT
LSRS R3, R3, #1 ; shift num right by 1 bit, set flags
BNE COUNTONES ; continue counting ones if num != 0
DONE
Question 6.5
C Code
num = swap(num, 1, 0x55555555); // swap bits
num = swap(num, 2, 0x33333333); // swap pairs
num = swap (num, 4, OxOFOFOFOF); // swap nibbles
num = swap (num, 8, OxOQ0FFOOFF); // swap bytes
num = swap (num, 16, OxFFFFFFFF); // swap halves

// swap function swaps masked bits

int swap(int num,

int shamt,

return ((num >> shamt) & mask) |
ARM Assembly Code

MOV RO, R3 ; arg0 = num

MOV R1, #1 ; argl =1

unsigned int mask) {
((num & mask)

<< shamt);

257 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

LDR R2, =0x55555555 ; arg2 = 0x55555555

BL SWAP ; call swap function
MOV R1, #2 ; argl =1
LDR R2, =0x33333333 ; arg2 = 0x33333333
BL SWAP ; call swap function
MOV R1, #4 ; argl =1
LDR R2, =0xO0FOFOFOF ; arg2 = 0xOFOFOQOFOF
BL SWAP ; call swap function
MOV R1, #8 ; argl =1
LDR R2, =0x00FFOOFF ; arg2 = 0xO0QFFOOFF
BL SWAP ; call swap function
MOV R1, #16 ; argl =1
LDR R2, =0xFFFFFFFF ; arg2 = OxXFFFFFFFF
BL SWAP ; call swap function
MOV R3, RO ; num = returned value
SWAP
LSR R3, RO, R1 ; R3 = num >> shamt
AND R3, R3, R2 ; R3 = (num >> shamt) & mask
AND RO, RO, R2 ; RO = num & mask
LSL RO, RO, R1 ; RO = (num & mask) << shamt
ORR RO, R3, RO ; return val = R3 | RO
MOV PC, LR ; return to caller
Question 6.6
ADDS RO, R2, R3 ; RO = R2 + R3, set flags
BVS OVERFLOW
NOOVERFLOW
OVERFLOW
Question 6.7
C Code

bool palindrome (char* array) {
int i, j; // array indices

// find length of string
for (j = 0; arrayl[j] != 0; j=3j+1) ;
j = J-1; // § is index of last char

i = 0;
while (7 > 1) {
if (array[i] != array[j])

258 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition

return false;
j = 3-1;
i = 1i+1;
}

return true;

}

MIPS Assembly Code
; R1L = i, R2 = j, RO = base address of string
PALINDROME

PUSH (R4} ; save R4 on stack
MOV R2, #0 ; 3 =0
GETLENGTH
LDRB R3, [RO, R2] ; R3 = array[j]
CMP R3, #0 ; end of string?
ADDNE R2, R2, #1 ;] =3+ 1
BNE GETLENGTH
SUB R2, R2, #1 ; j =3 -1
MOV R1, #0 ; 1 =20
WHILE
CMP R2, R1 ;J > 17
BLE RETURNTRUE
LDRB R3, [RO, R1] ; R3 = array[i]
LDRB R4, [RO, R2] ; R4 = arrayl[j]
CMP R3, R4 ; array|[i] == array[]j]?
BNE RETURNFALSE
SUB R2, R2, #1 ;3 o= -1
ADD R1, R1, #1 ;1= 1+1
B WHILE
RETURNTRUE
MOV RO, #1 ; return TRUE
B DONE
RETURNFALSE
MOV RO, #0 ; return FALSE
DONE
POP {R4} ; restore R4

MOV PC, LR ; return to caller

© 2015 Elsevier, Inc.

259 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CHAPTER 7

Exercise 7.1

(a) ADD, SUB, AND, ORR, LDR: the result never gets written to the register file.
(b) SUB, AND, ORR: the ALU only performs addition
(c) STR:the data memory never gets written

Exercise 7.2

(@) STR, B: these instructions write to the register file when they shouldn't.

(b) LDR, STR, B: the ALU looks at the cmd field to determine the operation to perform.

However, for these instructions, the ALU should always perform addition.

(b) ADD, SUB, AND, ORR, LDR, B: these instructions inadvertently write to the data
memory.

Exercise 7.3

(a) TST

ALU Decoder truth table

ALUOp | Funct,., (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,,, | NoWrite
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1000 1 TST 10 10 1

Control Unit Schematic

260 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
CLK
Condsgo
ALUFlagsao o
PR o
FlagWi.o E 2
Q =
Pes a8 PCSrc
RegW - RegWrite
Opio — MemW MemWrite
Functso NoWrite
Decoder MemtoReg
Rdsq — ALUSrc
ImmSrciq
RegSrcio
(a) Control Unit \) ALUControli.o
" 7 /__ECS__________D____pC_SrC__\
| Rdago PC Logic PCS I : RegW |
q F—— RegWrit:
I I NoWrite ———— I | egurite
| | | MemW F—— MemWrite I
[| | FlagWi o '
: RegW | I E—j g_ :
—— MemW | I i
FlagWrite —_—
| Main —— MemtoReg | I Cond o I
: Opro Decoder|— ALUSrc Ly ondso CLK :
—— ImmSrcio | I
50
| —— RegSrcio | I Flagss: o o I
| — I o | §2 :
I Functes ALUOp || ALUFlagsso ~g
I —Y L I
| —— NoWrite I Flaoe |
| 40 DeA::thjier_ ALUControlig | : 9510 |
| —— FlagWi, I o ~—m— |
N - ___ v o J
(b) Decoder (c) Conditional Logic
(b) LSL
Single-cycle datapath
~— PCSrc
Control MemtoRe
Unit - 9
31:28 Cond MemWrite
27:26 op ALUControl
25:20 Funct ALUSrc
15:12 Rd ImmSrc
RegWrite
Shift
Flags
|_¥ ALUFlags
11:5
Py
CLK
CLK ° 13 |
slee 5y 1% WE3
@ S RAT| A} RD1 SrcA
A RD 325 1 ReadData
Instruction 0] RA2 A2 RD2 /Shift 0 SreB
M
emory 15:12 1 . Memory
A3 Register WriteData o
— WD3 File
4'E| PCPlus8 R15 1
PCPlus4 D 0
=0 |I Extend Extimm
Result

261 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control unit

CLK
Condasyg
ALUFlagss; o
FlagWi o ('8_%
Pes e g —— PCSrc
ops I\RAeeiv\\/lv = [~ Regwite
—— MemWrite
Functs. Decoder -) MemtoReg
Rda.o ALUSrc
ImmSrcy.o
RegSrcq.o
(a) Control Unit g\h#{Controlm
_______________ N e e
| re—{roue) pes L o pose
| . L RegW Di RegWrite |
| o MemW o |
| Branch (I e D— MemWrite |
| R . | | gWi.0 Q |
| MZ?nW : | [] ;aﬂ I
[H x
: Main [—— MemtoReg | : Condayg i () :
I Op1o Decoder{—— ALUSrc (I CLK |
| ImmSrey.o (I - Flagsss o |
| RegSrcio (I oS |
l Funct : : ALUFlags 5 §§ |
5:0 3:0
| —_—) |
| ALUControl;. o Flagso |
0 | | [1:0]
| FlagWi.o | [0] ~— l
\ - o __ e e e e e e e D D D o e o J
(b) Decoder (c) Conditional Logic
ALU Decoder truth table
ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,,, | FlagW,,, | Shift
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1101 0 LSL XX 00 1
1 10 1

262

SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

(c) CMN

ALU Decoder truth table

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,, | NoWrite
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1011 1 CMN 00 11 1

Control Unit schematic

© 2015 Elsevier, Inc.

263 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Cond30
ALUFlagss.o o
o)
(\FlagWso| § 2
Q =
PCS o % | PCSrc
o RegW ~ |—— RegWrite
Pro MemW —— MemWrite
F NoWrite
uncts.g)
Decoder MemtoReg
Rd30 ALUSrc
ImerCI 0
RegSrcq.g
(a) Control Unit ALUControlso
(- — 7 ’__ch__________D____pc_Sm_—I
I Rda. PC Logic |- PCS | : RegW |
— 1 RegWrite
: A 2 o Nowrite ———— D 9 |
ranc emWrite
Branch I MemW MemWrite |
| Vo | FlagW10 @) |
| RegW | g |
| [en] & |
—— MemW | | ' X
FlagWrite1o
| Main —— MemtoReg | | Cond |
| Opio Decoder|—— ALUSrc I e CLK |
: 5,0 —— ImmSrci I | |
| —— RegSrcio I o é’ :
| ~— . - |
| Functso ALUOp || ALUFlagss x~g |
A A I
I (A NoWrite | : I
I 40 Deco‘;er— ALUControly | I I
I —— FlagWi. I ~— I
\ - - - - - - __ _ R J
(b) Decoder (c) Conditional Logic
(d) ADC

ALU Decoder truth table

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,q | FlagW,
0 X X Not DP | 000 00
1 0100 0 ADD 000 00
1 11
0010 0 SUB 001 00
1 11
0000 0 AND 010 00
1 10
1100 0 ORR 011 00
1 10

264 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

0101 0 ADC 100 00

Single-cycle ARM processor ALU

Az N N

ALUControly Sums; ALUControl,

Y,

ALUControly
ALUControl,
1+—Carry

I ALUControl,

‘ ‘ N N N N
11 10 01 00
LJ ~—— ALUControly.,
Resultsq N
NZCV
4
1% C N Z Result ALUFlags

Single-cycle ARM processor datapath

PCSrc |
MemtoReg
MemWrite
ALUControly.o
ALUSrc
15:12 Rd ImmSrc
RegWrite
Carry

31:28

27:26

25:20

ALUFlags

CLK CLK

| |
A1 WE3 RD1 SrcA| WE
>3 ALUResult ReadData

A2 RD2 F :l see] < Data
1 . Memo|
A3 Register WriteData WD vy

wD3 File

+ R15
PCPlus4 D 0

20 I Extend Extimm

—_

IJ),SU|

A RD

Instruction
Memory

N

Result

265 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

Single-cycle ARM processor control unit

CLK

Conda,o
ALUFlagsso
FlagWio| &
Q
PCS)
RegW
Opro MemW
Functso Decode
Rdao

(a) Control Unit \ J

Carry
PCSrc
RegWrite
MemWrite

[euonpuod

MemtoReg
ALUSrc
ImmSrc o
RegSrci
ALUControlyo

© 2015 Elsevier, Inc.

(T T T T T T T T f__ch__________D_____c__\
I Rdso PCS : ' - pesr I
| | : eg —— RegWrite |
| MemW — emWrite |
| : : FlagWi. OL Hemurt |
: RegW | I §_ :
— Memw | QWi e«é j o
| Main —— MemtoReg | : Cond FlagWiit) |
I Opig —{Decoder|— Aluste | | T !
: 5o — ImmSrcio || Flag :
agsa2 o
|) RegSrci o : : % % |
: Functso ALUOp || ALUFlagsso g :
[sof ALU L ALucontrobo | : Flags: [
|\ . FlagW, o _,I (O] RIS D —— Carry /l
(b)Decode (c)Conditional Logic
Exercise 7.4
(a) EOR
ALU Decoder truth table
ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,,
0 X X Not DP | 000 00
1 0100 0 ADD 000 00
1 11
0010 0 SUB 001 00
1 11
0000 0 AND 010 00
1 10
1100 0 ORR 011 00
1 10
0001 0 EOR 110 00
1 10

266 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALU

ALUControl, Sumsy ALUControls

NEEPNID
Y, :
=
-
Cout g)
S
3
Fijjﬂ/‘ |
J
N N N N N
110 011 010 001 000
35— ALUControl
Results N
NzCV
4
V C N Z Result Flags

Datapath

267 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

—\ PCSrc
Control MemtoRe
Unit 9
31:28 Cond MemWrite
27:26 op ALUControl,
25:20 ALUSrc
Funct
15:12 Rd ImmSrc
RegWrite
Flags
|_¥—/ ALUFlags
ol
CLK CLK
CLK 5[19:16 i 1% ‘ ‘
207 1|3 WE3 [~ WE
2‘_ o RA1 Al RD1 SrcA
A RD |— 151 S| ALUResult ReadData
) : . A RD
In';tructlon A2 RD2 [0 sre J Data
emol
i 1 } Memory
A3 Register WriteData WD
—1 WD3 File
4'D PCPIus8 R15 1
PCPlus4 D 0
i —
20 l Extend Extimm
Result

Control

268 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
COnds;o
ALUFlagss.o o
)
FlagWio | & 3
Q =
PCS o % L PCSrc
o RegW ~ |—— RegWrite
Pro MemW L MemWrite
Functso — —
Decoder MemtoReg
Rda, ALUSrc
ImmSrcy.o
RegSrcq.o
(a) Control Unit ALUControlzo
(- — 7 /__ch__________D____pC_Src_—\
I Rds.0 PC Logic PCS | |
| RegW
| - | | €g D— RegWrite |
I
: Branch I MemW D— MemWrite |
N | | FIang g |
| RegW | =4 |
| —— MemWw | i |
| FlagWrites: x
| Main |—— MemtoReg | | Cond " |
: Opyo ——Decoder|—— ALUSrc I ok :
—— ImmSrcy, |
5,0 1:0 |
: Flagss:
: L RegSrer | | [3:2] gSa:2 o Q I
| — | | [1] g ‘3- l
o=
| Functso ALUOp | | ALUFlagsso ~ o :
| — N |
\ Flags.
I tof AU — ALUControko | : 29510 I
|\ —— FlagWi | of M— |
_______________ e e e e
(b) Decoder (c) Conditional Logic

(b) LSR (with immediate shift amount)

269 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
—\ PCSrc
Control MemtoRe
Unit eg
31:28 Cond MemWrite
27:26 op ALUControl
25:20 Funct ALUSrc
15:12 Rd ImmSrc
RegWrite
Shift
Flags
e |_¥ ALUFlags
oLk =k CLK
Zlee o 18 WE3
2 S RA1 Al RD1 SrcA
A RD 335 1 ReadData
: 0
Instruction RA2[1> RD2 [shit 0 SreB
Memory Memo
152 A3 Register WriteData "o i
4 —1 wp3 File
'DPCPluss RA5 1
PCPlus4 D 0
=0 II Extend Extimm
Result
Control
CLK
Conds.
ALUFlagss.o 9
(\FlagW.o| § 2
Q =
PCS o § —— PCSrc
o RegW ~ |—— RegWrite
Pro Memw —— MemWrite
Functs,
o0 Decoder N ~ MemtoReg
Rdz ALUSrc
ImmSrcq.o
RegSrcy
| Uni ALUControly.q
(a) Control Unit L Shift
(T o PSS —————————— 7 posc)
| Rda.o PC Logic PCS | : ReaW |
I - | 9 Di RegWrite |
| Branch I MemW D— MemWrite |
| N | | FIang o) |
o
: RegW | | tlj rgﬁ :
—— MemW | I - X
FlagWrites.q
| Main [—— MemtoReg | | (\ |
I D d Condaz, |
| Opio ecoder|—— ALUSrc I CLK |
—— ImmSrci, I
5.0
. : Flagss.
l —— RegSrcio I e 9552 o 9 l
: —— | | M g g- l
o=
| Functso ALUOp || ALUFlagssso =9 :
v I
I au | Shift I Flaos I
I 2 ecoder|— ALUCONIOl | | caale I
I —— FlagWio I o ~——— |
\ _______________ - — e — —— — ——— —— — — — — — — — — — —— — —— — j

(b) Decoder

(c) Conditional Logic

270

SOLUTIONS

ALU Decoder truth table

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,., | FlagW,,, | Shift
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1101 0 LSR XX 00 1
1 10 1
(c) TEQ
Datapath
— PCSrc
Control M
Unit emtoReg
3128 Cond MemWrite
27:26 op ALUControl,
25:20 Funct ALUSrc
15:12 Rd ImmSrc
RegWrite
ALUFlags
CLK _ C‘LK CI‘_K
2 A VB roy SroA[™ WE
A RDH | ALUResult ReadData
Instruction I >2E' A RD
¥ A2 RD2 0] srcB Data
emory 1 Memory
A3 Register WriteData WD
wD3 File

© 2015 Elsevier, Inc.

PCPlus4

R15

1 xtend

[E Extimm

-,

Result

271 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control
CLK
Condg_o
ALUFlagss.o o
o)
FIang g g_
Q =
PCS o % - PCSrc
5 RegW ~ |—— RegWrite
P10 MemW/ - MemWrite
E NoWrite
uncts;o |)
Decoder MemtoReg
Rd3.0 ALUSrc
ImmSrcyo
RegSrcy.g
(a) Control Unit ALUControly;
¢ — 7 f__ch__________D____pc_Src_—I
I Rds. PC Logic PCS | ' |
I | RegW L) RegWrite |
y I | NoWwrite ————— |
| Branch | | MemW Di MemWrite |
I —— | FlagWi.o o I
| RegW | | 2 |
| L Memw | o |
| FlagWriteq. o
| Main |—— MemtoReg | | Cond |
: Opi.0 Decoder{— ALUSrc I * K :
| — |mmSFC1-0 | | %7
50
: Flagss:
: —— RegSrcio I e he ng :
| T o — o | && |
Functs,o ALUOp | | ALUFlagsso = g'
| vy | CLK I
| - NoWrite | : %7 Flane I
| &0 Deﬁtl:ier‘_ ALUControlyo | | 5 980 I
| I J— FlagWi, I T o ~—— !
e e e e e e e — e J
(b) Decoder (c) Conditional Logic

ALU Decoder truth table

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,,, | NoWrite
0 X X Not DP | 000 00 0
1 0100 0 ADD 000 00 0
1 11 0
0010 0 SUB 001 00 0
1 11 0
0000 0 AND 010 00 0
1 10 0
1100 0 ORR 011 00 0
1 10 0
1001 1 TEQ 110 00 1

272 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALU

ALUControly Sums; ALUControl,
NEEPINP

\J

Cout

onu00N TV

N N N N N
\110 011 010 001 ooo/

—5—ALUControl

Results; N
NzZCV
4
N Z Result Flags
(d) RSB
Datapath
—\ PCSrc
Control MemtoRe
Unit eg
31:28 Cond MemWrite
27:26 Op ALUControlyo
25:20 Funct ALUSrc
15:12 Rd ImmSrc
RegWrite
Flags
I_L ALUFlags
o
CLK CLK
CLK .. P8 ‘ ‘
2l S RAM| 0 WES SrcA [~ WE
A RD [— 151 D[ALUResult ReadData
. 3.0 o = ! A RD
Instruction RA2 A2 RD2 I =z
Memory 1 SrcB Data
: 1
1572 A3 Register WriteData \I)IIVeDmory
4 — wD3 File
-DPCPIuSS R15 1
| PCPlus4 E;I 0
L] —
20 Extend Extimm

| o

Result

273 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control
CLK
COﬂds;o
ALUFlagss, Q
FlagWio| & 3
Q =
PCS o % —— PCSrc
o RegW ~ |—— RegWrite
Pro MemW —— MemWrite
Functs.g — —
Decoder MemtoReg
Rdzo —— ALUSrc
ImmSrcy.o
RegSrc.o
(a) Control Unit ALUControlz,
(- — Y l’__P_cs__________[}___pc_sg—\
| Rda PC Logic PCS | |
| | | RegwW Di RegWrite |
I
| Branch - MemW Di MemWrite |
:) I | FlagWi.o o) :
| RegW | | rgﬁ |
—— MemW | | . %
FlagWrite;.
l Main [—— MemtoReg | | " |
| Decod Conds, |
| Opio ecoder[—— ALUSrc I CLK |
F— ImmSrc;, |
| 50 ReaS o | l [3:2]6 Flagss. o |
| [Regorco | 08 |
| ~— I T 1 g::- =3 |
| Functsg ALUOp || ALUFlagsso LK *g |
(JL\ I
| 40| ALU I < Flagsi:o |
I : —— ALUControly.q I | - I
Decoder | [1:0]
| — FIang | l T [0] N——’ |
\ - - - T _ _____ e e e e e e e e e e e e e e V)

(b) Decoder (c) Conditional Logic

274

SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

ALU
A B
Az N N
831
ALUControly| | |Sumg; ALUControl, AN
AL N e [o
- o
U V [2] N
N
Cout [0]
o+ :
Sum
N N /N N
\ 11 10 01 00 /o
Results N
NzZCV
4
Vi C N Z Result Flags

ALU Decoder truth table

ALUOp | Funct,., (cmd) | Funct, (S) | Notes | ALUControl,., | FlagW,.,
0 X X Not DP | 000 00
1 0100 0 ADD 000 00
1 11
0010 0 SUB 001 00
1 11
0000 0 AND 010 00
1 10
1100 0 ORR 011 00
1 10
0011 0 RSB 100 00
1 11

% ALUControl

275 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.5

It is not possible to implement this instruction without either modifying the register file or
making the instruction take at least two cycles to execute. We modify the register file and
datapath as shown below.

e Add WE1 and WD1 signals to the register file.

® WEI1 connects to the Postindex signal (from control unit)

® WD1 connects to ALUResult, which is the sum of Rn + Rm (or Rn + Src2, more generally).

e Add multiplexer before Data Memory Address to choose between (Rn + Src2) and Rn.
With post-indexing, the Data Memory Address input connects to Rn.

PostIindex Controlm
| unit MemtoReg
31:28 Cond MemWrite
27:26 op ALUControl
25:20 Funct ALUSrc
15:12 Rd ImmSrc
RegWrite
Flags
I_ P ALUFlags
[
LK 5 1§ 5 C‘LK Postl‘ndex Postindex CI‘_K
Sk 5y 18 = WE3 WE1 [s WE
2 WD1 rcA
A RDFH 151 RAT] A1 RD1 | ReadData
. 3:0 A RD
emory” e L =
1512 A3 Register ! WriteData \I:IIVeDmory
__| Fil
4'D PCPIlus8 ;\/123 e 1
| PCPlus4 [0
g —
20 { Extend Extlmm
Result
We modified the Main Decoder truth table as shown below.
a0
) x
o o (8] %
5 S 2 S 2 s o 2 c
0 o c £ £ 72 € S 7 o =
a| S = g | 2 g | 2 ¥ | & |2 |3
o | & = 0 = S < E o o < a
00 | OXXXXX | DP Reg 0 0 0 0 XX 1 00 1 0
00 | IXXXXX | DP Imm 0 0 0 1 00 1 X0 1 0
01 | X00000 | STR 0 X 1 1 01 0 10 0 0
01 | 011001 | LDR 0 1 0 1 01 1 X0 0 0
(offset
indexing,
immediate

276

SOLUTIONS

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

offset)

01

111001

LDR
(offset
indexing,
register
offset)

01 |1

00 0 0

01

001001

LDR

(post-
indexing,
immediate
offset)

01 |1

X0 0 1

01

101001

LDR
(post-
indexing,
register
offset)

01 |1

00 0 1

Exercise 7.6

It is not possible to implement this instruction without either modifying the register file or
making the instruction take at least two cycles to execute. We modify the register file and
datapath as shown below.

Add WE1 and WDL1 signals to the register file.
WE1 connects to the Prelndex signal (from control unit)
WD1 connects to ALUResult, which is the sum of Rn + Rm (or Rn + Src2, more generally).

277 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

—\ PCS
Prelndex Controlg
— .. |MemtoReg
Unit -
31:28 Cond MemWrite
27:26 op ALUControl
25:20 Funct ALUSrc
15.12 Rd ImmSrc
RegWrite
Flags
I_L P ALUFlags
C
A Py
LK Prelnd LK
CLK ’ﬁﬁ g C‘ ren‘ ex C‘
5| 19:16 =
2 0|s =] wor V=2 RE] SrcA [~ WE
A RD |- 151 RATY A1
30 3 |ALUResult A RD ReadData
Instruction RA2 A2 RD2 I SreB < Dat
Memory v 1 1 Me;:W
— A3 Register WriteData WD
— WD3 File
4'D PCPIus8 R15 7
.| PCPlus4 r'l 0
as]
20 Extend Extimm

—_

Result
We modified the Main Decoder truth table as shown below.
oy
Q % S o s o 3
e |3 EE |E 3|23 |8 S ¢
| 5 = o 9 9 o] £)) = o
O | -) = S < = (3 (3 < a
00 | OXXXXX | DP Reg 0 0 0 0 XX 1 00 1 0
00 | IXXXXX | DP Imm 0 0 0 1 00 1 X0 1 0
01 | X00000 | STR 0 X 1 1 01 |0 10 0 0
01 | 011001 | LDR 0 1 0 1 01 1 X0 0 0
(offset
indexing,
immediate
offset)
01 | 111001 | LDR 0 1 0 0 01 1 00 0 0
(offset
indexing,
register
offset)
01 | 011011 | LDR 0 1 0 1 01 1 X0 0 1
(pre-
indexing,
immediate
offset)

278 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

01 | 111011 | LDR 0 1 0 0 01 00 0 1
(pre-
indexing,
register
offset)
Exercise 7.7

She should work on the memory. tpyem = (200/2) ps = 100 ps
From Equation 7.3, the new cycle time is:
T =40+ 2(100) + 70 + 100 + 120 + 2(25) + 60 = 640 ps

Exercise 7.8

From Equation 7.3, the new cycle time is:
T =40+ 2(200) + 70 + 100 + 100 + 2(25) + 60 = 820 ps

From Equation 7.1, Execution time is:

T = (100 x 10 instruction) (1 cycle/instruction) (820 x 10™** s/cycle) = 82 seconds.

Exercise 7.9

SystemVerilog

// ex7.9 solutions

//

// single-cycle ARM processor

// additional instructions: TST, LSL, CMN, ADC

module testbench();

logic clk;
logic reset;

logic [31:0] WriteData, DataAdr;
logic MemWrite;

// instantiate device to be tested

top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin
reset <= 1; # 22; reset <= 0;
end

// generate clock to sequence tests

279 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

always
begin
clk <= 1; # 5; clk <= 0; # 5;
end

// check results
always @ (negedge clk)

begin
if (MemWrite) begin
if (DataAdr === 20 & WriteData === 2) begin
Sdisplay("Simulation succeeded");
Sstop;

end else begin
Sdisplay("Simulation failed");

Sstop;
end
end
end

endmodule

module top(input logic clk, reset,
output logic [31:0] WriteData, DataAdr,

output logic MemWrite) ;

logic [31:0] PC, Instr, ReadData;

// instantiate processor and memories
arm arm(clk, reset, PC, Instr, MemWrite, DataAdr,
WriteData, ReadData);
imem imem(PC, Instr);
dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);
endmodule

module dmem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);
logic [31:0] RAM[63:0];
assign rd = RAM[a[31:2]]; // word aligned
always_ff @ (posedge clk)
if (we) RAM[a[31:2]] <= wd;

endmodule

module imem(input logic [31:0] a,
output logic [31:0] rd);

logic [31:0] RAM[63:0];

initial
Sreadmemh ("ex7.9_memfile.dat",RAM) ;

assign rd = RAM[a[31:2]]; // word aligned

© 2015 Elsevier, Inc.

280 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
endmodule
module arm(input logic clk, reset,
output logic [31:0] PC,
input logic [31:0] Instr,
output logic MemWrite,
output logic [31:0] ALUResult, WriteData,
input logic [31:0] ReadData);
logic [3:0] ALUFlags;
logic RegWrite,
ALUSrc, MemtoReg, PCSrc;
logic [1:0] RegSrc, ImmSrc;
logic [2:0] ALUControl; // ADC
logic carry; // ADC
logic Shift; // LSL
controller c(clk, reset, Instr([31:12], ALUFlags,
RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl,
MemWrite, MemtoReg, PCSrc,
carry, // ADC
Shift); // LSL
datapath dp(clk, reset,
RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl,
MemtoReg, PCSrc,
ALUFlags, PC, Instr,
ALUResult, WriteData, ReadData,
carry, // ADC
Shift); // LSL
endmodule
module controller (input logic clk, reset,
input logic [31:12] Instr,
input logic [3:0] ALUFlags,
output logic [1:0] RegSrc,
output logic RegWrite,
output logic [1:0] ImmSrc,
output logic ALUSrc,
output logic [2:0] ALUControl, // ADC
output logic MemWrite, MemtoReg,
output logic PCSrc,
output logic carry, // ADC
output logic Shift); // LSL
logic [1:0] FlagW;
logic PCS, RegW, MemW;
logic NoWrite; // TST, CMN

decoder dec(Instr[27:26], Instr[25:20],
FlagwW, PCS, RegW, MemW,
MemtoReg, ALUSrc, ImmSrc,
NoWrite, // TST, CMN

RegSrc,

Instr[15:12],

ALUControl,

© 2015 Elsevier, Inc.

281 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Shift); // LSL

condlogic cl(clk, reset, Instr([31:28], ALUFlags,
FlagW, PCS, RegW, MemW,
PCSrc, RegWrite, MemWrite,

carry, // ADC
NoWrite) ; // TST, CMN
endmodule
module decoder (input logic [1:0] Op,
input logic [5:0] Funct,
input logic [3:0] Rd,
output logic [1:0] FlagW,
output logic PCS, RegW, MemW,
output logic MemtoReg, ALUSrc,
output logic [1:0] ImmSrc, RegSrc,

output logic [2:0] ALUControl, // ADC

output logic NoWrite, // TST, CMN
output logic Shift); // LSL
logic [9:0] controls;
logic Branch, ALUOp;

// Main Decoder

always_comb

case (Op)
// Data processing immediate
2'b00: 1if (Funct[5]) controls = 10'b0000101001;
// Data processing register
else controls = 10'b0000001001;
// LDR
2'b01: 1if (Funct[O0]) controls = 10'b0001111000;
// STR
else controls = 10'b1001110100;
// B
2'b10: controls = 10'b0110100010;
// Unimplemented
default: controls = 10'bx;
endcase

assign {RegSrc, ImmSrc, ALUSrc, MemtoReg,
RegW, MemW, Branch, ALUOp} = controls;

// ALU Decoder
always_comb

if (ALUOp) begin // which DP Instr?
case (Funct[4:1])
4'b0100: begin // ADD

ALUControl = 3'b000;
NoWrite = 1'bO0;
Shift = 1'b0;
end
4'b0010: begin // SUB
ALUControl = 3'b001;
NoWrite = 1'b0;

282 SOLUTIONS

4'b0000:

4'pb1100:

4'p1000:

4'p1101:

4'b1011:

4'b0101:

default:

endcase

// update
//
FlagW([1l]

// FlagW[0]

FlagW[O0]
(ALUCont

chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

Shift = 1'b0;

end

begin
ALUControl 3'b010;
NoWrite = 1'b0;
Shift 1'b0;

end

begin
ALUControl = 3'b011;
NoWrite 1'b0;
Shift 1'b0;

end

begin
ALUControl = 3'b010;
NoWrite = 1'bl;
Shift = 1'b0;

end

begin
ALUControl = 3'b000;
NoWrite = 1'b0;
Shift 1'bl;

end

begin
ALUControl = 3'b000;
NoWrite 1'bl;
Shift = 1'b0;

end

begin
ALUControl 3'b100;
NoWrite = 1'b0;
Shift 1'b0;

end

begin
ALUControl
NoWrite
Shift

end

// AND

// OR

// TST

// LSL

// CMN

// ADC

//

unimplemented
= 3'bx;
1'bx;
1'bx;

flags 1if S bit is set

(C & V only updated for arith instructions)

end else begin

ALUControl
FlagW
NoWrite
Shift

end

= Funct[0]; // FlagW[l] = S-bit
= S-bit & (ADD | SUB)
= Funct[0] &
rol[1l:0] == 2'b00 | ALUControl[1l:0] == 2'b01);
= 3'b000; // add for non-DP instructions
= 2'b00; // don't update Flags
= 1'b0;
= 1'b0;

© 2015 Elsevier, Inc.

283 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
// PC Logic
assign PCS = ((Rd == 4'b1111) & RegW) | Branch;
endmodule
module condlogic(input logic clk, reset,
input logic [3:0] Cond,
input logic [3:0] ALUFlags,
input logic [1:0] FlagW,
input logic PCS, RegW, MemW,
output logic PCSrc, RegWrite, MemWrite,
output logic carry, // ADC
input logic NoWrite); // TST, CMN
logic [1:0] FlagWrite;
logic [3:0] Flags;
logic CondEx;
flopenr #(2)flagregl(clk, reset, FlagWritel[l],
ALUFlags|[3:2], Flags[3:2]);
flopenr #(2)flagreg0(clk, reset, FlagWritel[O],
ALUFlags[1:0], Flags[1:0]);
// write controls are conditional
condcheck cc(Cond, Flags, CondEx);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondEx & ~NoWrite; // TST, CMN
assign MemWrite = MemW & CondEx;
assign PCSrc = PCS & CondEx;
assign carry = Flags[1l]; // ADC
endmodule
module condcheck (input logic [3:0] Cond,
input logic [3:0] Flags,
output logic CondEx) ;
logic neg, zero, carry, overflow, ge;
assign {neg, zero, carry, overflow} = Flags;
assign ge = (neg == overflow);
always_comb
case (Cond)
4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'b0010: CondEx = carry; // CS
4'pb0011: CondEx = ~carry; // CC
4'b0100: CondEx = neg; // MI
4'b0101: CondEx = ~neg; // PL
4'b0110: CondEx = overflow; // VS
4'b0111: CondEx = ~overflow; // VC
4'p1000: CondEx = carry & ~zero; // HI
4'p1001: CondEx = ~(carry & ~zero); // LS

© 2015 Elsevier, Inc.

284 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

4'p1010: CondEx = ge; // GE
4'b1011: CondEx = ~ge; // LT
4'p1100: CondEx = ~zero & ge; // GT
4'b1101: CondEx = ~(~zero & ge); // LE
4'p1110: CondEx = 1'bl; // Always
default: CondEx = 1'bx; // undefined
endcase
endmodule
module datapath(input logic clk, reset,
input logic [1:0] RegSrc,
input logic RegWrite,
input logic [1:0] ImmSrc,
input logic ALUSrc,
input logic [2:0] ALUControl, // ADC
input logic MemtoReqg,
input logic PCSrc,
output logic [3:0] ALUFlags,
output logic [31:0] PC,
input logic [31:0] Instr,
output logic [31:0] ALUResultOut, // LSL
output logic [31:0] WriteData,
input logic [31:0] ReadData,
input logic carry, // ADC
input logic Shift); // LSL
logic [31:0] PCNext, PCPlus4, PCPlus8;
logic [31:0] ExtImm, SrcA, SrcB, Result;
logic [3:0] RAl, RAZ2;
logic [31:0] srcBshifted, ALUResult; // LSL

// next PC logic

mux2 #(32) pcmux(PCPlus4, Result, PCSrc, PCNext);
flopr #(32) pcreg(clk, reset, PCNext, PC);

adder #(32) pcaddl (PC, 32'bl100, PCPlusi);

adder #(32) pcadd2 (PCPlus4, 32'bl100, PCPlus8);

// register file logic

mux?2 #(4) ralmux (Instr[19:16], 4'b1111, RegSrc[0], RALl);
mux?2 #(4) razmux (Instr[3:0], Instr[15:12], RegSrc[l], RA2);
regfile rf(clk, RegWrite, RAl, RAZ2,

Instr[15:12], Result, PCPluss8,

SrcA, WriteData);
mux2 #(32) resmux(ALUResultOut, ReadData, MemtoReg, Result);
extend ext (Instr[23:0], ImmSrc, ExtImm);

// ALU logic

shifter sh(WriteData, Instr[1l1:7], Instr[6:5], srcBshifted); // LSL
mux2 #(32) srcbmux(srcBshifted, ExtImm, ALUSrc, SrcB); // LSL
alu alu(SrcA, SrcB, ALUControl,

ALUResult, ALUFlags,

carry); // ADC

mux2 #(32) aluresultmux (ALUResult, SrcB, Shift, ALUResultOut); // LSL

285 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule
module regfile(input logic clk,
input logic we3,
input logic [3:0] ral, ra2, wa3,

input logic [31:0] wd3, rlb5,
output logic [31:0] rdl, rd2);

logic [31:0] rf[14:0];

// three ported register file

// read two ports combinationally

// write third port on rising edge of clock
// register 15 reads PC+8 instead

always_ff @ (posedge clk)
if (we3) rflwa3d] <= wd3;

(ral == 4'b1111) 2 rl5 : rflrall;
(ra2 == 4'b1111) ? rl5 : rflraz2l;

assign rdl
assign rd2
endmodule

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case (ImmSrc)
// 8-bit unsigned immediate

2'b00: ExtImm = {24'b0, Instr[7:0]1};

// 12-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr[11:01};

// 24-bit two's complement shifted branch
2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};
default: ExtImm = 32'bx; // undefined

endcase
endmodule

module adder # (parameter WIDTH=8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] vy);

assign y = a + b;
endmodule

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else if (en) g <= d;
endmodule

286 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

module flopr # (parameter WIDTH = 8)
(input 1logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else g <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, di,
input logic S,
output logic [WIDTH-1:0] vy);

assign y = s ? dl : doO;
endmodule

1:0] a, b,
:0] ALUControl,

module alu(input logic [3
input logic [2
output logic [31:0] Result,
output logic [3:0] ALUFlags,
input logic carry) ;

logic neg, zero, carryout, overflow;
logic [31:0] condinvb;

logic [32:0] sum;

logic carryin;

assign carryin = ALUControl[2] ? carry : ALUControl[O0];
assign condinvb = ALUControl[0] ? ~b : b;
assign sum = a + condinvb + carryin;

always_comb
casex (ALUControl[1:07)
2'b0?: Result = sum;
2'bl0: Result = a & b;
2'bll: Result = a | b;

endcase
assign neg = Result[31];
assign zero = (Result == 32'b0);
assign carryout = (ALUControl[l] == 1'b0) & sum[32];
assign overflow = (ALUControl[l] == 1'b0) &

~(a[31] ~ b[31] ~ ALUControl[0]) &
(a[31] ~ sum[311]);
assign ALUFlags = {neg, =zero, carryout, overflow};
endmodule

// shifter needed for LSL
module shifter (input logic [31:0] a,
input logic [4:0] shamt,

/7

/7

/7
//
//

© 2015 Elsevier, Inc.

ADC

ADC

ADC
ADC

ADC

287 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

input logic [1:0] shtype,
output logic [31:0] vy);

always_comb
case (shtype)

2'b00: y = a << shamt;
default: y = a;
endcase
endmodule

VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;
entity testbench is

end;

architecture test of testbench is
component top

port (clk, reset: in STD_LOGIC;
WriteData, DatAadr: out STD_LOGIC_VECTOR (31 downto 0);
MemWrite: out STD_LOGIC) ;
end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR (31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;
begin

—— instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

—— Generate clock with 10 ns period
process begin

clk <= "'1";

wait for 5 ns;

clk <= '0";

wait for 5 ns;
end process;

—— Generate reset for first two clock cycles
process begin

reset <= '1"';
wait for 22 ns;
reset <= '0';
wait;

end process;

—— check that 0x80000001 gets written to address 20
-— at end of program
process (clk) begin

if (clk'event and clk = '0' and MemWrite = '1l') then
if (to_integer (DataAdr) = 20 and
to_integer (WriteData) = 2) then

report "NO ERRORS: Simulation succeeded" severity failure;
else

288 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

report "Simulation failed" severity failure;
end if;
end if;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is —- top-level design for testing
port (clk, reset: in STD_LOGIC;
WriteData, DataAdr: buffer STD_LOGIC_VECTOR (31 downto 0);
MemWrite: buffer STD_LOGIC) ;
end;

architecture test of top is
component arm

port (clk, reset: in STD_LOGIC;
PC: out STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR (31 downto 0);
MemWrite: out STD_LOGIC;
ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));

end component;
component imem
port(a: in STD_LOGIC_VECTOR (31 downto 0);

rd: out STD_LOGIC_VECTOR (31 downto 0));

end component;

component dmem

port(clk, we: in STD_LOGIC;

a, wd: in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));

end component;

signal PC, Instr,
ReadData: STD_LOGIC_VECTOR (31 downto 0);

begin
—-— instantiate processor and memories
i_arm: arm port map(clk, reset, PC, Instr, MemWrite, DataAdr,
WriteData, ReadData);
i_imem: imem port map (PC, Instr);
i_dmem: dmem port map(clk, MemWrite, DataAdr,
WriteData, ReadData);
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is -- data memory
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of dmem is
begin

289 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

process 1is
type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin —-- read or write memory
loop
if clk'event and clk = '1l' then
if (we = '1') then
mem(to_integer (a(7 downto 2))) := wd;
end if;
end if;

rd <= mem(to_integer (a(7 downto 2)));
wait on clk, aj;
end loop;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity imem is —-- instruction memory
port(a: 1in STD_LOGIC_VECTOR(31 downto O0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end;
architecture behave of imem is —-- instruction memory
begin
process 1is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;
type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin
—— initialize memory from file
for i in 0 to 63 loop —-- set all contents low
mem(i) := (others => '0");
end loop;
index := 0;

FILE_OPEN (mem_file, "ex7.9_memfile.dat", READ_MODE) ;
while not endfile(mem_file) loop
readline (mem_file, L);
result := 0;
for i in 1 to 8 loop
read (L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0"');
elsif 'a' <= ch and ch <= 'f' then
result := character'pos(ch) - character'pos('a')+10;
elsif 'A' <= ch and ch <= 'F' then
result := character'pos(ch) - character'pos('A')+10;
else report "Format error on line " & integer'image (index)

severity error;

290

SOLUTIONS chapter 7

e

nd if;

S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

mem (index) (35-1*4 downto 32-i*4) :=
to_std_logic_vector (result,4);

end
ind
end 1

-— re
loop

loop;

ex := index + 1;

oop;

ad memory

rd <= mem(to_integer (a(7 downto 2)));

wai
end 1

t on a;
oop;

end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity arm is —-- single cycle processor
port (clk, reset: i STD_LOGIC;
PC: out STD_LOGIC_VECTOR(31 downto 0);
Instr: i STD_LOGIC_VECTOR (31 downto 0);
MemWrite: out STD_LOGIC;
ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
ReadData: STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is
component controller

port (clk, reset:

Instr:
ALUFlags:
RegSrc:
RegWrite:
ImmSrc:
ALUSrc:
ALUControl:
MemWrite:
MemtoReg:
PCSrc:
carry:
Shift:

end component;
component datapath

port (

clk, reset:
RegSrc:
RegWrite:
ImmSrc:
ALUSrc:
ALUControl:
MemtoReg:
PCSrc:
ALUFlags:
PC:

Instr:
ALUResultOut:

in

in

in

out
out
out
out
out
out
out
out
out
out

in
in
in
in
in
in
in
in
out

STD_LOGIC;

STD_LOGIC_VECTOR (31 downto 12);
STD_LOGIC_VECTOR (3 downto 0);
STD_LOGIC_VECTOR(1 downto 0);
STD_LOGIC;

STD_LOGIC_VECTOR(1 downto 0);
STD_LOGIC;

STD_LOGIC_VECTOR (2 downto 0); —— ADC
STD_LOGIC;

STD_LOGIC;

STD_LOGIC;

STD_LOGIC; -— ADC

STD_LOGIC); —-- LSL

STD_LOGIC;

STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;

STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;

STD_LOGIC_VECTOR (2 downto 0); -— ADC
STD_LOGIC;

STD_LOGIC;

STD_LOGIC_VECTOR (3 downto 0);

buffer STD_LOGIC_VECTOR(31 downto 0);

in

STD_LOGIC_VECTOR (31 downto 0);

buffer STD_LOGIC_VECTOR(31] downto 0); -- LSL

291 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
WriteData: buffer STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
carry: in STD_LOGIC; -— ADC
Shift: in STD_LOGIC) ; -— LSL

end component;
signal ALUFlags: STD_LOGIC_VECTOR (3 downto 0);
signal RegWrite, ALUSrc, MemtoReg, PCSrc: STD_LOGIC;
signal RegSrc, ImmSrc: STD_LOGIC_VECTOR(1 downto 0);
signal ALUControl: STD_LOGIC_VECTOR (2 downto 0); —-— ADC
signal carry: STD_LOGIC; —-— ADC
signal Shift: STD_LOGIC; -— LSL
begin
cont: controller port map(clk, reset, Instr (31 downto 12),
ALUFlags, RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl, MemWrite,
MemtoReg, PCSrc,
carry, -— ADC
Shift); -- LSL
dp: datapath port map(clk, reset, RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl, MemtoReg, PCSrc,
ALUFlags, PC, Instr, ALUResult,
WriteData, ReadData,
carry, -- ADC
Shift); —— LSL

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is —-- single cycle control decoder

port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
RegSrc: out STD_LOGIC_VECTOR(1 downto 0);
RegWrite: out STD_LOGIC;
ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrc: out STD_LOGIC;
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-—- ADC
MemWrite: out STD_LOGIC;
MemtoReg: out STD_LOGIC;
PCSrc: out STD_LOGIC;
carry: out STD_LOGIC; —-— ADC
Shift: out STD_LOGIC); —-- LSL
end;
architecture struct of controller is
component decoder
port (Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1 downto 0);
PCS, RegW, MemW: out STD_LOGIC;
MemtoReg, ALUSrc: out STD_LOGIC;
ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -— ADC
NoWrite: out STD_LOGIC; —-— TST, CMN

292 SOLUTIONS chapter 7

Shift:

S. Harris and D.M. Harris, DDCA: ARM® Edition

out STD_LOGIC) ;

© 2015 Elsevier, Inc.

-— LSL

end component;
component condlogic

port (clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR(3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR (1l downto 0);
PCS, RegW, MemW: in STD_LOGIC;
PCSrc, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
carry: out STD_LOGIC; —— ADC
NoWrite: in STD_LOGIC); —-- TST, CMN

end component;
signal FlagW:

STD_LOGIC_VECTOR (1 downto 0);

signal PCS, RegW, MemW: STD_LOGIC;
signal NoWrite: STD_LOGIC; -- TST, CMN
begin
dec: decoder port map(Instr (27 downto 26), Instr (25 downto 20),
Instr (15 downto 12), FlagW, PCS,
RegW, MemW, MemtoReg, ALUSrc, ImmSrc,
RegSrc, ALUControl,
NoWrite, —-— TST, CMN
Shift); -— LSL
cl: condlogic port map(clk, reset, Instr (31 downto 28),
ALUFlags, FlagW, PCS, RegW, MemW,
PCSrc, RegWrite, MemWrite,
carry, -— ADC
NoWrite); —— TST, CMN
end;
library IEEE; use IEEE.STD_LOGIC_1164.all;
entity decoder is -- main control decoder
port (Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1l downto 0);
PCS, RegW, MemW: out STD_LOGIC;
MemtoReg, ALUSrc: out STD_LOGIC;
ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-- ADC
NoWrite: out STD_LOGIC; —-— TST, CMN
Shift: out STD_LOGIC) ; -— LSL

end;

architecture behave of

decoder is

signal controls: STD_LOGIC_VECTOR (9 downto 0);
signal ALUOp, Branch: STD_LOGIC;
signal op2: STD_LOGIC_VECTOR (3 downto 0);
begin
op2 <= (Op, Funct(5), Funct(0));
process(all) begin —-- Main Decoder
case? (op2) is
when "000-" => controls <= "0000001001";
when "001-" => controls <= "0000101001";

293 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

when "01-0" => controls <= "1001110100";
when "01-1" => controls <= "0001111000";
when "10--" => controls <= "0110100010";
when others => controls <= "-————————-— ",
end case?;
end process;

(RegSrc, ImmSrc, ALUSrc, MemtoReg, RegW, MemW,
Branch, ALUOp) <= controls;

process(all) begin —-- ALU Decoder
if (ALUOp) then
case Funct (4 downto 1) is
when "0100" => ALUControl <= "000"; —-- ADD
NoWrite <= '0"';
Shift <= '0';
when "0010" => ALUControl <= "001"; —-- SUB
NoWrite <= '0"';
Shift <= '0"';
when "0000" => ALUControl <= "010"; —-- AND
NoWrite <= '0';
Shift <= '0';
when "1100" => ALUControl <= "011"; -- ORR
NoWrite <= '0';
Shift <= '0';
when "1000" => ALUControl <= "010"; —-- TST
NoWrite <= '1"';
Shift <= '0"';
when "1101" => ALUControl <= "000"; -- LSL
NoWrite <= '0';
Shift <= '1"'";
when "1011" => ALUControl <= "000"; —-- CMN
NoWrite <= '1';
Shift <= '0';
when "0101" => ALUControl <= "100"; -- ADC
NoWrite <= '0"';
Shift <= '0"';

when others => ALUControl <= "-—-"; —— unimplemented

NoWrite <= '-';
Shift <= '-';
end case;
FlagW(l) <= Funct(0);
FlagW(0) <= Funct(0) and (not ALUControl(l));
else
ALUControl <= "000";
NoWrite <= '0';
Shift <= '0"';
FlagW <= "00";
end if;
end process;

PCS <= ((and Rd) and RegW) or Branch;
end;

© 2015 Elsevier, Inc.

294 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is —-- Conditional logic
port (clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR (3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR (1 downto 0);

PCS, RegW, MemW: in STD_LOGIC;
PCSrc, RegWrite: out STD_LOGIC;,

MemWrite: out STD_LOGIC;
carry: out STD_LOGIC;, —-— ADC
NoWrite: in STD_LOGIC); —-- TST, CMN

end;

architecture behave of condlogic is
component condcheck

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end component;
component flopenr generic(width: integer);
port (clk, reset, en: in STD_LOGIC;

© 2015 Elsevier, Inc.

d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end component;
signal FlagWrite: STD_LOGIC_VECTOR(1 downto O0);

signal Flags: STD_LOGIC_VECTOR(3 downto 0);
signal CondEx: STD_LOGIC;
begin

flagregl: flopenr generic map(2)
port map(clk, reset, FlagWrite(1l),
ALUFlags (3 downto 2), Flags(3 downto 2));
flagreg0: flopenr generic map(2)
port map(clk, reset, FlagWrite(O0),
ALUFlags (1l downto 0), Flags(l downto 0));
cc: condcheck port map(Cond, Flags, CondEx);

FlagWrite <= FlagW and (CondEx, CondEx);

RegWrite <= RegW and CondEx and (not NoWrite); —-- TST,

MemWrite <= MemW and CondEx;

PCSrc <= PCS and CondEx;

carry <= Flags(1l); —— ADC
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condcheck is

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end;

architecture behave of condcheck is
signal neg, zero, carry, overflow, ge: STD_LOGIC;
begin

CMN

295 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(neg, zero, carry, overflow) <= Flags;
ge <= (neg xnor overflow);
process(all) begin —-- Condition checking

case Cond is
when "0000" => CondEx <= zero;
when "0001" => CondEx <= not zero;
when "0010" => CondEx <= carry;
when "0011" => CondEx <= not carry;
when "0100" => CondEx <= neg;
when "0101" => CondEx <= not neg;

when "0110" => CondEx <= overflow;

when "0111" => CondEx <= not overflow;

when "1000" => CondEx <= carry and (not zero);

when "1001" => CondEx <= not(carry and (not zero));

when "1010" => CondEx <= ge;
when "1011" => CondEx <= not gej;

when "1100" => CondEx <= (not zero) and ge;
when "1101" => CondEx <= not ((not zero) and ge);
when "1110" => CondEx <= '1"';
when others => CondEx <= '-"';
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity datapath is

port (clk, reset: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR(1 downto 0);
RegWrite: in STD_LOGIC;
ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ALUSrc: in STD_LOGIC;
ALUControl: in STD_LOGIC_VECTOR (2 downto 0); —-— ADC
MemtoReg: in STD_LOGIC;
PCSrc: in STD_LOGIC;
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PC: buffer STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR (31 downto 0);
ALUResultOut: buffer STD_LOGIC_VECTOR(31 downto 0); —- LSL
WriteData: buffer STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
carry: in STD_LOGIC; -— ADC
Shift: in STD_LOGIC) ; -— LSL

end;

architecture struct of datapath is
component alu

port (a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(2 downto 0); —-— ADC
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
carry: in STD_LOGIC) ; —-— ADC

end component;
component regfile

296 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR (3 downto 0);
wd3, rlb: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end component;
component adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));
end component;
component extend
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end component;
component flopr generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component mux2 generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);

S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (width-1 downto 0));

end component;

component shifter -- LSL

port(a: in STD_LOGIC_VECTOR (31 downto 0);

shamt : in STD_LOGIC_VECTOR(4 downto 0);
shtype: in STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));

end component;

signal PCNext, PCPlus4, PCPlus8: STD_LOGIC_VECTOR (31 downto 0);

signal ExtImm, Result: STD_LOGIC_VECTOR (31 downto 0);

signal SrcA, SrcB: STD_LOGIC_VECTOR (31 downto 0);

signal RAl, RAZ2: STD_LOGIC_VECTOR(3 downto 0);

signal srcBshifted, ALUResult: STD_LOGIC_VECTOR(31 downto 0); —- LSL
begin

-— next PC logic
pcmux: mux2 generic map(32)
port map(PCPlus4, Result, PCSrc, PCNext);
pcreg: flopr generic map(32) port map(clk, reset, PCNext, PC);
pcaddl: adder port map(PC, X"00000004", PCPlusi4);
pcadd?2: adder port map (PCPlus4, X"00000004", PCPlus8);

—-— register file logic
ralmux: mux2 generic map (4)
port map(Instr (19 downto 16), "1111", RegSrc(0), RALl);
razmux: mux2 generic map (4) port map(Instr (3 downto 0),
Instr (15 downto 12), RegSrc(l), RA2);
rf: regfile port map(clk, RegWrite, RAl, RAZ2,
Instr (15 downto 12), Result,
PCPlus8, SrcA, WriteData);
resmux: mux2 generic map (32)

297 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

port map (ALUResult, ReadData, MemtoReg, Result);
ext: extend port map(Instr (23 downto 0), ImmSrc, ExtImm);

-— ALU logic
sh: shifter port map(WriteData, Instr (11 downto 7), Instr (6 downto 5),
srcBshifted); —-— LSL
srcbmux: mux2 generic map (32)
port map (srcBshifted, ExtImm, ALUSrc, SrcB); -— LSL
i_alu: alu port map(SrchA, SrcB, ALUControl, ALUResult, ALUFlags,
carry); —— ADC
aluresultmux: mux2 generic map(32)
port map (ALUResult, SrcB, Shift, ALUResultOut); —-- LSL

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is —- three-port register file
port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlbh: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of
STD_LOGIC_VECTOR (31 downto 0);
signal mem: ramtype;
begin
process (clk) begin
if rising_edge(clk) then
if we3 = '1l' then mem(to_integer (wa3)) <= wd3;
end if;
end if;
end process;
process(all) begin

if (to_integer(ral) = 15) then rdl <= rl5;
else rdl <= mem(to_integer(ral));

end if;

if (to_integer(ra2) = 15) then rd2 <= rl5;
else rd2 <= mem(to_integer(ra2));

end if;

end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is —-- adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of adder is
begin

298 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

y <= a + b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1l downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of extend is
begin
process(all) begin
case ImmSrc is

when "00O" => ExtImm <= (X"000000", Instr (7 downto 0));
when "O01" => ExtImm <= (X"00000", Instr(ll downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

Instr(23), Instr(23), Instr(23), Instr (23 downto 0), "00");
when others => ExtImm <= X"-——————- ",
end case;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is —-- flip-flop with enable and asynchronous reset
generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopenr is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopr is —-- flip-flop with asynchronous reset
generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopr is
begin
process(clk, reset) begin

299 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

if reset then g <= (others => '0'");
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is —-- two-input multiplexer
generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux2 is
begin

y <= dl when s else dO0;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity alu is

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR (2 downto 0);
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR (3 downto 0);
carry: in STD_LOGIC) ;

end;

architecture behave of alu is

signal condinvb: STD_LOGIC_VECTOR (31
signal sum: STD_LOGIC_VECTOR (32
signal neg, zero, carryout, overflow: STD_LOGIC;
signal carryin: STD_LOGIC;

begin

carryin <= carry when ALUControl(2) else ALUControl(0);
condinvb <= not b when ALUControl (0) else b;
sum <= ('0', a) + ('0', condinvb) + carryin;

process(all) begin
case? ALUControl(l downto 0) is

when "0-" => result <= sum(31 downto 0);
when "10" => result <= a and b;

when "11" => result <= a or b;

when others => result <= (others => '-');

end case?;
end process;

neg <= Result (31);

zZero <= '1'" when (Result
carryout <= (not ALUControl (
overflow <= (not ALUControl (

= 0) else '0";
)) and sum(32);
)

1
1)) and

© 2015 Elsevier, Inc.

-— ADC

-— ADC

downto 0);
downto 0);

-— ADC
-— ADC

-— ADC

300 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(not (a(31l) xor b(31l) xor ALUControl(0))) and
(a(31) xor sum(31));
ALUFlags <= (neg, zero, carryout, overflow);

end;

—-— shifter needed for LSL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity shifter is

port(a: in STD_LOGIC_VECTOR (31 downto 0);
shamt : in STD_LOGIC_VECTOR(4 downto 0);
shtype: in STD_LOGIC_VECTOR(1 downto 0);
v out STD_LOGIC_VECTOR(31 downto 0));

end;
architecture behave of shifter is
begin

process (all) begin
case shtype is
when "00" => y <= TO_STDLOGICVECTOR(TO_BITVECTOR (a) sll
TO_INTEGER (shamt)) ;
when others => y <= a;
end case;
end process;
end;

Test ARM assembly code:
; If successful, it should write the value 2 to address 20

MAIN
SUB R3, PC, PC ; R3 =0
ADD R3, R3, #1 ; R3 = 0x1
LSL R3, R3, #30 ; R3 = 0x80000000
ADD R4, R3, #1 ; R4 = 0x80000001
CMN R3, R4 ; set flags according to R3+R4: NZCV=0011
ADC R3, R3, #5 ; R3 = 0x80000006
TST R3, R4 ; set NZ flags according to R3&R4: NzCv=1011
LSL R3, R3, #1 ; R3 = 0x0000000c
LSL R4, R4, #1 ; R4 = 0x00000002
STRVC R4, [R3, #4] ; mem[1l6]<=0x2 1if V=0:
; shouldn't happen
STRVS R4, [R3, #8] ; mem[20]<=0x2 1if V=1: should happen
; EOAF300F SUB R3,PC,PC
; E2833001 ADD R3,R3, #0x00000001
; ELA03F83 LSL R3,R3, #31
; E2834001 ADD R4,R3,#0x00000001
; E1730004 CMN R3,R4
; E2A33005 ADC R3,R3,#0x00000005
; E1130004 TST R3,R4
; ELIA03083 LSL R3,R3, #1

; E1A04084 LSL R4,R4, #1

301 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

; 75834004 STRVC R4, [R3,#0x0004]
; 65834008 STRVS R4, [R3,#0x0008]

ex7.9_memfile.dat
EO04F300F
E2833001
E1AQO3F83
E2834001
E1730004
E2A33005
E1130004
E1A03083
E1A04084
75834004
65834008

Exercise 7.10

© 2015 Elsevier, Inc.

SystemVerilog
// ex7.10 solutions

//

// single-cycle ARM processor
// additional instructions: EOR, LSR, TEQ, RSB

module testbench();

logic clk;
logic reset;

logic [31:0] WriteData, DataAdr;
logic MemWrite;

// instantiate device to be tested

top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin
reset <= 1; # 22; reset <= 0;
end

// generate clock to sequence tests
always
begin
clk <= 1; # 5; clk <= 0; # 5;
end

// check results
always @ (negedge clk)
begin
if (MemWrite) begin

if (DataAdr === 12 & WriteData === 32'h7a)

begin

302 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

Sdisplay("Simulation succeeded");

Sstop;
end else if (DataAdr !== 16) begin
Sdisplay("Simulation failed");
Sstop;
end
end
end
endmodule
module top(input logic clk, reset,
output logic [31:0] WriteData, DataAdr,
output logic MemWrite) ;

logic [31:0] PC, Instr, ReadData;

// instantiate processor and memories
arm arm(clk, reset, PC, Instr, MemWrite, DataAdr,
WriteData, ReadData);
imem imem(PC, Instr);
dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);
endmodule

module dmem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);

logic [31:0] RAM[63:0];
assign rd = RAM[a[31:2]]; // word aligned

always_ff @ (posedge clk)
if (we) RAM[a[31:2]] <= wd;
endmodule

module imem(input logic [31:0] a,
output logic [31:0] rd);

logic [31:0] RAM[63:0];

initial
Sreadmemh ("ex7.10_memfile.dat", RAM) ;

assign rd = RAM[a[31:2]]; // word aligned
endmodule

module arm(input logic clk, reset,
output logic [31:0] PC,
input logic [31:0] Instr,
output logic MemWrite,
output logic [31:0] ALUResult, WriteData,
input logic [31:0] ReadData);

logic [3:0] ALUFlags;

© 2015 Elsevier, Inc.

303 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
logic RegWrite,
ALUSrc, MemtoReg, PCSrc;
logic [1:0] RegSrc, ImmSrc;
logic [2:0] ALUControl; // EOR, RSB
logic Shift; // LSR
controller c(clk, reset, Instr([31:12], ALUFlags,
RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl,
MemWrite, MemtoReg, PCSrc,
Shift); // LSR
datapath dp(clk, reset,
RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl,
MemtoReg, PCSrc,
ALUFlags, PC, Instr,
ALUResult, WriteData, ReadData,
Shift); // LSR
endmodule
module controller (input logic clk, reset,
input logic [31:12] Instr,
input logic [3:0] ALUFlags,
output logic [1:0] RegSrc,
output logic RegWrite,
output logic [1:0] ImmSrc,
output logic ALUSrc,
output logic [2:0] ALUControl, // EOR, RSB
output logic MemWrite, MemtoRegq,
output logic PCSrc,
output logic Shift); // LSR
logic [1:0] FlagW;
logic PCS, RegW, MemW;
logic NoWrite; // TEQ

decoder dec(Instr[27:26],

Instr[25:20],

Instr[15:12],

FlagwW, PCS, RegW, MemW,
MemtoReg, ALUSrc, ImmSrc, RegSrc, ALUControl,
NoWrite, // TEQ
Shift); // LSR
condlogic cl(clk, reset, Instr([31:28], ALUFlags,
FlagW, PCS, RegW, MemW,
PCSrc, RegWrite, MemWrite,
NoWrite) ; // TEQ
endmodule
module decoder (input logic [1:0] Op,
input logic [5:0] Funct,
input logic [3:0] Rd,
output logic [1:0] FlagW,
output logic PCS, RegW, MemW,
output logic MemtoReg, ALUSrc,
output logic [1:0] ImmSrc, RegSrc,

304 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

output logic [2:0] ALUControl, // EOR, RSB

output logic NoWrite, // TEQ
output logic Shift); // LSR
logic [9:0] controls;
logic Branch, ALUOp;

// Main Decoder

always_comb

case (Op)
// Data processing immediate
2'b00: if (Funct[5]) controls = 10'b0000101001;
// Data processing register
else controls = 10'b0000001001;
// LDR
2'b01: 1if (Funct[O0]) controls = 10'b0001111000;
// STR
else controls = 10'b1001110100;
// B
2'b10: controls = 10'b0110100010;
// Unimplemented
default: controls = 10'bx;
endcase

assign {RegSrc, ImmSrc, ALUSrc, MemtoReg,
RegW, MemW, Branch, ALUOp} = controls;

// ALU Decoder
always_comb

if (ALUOp) begin // which DP Instr?
case (Funct[4:17])
4'b0100: begin // ADD

ALUControl = 3'b000;
NoWrite = 1'b0;
Shift = 1'b0;
end
4'b0010: begin // SUB
ALUControl = 3'b001;
NoWrite = 1'b0;
Shift = 1'b0;
end
4'p0000: begin // AND
ALUControl = 3'b010;
NoWrite = 1'bO0;
Shift = 1'b0;
end
4'b1100: begin // OR
ALUControl = 3'b011;
NoWrite = 1'bO0;
Shift = 1'b0;
end
4'b0001: begin // EOR
ALUControl = 3'b110;
NoWrite = 1'b0;

305 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Shift = 1'b0;
end
4'01001: begin // TEQ
ALUControl = 3'b110;
NoWrite = 1'bl;
Shift = 1'b0;
end
4'b1101: begin // LSR
ALUControl = 3'b000;
NoWrite = 1'b0;
Shift = 1'bl;
end
4'b0011: begin // RSB
ALUControl = 3'b100;
NoWrite = 1'b0;
Shift = 1'b0;
end
default: begin // unimplemented
ALUControl = 3'bx;
NoWrite = 1'bx;
Shift = 1'bx;
end
endcase

// update flags i1if S bit is set
// (C & V only updated for arith instructions)

FlagW[1] = Funct[0]; // FlagW[l] = S-bit
// FlagW[0] = S-bit & (ADD | SUB)
FlagW[O0] = Funct[0] &
(ALUControl[1:0] == 2'b00 | ALUControl[1l:0] == 2'b01);

end else begin
ALUControl = 3'b000; // add for non-DP instructions
FlagW 2'b00; // don't update Flags

end

// PC Logic

assign PCS = ((Rd == 4'b1111) & RegW) | Branch;
endmodule
module condlogic(input logic clk, reset,
input logic [3:0] Cond,
input logic [3:0] ALUFlags,

input logic [1:0] FlagW,

input logic PCS, RegW, MemnWw,
output logic PCSrc, RegWrite, MemWrite,
input logic NoWrite); // TEQ

logic [1:0] FlagWrite;
logic [3:0] Flags;
logic CondEx;

306 SOLUTIONS chapter 7

flopenr #(2)flagregl(clk, reset,
ALUFlags[3:2],
flopenr #(2)flagreg0(clk, reset,
ALUFlags[1:0],

// write controls are conditional

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

FlagWrite[1],

Flags[3:2]);

FlagWrite[O],

Flags[1:0]);

condcheck cc(Cond, Flags, CondEx);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondEx & ~NoWrite; // TEQ
assign MemWrite = MemW & CondEx;
assign PCSrc = PCS & CondEx;
endmodule
module condcheck (input logic [3:0] Cond,
input logic [3:0] Flags,
output logic CondEx) ;
logic neg, zero, carry, overflow, ge;
assign {neg, zero, carry, overflow} = Flags;
assign ge = (neg == overflow);
always_comb
case (Cond)
4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'pb0010: CondEx = carry; // CS
4'b0011: CondEx = ~carry; // CC
4'b0100: CondEx = neg; // MI
4'b0101: CondEx = ~neg; // PL
4'0110: CondEx = overflow; // VS
4'b0111: CondEx = ~overflow; // VC
4'b1000: CondEx = carry & ~zero; // HI
4'p1001: CondEx = ~(carry & ~zero); // LS
4'b1010: CondEx = ge; // GE
4'pb1011: CondEx = ~ge; // LT
4'b1100: CondEx = ~zero & ge; // GT
4'p1101: CondEx = ~(~zero & ge); // LE
4'p1110: CondEx = 1'bl; // Always
default: CondEx = 1'bx; // undefined
endcase
endmodule
module datapath(input logic clk, reset,
input logic [1:0] RegSrc,
input logic RegWrite,
input logic [1:0] ImmSrc,
input logic ALUSrc,
input logic [2:0] ALUControl, // EOR, RSB
input logic MemtoReqg,
input logic PCSrc,
output logic [3:0] ALUFlags,
output logic [31:0] PC,

307 SOLUTIONS chapter 7

input
output
input
input

31:0] PCNext,
31:0] ExtImm,

logic
logic

logic

// next PC logic

[
[

logic [3:0] RA1l, RAZ2;
[31:0] srcBshifted, ALUResult;

S. Harris and D.M. Harris, DDCA: ARM® Edition

logic [31:0] Instr,

logic [31:0] ALUResultOut,
logic [31:0] ReadData,
logic Shift); // LSR
PCPlus4, PCPlusS§;

SrcA, SrcB, Result;

// LSR

mux2 #(32) pcmux(PCPlus4, Result, PCSrc, PCNext

flopr #(32) pcreg(clk, reset, PCNext, PC);

adder #(32) pcaddl (PC, 32'bl100, PCPlusi4);

adder #(32) pcadd2 (PCPlus4, 32'bl100, PCPlus8);

// register file logic

mux?2 #(4) ralmux (Instr[19:16], 4'bl1111, RegSrc

mux2 #(4) raZmux (Instr[3:0], Instr[15:12], Reg

regfile rf(clk, RegWrite, RAl, RAZ2,
Instr[15:12], Result, PCPluss8,

SrcA, WriteData);
mux2 #(32) resmux (ALUResultOut,

extend ext (Instr[23:0],

// ALU logic

shifter sh (WriteData,
mux2 #(32) srcbmux(srcBshifted, ExtImm, ALUSrc,

alu alu(SrcA,

ReadData, Memto

ImmSrc,

Instr([11:7],

ALUResult, ALUFlags);

mux?2 #(32) aluresultmux (ALUResult,

endmodule

module regfile(input
input
input
input
output

logic [31:0] rf[14:0

logic
logic
logic
logic
logic

17

// three ported register file

// read two ports combinationally
// write third port on rising edge of
// register 15 reads PC+8 instead

always_ff @ (posedge

clk)

if (we3) rflwa3d] <= wd3;

assign rdl = (ral == 4'b1111)
4'p1111)

assign rd2
endmodule

(raz2 ==

clk,
we3,
ral,
wd3,
rdl,

? rl5
? rlb

ExtImm) ;

Instr[6:5

SrcB, ALUControl,

SrcB, Shift,

raz2, was3,
rl5,
rd2) ;

clock

rflrall;
rflra2l;

WriteData,

)

(0], RAIL);

© 2015 Elsevier, Inc.

// LSR

Src[1l], RA2);

Reg, Result);

], srcBshifted); // LSR

SrcB) ;

// LSR

ALUResultOut); // LSR

308 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case (ImmSrc)
// 8-bit unsigned immediate

2'b00: ExtImm = {24'b0, Instr[7:0]1};

// 12-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr[11:0]};

// 24-bit two's complement shifted branch
2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};
default: ExtImm = 32'bx; // undefined

endcase
endmodule

module adder # (parameter WIDTH=8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] vy);

assign y = a + b;
endmodule

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)

if (reset) q <= 0;
else if (en) g <= d;
endmodule

module flopr # (parameter WIDTH = 8)
(input 1logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else g <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
(input logic [WIDTH-1:0] dO0, di,
input logic S,
output logic [WIDTH-1:0] vy);

assign y = s ? dl : doO;
endmodule

module alu(input logic [31:0] a, b,
input logic [2:0] ALUControl, // EOR, RSB
output logic [31:0] Result,

309 SOLUTIONS chapter 7

output logic [3:0] ALUFlags);

logic neg, zero, carry, overflow;
logic [31:0] condinvb;

logic [31:0] condinva;

logic [32:0] sum;

logic carryin;

assign carryin = ALUControl[2] | ALUControl[0];

assign condinvb = ALUControl[0] ? ~b : b;
assign condinva = ALUControl[2] ? ~a : a;
assign sum = condinva + condinvb + carryin;

always_comb
casex (ALUControl)

3'b007?: Result = sum;

3'b010: Result = a & b;

3'b011: Result = a | b;

3'b110: Result = a © b;

default: Result = 32'bx;
endcase

assign neg = Result[31];
assign zero = (Result == 32'b0);

S. Harris and D.M. Harris, DDCA: ARM® Edition

assign carry = (ALUControl[l] == 1'b0) & sum[32];

assign overflow

(a[31] ~ sum[31]);

assign ALUFlags = {neg, zero, carry, overflow};

endmodule

// shifter needed for LSR

module shifter (input logic [31:0] a,
input logic [4:0] shamt,
input logic [1:0] shtype,
output logic [31:0] vy);

always_comb
case (shtype)
2'b01: vy = a >> shamt;
default: y = a;
endcase
endmodule

VHDL
library IEEE;

(ALUControl[1l] == 1'b0) &
~(a[31] ~ b[31] ~ ALUControl[0])

&

//

/7

/7

/7
//

© 2015 Elsevier, Inc.

RSB
RSB
RSB

RSB
RSB

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is
end;

architecture test of testbench is
component top

310 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

port (clk, reset: in STD_LOGIC;
WriteData, DatAadr: out STD_LOGIC_VECTOR (31 downto 0);
MemWrite: out STD_LOGIC) ;
end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR (31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;
begin

—— instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

—— Generate clock with 10 ns period
process begin

clk <= "'1";

wait for 5 ns;

clk <= '0";

wait for 5 ns;
end process;

—— Generate reset for first two clock cycles
process begin

reset <= '1"';
wait for 22 ns;
reset <= '0';
wait;

end process;

—— check that 122 gets written to address 12
-— at end of program
process (clk) begin

if (clk'event and clk = '0' and MemWrite = '1l') then
if (to_integer (DataAdr) = 12 and
to_integer (WriteData) = 122) then
report "NO ERRORS: Simulation succeeded" severity failure;
else
report "Simulation failed" severity failure;
end if;
end if;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is —- top-level design for testing
port (clk, reset: in STD_LOGIC;
WriteData, DataAdr: buffer STD_LOGIC_VECTOR (31 downto 0);
MemWrite: buffer STD_LOGIC) ;
end;

architecture test of top is
component arm
port (clk, reset: in STD_LOGIC;
PC: out STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR (31 downto 0);

311 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

MemWrite: out STD_LOGIC;
ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));

end component;
component imem
port(a: in STD_LOGIC_VECTOR (31 downto 0);

rd: out STD_LOGIC_VECTOR (31 downto 0));

end component;

component dmem

port (clk, we: in STD_LOGIC;

a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));

end component;

signal PC, Instr,
ReadData: STD_LOGIC_VECTOR (31 downto 0);

begin
—-— instantiate processor and memories
i_arm: arm port map(clk, reset, PC, Instr, MemWrite, DataAdr,
WriteData, ReadData);
i_imem: imem port map(PC, Instr);
i_dmem: dmem port map(clk, MemWrite, DataAdr,
WriteData, ReadData);
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is —-- data memory
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of dmem is
begin
process 1is
type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin —-- read or write memory
loop
if clk'event and clk = '1l' then
if (we = '1'") then
mem(to_integer (a(7 downto 2))) := wd;
end if;
end if;

rd <= mem(to_integer (a(7 downto 2)));
wait on clk, a;
end loop;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

312 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

use IEEE.NUMERIC_STD_UNSIGNED.all;
entity imem is —-- instruction memory
port(a: 1in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));
end;
architecture behave of imem is —-- instruction memory
begin
process 1is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;
type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin
—— initialize memory from file
for i in 0 to 63 loop —-- set all contents low
mem(i) := (others => '0");
end loop;
index := 0;

FILE_OPEN (mem_file, "ex7.10_memfile.dat", READ_MODE) ;
while not endfile(mem_file) loop
readline (mem_file, L);
result := 0;
for i in 1 to 8 loop
read (L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0'");

elsif 'a' <= ch and ch <= 'f' then

result := character'pos(ch) - character'pos('a')+10;
elsif 'A' <= ch and ch <= '"F' then

result := character'pos(ch) - character'pos('A'"')+10;
else report "Format error on line " & integer'image (index)

severity error;

end if;

mem (index) (35-i*4 downto 32-1*4) :=
to_std_logic_vector (result,4);
end loop;
index := index + 1;
end loop;

—-— read memory
loop
rd <= mem(to_integer (a(7 downto 2)));
wait on aj;
end loop;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity arm is —-- single cycle processor
port (clk, reset: in STD_LOGIC;
PC: out STD_LOGIC_VECTOR(31 downto 0);

313 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
Instr: in STD_LOGIC_VECTOR (31 downto 0);
MemWrite: out STD_LOGIC;
ALUResult, WriteData: out STD_LOGIC_VECTOR(31] downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));

end;

architecture struct of arm is
component controller

port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
RegSrc: out STD_LOGIC_VECTOR (1 downto 0);
RegWrite: out STD_LOGIC;
ImmSrc: out STD_LOGIC_VECTOR (1 downto 0);
ALUSrc: out STD_LOGIC;
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-- EOR, RSB
MemWrite: out STD_LOGIC;
MemtoReg: out STD_LOGIC;
PCSrc: out STD_LOGIC;
Shift: out STD_LOGIC) ;
end component;
component datapath
port (clk, reset: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR (1 downto 0);
RegWrite: in STD_LOGIC;
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ALUSrc: in STD_LOGIC;
ALUControl: in STD_LOGIC_VECTOR(2 downto 0); —-—- EOR, RSB
MemtoReg: in STD_LOGIC;
PCSrc: in STD_LOGIC;
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PC: buffer STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR (31 downto 0);
ALUResultOut: buffer STD_LOGIC_VECTOR(31 downto 0); —-- LSR
WriteData: buffer STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
Shift: in STD_LOGIC); -— LSR
end component;
signal ALUFlags: STD_LOGIC_VECTOR (3 downto O0);
signal RegWrite, ALUSrc, MemtoReg, PCSrc: STD_LOGIC;
signal RegSrc, ImmSrc: STD_LOGIC_VECTOR(1l downto 0);
signal ALUControl: STD_LOGIC_VECTOR (2 downto 0); —— EOR, RSB
signal Shift: STD_LOGIC; -— LSR
begin
cont: controller port map(clk, reset, Instr (31 downto 12),
ALUFlags, RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl, MemWrite,
MemtoReg, PCSrc,
Shift); -- LSR
dp: datapath port map(clk, reset, RegSrc, RegWrite, ImmSrc,
ALUSrc, ALUControl, MemtoReg, PCSrc,
ALUFlags, PC, Instr, ALUResult,
WriteData, ReadData,
Shift); -- LSR

314 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is —-- single cycle control decoder
port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR (31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
RegWrite: out STD_LOGIC;
ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrc: out STD_LOGIC;
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -— EOR, RSB
MemWrite: out STD_LOGIC;
MemtoReqg: out STD_LOGIC;
PCSrc: out STD_LOGIC;
Shift: out STD_LOGIC) ; -— LSR
end;

architecture struct of controller is
component decoder

port (Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1 downto 0);

PCS, RegW, MemW: out STD_LOGIC;
MemtoReg, ALUSrc: out STD_LOGIC;

ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1l downto 0);

ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-— EOR, RSB

NoWrite: out STD_LOGIC; -— TEQ

Shift: out STD_LOGIC) ; -— LSR end
component;

end component;
component condlogic

port (clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR(3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR(1 downto 0);

PCS, RegW, MemW: in STD_LOGIC;
PCSrc, RegWrite: out STD_LOGIC;,
MemWrite: out STD_LOGIC;
NoWrite: in STD_LOGIC) ; -— TEQ
end component;
signal FlagW: STD_LOGIC_VECTOR (1l downto 0);
signal PCS, RegW, MemW: STD_LOGIC;
signal NoWrite: STD_LOGIC; -- TEQ
begin
dec: decoder port map(Instr (27 downto 26), Instr (25 downto 20),
Instr (15 downto 12), FlagW, PCS,
RegW, MemW, MemtoReg, ALUSrc, ImmSrc,
RegSrc, ALUControl,
NoWrite, —--— TEQ
Shift); —-- LSR
cl: condlogic port map(clk, reset, Instr (31 downto 28),
ALUFlags, FlagW, PCS, RegW, MemW,

315 SOLUTIONS

end;

library IEEE;

chapter 7

PCSr
NoWr

c, RegWrite, MemWr

ite); -- TEQ

use IEEE.STD_LOGIC_1164.all;

entity decoder is -- main control decoder

port (Op: in STD_LOGIC_VECTOR (1
Funct: in STD_LOGIC_VECTOR(5
Rd: in STD_LOGIC_VECTOR (3
FlagW: out STD_LOGIC_VECTOR(1
PCS, RegW, MemW: out STD_LOGIC;
MemtoReg, ALUSrc: out STD_LOGIC;
ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1
ALUControl: out STD_LOGIC_VECTOR(2
NoWrite: out STD_LOGIC;
Shift: out STD_LOGIC) ;

end;

architecture behave of decoder is
STD_LOGIC_VECTOR(9 downto 0);

signal controls:

ite,

downto
downto
downto
downto

downto
downto

signal ALUOp, Branch: STD_LOGIC;
signal op2: STD_LOGIC_VECTOR(3 downto 0);
begin
op2 <= (Op, Funct(5), Funct(0));
process(all) begin —-- Main Decoder
case? (op2) 1is
when "000-" => controls <= "0000001001";
when "001-" => controls <= "0000101001";
when "01-0" => controls <= "1001110100";
when "01-1" => controls <= "0001111000";
when "10--" => controls <= "0110100010";
when others => controls <= "-————————-— ",
end case?;
end process;
(RegSrc, ImmSrc, ALUSrc, MemtoReg, RegW, MemW,
Branch, ALUOp) <= controls;
process(all) begin —-- ALU Decoder
if (ALUOp) then
case Funct (4 downto 1) is
when "0100" => ALUControl <= "000"; —-- ADD
NoWrite <= '0"';
Shift <= '0"';
when "0010" => ALUControl <= "001"; —-- SUB
NoWrite <= '0';
Shift <= '0';
when "0000" => ALUControl <= "010"; —-- AND
NoWrite <= '0';
Shift <= '0';
when "1100" => ALUControl <= "011"; -- ORR
NoWrite <= '0"';
Shift <= '0"';
when "0001" => ALUControl <= "110"; -- EOR

S. Harris and D.M. Harris, DDCA: ARM® Edition

0);
0);
0);
0);

0);
0);

© 2015 Elsevier, Inc.

-— EOR, RSB
-— TEQ
-— LSR

316 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

NoWrite <= '0';
Shift <= '0';
when "1001" => ALUControl <= "110"; —-- TEQ
NoWrite <= '1"';
Shift <= '0"';
when "1101" => ALUControl <= "000"; -- LSR
NoWrite <= '0"';
Shift <= '1"';
when "1011" => ALUControl <= "100"; —-- RSB
NoWrite <= '0';
Shift <= '0';
when others => ALUControl <= "-—-"; —— unimplemented
NoWrite <= '-"';
Shift <= '-';
end case;
FlagW(l) <= Funct(0);
FlagW(0) <= Funct(0) and (not ALUControl(l));
else
ALUControl <= "000";
NoWrite <= '0"';
Shift <= '0"';
FlagW <= "00";
end if;
end process;

PCS <= ((and Rd) and RegW) or Branch;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is —-- Conditional logic
port (clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR (3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR (1 downto 0);

PCS, RegW, MemW: in STD_LOGIC;

PCSrc, RegWrite: out STD_LOGIC;

MemWrite: out STD_LOGIC;

NoWrite: in STD_LOGIC) ; -— TEQ
end;

architecture behave of condlogic is
component condcheck

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end component;
component flopenr generic(width: integer);
port (clk, reset, en: in STD_LOGIC;

d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end component;

signal FlagWrite: STD_LOGIC_VECTOR(1 downto O0);

signal Flags: STD_LOGIC_VECTOR(3 downto 0);

signal CondEx: STD_LOGIC;

317 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

begin
flagregl: flopenr generic map(2)
port map(clk, reset, FlagWrite(1l),

ALUFlags (3 downto 2), Flags(3 downto 2));

flagreg0: flopenr generic map(2)
port map(clk, reset, FlagWrite(O0),

ALUFlags (1l downto 0), Flags(l downto 0));

cc: condcheck port map(Cond, Flags, CondEx);

FlagWrite <= FlagW and (CondEx, CondEx);

RegWrite <= RegW and CondEx and (not NoWrite); —-- TEQ
MemWrite <= MemW and CondEx;
PCSrc <= PCS and CondEx;
end;
library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condcheck is
port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;
end;
architecture behave of condcheck is
signal neg, zero, carry, overflow, ge: STD_LOGIC;
begin
(neg, zero, carry, overflow) <= Flags;
ge <= (neg xnor overflow);
process(all) begin —-- Condition checking
case Cond is
when "0000" => CondEx <= zero;
when "0001" => CondEx <= not zero;
when "0010" => CondEx <= carry;
when "0011" => CondEx <= not carry;
when "0100" => CondEx <= neg;
when "0101" => CondEx <= not neg;
when "0110" => CondEx <= overflow;
when "0111" => CondEx <= not overflow;
when "1000" => CondEx <= carry and (not zero);
when "1001" => CondEx <= not(carry and (not zero));

when "1010" => CondEx <= ge;
when "1011" => CondEx <= not gej;

when "1100" => CondEx <= (not zero) and ge;
when "1101" => CondEx <= not ((not zero) and ge);
when "1110" => CondEx <= '1"';
when others => CondEx <= '-"';
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity datapath is
port (clk, reset: in STD_LOGIC;

RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

© 2015 Elsevier, Inc.

318 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
RegWrite: in STD_LOGIC;
ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ALUSrc: in STD_LOGIC;
ALUControl: in STD_LOGIC_VECTOR(2 downto 0); —- EOR, RSB
MemtoReqg: in STD_LOGIC;
PCSrc: in STD_LOGIC;
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PC: buffer STD_LOGIC_VECTOR(31 downto 0);
Instr: in STD_LOGIC_VECTOR (31 downto 0);
ALUResultOut: out STD_LOGIC_VECTOR(31 downto 0); —--— LSR
WriteData: buffer STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
Shift: in STD_LOGIC) ; -— LSR
end;
architecture struct of datapath is
component alu
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR (2 downto 0); -— EOR, RSB
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR (3 downto 0));

end component;
component regfile

port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR (3 downto 0);
wd3, rlb5: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end component;
component adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));
end component;
component extend

port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));

end component;

component flopr generic(width: integer);

port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end component;

component mux2 generic(width: integer);

port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component shifter -- LSL
port(a: in STD_LOGIC_VECTOR (31 downto 0);
shamt : in STD_LOGIC_VECTOR(4 downto 0);
shtype: in STD_LOGIC_VECTOR(1 downto 0);
& out STD_LOGIC_VECTOR(31 downto 0));

end component;

319 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

signal PCNext, PCPlus4, PCPlus8: STD_LOGIC_VECTOR (31 downto 0);

signal ExtImm, Result: STD_LOGIC_VECTOR (31 downto 0);

signal SrcA, SrcB: STD_LOGIC_VECTOR (31 downto 0);

signal RAl, RAZ2: STD_LOGIC_VECTOR(3 downto 0);

signal srcBshifted, ALUResult: STD_LOGIC_VECTOR(31 downto 0); —- LSR
begin

-— next PC logic
pcmux: mux2 generic map (32)
port map(PCPlus4, Result, PCSrc, PCNext);
pcreg: flopr generic map(32) port map(clk, reset, PCNext, PC);
pcaddl: adder port map(PC, X"00000004", PCPlusi4);
pcadd2: adder port map (PCPlus4, X"00000004", PCPlus8);

—-— register file logic
ralmux: mux2 generic map (4)
port map(Instr (19 downto 16), "1111", RegSrc(0), RAl);
razmux: mux2 generic map (4) port map(Instr (3 downto 0),
Instr (15 downto 12), RegSrc(l), RA2);
rf: regfile port map(clk, RegWrite, RAl, RAZ2,
Instr (15 downto 12), Result,
PCPlus8, SrcA, WriteData);
resmux: mux2 generic map (32)
port map (ALUResultOut, ReadData, MemtoReg, Result); -- LSR
ext: extend port map(Instr (23 downto 0), ImmSrc, ExtImm);

—-— ALU logic
sh: shifter port map(WriteData, Instr (1l downto 7), Instr (6 downto 5),
srcBshifted) ; -— LSR
srcbmux: mux2 generic map (32)
port map (srcBshifted, ExtImm, ALUSrc, SrcB); -— LSR

i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);
aluresultmux: mux2 generic map(32)
port map (ALUResult, SrcB, Shift, ALUResultOut); -- LSR

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is —-- three-port register file
port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlb: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of
STD_LOGIC_VECTOR (31 downto 0);
signal mem: ramtype;
begin
process (clk) begin
if rising_edge(clk) then
if we3 = '1l' then mem(to_integer (wa3)) <= wd3;

320 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end if;
end if;
end process;
process(all) begin

if (to_integer(ral) = 15) then rdl <= rl5;
else rdl <= mem(to_integer(ral));
end if;
if (to_integer(ra2) = 15) then rd2 <= rl5;
else rd2 <= mem(to_integer(ra2));
end if;

end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is —-- adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of adder is
begin

y <= a + b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1l downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of extend is
begin
process(all) begin
case ImmSrc is

when "00" => ExtImm <= (X"000000", Instr (7 downto 0));
when "O01" => ExtImm <= (X"00000", Instr(ll downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

Instr(23), Instr(23), Instr(23), Instr (23 downto 0), "00");
when others => ExtImm <= X"-——————— ",
end case;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is —-- flip-flop with enable and asynchronous reset
generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopenr is

321 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopr is —-- flip-flop with asynchronous reset
generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopr is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is —-- two-input multiplexer
generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux2 is
begin

y <= dl when s else d0;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity alu is

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR (2 downto 0); —-— EOR, RSB
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR (3 downto 0));
end;

architecture behave of alu is
signal neg, zero, carry, overflow: STD_LOGIC;

322 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

signal condinvb: STD_LOGIC_VECTOR(31 downto O0);

signal condinva: STD_LOGIC_VECTOR(31 downto O0); —— RSB
signal sum: STD_LOGIC_VECTOR (32 downto 0);

signal carryin: STD_LOGIC; -— RSB

begin

carryin <= ALUControl(2) or ALUControl(0); —-— RSB
condinvb <= not b when ALUControl (0) else b;

condinva <= not a when ALUControl(2) else a; —— RSB
sum <= ('0', condinva) + ('0', condinvb) + carryin; —— RSB

process(all) begin
case ALUControl is

when "000" => result <= sum(31 downto 0);

when "001" => result <= sum(31 downto 0);

when "010" => result <= a and b;

when "011" => result <= a or b;

when "110" => result <= a xor b;

when others => result <= (others => '-');
end case;

end process;

neg <= Result (31);

Zero <= '1l'" when (Result = 0) else '0"';

carry <= (not ALUControl(l)) and sum(32);

overflow <= (not ALUControl(l)) and
(not (a(31) xor b(31l) xor ALUControl(0))) and
(a(31) xor sum(31));

ALUFlags <= (neg, zero, carry, overflow);

end;

—-— shifter needed for LSR

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity shifter is

port (a: in STD_LOGIC_VECTOR (31 downto 0);
shamt : in STD_LOGIC_VECTOR(4 downto 0);
shtype: in STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));

end;
architecture behave of shifter is
begin

process (all) begin
case shtype is
when "01" => y <= TO_STDLOGICVECTOR(TO_BITVECTOR (a) srl
TO_INTEGER (shamt)) ;
when others =
end case;
end process;
end;

>y <= ay

Test assembly code
; If successful, it should write the wvalue 0x7A to address 12
MAIN

323 SOLUTIONS chapter 7
SUB R3, PC, PC ; R3 =20
ADD R4, R3, #0x7A ; R4 = Ox7A
ADD R5, R3, #0x6C ; R5 = 0x6C
EOR R6, R4, RS ; R6 =
LSR R6, R6, #2 ; R6 = R6 >>
TEQ R4, R6 ;
STREQ R4, [R6, #3] ; mem[8]<=0x7A if z=1:
TEQ R6, R6 ;
STREQ R4, [R6, #7] ;

; EO4F300F SUB R3,PC, PC

; E283407A ADD R4,R3,#0x0000007A

; E283506C ADD R5,R3, #0x0000006C

; E0246005 EOR R6,R4,R5

; E1A06126 MOV R6,R6,LSR #2

; E1340006 TEQ R4, R0

; 05864003 STREQ R4, [R6, #0x0003]

; E1360006 TEQ R6, R6

; 05864007 STREQ R4, [R6, #0x0007]

ex7.9_memfile.dat
EO04F300F
E283407A
E283506C
E0246005
E1A06126
E1340006
05864003
E1360006
05864007

Exercise 7.11

S. Harris and D.M. Harris, DDCA: ARM® Edition

R4 ~ R5 = 0x16

2 =5

set flags according to Ox7a ~ 5:
shouldn't happen
set flags according to 5 ~ 5:
mem[12]<=0x7A if z=1:

© 2015 Elsevier, Inc.

NZCV = 0000

NZCV = 0100
should happen

(a) STR: it stores the value in the register specified by bits 3:0 (Rm) instead of bits 15:12

(Rd).

(b) LDR, STR: the memory always reads the value at the address specified by the PC,

instead of a data memory address.

(c) All instructions. PC+4 is never written to the PC register.

Exercise 7.12

(a) ADD, SUB, AND, ORR with register Src2: the second source is the value in the register
specified by bits 15:12 (Rm) instead of bits 3:0 (Rd).
(b) All instructions. PC is not connected to the memory address port, so instructions are

never fetched from memory.

(c) All instructions. PC is updated with bogus values.

Exercise 7.13

324

SOLUTIONS

(a) ASR

chapter 7

ALU Decoder truth table

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,., | FlagW,,, | Shift
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1101 0 ASR XX 00 1
1 ASR XX 10 1
Datapath
CLK
PCWrite
AdrSrecontrol
MemWrite| Unit
IRWrite ResultSrc
31:28 Cond ALUControl
27:26 op ALUSrcB
25:20 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite
Shift
ALUFlags
CLK CI‘.K C‘LK .
WE WE3
T N = _Dﬂ A D m " ALURsauL ~|f| ALUOU =5
Instr / Data A2 RD2 [+ 01
Memory § 23 Redict g 10
Wb S WD3 File o
|_ &5 R15 5
CLK
=0 ‘/E"‘e“d/ Extimm
Data |

Result

Contro

325 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
CLK
Condsy
ALUFlagsso o
S S
FlagWi. g__
PCS g. PCWrite
NextPC =R
Opro RegW E RegWrite
Functs MemW e MemWrite
Decoder IRWrite
Rdso AdrSrc
ResultSrcy.o
ALUSrcA
ALUSIcB: o
ImmSrcqo
RegSrcq
ALUControly.o
(a) Control Unit _ J Shift
o /T VO \
I Rds PC Logic PCS | | NextPC |
| y - PCS DD PCWrite :
: Bra:i_\ N : : RegW 1) RegWiite |
| RegW I Memw Y MemWrite |
: CLK — MemW Register | : FlagWa.o e |
| L IRwrite | Enables I G [
I Main |—— NextPC _J | | o |
| FSM | AdrSrc Iy 2 [
| Opio —— ResultSrcro| Multiplexer Ly Y |
| 50 [—— ALUSrcA | Selects I) |
| —— ALUSIcB | | | Conds,o Ok I
| ;EJO L Flagss:2 o I
I Functs P | | - oS |
| — Shift Ly g| &z I
[sof AL — ALucontrols, || ALUFlagsso § 73 :
: \ J— FlagWio : | 3 |
|
Instr ImmSrcy, | |
— e e T oo\ _____ v
(b) Decoder (c) Conditional Logic
(b) TST
ALU Decoder truth table
ALUOp | Funct,., (cmd) | Funct, (S) | Notes | ALUControl, | FlagW,, | NoWrite
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1000 1 TST 10 10 1

© 2015 Elsevier, Inc.

326 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control
CLK
Condso i
ALUFlagsso
———\Nowrite | &
FlagWi ¢ g__
PCS s | pcwite
NextPC L
Op:. 5
Pro ’F\?ﬂegv\\llv @_ —— RegWrite
em o)
Functs, —— MemWrit:
unctso Decoder — emite
Rd IRWrite
30 AdrSrc
ResultSrc,.
ALUSIrcA
ALUSrcB
ImmSrc.o
RegSrcqo
ALUControl4.
(a) Control Unit \ J
—_——_———— e e e — — — —_———— e — — — —
I Rd3o PC Logic PCS | | NextPC |
| I PCS Db:}Pcwme |
| l | RegW l
q)—— RegWrit
| I I NoWrite eore |
RegW | MemW) ite |
| CLK-] MemWrite
— MemW Register	: FlagWi.q		
L IRwrite	Enables	g2	
Main —— NextPC _J		o	
FSM	AdrSrc		%
Op1o —— ResultSrcio	Multiplexer		Y
50 [—— ALUSrcA	Selects		Cond ()
—— ALUSIrcB1o I	30 I		
— - I !			
Functso ALUOP	I - (o] g l		
NoWrite l	& § S l		
. — . o			
[40 DAL: L ALUControlo		ALUFlagsso = 3 '	
ecoder	5		
Jj— FlagWiq		B	
I			
Ops. Instr ImmSrcy o I I			
10 Decoder RegSrcio	l I		
—_—— e = e e ~
(b) Decoder (c) Conditional Logic
(c) sBC

ALU

327 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALUControl, Sumsq ALUControl;
JdIL AL

ALUControly
ALUControl,

Cout V Carry
\ o+ ALUControly

N N N N
11 10 01 00
5— ALUControl;.
ReSU|t31 N
NZCV
4
V C N Z Result ALUFlags

ALU Decoder truth table

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,,
0 X X Not DP | 000 00
1 0100 0 ADD 000 00
1 11
0010 0 SUB 001 00
1 11
0000 0 AND 010 00
1 10
1100 0 ORR 011 00
1 10
0110 0 SBC 101 00
1 11

Datapath

328

SOLUTIONS

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

PCWrite

CLK

RN

AdrSrc

MemWrite

Control
Unit

IRWrite

ResultSrc

© 2015 Elsevier, Inc.

31:28

ALUControl,.o

27:26

Cond
Op

ALUSrcB

25:20

Funct

ALUSrcA

15:12

Rd ImmSrc

RegWrite

Carry

ALUFlags

CI‘.K

A

WD

WE
RD

Instr / Data
Memory

elegpesy

C‘LK

CLK

A1l

A2

WD3
R15

A3 Register

WE3 A

RD1 =

RD2

ALUResult

File

—|

CLK

Data

elegoluM

l/Extem:I/ Extlmm
| I

CLK

ALUOut

Result

Control

329 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
COnda;o
ALUF|agSa;o o
N o
FIang ‘3_ Carry
PCS S |— Pcwrite
NextPC =3
Op1.p — 5
Pro RegW ‘3_ —— RegWrite
Functsg Decode MemW ° —— MemWrite
Rd IRWrite
80 AdrSrc
ResultSrcq,
ALUSIrcA
ALUSIrcBo
ImmSrco
RegSrcq.o
ALUControly.g
(a) Control Unit \ J
—_—_——— e e — — — —_——— e — — — —
3:0 ogic ex
| Rd PCL PCS | | NextPC |
| I PCS Db:}PCWrite |
| l | RegW . l
| | | DiRegerte |
RegW | MemWwW) e |
| CLK | MemWrite
—— MemW Register	: FlagWa,o			
	IRWrite Enables		E}E	
Main —— NextPC _J		o		
FSM	—— AdrSrc			§_
Op1o —— —— ResultSrcio	Multiplexer		Y	
—— ALUSrcA Selects I 'SR				
l 50	COnd3;o			
I —— ALUSIcByo	CLK			
I 7 Fi				
Functs,g ALUOp		[3:2] agSs:2 o g)		
' M]				
! o o nlg	&2			
. ALUFlagss; =	*¢			
I s Q:';l;er— ALUControlyo :	S 2 S :			
—— FlagW,, 2				
— 9o	: 67 Flags+.o -			
ImmSrcy,	0]			
Ob-. Instr 1:0				
P1:0 Decoder RegSrcqo	ll T o1f	0 Carry		
—_— o L e - o ~

(b) Decode (c) Conditional Logic

330

SOLUTIONS

(d) ROR

chapter 7

ALU Decoder truth table

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,,, | Shift
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0
1100 0 ORR 11 00 0
1 10 0
1101 0 ROR XX 00 1
1 XX 10 1
Datapath
CLK
PCWrite
AdrSrc|control
MemWrite| Unit
IRWrite ResultSrc
31:28 Cond ALUControl
27:26 op ALUSrcB
25:20 Funct ALUSIrcA
15:12 Rd ImmSrc
RegWrite
Shift
ALUFlags
CLK CI‘.K C‘LK .
@ WE WE3 LK
PC'| PC Adr A RD Al RD1 = ﬁM?U
Instr / Data A2 RD2 01
Memory § A3 Redi § 10
wob § WD3 Eile ;,6
|_ 5 R15 5
o 29 ‘/E"te"‘(Extimm
Data | —————
Result
Exercise 7.14
(a) BL

331 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
Datapath
CLK
PCWrite
AdrSrelcontrol
MemWrite| Unit
IRWrite ResultSrc
31:28 Cond ALUControl
27:26 ALUSrcB
Op
25:20 F ALUSIrcA
unct
15:12 Rd ImmSrc
RegWrite
ALUFlags
CLK CLK CLK
CLK ‘ | K
WE WE3 A CLK
PC'| PC PC RD A1 RD1 [~ 0
EN Addf 5 ALUResult ALUOUt [~
1 — 00
Instr / Data A2 RD2 [~ 00 o1
Memory P g 10
2 A3 Register o
— wp g ! ol 4—
S wD3 File Y
o R15 o
CLK . /
20 Extend Extlmm
Data —

Result

332 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Instr Decoder logic for RegSrcy. and ImmSrc,.g

Instruction | Op Functs Funct, Functy RegSrc,.0 ImmSrc;.o
LDR 01 X X 1 X0 01
STR 01 X X 0 10 01
DP imm 00 1 X X X0 00
DP reg 00 0 X X 00 00
B 10 X 0 X X1 10
BL 10 X 1 X X1 10

FSM

333 SOLUTIONS chapter 7

Reset

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

S0: Fetc
AdrSrc =0
AluSrcA =1
ALUSIrcB = 10
ALUOp =0
ResultSrc = 10
IRWrite
NextPC

Memory
Op =01

S1: Decode
ALUSrcA=1
ALUSrcB =10
ALUOp =0
ResultSrc = 10

Data Imm
Op =00
Functs = 1

S2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

S7: Executel
ALUSrcA=0
ALUSrcB = 01
ALUOp =1

S6: ExecuteR
ALUSrcA =0
ALUSIrcB = 00
ALUOp =1

LDR
Functy = 1

S3: MemRead
ResultSrc = 00

AdrSrc =1

STR

Functy =0

S4: MemWB

ResultSrc =
RegW

State
Fetch
Decode
MemAdr
MemRead
MemWB
MemWrite
ExecuteR
Executel
ALUWB
Branch
BL

(b) LDR (with addition or subtraction of imm12)

Control

S$5: MemWrite)
ResultSrc = 00 S8: ALUv_vB
ResultSrc = 00
AdrSrc =1 e
MemW g

Brancl|
Op=10
uncty =0

S9: Branch
ALUSrcA=0
ALUSrcB = 01
ALUOp =0
ResultSrc = 10
Branch

BL
Op=10
Funct, = 1

S10: BL
ALUSrcA =0
ALUSrcB = 01

ALUOp =0
ResultSrc = 10
Branch
RegW

01

Datapath pOp

Instr —Mem[PC]; PC — PC+4

ALUOUt < PC+4
ALUOUt < Rn + Imm
Data < Mem[ALUOut]
Rd « Data
Mem[ALUOut] — Rd
ALUOuUt < Rn op Rm
ALUOuUt < Rn op Imm
Rd < ALUOut

PC — R15 + offset

PC «— R15 + offset, LR «— PC+4

334 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Condz,o
ALUFlagss;.o o
o
FlagW1. 2
PCS g |— Pcwrite
NextPC =3
0Dy —ol -
P RegW cg —— RegWrite
MemW o)
Functs,gy —— —— MemWrite
0 Decoder —_— IRWrit I
rite
Rdso —
30 AdrSrc
ResultSrcq
ALUSrcA
ALUSI’CB1;0
ImmSrcq
RegSrci
ALUControlq
(a) Control Unit ____J
————— e mm——— - S _——-—_—————————_—————————
| \ |)
Rd3.0 PC Logic PCS NextPC
I I
' I PCS DEDPCWe |
| Branch | | RegW ; !
——— RegWrite
|) | | ¢ l
RegW | MemW ite |
| CLK_ MemWrite
| F— MemW Register | : FlagWi.q Di I
| - IRwrite | Enables I J2 I
| Main [—— NextPC _J | | o |
: FSM | AdrSrc I 2 |
| Op1g — —— ResultSrcio| Multiplexer I | X !
| 5o —— ALUSrcA | Selects | Cond (I
A onds,
I L ALUSIcBq | T |
— I
| | . Fl .
I Functs, ‘VALUOpto | : e 2952 (2] 9 |
m =]
| —— Iy olg | £ |
! ALUFI . o
I sl ALY — ALUControls, || AtUFlagsse =73 l
| ecoder FlagWas | | o I
| — | | Flags:.o |
| Ops. Instr ImmSrcq I | \ y, |
| 10 Decoder RegSrcq.o I l I
— e L - S -

(b) Decoder (c) Conditional Logic

335

SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
FSM
Reset
S1: Decode
| ALUSTCA = 1
ResuItSrg =10 ALUSrcB = 10
IRWrite ALUOp =00
ResultSrc = 10
Branch
Memory Data Imm Op =10
Op =01 Op = 00
Funct;=0 Functs = 1
S9: Branch
S2a: S2:
S6: ExecuteR S7: Executel ALUSrcA=0
MemAdrSub MemAdrAdd ALUSICA = 0 ALUSICA =0 ALUSTCB = 01
ALUSrcA=0 ALUSrcA =0 _ _ -
- C ALUSTcB = 00 ALUSIcB = 01 ALUOp = 00
ALUSrcB = 01 ALUSrcB =0 ALUOp = 10 ALUOp = 10 ResultSrc = 10
ALUOp =01 ALUOp = 00 P P
Branch
STR
Funct, =0 STR
LDR R
Functo = 1 = Functo =0
$3: MemRead gz:smfsr:‘cv!’gg $8: ALUWB
ResultSrc = 00 _ ResultSrc = 00
AdrSrc = 1 AdrSre = 1 RegW
MemwW
S4: MemWB
ResultSrc = 01
RegW
State Datapath uOp
Fetch Instr —Mem[PC]; PC «— PC+4
Decode ALUOut « PC+4
MemAdrAddALUOut < Rn + Imm
MemAdrSubALUOut — Rn - Imm
MemRead Data < Mem[ALUOut]
MemWB Rd < Data
MemWrite Mem[ALUOut] « Rd
ExecuteR ALUOut « Rn op Rm
Executel ALUOut « Rn op Imm
ALUWB Rd — ALUOut
Branch PC «— R15 + offset
ALU Decoder truth table
ALUOp, ., | Funct,, (cmd) | Funct, (S) | Notes ALUControl,., | FlagW,.4
00 X X Not DP: add | 00 00
01 X X Not DP: sub | 01 00
10 0100 0 ADD 00 00
1 11
0010 0 SUB 01 00

© 2015 Elsevier, Inc.

336 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
1 11
0000 0 AND 10 00
1 10
1100 0 ORR 11 00
1 10
(c) LDRB (with positive immediate offset only)
Datapath
CLK
PCWrite LDRB
AdrSrc[control
MemWrite| Unit
IRWrite ResultSrc
31:28 Cond ALUControl
27:26 op ALUSrcB
25:20 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite
ALUFlags
LK CLK CLK o
pc | M po a1 VB oy A 0 o
B RD ALUResul |f| ALUOU =
Instr / Data A2 RD2 [~ 01
Memory A3 Regist s 10
egister o
WD WD3 lgile % 4—
R15 5
CLK|z0 l/Extemd/ =T
Data

Result

Control

337 SOLUTIONS chapter 7 S.Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Condsg i
ALUFlagsso o
. o)
FIang S_
=
PCS S |— Pcwiite
NextPC o
Ops. 5
Pro RegW 8 —— RegWrite
MemwW) .
Functs,o —Decoder —— MemWr|te
IRWrite
Rdzo
AdrSrc
ResultSrcy.o
ALUSIrcA
ALUSIrcB1
ImmSrcyo
RegSrcy
ALUControlq¢
(a) Control Unit \) LDRB
—_—_— e e — - —_—— e ——
| [)
I Rds0 PC Logic PCS | | NextPC |
| I PCS Di}pcwme |
| Branch I | Re o
gW
| | | DiRenge I
| CLK—| RegW [| MemWw —— MemWrite |
| —— MemW Register | | FlagWi . I
| l IRWrite Enables | | EZ"E |
I Main — NextPC _J | | o |
| FSM |—— AdrSrc I % |
| Op1o — ResultSrcio| Multiplexer | &” I
| 50 —— ALUSrcA | Selects I Cond () I
| —— ALUSrcB: o I %0 CLK I
—— LDRB
l — | I 13:2] Flagss: e} !
| Functso ALUOp | 0o |
: | il >3
I Iy nlg | g% I
} ' =}
| sol AU | ALuControlss || AtUFlagsso = 73 '
| Decoder oW I 3 I
\ J— FlagVvy, 3
I e | | Flagsi.o |
|) Instr ImmSrcyo | |
| Op1o Decoder RegSrcro | : [0 — |
—_——- = - e e ~

(b) Decoder (c) Conditional Logic

© 2015 Elsevier, Inc.

338 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
FSM
Reset S1: Decode
ALUSrcA=1
ALUSreB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0
ResultSrc = 10 ResultSrc = 10
IRWFrite
NextPC
Data Imm
Memory Op =00
Op =01 Functs = 1
S$2: MemAdr S6: ExecuteR S7: Executel
ALUSrcA=0 ALUSrcA=0 ALUSrcA=0
ALUSrcB = 01 ALUSrcB =00 ALUSrcB = 01
ALUOp =1 ALUOp =1
LDRB
Functy = 1

LDR
Functy = 1

Funct, = 1

S3a:
MemReadByte
ResultSrc = 00
AdrSrc = 1
LDRB

AdrSrc =1

S4: MemWB
ResultSrc = 01
RegW

State
Fetch
Decode
MemAdr
MemRead
MemReadByte
MemWB
MemWirite
ExecuteR
Executel
ALUWB
Branch

83: MemRead
ResultSrc = 00

STR
Funct, =0

S$5: MemWrite
ResultSrc = 00
AdrSrc =1

MemW

S8: ALUWB
ResultSrc = 00
RegW

Branch
Op=10

S9: Branch
ALUSrcA=0
ALUSrcB = 01
ALUOp =0
ResultSrc = 10
Branch

Datapath pnOp

Instr «<Mem[PC]; PC « PC+4
ALUOuUt « PC+4
ALUOuUt « Rn + Imm
Data < Mem[ALUOut]
Data < Mem[ALUOut];.o
Rd « Data
Mem[ALUOut] « Rd
ALUOuUt < Rn op Rm
ALUOuUt <+ Rn op Imm
Rd < ALUOut

PC «— R15 + offset

339 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(d)BIC
ALU

Asy N N
B31

ALUControl, Sums; ALUControl,

NIINEP
U ALUControl,
Cout
N N N N
11 10 01 00
5— ALUControl;,
ReSU|t31 N
NZCYV
4
Vi C N Z Result ALUFlags

Control Unit

340 SOLUTIONS chapter 7 S.Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Conds,g \J;
ALUF|3933;0 o
)
(\FlagWio | &
PCS g. —— PCWrite
NextPC 2
Opy; 5
Pro ;egv\\:v <§ —— RegWrite
em) .
Functs, —— MemWrit
uncts, Decoder ___J em. rite
IRWrite
RdS:U
AdrSrc
ResultSrcq,o
ALUSrcA
ALUSIrcB1.o
ImmSrcy.o
RegSrcq.o
ALUControlyo
(a) Control Unit \ J
—_—_———e— e e — — — —_—_——e— e — — — —
! . \
3.0 ogic ex
| Rd PC Logi PCS I NextPC |
| y |, Fcs Di}pcwme |
| Branch | I RegW . I
g
| | | DiRegerte I
RegW | MemwW e |
| CLK F—— MemWrite
| H— MemW Register | : FlagWy.,o |
| L IRwrite | Enables I E}E I
| Main |[— NextPC | | | g) |
| FSM | AdrSrc Iy a |
| Opio —— ResultSrcro| Multiplexer I Y I
—— ALUSrcA | Selects | () |
| 50 | Condsg
| —— ALUSTIcBy, | | ’ CLK |
| - Iy Fl l
| Functso ALUOp || 13:2] agss: o9 |
’ M 3
|) L nlg | g5 !
. . =~ o
[sof ALU L Ucontroly, || ALUFlagsso 2 3 l
| Decoder FlagW | |) |
— 1:0 <
| — | | Flags:o |
| Ob-. Instr ImmSrcy | I
| Pro Decoder RegSrco | ll ol |
—_— e e e e e L e o e ~
(b) Decoder (c) Conditional Logic

ALU Decoder truth table

ALUOp | Funct,., (cmd) | Funct, (S) | Notes | ALUControl,., | FlagW,.,
0 X X Not DP | 000 00
1 0100 0 ADD 000 00
1 11
0010 0 SUB 101 00
1 11
0000 0 AND 010 00
1 10
1100 0 ORR 011 00
1 10
1110 0 BIC 110 00
1 110 10

341 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.15

Yes, it is possible to add this instruction without modifying the register file. First we show the
modifications to the datapath.

CLK

PCWrite Postindex
AdrSrcicontrol
MemWrite| Unit
IRWrite ResultSrc
31:28 ALUControl

Cond

27:26 Op ALUSrcB
25:20 Funct ALUSrcA
15:12 Rd ImmSrc

RegWrite

WriteReg

ALUFlags

CLK CLK
| I3 SreA Postindex

CLK

CI‘_K

WE

07 Adr A RD

Instr / Data
Memory

WD

WE3
A1 RD1 = A 0

pc | |V]pc

ALUResult ALUOut

A2 RD2 =

A3 Register
wD3 File
R15

Eleapeay
Eledajup
N

1

|

CLK
23:0 Extend Extlmm
Data

Result

Because two different registers will be written (first Rd with the loaded value, then Rn with Rn +
Src2), the select signal for the A3 multiplexer (WriteReg) must be an output of the FSM. Here
are the control unit schematic and the Main FSM state transition diagram.

342 SOLUTIONS chapter 7 S.Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Condzyo
ALUFlagss,o 9
FIang E_
PCS g' —— PCWrite
NextPC =N
O P [ng
Pro ;egv\\,lv é_ —— RegWrite
em B)
Functs.y —— —— MemWrite
a0 Decoder ~—)
Rd IRWrite
80 AdrSrc
ResultSrcq.o
ALUSrcA
ALUSrcB;.o
ImmSrc.o
RegSrci.o
ALUControlyo
. Postindex
(a) Control Unit WiteReg
—_ T T T T T T e \ ree_ e e \
I
| Rda. PC Logic PCS | : NextPC |
| I PCS Db:}PCWrite !
Branch | |
: RegW | | RegW DiRegWrite |
- I
—— MemW Register [MemW > ite |
: CLKH L IRWrite Enables | : FlagW.o emiinte |
— NextPC _J (e}
| : | 3¢ i
| Main [—— AdrSrc | | o |
| FSM —— ResultSrcqo | 3 |
— —— ALUSrcA ultiplexer m
I Op1o S Multipl | : x |
| 50 I ALUSrcB,, | Selects I) I
| —— Postindex I : Condso CLK |
\)—— WriteReg | I
| F ALUOp - | Flagss» o
| uncts, \ I | =] o I
—_ =2
VvV © o2 |
! ALU : ! ALUFlagss;o 2| *% |
| 40 Decoder|— ALUControlso | | i F 3 |
I —— Flag\W;. 2
| ___ gWio | : Flags:o |
ImmSrc;, | |
I Ob-. Instr 1:0
l Pro Decoder RegSrcso | l ol I
— T — \ e __ ~

(b) Decoder (c) Conditional Logic

343 SOLUTIONS chapter 7
Reset
Memory
Op =01
Funct, =0

S2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

LDR
Functy = 1

S$3: MemRead
ResultSrc = 00
AdrSrc =1

S4: MemWB
ResultSrc = 01
RegW
WriteReg = 0

Functy = 1
Funct; =0
S4a:
BaseRegWB
ALUSrcA=0
ALUSrcB = 00
ALUOp =0
ResultSrc = 10
WriteReg = 1
RegW

ALUSrcB =10

ResultSrc = 10

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

S0: Fetch
AdrSrc =0 S1: Decode
AluSrcA =1 ALUSIrcA =1

ALUSrcB = 10
ALUOp =0
ResultSrc = 10

ALUOp =0

S6: ExecuteR
ALUSrcA=0
ALUSrcB = 00
ALUOp =1

Data Imm
Op =00
Functs = 1

S7: Executel
ALUSrcA=0
ALUSIrcB = 01
ALUOp =1

STR
Funct, =0

S5: MemWrite
ResultSrc = 00
AdrSrc =1
MemW

S8: ALUWB
ResultSrc = 00
RegW
WriteReg = 0

Functy =0 | Fumct, = 1

Branch
Op=10

S9: Branch
ALUSrcA=0
ALUSrcB = 01

ALUOp =0
ResultSrc = 10

Branch

State Datapath pOp

Fetch Instr —Mem[PC]; PC — PC+4
Decode ALUOut «— PC+4

MemAdr ALUOuUt < Rn + Imm

MemAdrPostindex ALUOut « Rn
MemRead Data «— Mem[ALUOut]
MemWB Rd « Data
BaseRegWB Rn < Rn + Rm

MemWrite Mem[ALUOut] < Rd
ExecuteR ~ ALUOut <« Rn op Rm
Executel ALUOut < Rn op Imm
ALUWB Rd «— ALUOut

Branch PC <« R15 + offset

344 SOLUTIONS chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

Now we modify the Instr Decoder logic for RegSrc;.o and ImmSrcy .o (similar to Table 7.6 in the

text).

Instruction Op Functs. RegSrci.0 ImmSrcy.
LDR 01 011001 X0 01

(offset indexing, imm offset)

LDR 01 1010X1 00 XX
(post-indexing, reg offset)

STR 01 XXXXXX 10 01

DP imm 00 IXXXXX X0 00

DP reg 00 OXXXXX 00 00

B 10 XXXXXX X1 10

Exercise 7.16

© 2015 Elsevier, Inc.

Yes, it is possible to add this instruction without modifying the register file.

modifications to the datapath.

CLK

PCWrite

AdrSrc

MemWrite

IRWrite

Control
Unit

ResultSrc

First we show the

31:28

Cond

ALUControl

27:26

ALUSrcB

25:20

Op
Funct

ALUSrcA

15:12 Rd

ImmSrc

Flags
If;_)

RegWrite
WriteReg

ALUFlags

SrcA

=

Py
8 CLK
CLK CLK CLK e BR% CLK
19:11 a
WE 0 °RA1 WE3 A
M Al RD1 |+
Pe PC 0] Adr RD Instr 145 _{ 1
EN 1 A EN 3.0 I} RA2
Instr / Data 15:12 1 A2 RD2 |-
Memory § 15:12 . g
WD 2 e 0 A3 Register 5
g 1 wp3 File g
® R15 o
CLK /
Data 230 Extend Extimm

ALUResult

CLK

| | ALUOut

~~

00

01

10

Result

Because two different registers will be written (first Rd with the loaded value, then Rn with Rn +
Src2), the select signal for the A3 multiplexer (WriteReg) must be an output of the FSM. Here
are the control unit schematic and the Main FSM state transition diagram.

345 SOLUTIONS chapter 7 S.Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Condz, %
ALUFlagss;.o 9
FlagWs o E_.
PCS g. —— PCWrite
NextPC =2
Opro RegW cg —— RegWrite
MemW o)
Functsy — —— MemWrite
50 Decoder ~—)
Rd IRWrite
50 AdrSrc
ResultSrcy.g
ALUSrcA
ALUSrcB1
ImmSrcy.g
RegSrcq
ALUControl.o
(a) Control Unit WriteReg
—
-———_—————-———-—-—-—-—--——-nn___—_———— Ve
| Rdso PC Logic PCS | | NextPC |
| I PCS Db:}PCWrite |
| Branch | | I
RegW ;
| RegW | |)—— RegWrite I
F—— MemW Register | MemW e |
| CLK-]) J—— MemWrite
| —— IRWrite Enables | : FlagWi. |: o I
— NextPC _| I §|>,— |
: Main [— AdrSrc | : o X |
FSM	—— ResultSrcyg _ I	g_
Op+o [ALUSsrcA	ultplexer	m
50 —— ALUSIrcB;		()
- . Conda;
| [—— WriteReg | | | 50 CLK |
— I I
[: Flagss,
| Functso ALUOp | : [3:2] 9S3:2 - Og I
— =
/JL\ o o2
| ALU : | ALUFiags . S| *% :
l 40 —— ALUControl; | 9530 5 S
| Decoder FlagW | | 3 |
| \) gWi1o | | 3 |
| Opro Instr ImmSrcy. | | I
| : Decoder RegSrcig | | |
- = — e ~

(b) Decoder (c) Conditional Logic

346 SOLUTIONS chapter 7 S. Harris and D.M.

Harris, DDCA: ARM® Edition

Reset

ALUSrcB =10
ALUOp =0
ResultSrc = 10

S1: Decode
ALUSIrcA =1
ALUSIcB =10
ALUOp =0
ResultSrc = 10

Memory
Op=

S2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

LDR
Functy =1

S$3: MemRead
ResultSrc = 00

AdrSrc =1

IRWrite
NextPC

Data Imm
Op =00

01 Functs = 1

S6: ExecuteR
ALUSrcA=0
ALUSrcB =00
ALUOp =1

S7: Executel
ALUSrcA=0
ALUSIrcB =01
ALUOp =1

STR

S5: MemWrite
ResultSrc = 00
AdrSrc =1
MemW

S8: ALUWB
ResultSrc = 00
RegW
WriteReg = 0

Functo =0 | Funct; =0

Branch
Op=10

S$9: Branch
ALUSrcA=0
ALUSrcB =01
ALUOp =0
ResultSrc = 10
Branch

S4: MemWB
ResultSrc = 01
RegW
WriteReg = 0
Functy =1
Functy = 1
S4a:
BaseRegWB
ALUSrcA=0
ALUSIrcB = 00
ALUOp =0
ResultSrc =10
WriteReg = 1
RegW
State Datapath nOp
Fetch Instr —Mem[PC]; PC — PC+4
Decode ALUOuUt — PC+4
MemAdr ALUOut < Rn + Imm
MemRead Data « Mem[ALUOut]
MemWB Rd « Data
BaseRegWB Rn <« Rn + Rm
MemWrite Mem[ALUOut] < Rd
ExecuteR ALUOut — Rn op Rm
Executel ALUOuUt < Rn op Imm
ALUWB Rd « ALUOut
Branch PC — R15 + offset

© 2015 Elsevier, Inc.

347 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Now we modify the Instr Decoder logic for RegSrc;.o and ImmSrcy .o (similar to Table 7.6 in the
text).

Instruction Op Functs.o RegSrci.0 ImmSrcy.
LDR 01 011001 X0 01

(offset indexing, imm offset)

LDR 01 111011 00 XX
(pre-indexing, reg offset)

STR 01 XXXXXX 10 01

DP imm 00 IXXXXX X0 00

DP reg 00 OXXXXX 00 00

B 10 XXXXXX X1 10

Exercise 7.17

From Equation 7.4, TCZ = tpcq +2tmux + maX[tALU + tmux, tmem] + tsetup
She should choose to decrease the delay of the memory.
tmem = (200/2) ps = 100 ps

With this new memory delay, the ALU is on the critical path instead of the memory.
Tc2=[40 + 2(25) + max[120 +25, 100] + 50] ps

= [40 + 2(25) + 145 + 50] ps

=285 ps

Exercise 7.18

The ALU is not on the critical path, so decreasing its delay does not affect performance. Thus,
the results are the same as Example 7.6

T =340 ps
T, = (100 x 10° instructions)(4.12 cycles/instruction) (340 x 10" s/cycle) = 140 seconds

Exercise 7.19

She should choose the memory. The new delay should be 145 ps. Making it less than that does
not improve performance.

tmem = 15 ps
With this new memory delay, the ALU is on the critical path instead of the memory.

Tc2 = [40 + 2(25) + max[120 +25, 145] + 50] ps
=[40 + 2(25) + 145 + 50] ps

348 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
=285 ps
Exercise 7.20
Datapath
CLK
PCWrite WA
AdrSre|control| VB
MemWrite| Unit
IRWrite ResultSrc
31:28 Cond ALUControl
27:26 ALUSrcB
Op
25:20 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite
Flags
—
ALUFlags
&
CLK CLK
| CLK 1) ‘ CLK ™
WE F‘7I v %o WE A CLK
07 Ad RD Instr | 15:12 o1 |ra RD |- y
r A
A | | ALUResult ALUOut o=l
1 EN| 3:0 10 WA 00
Instr / Data 15 11 CLK 01
Memory P § 10
WD L Register T 4 —
g WD File B g
o R15 o
CLK /
20 Extend Extimm
Data | ——
Result

Control

349 SOLUTIONS chapter 7 S.Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Conds,o
ALUFlagss.o o WA
o)
FlagW.o 2 [WB
PCS S | Pcwrite
NextPC =3
Op1o — 5
Pro RegW 8 —— RegWrite
MemW o .
Functs,y — —— MemWrite
50 Decoder ~— IRWrite
i
Rdso —
%0 AdrSrc
ResultSrcq.g
ALUSrcA
ALUSTCB1;0
ImmSrcy.,o
RegSrcq.o
ALUControl4,g
(a) Control Unit ____J
—_—_—— e e e . — — — —_——— e —— — — —
| Rdao PC Logic PCS | | NextPC |
| I PCS Db:}PCWrite |
| s WA l | RegW .
RegW
| L wB | | —— RegWrite I
H— RegW | MemW) .
| CLK— | MemWrite
| —— MemW Register | | FlagW1.o |
| —— IRWrite Enables I EZ]»C;) I
| Main [— NextPC _| | | @) |
| FSM | AdrSrc | | g. |
| Op1o —— — ResultSrcro| Multiplexer | | Y I
| 50 —— ALUSrcA Selects | | Cond () |
- onds,
| - ALUSIcB1o I 50 CLK |
—— RegSrcq, | |
| - . Fl .
| Functso ALUOp | : R 68 I
I | mlg | 22 |
l ALUFI HEE I
} . o
| wof ALU | ALUControly.q l | ag8s0 = S
| Decoder Flaa\ | | B |
— FlagWio o
| ~—/ | | Flags+.o |
| _ Instr _ | |
| Op1o Decoder ImmSrcy | |l N——’ |
—_— e e e e e L e e e e e o - e /

(b) Decoder (c) Conditional Logic

350 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

S0: Fetch S1a: DecodeA

Reset AdrSrc =0 ALUSIrcA = 1
AluSrcA =1 ALUSrcB = 10
ALUSIrcB =10 ALUOp =0
ALUOp =0 ResultSrc = 10
ResultSrc = 10 RegSrc = 00 gra:c;ra
IRWrite WA P
NextPC DP Reg
Op = 00 DP Imm

Functs = 0
Memory Functs =
B S9a: ReadPC+8
Op =01 ngogfcjf‘:“? ALUSICA = 1
_ ALUSrcB = 10
ALUSrcB =10 ALUOp = 0
ALUOp =_0 ResultSrc = 10
ResultSrc = 10 ReaSTC = 11
RegSrc =10 €gore =
$9: Branch
S$2: MemAdr S6: ExecuteR S7: Executel ALUSrcA =0
ALUSrcA =0 ALUSrcA=0 ALUSrcA=0 ALUSrcB =01
ALUSIcB =01 ALUSIrcB = 00 ALUSIrcB = 01 ALUOp =0
ALUOp=0 ALUOp =1 ALUOp =1 ResultSrc = 10
Branch
DR STR
Funct, = 1 Functy =0

S$8: ALUWB
ResultSrc = 00
RegW
RegSrc = 01

$5: MemWrite

S3: MemRead ResultSrc = 00

ResultSrc = 00

AdrSrc =1
MemW

AdrSrc =1

S4: MemWB
ResultSrc = 01

RegW
RegSrc = 01

State Datapath uOp

Fetch Instr —Mem[PC]; PC «— PC+4

DecodeA Read SrcA (Rn) from RF
ALUOuUt « PC+4

DecodeB Read SrcB (Rm) from RF
ALUOuUt « PC+4
MemAdr ALUOuUt « Rn + Imm
MemRead Data «— Mem[ALUOut]
MemWB Rd < Data
MemWrite Mem[ALUOut] «— Rd
ExecuteR ALUOut « Rn op Rm
Executel ALUOuUt < Rn op Imm
ALUWB Rd «— ALUOut

ReadPC+8 Read R15 (PC+8) into A register
Branch PC «— R15 + offset

351 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.21

Yes, Alyssa should switch to the slower but lower power register file for her multicycle
processor design.

Doubling the delay of the register file does not put it on the critical path. The setup time

constraint affected by the register file delay (i.e., between the instruction register and the A
and B registers) is:

7-c = tpcq + tmux + tRFread + tsetup
= (40 + 25 + 200 + 50) ps = 315 ps

This is still less than the 340 ps of the critical path (see Example 7.6), so increasing the delay of
the register file does not affect the cycle time.

Exercise 7.22

The CPl is not affected by changes in component delays, so it is the same as was calculated in
Example 7.5: CPI = 4.12.

Exercise 7.23

The program executes 2 data-processing instructions before the loop. It executes the entire
loop 5 times and then executes the CMP and BEQ only on the sixth iteration, for a total of: 2 DP
instructions + 5 (2 DP + 2 Branch) + (1 DP + 1 B) = 13 DP + 11 B. Each data-processing instruction
takes 4 cycles and each branch instruction takes 3 cycles, so the total number of cycles required
to execute the program is:

13(4) + 11(3) = 85 cycles

Exercise 7.24

The program executes 3 data-processing instructions before the loop. It executes the entire
loop 10 times and then executes the CMP and BEQ only on the eleventh iteration, for a total of:
3 DP instructions + 10 (3 DP + 2 Branch) + (1 DP + 1 B) = 34 DP + 21 B. Each data-processing
instruction takes 4 cycles and each branch instruction takes 3 cycles, so the total number of
cycles required to execute the program is:

34(4) + 21(3) = 199 cycles

352 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

Exercise 7.25

© 2015 Elsevier, Inc.

SystemVerilog
// ARM multicycle processor
module testbench();

logic clk;
logic reset;

logic [31:0] WriteData, DataAdr;
logic MemWrite;

// instantiate device to be tested
top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin
reset <= 1; # 22; reset <= 0;
end

// generate clock to sequence tests
always
begin
clk <= 1; # 5; clk <= 0; # 5;
end

// check results
always @(negedge clk)

begin
if (MemWrite) begin
if (DataAdr === 100 & WriteData === 7) begin
Sdisplay("Simulation succeeded");
Sstop;
end else if (DataAdr !== 96) begin
Sdisplay("Simulation failed");
Sstop;
end
end
end
endmodule
module top(input logic clk, reset,
output logic [31:0] WriteData, Adr,
output logic MemWrite) ;

logic [31:0] ReadData;

// instantiate processor and shared memory
arm arm(clk, reset, MemWrite, Adr,
WriteData, ReadData);
mem mem(clk, MemWrite, Adr, WriteData, ReadData);

353 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule

module mem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);

logic [31:0] RAM[63:0];

initial
Sreadmemh ("memfile.dat", RAM) ;

assign rd = RAM[a[31:2]]; // word aligned

always_ff @ (posedge clk)
if (we) RAM[a[31:2]] <= wd;
endmodule

module arm(input logic clk, reset,
output logic MemWrite,
output logic [31:0] Adr, WriteData,
input logic [31:0] ReadData);

logic [31:0] Instr;

logic [3:0] ALUFlags;

logic PCWrite, RegWrite, IRWrite;

logic AdrSrc, ALUSrcA;

logic [1:0] RegSrc, ALUSrcB, ImmSrc, ALUControl, ResultSrc;

controller c(clk, reset, Instr([31:12], ALUFlags,
PCWrite, MemWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl);
datapath dp(clk, reset, Adr, WriteData, ReadData, Instr, ALUFlags,
PCWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl);

endmodule

module controller (input logic clk,
input 1logic reset,
input logic [31:12] Instr,
input logic [3:0] ALUFlags,
output logic PCWrite,
output logic MemWrite,
output logic RegWrite,
output logic IRWrite,
output logic AdrSrc,
output logic [1:0] RegSrc,
output logic ALUSrcA,
output logic [1:0] ALUSrcB,
output logic [1:0] ResultSrc,
output logic [1:0] ImmSrc,
output logic [1:0] ALUControl) ;

354 SOLUTIONS chapter 7
logic [1:0] FlagW;
logic PCS,

decoder dec(clk,

IRWrite
ALUSrcA

condlogic cl(clk,
Flagw

PCWrite,

endmodule

module decoder (input
input
input
input

output
output
output
output
output
output

logic

// Main FSM
mainfsm fsm(clk, r
IRWrit

reset,
Flagw, PCS,

reset,

S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

NextPC, RegW, MemW;

Instr[27:26], Instr[25:20],
NextPC, RegW, MemW,
, AdrSrc, ResultSrc,
, ALUSrcB, ImmSrc, RegSrc, ALUControl);
Instr[31:28], ALUFlags,
, PCS, NextPC, RegW, MemWw,
RegWrite, MemWrite);

Instr[15:12]7,

clk,
Op,
Funct,

Rd,

FlagWw,

PCS, NextPC, RegW, MemWw,
IRWrite, AdrSrc,
ResultSrc,

ALUSrcA,
ALUSrcB,

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

reset,
:0]
:0]
:0]
:0]

:0]

: 0] ImmSrc, RegSrc, ALUControl);

Branch, ALUOp;

eset, Op,
e, AdrSrc,

Funct,

ALUSrcA, ALUSrcB, ResultSrc,

NextPC

always_comb
if (ALUOp) begin
case (Funct[4:1
4'b0100:
4'p0010:
4'b0000:
4'p1100:
default:
endcase
FlagWl[1l]
FlagW[O0]
2'b01);
end else begin
ALUControl
FlagW
end

2
= 2

// PC Logic
assign PCS

((Rd

// Instr Decoder
assign ImmSrc
assign RegSrc[0]

RegW, MemW, Branch, ALUOp) ;

4

// which Data-processing Instr?
1)
ALUControl
ALUControl
ALUControl
ALUControl
ALUControl

ADD
SUB
AND
ORR
unimplemented

//
//
//
//
//

2'b00;
2'b01;
2'b10;
2'bl1l;
2'bx;

= Funct[0];
Funct [0]

// update N & Z flags if S bit is set
(ALUControl == 2'b00 | ALUControl

&

'b00;
'b00;

// add for non data-processing instructions
// don't update Flags

== 4'pb1111) & RegW) | Branch;

= Op;

(Op == 2'b10); // read PC on Branch

355 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

assign RegSrc[l] = (Op == 2'b01); // read Rd on STR

endmodule
module mainfsm(input logic clk,
input logic reset,
input logic [1:0] Op,
input logic [5:0] Funct,
output logic IRWrite,
output logic AdrSrc, ALUSrcA,
output logic [1:0] ALUSrcB, ResultSrc,
output logic NextPC, RegW, MemW, Branch, ALUOp);
typedef enum logic [3:0] {FEICH, DECODE, MEMADR, MEMRD, MEMWB,

MEMWR, EXECUTER, EXECUTETI,
UNKNOWN }

ALUWB, BRANCH,
statetype;

statetype state, nextstate;
logic [11:0] controls;

// state register

always @(posedge clk or posedge reset)
if (reset) state <= FETCH;
else state <= nextstate;

// next state logic
always_comb
case(state)

FETCH: nextstate = DECODE;
DECODE: case (Op)
2'b00:
if (Funct[5]) nextstate = EXECUTEI;
else nextstate = EXECUTER;
2'b01: nextstate = MEMADR;
2'bl0: nextstate = BRANCH;
default: nextstate = UNKNOWN;
endcase
EXECUTER: nextstate = ALUWB;
EXECUTEI: nextstate = ALUWB;
MEMADR :
if (Funct[O0]) nextstate = MEMRD;
else nextstate = MEMWR;
MEMRD: nextstate = MEMWB;
default: nextstate = FETCH;
endcase
// state-dependent output logic

always_comb
case (state)
FETCH:
DECODE :
EXECUTER:
EXECUTETI:
ALUWB:

controls =
controls =
controls =
controls =
controls =

12'b10001_010_1100;
12'b00000_010_1100;
12'b00000_000_0001;
12'b00000_000_0011;
12'b00010_000_0000;

356 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
MEMADR : controls = 12'b00000_000_0010;
MEMWR : controls = 12'b00100_100_0000;
MEMRD : controls = 12'b00000_100_0000;
MEMWB : controls = 12'b00010_001_0000;
BRANCH: controls = 12'b01000_010_0010;
default: controls = 12'DXXXXX_XXX_XXXX;
endcase
assign {NextPC, Branch, MemW, RegW, IRWrite,
AdrSrc, ResultSrc,
ALUSrcA, ALUSrcB, ALUOp} = controls;
endmodule
module condlogic(input logic clk, reset,
input logic [3:0] Cond,
input logic [3:0] ALUFlags,
input logic [1:0] FlagW,
input logic PCS, NextPC, RegW, MemnW,
output logic PCWrite, RegWrite, MemWrite);
logic [1:0] FlagWrite;
logic [3:0] Flags;
logic CondEx, CondExDelayed;
flopenr #(2)flagregl(clk, reset, FlagWrite[l], ALUFlags[3:2],

Flags[3:2]1);

flopenr #(2)flagreg0(clk, reset, FlagWrite[0O], ALUFlags[1:0],
Flags[1:01);
// write controls are conditional
condcheck cc(Cond, Flags, CondEx);
flopr #(1)condreg(clk, reset, CondEkEx, CondExDelayed);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondExDelayed;
assign MemWrite = MemW & CondExDelayed;
assign PCWrite = (PCS & CondExDelayed) | NextPC;
endmodule
module condcheck (input logic [3:0] Cond,
input logic [3:0] Flags,
output logic CondEx) ;
logic neg, zero, carry, overflow, ge;
assign {neg, =zero, carry, overflow} = Flags;
assign ge = (neg == overflow);
always_comb
case (Cond)
4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'b0010: CondEx = carry; // CS
4'pb0011: CondEx = ~carry; // CC
4'b0100: CondExX = neg; // MI

357 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

4'b0101: CondEx = ~neg; // PL
4'0110: CondEx = overflow; // VS
4'b0111: CondEx = ~overflow; // VC
4'b1000: CondEx = carry & ~zero; // HI
4'p1001: CondEx = ~(carry & ~zero); // LS
4'b1010: CondEx = ge; // GE
4'b1011: CondEx = ~ge; // LT
4'p1100: CondEx = ~zero & ge; // GT
4'b1101: CondEx = ~(~zero & ge); // LE
4'p1110: CondEx = 1'bl; // Always
default: CondEx = 1'bx; // undefined
endcase
endmodule
module datapath(input logic clk, reset,
output logic [31:0] Adr, WriteData,
input logic [31:0] ReadData,
output logic [31:0] Instr,
output logic [3:0] ALUFlags,
input logic PCWrite, RegWrite,
input logic IRWrite,
input logic AdrSrc,
input logic [1:0] RegSrc,
input logic ALUSrcA,
input logic [1:0] ALUSrcB, ResultSrc,
input logic [1:0] ImmSrc, ALUControl);
logic [31:0] PCNext, PC;
logic [31:0] ExtImm, SrcA, SrcB, Result;
logic [31:0] Data, RD1, RD2, A, ALUResult, ALUOut;
logic [3:0] RAl, RAZ2;

// next PC logic
flopenr #(32) pcreg(clk, reset, PCWrite, Result, PC);

// memory logic

mux2 #(32) adrmux (PC, ALUOut, AdrSrc, Adr);

flopenr #(32) ir(clk, reset, IRWrite, ReadData, Instr);
flopr #(32) datareg(clk, reset, ReadData, Data);

// register file logic

mux2 #(4) ralmux (Instr[19:16], 4'b1111, RegSrc[0], RALl);
mux?2 #(4) raZ2mux (Instr[3:0], Instr[15:12], RegSrcl[l], RA2);
regfile rf(clk, RegWrite, RAl, RA2,

Instr[15:12], Result, Result,

RD1, RD2);

flopr #(32) srcareg(clk, reset, RD1, A);
flopr #(32) wdreg(clk, reset, RD2, WriteData);
extend ext (Instr[23:0], ImmSrc, ExtImm);

// ALU logic

mux?2 #(32) srcamux (A, PC, ALUSrcA, SrchA);

mux3 #(32) srcbmux(WriteData, ExtImm, 32'd4, ALUSrcB, SrcB);
alu alu(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

358 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

flopr #(32) aluoutreg(clk, reset, ALUResult, ALUOut);
mux3 #(32) resmux (ALUOut, Data, ALUResult, ResultSrc, Result);
endmodule

module regfile(input logic clk,
input logic we3,
input logic [3:0] ral, ra2, wa3,

input logic [31:0] wd3, rl5,
output logic [31:0] rdl, rd2);

logic [31:0] rf[14:0];

// three ported register file

// read two ports combinationally

// write third port on rising edge of clock
// register 15 reads PC+8 instead

always_ff @ (posedge clk)
if (we3) rflwa3d] <= wd3;

(ral == 4'b1111) ? rl5 : rflrall;
(ra2 == 4'b1111) ? rl5 : rflraz2l;

assign rdl
assign rd2
endmodule

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case (ImmSrc)
// 8-bit unsigned immediate

2'b00: ExtImm = {24'b0, Instr[7:0]};

// 12-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr[11:01};

// 24-bit two's complement shifted branch
2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};
default: ExtImm = 32'bx; // undefined

endcase
endmodule

module adder # (parameter WIDTH=8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] vy);

assign y = a + b;
endmodule

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;

359 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
else if (en) g <= d;
endmodule
module flopr # (parameter WIDTH = 8)
(input logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);
always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else g <= d;
endmodule
module mux2 #(parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, di,
input logic S,
output logic [WIDTH-1:0] vy);
assign y = s ? dl do;
endmodule
module mux3 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, d1, d2,
input logic [1:0] s,
output logic [WIDTH-1:0] vy);
assign y = s[1l] ? d2 (s[0] 2 dil do) ;
endmodule
module alu(input logic [31:0] a, b,
input logic [1:0] ALUControl,
output logic [31:0] Result,
output logic [3:0] ALUFlags);
logic neg, zero, carry, overflow;
logic [31:0] condinvb;
logic [32:0] sum;
assign condinvb = ALUControl[0] ? ~b b;
assign sum = a + condinvb + ALUControl[0];
always_comb
casex (ALUControl[1:07)
2'b0?: Result = sum;
2'b10: Result = a & b;
2'bll: Result = a | b;
endcase
assign neg = Result[31];
assign zero = (Result == 32'b0);
assign carry = (ALUControl[l] == 1'b0) & sum[32];
assign overflow = (ALUControl[l] == 1'b0) & ~(al[31] ~ b[31]
ALUControl[0]) & (a[31] » sum[31]);
assign ALUFlags = {neg, zero, carry, overflow};

© 2015 Elsevier, Inc.

A

360 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule

VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;
entity testbench is

end;

architecture test of testbench is
component top

port (clk, reset: in STD_LOGIC;
WriteData, Adr: out STD_LOGIC_VECTOR(31 downto 0);
MemWrite: out STD_LOGIC) ;
end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR (31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;
begin

—— instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

—— Generate clock with 10 ns period
process begin

clk <= "1";

wait for 5 ns;

clk <= '0";

wait for 5 ns;
end process;

—— Generate reset for first two clock cycles
process begin

reset <= '1"';
wait for 22 ns;
reset <= '0';
wait;

end process;

—— check that 7 gets written to address 84
-— at end of program
process (clk) begin

if (clk'event and clk = '0' and MemWrite = '1l') then
if (to_integer (DataAdr) = 100 and
to_integer (WriteData) = 7) then

report "NO ERRORS: Simulation succeeded" severity failure;
elsif (DataAdr /= 96) then
report "Simulation failed" severity failure;
end if;
end if;
end process;
end;

library IEEE;

361 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is —-- top-level design for testing
port (clk, reset: in STD_LOGIC;
WriteData, Adr: buffer STD_LOGIC_VECTOR (31 downto 0);
MemWrite: buffer STD_LOGIC) ;
end;

architecture test of top is
component arm

port (clk, reset: in STD_LOGIC;
MemWrite: out STD_LOGIC;
Adr, WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));

end component;
component mem
port(clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end component;
signal ReadData: STD_LOGIC_VECTOR(31 downto O0);
begin
—-— instantiate processor and memories
i_arm: arm port map(clk, reset, MemWrite, Adr,
WriteData, ReadData);
i_mem: mem port map(clk, MemWrite, Adr,
WriteData, ReadData);
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mem is —-- memory
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR(31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end;
architecture behave of mem is —-- instruction and data memory
begin

process 1is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;

type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable ram: ramtype;

begin
—— initialize memory from file
for i in 0 to 63 loop —-- set all contents low
ram(i) := (others => '0"');
end loop;

index := 0;

362 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

FILE_OPEN(mem_ _file, "memfile.dat", READ_MODE) ;
while not endfile(mem_file) loop
readline (mem_file, L);
result := 0;
for i in 1 to 8 loop
read (L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0"');

elsif 'a' <= ch and ch <= 'f' then

result := character'pos(ch) - character'pos('a')+10;
elsif 'A' <= ch and ch <= 'F' then

result := character'pos(ch) - character'pos('A')+10;
else report "Format error on line " & integer'image (index)

severity error;

end if;

ram(index) (35-1*4 downto 32-i*4) :=
to_std_logic_vector (result,4);
end loop;
index := index + 1;
end loop;

—-— read or write memory

loop
if clk'event and clk = '1l' then
if (we = '1') then
ram(to_integer (a(7 downto 2))) := wd;
end if;
end if;

rd <= ram(to_integer (a(7 downto 2)));
wait on clk, aj;
end loop;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is —-- multicycle processor
port (clk, reset: in STD_LOGIC;
MemWrite: out STD_LOGIC;
Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));
end;

architecture struct of arm is
component controller

port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
PCWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
RegWrite: out STD_LOGIC;
IRWrite: out STD_LOGIC;

AdrSrc: out STD_LOGIC;

363 SOLUTIONS

RegSrc:
ALUSrcA:
ALUSrcB:
ResultSrc:
ImmSrc:
ALUControl:
end component;
component datapath
port (clk, reset:
Adr:
WriteData:
ReadData:
Instr:
ALUFlags:
PCWrite:
RegWrite:
IRWrite:
AdrSrc:
RegSrc:
ALUSrcA:
ALUSrcB:
ResultSrc:
ImmSrc:
ALUControl:
end component;

signal Instr: STD_LOGIC_VECTOR (31 downto 0);
signal ALUFlags: STD_LOGIC_VECTOR (3 downto 0);
signal PCWrite, RegWrite, IRWrite: STD_LOGIC;
signal AdrSrc, ALUSrcA: STD_LOGIC;
signal RegSrc, ALUSrcB: STD_LOGIC_VECTOR(1 downto O0);
signal ImmSrc, ALUControl, ResultSrc: STD_LOGIC_VECTOR(1 downto O0);
begin
cont: controller port map(clk, reset, Instr (31 downto 12),
ALUFlags, PCWrite, MemWrite, RegWrite,
IRWrite, AdrSrc, RegSrc, ALUSrcA,
ALUSrcB, ResultSrc, ImmSrc, ALUControl);
dp: datapath port map(clk, reset, Adr, WriteData, ReadData,
Instr, ALUFlags,
PCWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl);

end;

library IEEE;

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

out STD_LOGIC_VECTOR(1 downto 0);
out STD_LOGIC;

out STD_LOGIC_VECTOR(1 downto 0);
out STD_LOGIC_VECTOR(1l downto 0);
out STD_LOGIC_VECTOR(1 downto 0);
out STD_LOGIC_VECTOR(1 downto 0));

in STD_LOGIC;

out STD_LOGIC_VECTOR(31 downto 0);
out STD_LOGIC_VECTOR (31 downto 0);
in STD_LOGIC_VECTOR (31 downto 0);
out STD_LOGIC_VECTOR(31 downto 0);
out STD_LOGIC_VECTOR(3 downto 0);
in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC_VECTOR(1 downto 0);
in STD_LOGIC;

in STD_LOGIC_VECTOR(1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);
in STD_LOGIC_VECTOR(1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0));

use IEEE.STD_LOGIC_1164.all;

entity controller is —-- single cycle control decoder
port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR (31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
PCWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
RegWrite: out STD_LOGIC;

© 2015 Elsevier, Inc.

364 SOLUTIONS

IRWrite:
AdrSrc:
RegSrc:
ALUSrcA:
ALUSrcB:

chapter 7

ResultSrc:

ImmSrc:

ALUControl:

end;

S. Harris and D.M. Harris, DDCA: ARM® Edition

out
out
out
out
out
out
out
out

STD_LOGIC;
STD_LOGIC;

STD_LOGIC_VECTOR(1

STD_LOGIC;

STD_LOGIC_VECTOR(1
STD_LOGIC_VECTOR(1
STD_LOGIC_VECTOR(1
STD_LOGIC_VECTOR(1

architecture struct of controller is
component decoder

port (clk,
Op:
Funct:
Rd:
FlagW:
PCS,

reset:

NextPC:

RegW, MemW:

IRWrite,

ResultSrc:
ALUSrcA:

ALUSrCcB,

RegSrc:

ALUControl:

end component;

component condlogic

port (clk,
Cond:

reset:

ALUFlags:

FlagW:
PCS,

NextPC:

RegW, MemW:

PCWrite,

MemWrite:

end component;
signal FlagW:
signal PCS,
begin
dec:
20),

STD_LOGIC_VECTOR (1 downto O0);

NextPC, RegW, MemW:

AdrSrc:

ImmSrc:

RegWrite:

in
in
in
in
out
out
out
out
out
out
out
out
out

in
in
in
in
in
in

decoder port map(clk, r

cl: condlogic port map(clk,

end;

library IEEE;

ALUF1
PCWri

STD_LOGIC;

STD_LOGIC_VECTOR(1
STD_LOGIC_VECTOR (5
STD_LOGIC_VECTOR (3
STD_LOGIC_VECTOR(1

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC_VECTOR(1

STD_LOGIC;

STD_LOGIC_VECTOR(1
STD_LOGIC_VECTOR(1
STD_LOGIC_VECTOR(1

STD_LOGIC;

downto 0);
downto
downto
downto
downto

0);
0);
0);
0))

downto
downto
downto
downto

O O O O

downto 0)

downto 0)
downto 0)
downto 0)

14

Ne Ne N

~e

© 2015 Elsevier, Inc.

STD_LOGIC_VECTOR (3 downto 0);
STD_LOGIC_VECTOR (3 downto 0);
STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;
STD_LOGIC;

out STD_LOGIC;
out STD_LOGIC) ;

eset,

Instr (15 downto 12),
NextPC, RegW, MemW,
IRWrite,
ALUSrcA, ALUSrcB,

AdrSrc,

reset,
ags,
te,

use IEEE.STD_LOGIC_1164.all;

entity decoder is —-- main control decoder
port (clk, reset: in STD_LOGIC;
Op:

Funct:

in STD_LOGIC_VECTOR (1 downto
in STD_LOGIC_VECTOR (5 downto

STD_LOGIC;

Instr (27 downto 26),

NextPC,
MemWrite);

Flagw, PCs,

ResultSrc,
ImmSrc,
Instr (31 downto 28),
Flagw, PCS,
RegWrite,

RegSrc,

0);
0);

Instr (25 downto

ALUControl);

RegW, MemWw,

365 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1l downto 0);
PCS, NextPC: out STD_LOGIC;

RegW, MemW: out STD_LOGIC;

IRWrite, AdrSrc: out STD_LOGIC;

ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;

ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);
RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

end;
architecture behave of decoder is
component mainfsm
port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR (1l downto 0);
Funct: in STD_LOGIC_VECTOR(5 downto 0);
IRWrite: out STD_LOGIC;
AdrSrc, ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1l downto 0);
ResultSrc: out STD_LOGIC_VECTOR (1 downto 0);
NextPC, RegW: out STD_LOGIC;
MemW, Branch: out STD_LOGIC;
ALUOp: out STD_LOGIC) ;
end component;
signal Branch, ALUOp: STD_LOGIC;
begin
—— Main FSM
fsm: mainfsm port map(clk, reset, Op, Funct,
IRWrite, AdrSrc,
ALUSrcA, ALUSrcB, ResultSrc,
NextPC, RegW, MemW, Branch, ALUOp);
process(all) begin —-- ALU Decoder
if (ALUOp) then
case Funct (4 downto 1) is
when "0100" => ALUControl <= "00"; —-- ADD
when "0010" => ALUControl <= "01"; -- SUB
when "0000" => ALUControl <= "10"; —-- AND
when "1100" => ALUControl <= "11"; -- ORR
when others => ALUControl <= "--"; —— unimplemented
end case;
FlagW(l) <= Funct(0);
FlagW(0) <= Funct(0) and (not ALUControl(l));
else
ALUControl <= "00";
FlagW <= "00";
end if;
end process;
-— PC Logic
PCS <= ((and Rd) and RegW) or Branch;

Instr Decoder

© 2015 Elsevier, Inc.

366 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc <= Op;

RegSrc(0) <= 'l' when (Op 2B"10") else '0';

RegSrc(l) <= '1l' when (Op = 2B"01") else '0';
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mainfsm is

port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
IRWrite: out STD_LOGIC;
AdrSrc, ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
NextPC, RegW: out STD_LOGIC;
MemW, Branch: out STD_LOGIC;
ALUOp: out STD_LOGIC) ;

end;

architecture synth of mainfsm is
type statetype is (FETCH, DECODE, MEMADR, MEMRD, MEMWB, MEMWR,
EXECUTER, EXECUTEI, ALUWB, BR, UNKNOWN) ;
signal state, nextstate: statetype;
signal controls: STD_LOGIC_VECTOR(1l1l downto O0);
begin
—--state register
process(clk, reset) begin
if reset then state <= FETCH;
elsif rising_edge(clk) then
state <= nextstate;
end if;
end process;

-- next state logic
process(all) begin
case state is
when FETCH => nextstate <= DECODE;
when DECODE =>
case Op is

when "00" => nextstate <= Executel when (Funct(5) = '1")
else EXECUTER;
when "01" => nextstate <= MEMADR;
when "10" => nextstate <= BR;
when others => nextstate <= UNKNOWN;
end case;
when EXECUTER => nextstate <= ALUWB;
when EXECUTEI => nextstate <= ALUWB;
when MEMADR => nextstate <= MEMRD when (Funct(0) = '1")
else MEMWR;
when MEMRD => nextstate <= MEMWB;
when others => nextstate <= FETCH;
end case;

end process;

367

SOLUTIONS

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

—-— state-dependent output logic

process(all)

begin

case state is

when
when
when
when
when
when
when
when
when
when
when

FETCH =>
DECODE =>
EXECUTER
EXECUTET
ALUWB =>
MEMADR =>
MEMWR =>
MEMRD =>
MEMWB =>
BR =>
others =>

end case;
end process;

=>
=>

controls
controls
controls
controls
controls
controls
controls
controls
controls
controls
controls

(NextPC, Branch, MemW, RegW,

AdrSrc,

ALUSrcA, ALUSrcB, ALUOp)
end;

library IEEE;

ResultSrc

4

entity condlogic is —-- Conditional logic

port (clk, reset: in STD_LOGIC;
Cond: in
ALUFlags: in
FlagW: in
PCS, NextPC: in STD_LOGIC;
RegW, MemW: in STD_LOGIC;
PCWrite, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC) ;

end;

<= 12B"100010101100";
<= 12B"000000101100";
<= 12B"000000000001";
<= 12B"000000000011";
<= 12B"000100000000";
<= 12B"000000000010";
<= 12B"001001000000";
<= 12B"000001000000";
<= 12B"000100010000";
<= 12B"010000100010";

<= "XXXXXXXXXXXX";

IRWrite,

<= controls;

use IEEE.STD_LOGIC_1164.all;

© 2015 Elsevier, Inc.

STD_LOGIC_VECTOR (3 downto 0);
0);
STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC_VECTOR (3 downto

architecture behave of condlogic is
component condcheck

component flopenr generic(width:
en: in
in

port (Cond:

Flags:
CondEx:
end component;

port (clk,
d:
q:

reset,

end component;

component flopr generic(width:
reset: in
in

port (clk,
d:
q:

end component;

signal FlagWrite:
signal Flags:

in STD_LOGIC_VECTOR (3 downto 0);

in STD_LOGIC_VECTOR(3 downto
out STD_LOGIC) ;

STD_LOGIC;

STD_LOGIC_VECTOR (width-1
out STD_LOGIC_VECTOR (width-1

STD_LOGIC_VECTOR (1 downto
STD_LOGIC_VECTOR (3 downto

integer);
STD_LOGIC;
STD_LOGIC_VECTOR (width-1
out STD_LOGIC_VECTOR(width-1

integer);

downto
downto

downto
downto

0);
0);

0);

368 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

signal CondEx: STD_LOGIC_VECTOR (0 downto 0);
signal CondExDelayed: STD_LOGIC_VECTOR(0 downto 0);
begin
flagregl: flopenr generic map(2)
port map(clk, reset, FlagWrite(1l),

ALUFlags (3 downto 2), Flags(3 downto 2));
flagreg0: flopenr generic map(2)

port map(clk, reset, FlagWrite(O0),

ALUFlags (1l downto 0), Flags(l downto 0));
cc: condcheck port map(Cond, Flags, CondEx(0));
condreg: flopr generic map(1l)

port map(clk, reset, CondEx, CondExDelayed);

FlagWrite <= FlagW and (CondEx(0), CondEx(0));

RegWrite <= RegW and CondExDelayed(0);

MemWrite <= MemW and CondExDelayed(0);

PCWrite <= (PCS and CondExDelayed(0)) or NextPC;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condcheck is

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end;

architecture behave of condcheck is

signal neg, zero, carry, overflow, ge: STD_LOGIC;
begin

(neg, zero, carry, overflow) <= Flags;

ge <= (neg xnor overflow);

process(all) begin —-- Condition checking
case Cond is
when "0000" => CondEx <= zero;

when "0001" => CondEx <= not zero;
when "0010" => CondEx <= carry;
when "0011" => CondEx <= not carry;

when "0100" => CondEx <= neg;
when "0101" => CondEx <= not neg;

when "0110" => CondEx <= overflow;

when "0111" => CondEx <= not overflow;

when "1000" => CondEx <= carry and (not zero);

when "1001" => CondEx <= not(carry and (not zero));

when "1010" => CondEx <= ge;
when "1011" => CondEx <= not ge;

when "1100" => CondEx <= (not zero) and ge;
when "1101" => CondEx <= not ((not zero) and ge);
when "1110" => CondEx <= '1';
when others => CondEx <= '-"';
end case;

end process;
end;

© 2015 Elsevier, Inc.

369 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

library IEEE; use I
entity datapath is
port (clk, reset:

Adr:
WriteData:
ReadData:
Instr:
ALUFlags:
PCWrite:
RegWrite:
IRWrite:
AdrSrc:
RegSrc:
ALUSrcA:
ALUSrcB:
ResultSrc:
ImmSrc:
ALUControl:

end;

architecture struct
component alu
port (a, b:
ALUControl
Result:
ALUFlags:
end component;
component regfile
port (clk:
we3:
ral, raz,
wd3, rl5:
rdl, rd2:
end component;
component adder
port(a, b: in
y: out
end component;
component extend
port (Instr: in
ImmSrc: in
ExtImm: ou
end component;
component flopenr
port (clk, reset
d:
q:
end component;

EEE.STD_LOGIC_1164.all;

in STD_LOGIC;
out STD_LOGIC_VECTOR(31 downto 0)
out STD_LOGIC_VECTOR (31 downto 0)
in STD_LOGIC_VECTOR (31 downto 0)
out STD_LOGIC_VECTOR(31 downto 0)
out STD_LOGIC_VECTOR(3 downto 0);
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC_VECTOR (1 downto 0);
in STD_LOGIC;
in STD_LOGIC_VECTOR(1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);
in STD_LOGIC_VECTOR(1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0))

of datapath is

in STD_LOGIC_VECTOR (31 downto 0);
: in STD_LOGIC_VECTOR(1 downto 0);
buffer STD_LOGIC_VECTOR (31 downto 0);
out STD_LOGIC_VECTOR(3 downto 0));

in STD_LOGIC;
in STD_LOGIC;

wa3: in STD_LOGIC_VECTOR(3 downto 0);
in STD_LOGIC_VECTOR (31 downto 0);
out STD_LOGIC_VECTOR (31 downto 0));

STD_LOGIC_VECTOR (31 downto 0);
STD_LOGIC_VECTOR (31 downto 0));

STD_LOGIC_VECTOR (23 downto 0);
STD_LOGIC_VECTOR (1 downto 0);
t STD_LOGIC_VECTOR(31 downto 0));

generic(width: integer);

, en: in STD_LOGIC;
in STD_LOGIC_VECTOR (width-1 downto 0)
out STD_LOGIC_VECTOR (width-1 downto 0)

component flopr generic(width: integer);

port (clk, reset
d:
q:
end component;

: in STD_LOGIC;
in STD_LOGIC_VECTOR (width-1 downto 0)
out STD_LOGIC_VECTOR(width-1 downto 0)

14
r

r

14

4

© 2015 Elsevier, Inc.

370 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

component mux2 generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component mux3 generic(width: integer);
port (d0, dl, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

S: in STD_LOGIC_VECTOR(1 downto 0);

y: out STD_LOGIC_VECTOR(width-1 downto 0));
end component; signal PCNext, PC: STD_LOGIC_VECTOR(31 downto 0);
signal ExtImm, SrcA, SrcB: STD_LOGIC_VECTOR (31 downto 0);
signal Result: STD_LOGIC_VECTOR (31 downto 0);
signal Data, RD1l, RD2, A: STD_LOGIC_VECTOR (31 downto 0);
signal ALUResult, ALUOut: STD_LOGIC_VECTOR(31 downto 0);
signal RAl, RAZ2: STD_LOGIC_VECTOR(3 downto 0);

begin
-- next PC logic
pcreg: flopenr generic map(32)
port map(clk, reset, PCWrite, Result, PC);

—-— memory logic
adrmux: mux2 generic map (32)
port map(PC, ALUOut, AdrSrc, Adr);
ir: flopenr generic map(32)
port map(clk, reset, IRWrite, ReadData, Instr);
datareg: flopr generic map(32)
port map(clk, reset, ReadData, Data);

-— register file logic
ralmux: mux2 generic map (4)
port map(Instr (19 downto 16), "1111", RegSrc(0), RAl);
ra2mux: mux2 generic map (4) port map(Instr (3 downto 0),
Instr (15 downto 12), RegSrc(l), RA2);
rf: regfile port map(clk, RegWrite, RAl, RAZ,
Instr (15 downto 12), Result, Result,
RD1, RD2);
srcareg: flopr generic map(32)
port map(clk, reset, RD1, A);
wdreg: flopr generic map(32)
port map(clk, reset, RD2, WriteData);
ext: extend port map(Instr (23 downto 0), ImmSrc, ExtImm);

-— ALU logic
srcamux: mux2 generic map(32)

port map (A, PC, ALUSrcA, Srch);
srcbmux: mux3 generic map(32)

port map (WriteData, ExtImm, 32D"4", ALUSrcB, SrcB);
i_alu: alu port map(SrchA, SrcB, ALUControl, ALUResult, ALUFlags);
aluoutreg: flopr generic map(32)

port map(clk, reset, ALUResult, ALUOut);
resmux: mux3 generic map (32)

port map (ALUOut, Data, ALUResult, ResultSrc, Result);

end;

371 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is —- three-port register file
port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlb: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of
STD_LOGIC_VECTOR (31 downto 0);
signal mem: ramtype;
begin
process(clk) begin
if rising_edge(clk) then
if we3 = '1l' then mem(to_integer (wa3)) <= wd3;
end if;
end if;
end process;
process(all) begin

if (to_integer(ral) = 15) then rdl <= rl5;
else rdl <= mem(to_integer(ral));
end if;
if (to_integer (ra2) = 15) then rd2 <= rl5;
else rd2 <= mem(to_integer(ra2));
end if;

end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is —-- adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of adder is
begin

y <= a + b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1l downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of extend is
begin
process(all) begin
case ImmSrc is

© 2015 Elsevier, Inc.

372 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

when "00" => ExtImm <= (X"000000", Instr (7 downto 0));
when "O01" => ExtImm <= (X"00000", Instr(ll downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

Instr(23), Instr(23), Instr(23), Instr (23 downto 0), "00");
when others => ExtImm <= X"-——————- ",
end case;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is —-- flip-flop with enable and asynchronous reset
generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopenr is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopr is —-- flip-flop with asynchronous reset
generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));
end;

architecture asynchronous of flopr is
begin
process(clk, reset) begin
if reset then g <= (others => '0'");
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is —-- two-input multiplexer
generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

373 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

architecture behave of mux2 is
begin

y <= dl when s else dO0;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux3 is —-- three-input multiplexer
generic(width: integer);
port (d0, dl, d2: in STD_LOGIC_VECTOR(width-1 downto O0);
sS: in STD_LOGIC_VECTOR (1 downto 0);
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux3 is
begin
process(all) begin
case s is

when "00" => vy <= d0;
when "0O1" => vy <= dl;
when "10" => y <= d2;
when others => y <= d0;
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity alu is

port (a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(1l downto 0);
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of alu is
signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

signal sum: STD_LOGIC_VECTOR (32 downto 0);

signal neg, zero, carry, overflow: STD_LOGIC;
begin

condinvb <= not b when ALUControl(0) else b;

sum <= ('0', a) + ('0', condinvb) + ALUControl (0);

process(all) begin
case? ALUControl(l downto 0) is

when "0-" => result <= sum(31 downto 0);
when "10" => result <= a and b;
when "11" => result <= a or b;
when others => result <= (others => '-');

end case?;
end process;

© 2015 Elsevier, Inc.

374 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
neg <= Result (31);
Zero <= '1l'" when (Result = 0) else '0"';
carry <= (not ALUControl(l)) and sum(32);
overflow <= (not ALUControl(l)) and
(not (a(31) xor b(31l) xor ALUControl(0))) and
(a(31) xor sum(31));
ALUFlags <= (neg, zero, carry, overflow);
end;

Test ARM assembly code

// If successful, it should write the value 7 to address 100

MAIN

SUB
ADD
ADD
SUB
ORR
AND
ADD

RO,
R2,
R3,
R7,
R4,
R5,
RS,

R15,
RO,
RO,
R3,
R7,
R3,
R5,

R15
#5
#12
#9
R2
R4
R4

SUBS R8, R5, R7

BEQ END

SUBS R8, R3, R4

BGE AROUND

ADD R5, RO, #0
AROUND

SUBS R8, R7, R2

ADDLT R7, R5, #1

SUB R7, R7, R2

STR R7, [R3, #84]

LDR R2, [RO, #96]

ADD R15, R15, RO

ADD R2, RO, #14

B END

ADD R2, RO, #13

ADD R2, RO, #10
END STR R2, [RO, #100]

memfile.dat
EO4F000F
E2802005
E280300C
E2437009
E1874002
E0035004
E0855004
E0558007
0AQ0000C
E0538004
AAQ00000
E2805000
E0578002
B2857001

; RO =0
R2 =5
R3 = 12
R7 = 3
R4 = 3 OR 5 =7
R5 = 12 AND 7 = 4
RS =4+ 7 =11

1
R8 <= 11 - 3 = 8, set Flags
shouldn't be taken

R =12 - 7 =5

should be taken

should be skipped

R8 = 3 - 5 = -2, set Flags
R7 =11 + 1 = 12

R7 =12 - 5 =7
mem[12+84] = 7
R2 = mem[96] = 7

PC <- PC + 8 (skips next)
shouldn't happen

always taken

shouldn't happen
shouldn't happen

mem[100] = 7

© 2015 Elsevier, Inc.

375 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

E0477002
E5837054
E5902060
EO8FFO000
E280200E
EA000001
E280200D
E280200A
E5802064

Exercise 7.26

SystemVerilog
// Added instructions:
// BL, LDR, LDRB, BIC

module testbench();

logic clk;
logic reset;

logic [31:0] WriteData, DataAdr;
logic MemWrite;

// instantiate device to be tested
top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin
reset <= 1; # 22; reset <= 0;
end

// generate clock to sequence tests
always
begin
clk <= 1; # 5; clk <= 0; # 5;
end

// check results
always @(negedge clk)

begin
if (MemWrite) begin
if (DataAdr === 208 & WriteData === 57) begin
Sdisplay ("Simulation succeeded") ;
$stop;
end else if (DataAdr !== 200) begin
Sdisplay ("Simulation failed");
Sstop;
end
end
end

endmodule

376 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

module top(input logic
output logic
output logic

clk, reset,
WriteData,
MemWrite) ;

[31:0] Adr,

logic [31:0] ReadData;

// instantiate processor and shared memory

arm arm(clk, reset, MemWrite, Adr,
WriteData, ReadData);
mem mem(clk, MemWrite, Adr, WriteData, ReadData);
endmodule
module mem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);
logic [31:0] RAM[63:0];
initial

Sreadmemh ("ex7.26_memfile.dat",RAM) ;
assign rd = RAM[a[31:2]]; // word aligned

always_ff @ (posedge clk)

if (we) RAM[a[31:2]] <= wd;
endmodule
module arm(input logic clk, reset,
output logic MemWrite,
output logic [31:0] Adr, WriteData,

input logic [31:0] ReadData);
logic [31:0] Instr;
logic [3:0] ALUFlags;
logic PCWrite, RegWrite, IRWrite;
logic AdrSrc, ALUSrcA;
logic [1:0 ALUSrcB, ImmSrc, ResultSrc;
logic [2:0] ALUControl; // BIC
logic [2:0] RegSrc; // BL
logic LDRB; // LDRB
controller c(clk, reset, Instr[31:12], ALUFlags,
PCWrite, MemWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl, LDRB);
datapath dp(clk, reset, Adr, WriteData, ReadData, Instr,
PCWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl, LDRB);
endmodule
module controller (input logic clk,

© 2015 Elsevier, Inc.

ALUFlags,

377 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

input logic reset,

input logic [31:12] Instr,

input logic [3:0] ALUFlags,

output logic PCWrite,

output logic MemWrite,

output logic RegWrite,

output logic IRWrite,

output logic AdrSrc,

output logic [2:0] RegSrc, // BL

output logic ALUSrcA,

output logic [1:0] ALUSrcB,

output logic [1:0] ResultSrc,

output logic [1:0] ImmSrc,

output logic [2:0] ALUControl, // BIC

output logic LDRB) ; // LDRB
logic [1:0] FlagW;
logic PCS, NextPC, RegW, MemW;

© 2015 Elsevier, Inc.

decoder dec(clk, reset, Instr[27:26], Instr[25:20], Instr[l15:12],

FlagWw, PCS, NextPC, RegW, MemW,
IRWrite, AdrSrc, ResultSrc,

ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,

LDRB); // LDRB
condlogic cl(clk, reset, Instr([31:28], ALUFlags,
FlagW, PCS, NextPC, RegW, MemW,
PCWrite, RegWrite, MemWrite);

endmodule
module decoder (input logic clk, reset,
input logic [1:0] Op,
input logic [5:0] Funct,
input logic [3:0] Rd,
output logic [1:0] FlagW,
output logic PCS, NextPC, RegW, MemW,

output logic IRWrite, AdrSrc,
output logic [1:0] ResultSrc,
output logic ALUSrcA,

output logic [1:0] ALUSrcB, ImmSrc,

output logic [2:0] RegSrc, // BL
output logic [2:0] ALUControl, // BIC
output logic LDRB) ; // LDRB
logic Branch;
logic [1:0] ALUOp; // LDR (with +- imml2)

// Main FSM

mainfsm fsm(clk, reset, Op, Funct,
IRWrite, AdrSrc,
ALUSrcA, ALUSrcB, ResultSrc,
NextPC, RegW, MemW, Branch, ALUOp,
LDRB); // LDRB

always_comb
case (ALUOp)

378 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
2'b00: // not DP: add
begin
ALUControl = 3'b000; // add
FlagW = 2'b00; // don’t update Flags
end
2'b01: // not DP: subtract
begin
ALUControl = 3'bl01; // subtract
FlagW = 2'b00; // don’t update Flags
end
2'b10: // which Data-processing Instr?
begin
case (Funct[4:1])
4'pb0100: ALUControl = 3'b000; // ADD
4'pb0010: ALUControl = 3'bl01; // SUB
4'b0000: ALUControl = 3'b010; // AND
4'p1100: ALUControl = 3'b011l; // ORR
4'p1110: ALUControl = 3'bl110; // BIC
default: ALUControl = 3'bx; // unimplemented
endcase
FlagW[1] = Funct[0]; // update N & Z flags if S bit is set
FlagW[O0] = Funct[0] &
(ALUControl == 3'b000 | ALUControl == 3'b101);
end
default:
begin
ALUControl = 3'bx;
FlagW = 2'bx;
end
endcase
// PC Logic
assign PCS = ((Rd == 4'b1111) & RegW) | Branch;
// Instr Decoder
assign ImmSrc = Op;
assign RegSrc[0] = (Op == 2'bl0); // read PC on Branch
assign RegSrc[l] = (Op == 2'b01); // read Rd on STR
// write PC+4 to LR on BL

assign RegSrc[2] =
endmodule

module mainfsm(input
input
input
input
output
output
output
output
output
output

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

[1

[1:
[5:

[1:

((Op == 2'b10) &

0]
0]

0]

:0]

(Funct[4]==1));

clk,

reset,

Op,

Funct,

IRWrite,

AdrSrc, ALUSrcA,

ALUSrcB, ResultSrc,

NextPC, RegW, MemW, Branch,
ALUOp, // LDR (with +- imml2)
LDRB) ; // LDRB

379 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

typedef enum logic [3:0] {FETCH, DECODE, MEMRD, MEMWB,
MEMWR, EXECUTER, EXECUTEI, ALUWB, BRANCH,

BL, // BL
MEMADRADD, MEMADRSUB, // LDR +- imml2
MEMREADBYTE, // LDRB
UNKNOWN }

statetype;

statetype state, nextstate;
logic [13:0] controls; // LDRB, LDR +- imml?2

// state register

always @(posedge clk or posedge reset)
if (reset) state <= FETCH;
else state <= nextstate;

// next state logic
always_comb
case(state)

FETCH: nextstate = DECODE;
DECODE: case (Op)
2'b00:
if (Funct[5]) nextstate = EXECUTEI;
else nextstate = EXECUTER;
2'b01:
if (Funct[3]) nextstate = MEMADRADD;//LDR +- imml2
else nextstate = MEMADRSUB;
2'b10:
if (Funct[4]) nextstate = BL; //BL
else nextstate = BRANCH;
default: nextstate = UNKNOWN;
endcase
EXECUTER: nextstate = ALUWB;
EXECUTEI: nextstate = ALUWB;
MEMADRADD: //LDR +- imml2
if (Funct[O0]&Funct[2]) nextstate = MEMREADBYTE;
else if (Funct[0]&~Funct[2]) nextstate = MEMRD;
else nextstate = MEMWR;
MEMADRSURB: //LDR +- imml2
if (Funct[0]&Funct([2]) nextstate = MEMREADBYTE;
else if (Funct[0]&~Funct[2]) nextstate = MEMRD;
else nextstate = MEMWR;
MEMRD: nextstate = MEMWB;
MEMREADBYTE : nextstate = MEMWB;
default: nextstate = FETCH;
endcase

// state—-dependent output logic
always_comb
case (state)
FETCH: controls 14'p10001_010_11000_0;
DECODE: controls = 14'b00000_010_11000_0;
EXECUTER: controls 14'b00000_000_00010_0;

380 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
EXECUTETI: controls = 14'b00000_000_00110_0;
ALUWB: controls = 14'b00010_000_00000_0;
MEMWR : controls = 14'b00100_100_00000_0;
MEMRD : controls = 14'b00000_100_00000_0;
MEMWB : controls = 14'b00010_001_00000_0;
BRANCH: controls = 14'b01000_010_00100_0;
BL: controls = 14'b01010_010_00100_0; // BL
MEMADRADD : controls = 14'b00000_000_00100_0; // LDR +- imml2
MEMADRSUB: controls = 14'b00000_000_00101_0; // LDR +- imml2
MEMREADBYTE: controls = 14'b00000_100_00000_1; // LDRB
default: controls = 14'"DXXXXX_ XXX_XXXXX_X;
endcase
assign {NextPC, Branch, MemW, RegW, IRWrite,
AdrSrc, ResultSrc,
ALUSrcA, ALUSrcB, ALUOp,
LDRB} = controls;
endmodule
module condlogic(input logic clk, reset,
input logic [3:0] Cond,
input logic [3:0] ALUFlags,
input logic [1:0] FlagW,
input logic PCS, NextPC, RegW, MemnW,
output logic PCWrite, RegWrite, MemWrite);
logic [1:0] FlagWrite;
logic [3:0] Flags;
logic CondEx, CondExDelayed;
flopenr #(2)flagregl(clk, reset, FlagWrite[l], ALUFlags[3:2],
Flags[3:2]);
flopenr #(2)flagreg0(clk, reset, FlagWrite([0], ALUFlags([1:01],
Flags[1:0]);
// write controls are conditional
condcheck cc(Cond, Flags, CondEx);
flopr #(1)condreg(clk, reset, CondEkEx, CondExDelayed);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondExDelayed;
assign MemWrite = MemW & CondExDelayed;
assign PCWrite = (PCS & CondExDelayed) | NextPC;
endmodule
module condcheck (input logic [3:0] Cond,
input logic [3:0] Flags,
output logic CondEx) ;
logic neg, zero, carry, overflow, ge;
assign {neg, zero, carry, overflow} = Flags;
assign ge = (neg == overflow);

always_comb

381 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

case (Cond)

4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'b0010: CondEx = carry; // CS
4'b0011: CondEx = ~carry; // CC
4'b0100: CondExX = neg; // MI
4'b0101: CondEx = ~neg; // PL
4'b0110: CondEx = overflow; // VS
4'p0111: CondEx = ~overflow; // VC
4'p1000: CondEx = carry & ~zero; // HI
4'b1001: CondEx = ~(carry & ~zero); // LS
4'b1010: CondEx = ge; // GE
4'b1011: CondEx = ~ge; // LT
4'1100: CondEx = ~zero & ge; // GT
4'b1101: CondEx = ~(~zero & ge); // LE
4'b1110: CondEx = 1'bl; // Always
default: CondEx = 1'bx; // undefined
endcase
endmodule

module datapath (input
output logic
input logic
output logic
output logic

logic clk, reset,
31:0] Adr, WriteData,
31:0] ReadData,

31:0] Instr,

3:0] ALUFlags,

input logic PCWrite, RegWrite,
input logic IRWrite,
input logic AdrSrc,
input logic [2:0] RegSrc, // BL
input logic ALUSrcA,
input logic [1:0] ALUSrcB, ResultSrc,
input logic [1:0] ImmSrc,
input logic [2:0] ALUControl, // BIC
input logic LDRB) ; // LDRB
logic [31:0] PCNext, PC;
logic [31:0] ExtImm, SrcA, SrcB, Result;
logic [31 0] Data, RD1l, RD2, A, ALUResult, ALUOut;
logic [3:0] RA1l, RAZ2;
logic [3:0] RA3; // BL
logic [31 0] WD3; // BL
logic [7:0] DataByte; // LDRB
logic [31 0] MemData, DataByteExt; // LDRB

// next PC logic

flopenr #(32) pcreg(clk, reset, PCWrite, Result, PC);

// memory logic

mux2 #(32) adrmux (PC, ALUOut, AdrSrc, Adr);

flopenr #(32) ir(clk, reset, IRWrite, ReadData, Instr);

// LDRB

mux4 #(8) ldrbmux (ReadData[7:0], ReadbData[l1l5:8],
ReadData[31:24], Adr[1l:0],

zeroextend e (DataByte, DataByteExt);

© 2015 Elsevier, Inc.

ReadData[23:16],
DataByte);

382 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

mux?2 #(32) datamux (ReadData, DataByteExt, LDRB, MemData);

flopr #(32) datareg(clk, reset, MemData, Data);

// register file logic

mux2 #(4) ralmux (Instr[19:16], 4'bl1111, RegSrc[O0],
mux?2 #(4) ra2mux (Instr[3:0], Instr[15:12], RegSrcll],
mux?2 #(4) ra3mux (Instr[15:12], 4'b1110, RegSrc[2],

mux2 #(32) rwd3mux(Result, PC, RegSrc[2], WD3);

regfile rf(clk, RegWrite, RAl, RA2,
RA3, WD3, Result,
RD1, RD2);
flopr #(32) srcareg(clk, reset, RD1, A);
flopr #(32) wdreg(clk, reset, RD2, WriteData);
extend ext (Instr[23:0], ImmSrc, ExtImm);

// ALU logic
mux?2 #(32) srcamux (A, PC, ALUSrcA, SrchA);

mux3 #(32) srcbmux (WriteData, ExtImm, 32'd4, ALUSrcB,

alu alu(SrcA, SrcB, ALUControl, ALUResult,

endmodule
module regfile(input logic clk,
input logic we3,
input logic [3:0] ral, ra2, wa3,

input logic [31:0] wd3, rl5,
output logic [31:0] rdl, rd2);

logic [31:0] rf[14:0];

// three ported register file

// read two ports combinationally

// write third port on rising edge of clock
// register 15 reads PC+8 instead

always_ff @ (posedge clk)
if (we3) rflwa3d] <= wd3;

assign rdl = (ral == 4'b1111) 2?2 rl5 : rflrall;
assign rd2 = (ra2 == 4'b1111) ? rl5 : rflraz2];
endmodule

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case (ImmSrc)
// 8-bit unsigned immediate
2'b00: ExtImm = {24'b0, Instr[7:0]};
// 12-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr[11:01};

RA2) ;

// BL
// BL

// BL

SrcB) ;
ALUFlags) ;
flopr #(32) aluoutreg(clk, reset, ALUResult, ALUOut);

mux3 #(32) resmux (ALUOut, Data, ALUResult, ResultSrc, Result);

383 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

// 24-bit two's complement shifted branch

2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};
default: ExtImm = 32'bx; // undefined
endcase
endmodule

module adder # (parameter WIDTH=8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] vy);

assign y = a + b;
endmodule

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)

if (reset) q <= 0;
else if (en) g <= d;
endmodule

module flopr #(parameter WIDTH = 8)
(input 1logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else g <= d;
endmodule

module mux2 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, di,
input logic S,
output logic [WIDTH-1:0] vy);

assign y = s ? dl : doO;
endmodule

module mux3 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] 40, d1, d2,
input logic [1:0] s,
output logic [WIDTH-1:0] vy);

assign y = s[l1] 2 d2 : (s[0] 2 dl1 : dO);
endmodule

31:0]1 a, b,

2:0] ALUControl, // BIC
31:0] Result,

3:0] ALUFlags);

module alu(input logic
input logic
output logic
output logic

384 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

logic neg, zero, carry, overflow;

logic [31:0] condinvb;
logic [32:0] sum;

assign condinvb = ALUControl[2] ? ~Db

b;

assign sum = a + condinvb + ALUControl[2];

always_comb
casex (ALUControl[1:07)
2'b0?: Result = sum;
2'b10: Result = a & condinvb;
2'bll: Result = a | b;

endcase
assign neg = Result[31];
assign zero = (Result == 32'b0);
assign carry = (ALUControl[l] == 1'b0)
assign overflow = (ALUControl[l] == 1'b0)

ALUControl[0]) &
{neg, zero, carry,

assign ALUFlags
endmodule

// zeroextend needed for LDRB
module zeroextend (input [7:0] a,
output [31:0] vy);

assign y = {24'b0, a};
endmodule

// mux4 needed for LDRB
module mux4 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0]
input logic [1:0]
output logic [WIDTH-1:0]
always_comb

case (s)
2'b00: y = do0;
2'b01: y = dil;
2'b10: y = d2;
2'bl1l: y = d3;
default: y = d0;
endcase
endmodule
VHDL

library IEEE;

&
&

(a[31]
overflow};

do0,
s,
V)i

dl,

// BIC

// BIC

sum[32];
(a[31]

dz,

d3,

© 2015 Elsevier, Inc.

~ ~ b[31] ©
A sum([31]);

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is
end;

architecture test of testbench is
component top

385 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

port (clk, reset: in STD_LOGIC;
WriteData, Adr: out STD_LOGIC_VECTOR(31 downto 0);
MemWrite: out STD_LOGIC) ;
end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR (31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;
begin

—— instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

—— Generate clock with 10 ns period
process begin

clk <= "'1";

wait for 5 ns;

clk <= '0";

wait for 5 ns;
end process;

—— Generate reset for first two clock cycles
process begin

reset <= '1"';
wait for 22 ns;
reset <= '0';
wait;

end process;

—— check that 7 gets written to address 84
-— at end of program
process (clk) begin

if (clk'event and clk = '0' and MemWrite = '1l') then
if (to_integer (DataAdr) = 208 and
to_integer (WriteData) = 57) then

report "NO ERRORS: Simulation succeeded" severity failure;
elsif (DataAdr /= 200) then
report "Simulation failed" severity failure;
end if;
end if;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is —-- top-level design for testing
port (clk, reset: in STD_LOGIC;
WriteData, Adr: buffer STD_LOGIC_VECTOR (31 downto 0);
MemWrite: buffer STD_LOGIC) ;
end;

architecture test of top is
component arm
port (clk, reset: in STD_LOGIC;
MemWrite: out STD_LOGIC;

386 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Adr, WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));
end component;
component mem
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end component;
signal ReadData: STD_LOGIC_VECTOR(31 downto O0);
begin
—-— instantiate processor and memories
i_arm: arm port map(clk, reset, MemWrite, Adr,
WriteData, ReadData);
i_mem: mem port map(clk, MemWrite, Adr,
WriteData, ReadData);
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mem is —-- memory
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR(31] downto 0));
end;
architecture behave of mem is —-- instruction and data memory
begin

process 1is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;

type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable ram: ramtype;

begin
—— initialize memory from file
for i in 0 to 63 loop —-- set all contents low
ram(i) := (others => '0"');
end loop;
index := 0;

FILE_OPEN(mem file, "ex7.26_memfile.dat", READ_MODE) ;
while not endfile(mem_file) loop
readline (mem_file, L);
result := 0;
for i in 1 to 8 loop
read (L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0"');
elsif 'a' <= ch and ch <= 'f' then
result := character'pos(ch) - character'pos('a')+10;

elsif 'A' <= ch and ch <= 'F' then

387 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

result := character'pos(ch) - character'pos('A')+10;
else report "Format error on line " & integer'image (index)
severity error;
end if;

ram(index) (35-1*4 downto 32-i*4) :=
to_std_logic_vector (result,4);
end loop;
index := index + 1;
end loop;

-— read or write memory

loop
if clk'event and clk = 'l' then
if (we = '1'") then
ram(to_integer (a(7 downto 2))) := wd;
end if;
end if;

rd <= ram(to_integer (a(7 downto 2)));
wait on clk, aj;
end loop;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is —-- multicycle processor
port (clk, reset: in STD_LOGIC;
MemWrite: out STD_LOGIC;
Adr, WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));
end;

architecture struct of arm is
component controller

port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
PCWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
RegWrite: out STD_LOGIC;
IRWrite: out STD_LOGIC;
AdrSrc: out STD_LOGIC;
RegSrc: out STD_LOGIC_VECTOR (1 downto 0);
ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
ImmSrc: out STD_LOGIC_VECTOR (1 downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-- BIC
LDRB: out STD_LOGIC); —-- LDRB

end component;
component datapath
port (clk, reset: in STD_LOGIC;
Adr: out STD_LOGIC_VECTOR(31 downto 0);

© 2015 Elsevier, Inc.

388 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
Instr: out STD_LOGIC_VECTOR(31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PCWrite: in STD_LOGIC;

RegWrite: in STD_LOGIC;
IRWrite: in STD_LOGIC;
AdrSrc: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR (1 downto 0);
ALUSrcA: in STD_LOGIC;
ALUSrcB: in STD_LOGIC_VECTOR (1 downto 0);
ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ALUControl: in STD_LOGIC_VECTOR (2 downto 0); —-—- BIC
LDRB: in STD_LOGIC); -- LDRB
end component;
signal Instr: STD_LOGIC_VECTOR (31 downto 0);
signal ALUFlags: STD_LOGIC_VECTOR (3 downto 0);
signal PCWrite, RegWrite, IRWrite: STD_LOGIC;
signal AdrSrc, ALUSrcA: STD_LOGIC;
signal RegSrc, ALUSrcB: STD_LOGIC_VECTOR(1 downto 0);
signal ImmSrc, ResultSrc: STD_LOGIC_VECTOR (1 downto 0);
signal ALUControl: STD_LOGIC_VECTOR (2 downto 0); -— BIC
signal LDRB: STD_LOGIC; —-- LDRB
begin
cont: controller port map(clk, reset, Instr (31 downto 12),
ALUFlags, PCWrite, MemWrite, RegWrite,
IRWrite, AdrSrc, RegSrc, ALUSrcA,
ALUSrcB, ResultSrc, ImmSrc, ALUControl,
LDRB) ; —-— LDRB
dp: datapath port map(clk, reset, Adr, WriteData, ReadData,
Instr, ALUFlags,
PCWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl,
LDRB) ; —-— LDRB

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is —-- single cycle control decoder

port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);
PCWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
RegWrite: out STD_LOGIC;
IRWrite: out STD_LOGIC;
AdrSrc: out STD_LOGIC;
RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);

389 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-- BIC
LDRB: out STD_LOGIC); —- LDRB

end;
architecture struct of controller is
component decoder

port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
Rd: in STD_LOGIC_VECTOR(3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1l downto 0);
PCS, NextPC: out STD_LOGIC;
RegW, MemW: out STD_LOGIC;
IRWrite, AdrSrc: out STD_LOGIC;
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;
ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);
RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-- BIC
LDRB: out STD_LOGIC); —-- LDRB

end component;
component condlogic

port (clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR(3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR(1 downto 0);
PCS, NextPC: in STD_LOGIC;
RegW, MemW: in STD_LOGIC;
PCWrite, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC) ;

end component;
signal FlagW: STD_LOGIC_VECTOR (1l downto 0);
signal PCS, NextPC, RegW, MemW: STD_LOGIC;
begin
dec: decoder port map(clk, reset, Instr (27 downto 26), Instr (25 downto
20),
Instr (15 downto 12), FlagW, PCS,
NextPC, RegW, MemW,
IRWrite, AdrSrc, ResultSrc,
ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,
LDRB) ; —— LDRB
cl: condlogic port map(clk, reset, Instr (31 downto 28),
ALUFlags, FlagW, PCS, NextPC, RegW, MemW,
PCWrite, RegWrite, MemWrite);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder is —-- main control decoder
port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR (1 downto 0);
Funct: in STD_LOGIC_VECTOR(5 downto 0);
Rd: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: out STD_LOGIC_VECTOR (1 downto 0);

PCS, NextPC: out STD_LOGIC;

390 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

RegW, MemW: out STD_LOGIC;,

IRWrite, AdrSrc: out STD_LOGIC;

ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;

ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);

RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-- BIC
LDRB: out STD_LOGIC); —-- LDRB

end;

architecture behave of decoder is
component mainfsm

port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
IRWrite: out STD_LOGIC;
AdrSrc, ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1l downto 0);
ResultSrc: out STD_LOGIC_VECTOR (1 downto 0);
NextPC, RegW: out STD_LOGIC;
MemW, Branch: out STD_LOGIC;
ALUOp: out STD_LOGIC_VECTOR(1 downto 0); —-— LDR +-

imml2

LDRB: out STD_LOGIC); —-- LDRB

end component;
signal Branch: STD_LOGIC;
signal ALUOp: STD_LOGIC_VECTOR(1l downto 0); —-- LDR +- imml2
begin
-— Main FSM
fsm: mainfsm port map(clk, reset, Op, Funct,
IRWrite, AdrSrc,
ALUSrcA, ALUSrcB, ResultSrc,
NextPC, RegW, MemW, Branch, ALUOp,

LDRB) ; —-— LDRB
process(all) begin —-- ALU Decoder
if (ALUOp = "10") then
case Funct (4 downto 1) is
when "0100" => ALUControl <= "000"; —-- ADD
when "0010" => ALUControl <= "101"; —-- SUB
when "0000" => ALUControl <= "010"; —-- AND
when "1100" => ALUControl <= "011"; -- ORR
when "1110" => ALUControl <= "110"; -- BIC
when others => ALUControl <= "-—-"; —— unimplemented

end case;

FlagW(l) <= Funct(0);

FlagW(0) <= Funct(0) and (not ALUControl(l));
elsif (ALUOP = "01") then

ALUControl <= "101";

FlagW <= "00";
else

ALUControl <= "000";

FlagW <= "00";
end if;

S. Harris and D.M. Harris, DDCA: ARM® Edition

391 SOLUTIONS chapter 7
end process;
—-— PC Logic
PCS <= ((and Rd) and RegW)

Instr Decoder
ImmSrc <= Op;

RegSrc(0) <= '1l' when (Op
RegSrc(l) <= '1l' when (Op
end;

library IEEE;
entity mainfsm is
port (clk, reset:

Op:
Funct:
IRWrite:
AdrSrc,
ALUSrcB:
ResultSrc:
NextPC, RegW:
MemW, Branch:
ALUOp:
LDRB:

end;

ALUSrcA:

in

in

in

out
out
out
out
out
out
out
out

— 2B"Ol")

or Branch;

2B"10") else

else

IO';
IO';

use IEEE.STD_LOGIC_1164.all;

STD_LOGIC;
STD_LOGIC_VECTOR(1 downto
STD_LOGIC_VECTOR (5 downto
STD_LOGIC;

STD_LOGIC;
STD_LOGIC_VECTOR(1 downto
STD_LOGIC_VECTOR (1l downto
STD_LOGIC;

STD_LOGIC;
STD_LOGIC_VECTOR (1 downto
STD_LOGIC); —-- LDRB

architecture synth of mainfsm is

type statetype is

(FETCH, DECODE, MEMADRADD, MEMADRSUB,
MEMRDBYTE,

—-— LDRB

MEMWB, MEMWR,

EXECUTER, EXECUTETI,

ALUWB, BR,

BL, —-- BL
UNKNOWN) ;
signal state, nextstate: statetype;

signal controls:
begin

--state register

process(clk, reset)

begin

STD_LOGIC_VECTOR (13 downto 0);

if reset then state <= FETCH;
elsif rising_edge(clk) then
state <= nextstate;

end if;
end process;

-- next state logic
process(all) begin
case state is
when FETCH =>
when DECODE =>
case Op is

when "00" =>

when "01" =>

nextstate <= DECODE;

nextstate <= Executel when

nextstate <=

else EXECUTER;
MEMADRADD when

© 2015 Elsevier, Inc.

0);
0);

0);
0);

0); —-— LDR +- imml2

MEMRD,

(Funct (5) =

(Funct (3) =

392 SOLUTIONS chapter 7

when "10" =>

when others =
end case;
when EXECUTER =>
when EXECUTEI =>
when MEMADRADD =>
and (Funct(2)='1")) —--

(Funct (2)='0"))

when MEMADRSUB =>

when MEMRD =>

when MEMRDBYTE =>

when others =>
end case;

end process;

S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

else

nextstate <=

else

> nextstate <=

nextstate <=
nextstate <=
nextstate <=

LDRB

else

else

nextstate <=

else

nextstate <=
nextstate <=
nextstate <=

-— state-dependent output logic

process(all) begin
case state is
when FETCH =>
when DECODE =>
when EXECUTER =>
when EXECUTEI =>
when ALUWB =>

when MEMWR =>
when MEMRD =>

when MEMWB =>
when BR =>
when BL =>
when others =>
end case;
end process;

controls
controls
controls
controls
controls

controls
controls
controls
controls

(NextPC, Branch, MemW, RegW,

AdrSrc, ResultSrc,
ALUSrcA, ALUSrcB, AL
end;

UOp, LDRB)

MEMADRSUB; —— LDR +- imm
BL when (Funct(4) = '1")
BR;

UNKNOWN ;

ALUWB;
ALUWB;
MEMRDBYTE when ((Funct(0) = "'1")

MEMRD when ((Funct(0) = '1') and

MEMWR ;
MEMRD when (Funct(0) = "'1")
MEMWR ;

MEMWB ;

MEMWE; —— LDRB

FETCH;

<= 14B"10001010110000";
<= 14B"00000010110000";
<= 14B"00000000000100";
<= 14B"00000000001100";
<= 14B"00010000000000";
when MEMADRADD => controls <= 14B"00000000001000";
when MEMADRSUB => controls <= 14B"00000000001010";
controls <= 14B"00100100000000™";
controls <= 14B"00000100000000";
when MEMRDBYTE => controls <= 14B"00000100000001";
<= 14B"00010001000000";
<= 14B"01000010001000";
<= 14B"01010010001000";
<= "XXXXXXXXXXKXKXXX";

IRWrite,

<= controls;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is —-- Conditional logic
port (clk, reset: in
Cond: in
ALUFlags: in
FlagW: in
PCS, NextPC: in
RegW, MemW: in

PCWrite, RegWr

STD_LOGIC;

STD_LOGIC_VECTOR(3 downto 0);
STD_LOGIC_VECTOR(3 downto 0);
STD_LOGIC_VECTOR(1 downto 0);
STD_LOGIC;
STD_LOGIC;
ite: out STD_LOGIC;

393 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

MemWrite: out STD_LOGIC) ;
end;

architecture behave of condlogic is
component condcheck

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end component;
component flopenr generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component flopr generic(width: integer);
port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;

signal FlagWrite: STD_LOGIC_VECTOR (1 downto 0);

signal Flags: STD_LOGIC_VECTOR(3 downto 0);

signal CondEx: STD_LOGIC_VECTOR (0 downto 0);

signal CondExDelayed: STD_LOGIC_VECTOR(0 downto 0);
begin

flagregl: flopenr generic map(2)
port map(clk, reset, FlagWrite(1l),

ALUFlags (3 downto 2), Flags (3 downto 2));
flagreg0: flopenr generic map(2)

port map(clk, reset, FlagWrite(O0),

ALUFlags (1l downto 0), Flags(l downto 0));
cc: condcheck port map(Cond, Flags, CondEx(0));
condreg: flopr generic map(1l)

port map(clk, reset, CondEx, CondExDelayed);

FlagWrite <= FlagW and (CondEx(0), CondEx(0));

RegWrite <= RegW and CondExDelayed(0);

MemWrite <= MemW and CondExDelayed(0);

PCWrite <= (PCS and CondExDelayed(0)) or NextPC;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condcheck is

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end;

architecture behave of condcheck is

signal neg, zero, carry, overflow, ge: STD_LOGIC;
begin

(neg, zero, carry, overflow) <= Flags;

ge <= (neg xnor overflow);

394 SOLUTIONS

process(all)

case Cond is

when "0000"
when "0001"
when "0010"
when "0011"
when "0100"
when "0101"
when "0110"
when "0111"
when "1000"
when "1001"
when "1010"
when "1011"
when "1100"
when "1101"
when "1110"
when others =
end case;

end process;

end;

library IEEE;
entity datapath is

port (clk,
Adr:

reset:

WriteData:
ReadData:
Instr:
ALUFlags:
PCWrite:
RegWrite:
IRWrite:
AdrSrc:
RegSrc:
ALUSrcA:
ALUSrcB:
ResultSrc:
ImmSrc:
ALUControl:
LDRB:

end;

chapter 7

begin

—— Condition checking

CondEx <= zero;

CondEx <= not zero;
CondEx <= carry;

CondEx <= not carry;
CondEx <= neg;

CondEx <= not neg;
CondEx <= overflow;
CondEx <= not overflow;

CondEx <= carry and (not zero);
CondEx <= not(carry and (not zero));

CondEx <= gej;
CondEx <= not ge;

CondEx <= (not zero) and ge;
CondEx <= not ((not zero) and ge);
CondEx <= '1"'";

CondEx <= '-';

use IEEE.STD_LOGIC_11l64.all;

in STD_LOGIC;

out STD_LOGIC_VECTOR(31
out STD_LOGIC_VECTOR(31
in STD_LOGIC_VECTOR (31
out STD_LOGIC_VECTOR(31

downto
downto
downto
downto

S. Harris and D.M. Harris, DDCA: ARM® Edition

0)
0)
0)

0)

out STD_LOGIC_VECTOR(3 downto 0);

in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;

in STD_LOGIC_VECTOR (1 downto
in STD_LOGIC;

in STD_LOGIC_VECTOR (1 downto
in STD_LOGIC_VECTOR (1 downto
in STD_LOGIC_VECTOR (1 downto
in STD_LOGIC_VECTOR (2 downto
in STD_LOGIC); -- LDRB

architecture struct of datapath is
component alu

port (a,

b:

ALUControl:
Result:
ALUFlags:
end component;
component regfile
port (clk:
we3:

in STD_LOGIC_VECTOR (31 downto 0);

in STD_LOGIC_VECTOR (2 downto 0);

buffer STD_LOGIC_VECTOR(31 downto 0);
out STD_LOGIC_VECTOR(3 downto 0));

in STD_LOGIC;
in STD_LOGIC;

0);

0);
0);
0);
0);

© 2015 Elsevier, Inc.

r

14

r

14

-— BIC

BIC

395 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlb5: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end component;
component adder
port(a, b: in
y: ou
end component;
component exten
port (Instr:
ImmSrc:
ExtImm:
end component;
component flope
port (clk, res
d:
aq:
end component;
component flopr
port (clk, res
d:
q:
end component;
component mux2
port (d0, dl:
S:
y:
end component;
component mux3
port (d0, di,
S:
y:
end component;
component mux4
port (d0, di,
S:
y:
end component;
component zeroe
port(a: in S
y: out S
end component;
signal PCNext,
signal ExtImm,
signal Result:
signal Data, RD
signal ALUResul
signal RAl, RA2
signal DataByte
signal MemData,
signal WA3:
signal WD3:

begin

STD_LOGIC_VECTOR (31 downto 0)
t STD_LOGIC_VECTOR(31 downto 0)

7
)i
d

in STD_LOGIC_VECTOR (23 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);
out STD_LOGIC_VECTOR(31 downto 0));

nr generic(width: integer);

et, en: in STD_LOGIC;
in STD_LOGIC_VECTOR (width-1 downto 0);
out STD_LOGIC_VECTOR (width-1 downto 0));
generic(width: integer);
et: in STD_LOGIC;
in STD_LOGIC_VECTOR(width-1 downto 0);
out STD_LOGIC_VECTOR(width-1 downto 0));

r

generic(width: integer);

in STD_LOGIC_VECTOR (width-1 downto 0);
in STD_LOGIC;

out STD_LOGIC_VECTOR(width-1 downto 0));

generic(width: integer);

d2: in STD_LOGIC_VECTOR(width-1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);
out STD_LOGIC_VECTOR(width-1 downto 0));

generic(width: integer);
d2, d3: in STD_LOGIC_VECTOR (width-1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);
out STD_LOGIC_VECTOR (width-1 downto 0));

xtend

TD_LOGIC_VECTOR(7 downto 0);

TD_LOGIC_VECTOR (31 downto 0));

PC: STD_LOGIC_VECTOR (31 downto 0);

SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);
STD_LOGIC_VECTOR (31 downto 0);

1, RD2, A: STD_LOGIC_VECTOR(31 downto 0);

t, ALUOut: STD_LOGIC_VECTOR (31 downto 0);

: STD_LOGIC_VECTOR(3 downto 0);

: STD_LOGIC_VECTOR(7 downto 0); —-— LDRB

DataByteExt: STD_LOGIC_VECTOR(31 downto 0); —- LDRB
STD_LOGIC_VECTOR(3 downto 0); -— BL
STD_LOGIC_VECTOR(31 downto 0); —-- BL

396 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

-- next PC logic
pcreg: flopenr generic map(32)
port map(clk, reset, PCWrite, Result, PC);

—— memory logic
adrmux: mux2 generic map (32)
port map(PC, ALUOut, AdrSrc, Adr);
ir: flopenr generic map (32)
port map(clk, reset, IRWrite, ReadData, Instr);
ldrbmux: mux4 generic map (8)

© 2015 Elsevier, Inc.

port map(Instr (31 downto 24), Instr (23 downto 16), Instr (15 downto 8),

Instr (7 downto 0),
Adr (1 downto 0), DataByte);
ze: zeroextend port map (DataByte, DataByteExt);
datamaux: mux2 generic map (32)
port map (ReadData, DataByteExt, LDRB, MemData);
datareg: flopr generic map(32)
port map(clk, reset, MemData, Data);

—-— register file logic
ralmux: mux2 generic map (4)
port map(Instr (19 downto 16), "1111", RegSrc(0), RAl);
razmux: mux2 generic map (4) port map(Instr (3 downto 0),
Instr (15 downto 12), RegSrc(l), RA2);

waldmux: mux2 generic map (4) port map(Instr (15 downto 12),

"1110", RegSrc(0), WA3);
wd3mux: mux2 generic map (32) port map (Result,
PC, RegSrc(0), WD3);
rf: regfile port map(clk, RegWrite, RAl, RAZ,
WA3, WD3,
Result, RD1, RD2);
srcareg: flopr generic map(32)
port map(clk, reset, RD1, A);
wdreg: flopr generic map(32)
port map(clk, reset, RD2, WriteData);

ext: extend port map(Instr (23 downto 0), ImmSrc, ExtImm);

-— ALU logic
srcamux: mux2 generic map(32)
port map (A, PC, ALUSrcA, Srch);
srcbmux: mux3 generic map (32)
port map (WriteData, ExtImm, 32D"4", ALUSrcB, SrcB);

-— BL

-— BL

-— BL

i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

aluoutreg: flopr generic map(32)
port map(clk, reset, ALUResult, ALUOut);
resmux: mux3 generic map (32)
port map (ALUOut, Data, ALUResult, ResultSrc, Result);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity regfile is —-- three-port register file
port (clk: in STD_LOGIC;
we3: in STD_LOGIC;

397 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

wd3, rlb: in STD_LOGIC_VECTOR (31 downto 0);

rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
signal mem: ramtype;
begin
process(clk) begin
if rising_edge(clk) then
if we3 = '1l' then mem(to_integer (wa3)) <= wd3;
end if;
end if;
end process;
process(all) begin

if (to_integer(ral) = 15) then rdl <= rl5;
else rdl <= mem(to_integer(ral));
end if;
if (to_integer(ra2) = 15) then rd2 <= rl5;
else rd2 <= mem(to_integer(ra2));
end if;

end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is —-- adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of adder is
begin

y <= a + b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of extend is
begin
process(all) begin
case ImmSrc is

© 2015 Elsevier, Inc.

when "00O" => ExtImm <= (X"000000", Instr (7 downto 0));
when "01" => ExtImm <= (X"00000", Instr (1l downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

Instr (23), Instr(23), Instr(23), Instr (23 downto 0),

when others => ExtImm <= X"-——————— ",

"OO");

398 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end case;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is —-- flip-flop with enable and asynchronous reset
generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopenr is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopr is —-- flip-flop with asynchronous reset
generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));
end;

architecture asynchronous of flopr is
begin
process(clk, reset) begin
if reset then g <= (others => '0'");
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is —-- two-input multiplexer
generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux2 is
begin

y <= dl when s else d0;
end;

399 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux3 is —-- three-input multiplexer
generic(width: integer);
port (d0, dl, d2: in STD_LOGIC_VECTOR(width-1 downto O0);
S: in STD_LOGIC_VECTOR(1l downto 0);
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux3 is
begin
process(all) begin
case s 1is

when "00" => vy <= d0;
when "O1" => vy <= dl;
when "10" => y <= d2;
when others => y <= d0;
end case;
end process;

end;

—— mux4 needed for LDRB
library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is —-- four-input multiplexer
generic(width: integer);
port (d0, dl1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto O0);
sS: in STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux4 is
begin
process(all) begin
case s 1is

when "00" => y <= d0;
when "01" => vy <= dl;
when "10" => y <= d2;
when "11" => y <= d3;
when others => y <= d0;
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity alu is

port (a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(2 downto 0); ——- BIC
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

400 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

architecture behave of alu is
signal condinvb: STD_LOGIC_VECTOR(31 downto O0);

© 2015 Elsevier, Inc.

signal sum: STD_LOGIC_VECTOR (32 downto 0);
signal neg, zero, carry, overflow: STD_LOGIC;
begin
condinvb <= not b when ALUControl(2) else b; -- BIC
sum <= ('0', a) + ('0', condinvb) + ALUControl(2); —-- BIC

process(all) begin
case? ALUControl(l downto 0) is

when "0-" => result <= sum(31 downto 0);

when "10" => result <= a and condinvb; —-- BIC
when "11" => result <= a or b;

when others => result <= (others => '-');

end case?;
end process;

neg <= Result (31);

Zero <= '1l'" when (Result = 0) else '0"';
carry <= (not ALUControl(l)) and sum(32);
overflow <= (not ALUControl(l)) and

(not (a(31) xor b(31l) xor ALUControl(0)))
(a(31) xor sum(31));
ALUFlags <= (neg, zero, carry, overflow);
end;
—— zeroextend needed for LDRB
library IEEE; use IEEE.STD_LOGIC_1164.all;
entity zeroextend is —-- zero-extension unit
port(a: in STD_LOGIC_VECTOR(7 downto O0);
y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of zeroextend is
begin

y <= ("000000000000000000000000", a);
end;

Test ARM assembly

MAIN
BL TEST ; call TEST
SUB R3, PC, PC ; R3 =0
ADD R4, R3, #0xC7 ; R4 = 0xC7
ADD R5, R3, #O0xDF ; RS = OxDF
ADD R5, R5, #OxFF ; RS = Ox1DE
STR R5, [R4, #1] ; mem[0xC8] <= 0x1DE
LDRB R6, [R3, #0xC9] ; R6 <= mem[0xC9]7:0 = 1
LDRB R7, [R3, #0xC8] ; R7 <= mem[0xC8]7:0 = OxDE
LDR RS8, [R7, #-0x16] ; R8 <= mem[0xc8] = 0x1DE
ADD R3, R3, #57 ; R3 = 0x39
STR R3, [R4, #9] ; mem[0xD0] <= 0x39
TEST

ADD PC, LR, #0 ; PC = LR (return to point of

call)

401 SOLUTIONS chapter 7

; 0x00 EB0O00OOOY9 BL

; 0x04 EO4F300F SUB
; 0x08 E28340C7 ADD
; O0xOc E28350DF ADD
; 0x20 E28550FF ADD
; 0x24 E5845001 STR
; 0x28 E5D360CY9 LDRB
; Ox2c E5D370C8 LDRB
; 0x30 E5178016 LDR
; 0x34 E2833039 ADD
; 0x38 E5843009 STR
; 0x3c E28EF000 ADD

ex7.26_memfile.dat
EB0O0O00O0O9
EO04F300F
E28340C7
E28350DF
E28550FF
E5845001
E5D360C9
E5D370C8
E5178016
E2833039
E5843009
E28EF000

Exercise 7.27

S. Harris and D.M. Harris, DDCA: ARM® Edition

TEST
R3,PC,PC
R4,R3, #0xC7
R5, R3, #0xDF
R5,R5, #0XFF
R5, [R4, #0x1]
R6, [R3, #0xC9]
R7, [R3, #0xC8]
R8, [R7, #-0x16]
R3,R3, #0x39
R3, [R4, #0x9]
PC, R14, #0

© 2015 Elsevier, Inc.

SystemVerilog

// Multi-cycle implementation of a subset of ARMv4

// Added instructions:

// ASR, TST, SBC, ROR

module testbench();

logic clk;
logic reset;

logic [31:0] WriteData,
MemWrite;

logic

DataAdr;

// instantiate device to be tested
top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin
reset <= 1; # 22;
end

reset <= 0;

402 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

// generate clock to sequence tests
always
begin
clk <= 1; # 5; clk <= 0; # 5;
end

// check results
always @ (negedge clk)

begin
if (MemWrite) begin
if (DataAdr === 88 & WriteData === 32'h2ffffffe) begin
Sdisplay("Simulation succeeded");
Sstop;

end else begin
Sdisplay("Simulation failed");

Sstop;
end
end
end
endmodule
module top(input logic clk, reset,
output logic [31:0] WriteData, Adr,
output logic MemWrite) ;

logic [31:0] ReadData;

// instantiate processor and shared memory
arm arm(clk, reset, MemWrite, Adr,
WriteData, ReadData);
mem mem(clk, MemWrite, Adr, WriteData, ReadData);
endmodule

module mem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);

logic [31:0] RAM[63:0];

initial
Sreadmemh ("ex7.27_memfile.dat", RAM) ;

assign rd = RAM[a[31:2]]; // word aligned

always_ff @ (posedge clk)
if (we) RAM[a[31:2]] <= wd;
endmodule

module arm(input logic clk, reset,
output logic MemWrite,
output logic [31:0] Adr, WriteData,
input logic [31:0] ReadData);

403 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

logic [31:0] Instr;

logic [3:0] ALUFlags;

logic PCWrite, RegWrite, IRWrite;

logic AdrSrc, ALUSrcA;

logic [1:0] RegSrc, ALUSrcB, ImmSrc, ResultSrc;
logic [2:0] ALUControl; // SBC

logic carry; // SBC

logic Shift; // ASR, ROR

controller c(clk, reset, Instr[31:12], ALUFlags,
PCWrite, MemWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl, carry, Shift);

datapath dp(clk, reset, Adr, WriteData, ReadData, Instr, ALUFlags,

PCWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl, carry, Shift);

endmodule

module controller (input logic clk,
input logic reset,
input logic [31:12] Instr,
input logic [3:0] ALUFlags,
output logic PCWrite,
output logic MemWrite,
output logic RegWrite,
output logic IRWrite,
output logic AdrSrc,
output logic [1:0] RegSrc,
output logic ALUSrcA,

output logic :0] ALUSrcB,

[1
output logic [1:0] ResultSrc,
output logic [1:0] ImmSrc,
output logic [2:0] ALUControl, // SBC
output logic carry, // SBC
output logic Shift // ASR, ROR

logic [1:0] FlagW;
logic PCS, NextPC, RegW, MemW;
logic NoWrite; // TST

decode dec(clk, reset, Instr([27:26], Instr[25:20], Instr[15:12],
FlagW, PCS, NextPC, RegW, MemW,
IRWrite, AdrSrc, ResultSrc,
ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,
NoWrite, // TST
Shift); // ASR, ROR
condlogic cl(clk, reset, Instr([31:28], ALUFlags,
FlagW, PCS, NextPC, RegW, MemW,
PCWrite, RegWrite, MemWrite,
carry, // SBC
NoWrite); // TST
endmodule

404

SOLUTIONS

always_comb

chapter 7

if (ALUOp) begin

case (Funct[4:1])

4'b0100: begin
end

4'b0010: begin
end

4'p0000: begin
end

4'p1100: begin
end

4'p1101: begin
end

4'p1000: begin
end

4'p0110: begin

end

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

module decode(input logic clk, reset,
input logic [1:0] Op,
input logic [5:0] Funct,
input logic [3:0] Rd,
output logic [1:0] FlagW,
output logic PCS, NextPC, RegW, MemW,
output logic IRWrite, AdrSrc,
output logic [1:0] ResultSrc,
output logic ALUSrcA,
output logic [1:0] ALUSrcB, ImmSrc, RegSrc,
output logic [2:0] ALUControl, // SBC
output logic NoWrite, // TST
output logic Shift); // ASR, ROR
logic Branch, ALUOp;
// Main FSM
mainfsm fsm(clk, reset, Op, Funct,
IRWrite, AdrSrc,
ALUSrcA, ALUSrcB, ResultSrc,
NextPC, RegW, MemW, Branch, ALUOp) ;

// which Data-processing Instr?

ALUControl = 3'b000;
Shift = 1'b0;
NoWrite = 1'b0;
ALUControl = 3'b001;
Shift = 1'b0;
NoWrite = 1'b0;
ALUControl = 3'b010;

Shift =
NoWrite =

1'b0;
1'b0;

ALUControl = 3'b011;
Shift = 1'b0;
NoWrite = 1'b0;

ALUControl = 3'b000;
Shift = 1'bl;
NoWrite = 1'b0;

ALUControl = 3'b010;
Shift = 1'b0;
NoWrite = 1'bl;

ALUControl = 3'b1l01;
Shift = 1'b0;
NoWrite = 1'b0O;

// ADD

// SUB

// AND

// ORR

// ASR, ROR

// TST

// SBC

405 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

default: begin ALUControl = 3'bx;
Shift = 1'bx;
NoWrite = 1'bx;

end
endcase
FlagW[1] = Funct[0]; // update N & Z flags if S bit is set
FlagW[O0] = Funct[0] & (ALUControl[l:0] == 2'b00 |
ALUControl[1:0] == 2'b01);

end else begin
ALUControl = 3'b000; // add for non data-processing instructions

FlagW = 2'b00; // don't update Flags
Shift = 1'b0; // don’t shift
NoWrite = 1'b0; // write result
end
// PC Logic
assign PCS = ((Rd == 4'b1111) & RegW) | Branch;
// Instr Decoder
assign ImmSrc = Op;
assign RegSrc[0] = (Op == 2'bl0); // read PC on Branch
assign RegSrc[l] = (Op == 2'b01); // read Rd on STR
endmodule
module mainfsm(input logic clk,
input logic reset,
input logic [1:0] Op,
input logic [5:0] Funct,
output logic IRWrite,
output logic AdrSrc, ALUSrcA,
output logic [1:0] ALUSrcB, ResultSrc,
output logic NextPC, RegW, MemW, Branch, ALUOp);

typedef enum logic [3:0] {FETCH, DECODE, MEMADR, MEMRD, MEMWRE,
MEMWR, EXECUTER, EXECUTEI, ALUWB, BRANCH,
UNKNOWN }
statetype;

statetype state, nextstate;
logic [11:0] controls;

// state register

always @ (posedge clk or posedge reset)
if (reset) state <= FETCH;
else state <= nextstate;

// next state logic
always_comb
casex(state)

FETCH: nextstate = DECODE;
DECODE: case (Op)
2'b00:
if (Funct[5]) nextstate = EXECUTEI;

© 2015 Elsevier, Inc.

406 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
else nextstate = EXECUTER;
2'b01: nextstate = MEMADR;
2'bl0: nextstate = BRANCH;
default: nextstate = UNKNOWN;
endcase
EXECUTER: nextstate = ALUWB;
EXECUTEI: nextstate = ALUWB;
MEMADR :
if (Funct[O0]) nextstate = MEMRD;
else nextstate = MEMWR;
MEMRD: nextstate = MEMWB;
default: nextstate = FETCH;
endcase
// state-dependent output logic

always_comb
case(state)

FETCH: controls =
DECODE : controls =
EXECUTER: controls =
EXECUTEI: controls =
ALUWB: controls =
MEMADR: controls =
MEMWR : controls =
MEMRD : controls =
MEMWB : controls =
BRANCH : controls =
default: controls =
endcase

assign {NextPC, Branch, MemW, RegW,
AdrSrc, ResultSrc,

12'b10001_010_1100;
12'b00000_010_1100;
12'b00000_000_0001;
12'b00000_000_0011;
12'b00010_000_0000;
12'b00000_000_0010;
12'b00100_100_0000;
12'b00000_100_0000;
12'b00010_001_0000;
12'b01000_010_0010;
12 "hXXXXX_XXX_XXXX;

IRWrite,

ALUSrcA, ALUSrcB, ALUOp} = controls;

endmodule

module condlogic (input
input
input
input
input

logic
logic [3:0] Cond,
logic [3:0] ALUFlags,
logic [1:0] FlagWw,
PCS, NextPC, RegW, MemW,
MemWrite,

logic
output logic

clk, reset,

PCWrite, RegWrite,

output logic carry, // SBC
input logic NoWrite); // TST
logic [1:0] FlagWrite;
logic [3:0] Flags;
logic CondEx, CondExDelayed;
logic NoWriteDelayed; // TST

flopenr #(2)flagregl(clk,
Flags[3:2]1);

flopenr #(2)flagreg0(clk,
Flags[1:01);

reset, FlagWrite[l], ALUFlags[3:2],

reset, FlagWrite[O], ALUFlags[1:0],

407 SOLUTIONS chapter 7

// write controls are conditional

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

condcheck cc(Cond, Flags, CondEx);
flopr #(1)nowritereg(clk, reset, NoWrite, NoWriteDelayed);
flopr #(1)condreg(clk, reset, CondEkEx, CondExDelayed);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondExDelayed & ~NoWriteDelayed; // TST
assign MemWrite = MemW & CondExDelayed;
assign PCWrite = (PCS & CondExDelayed) | NextPC;
assign carry = Flags[1l]; // SBC
endmodule
module condcheck (input logic [3:0] Cond,
input logic [3:0] Flags,
output logic CondEx) ;
logic neg, zero, carry, overflow, ge;
assign {neg, zero, carry, overflow} = Flags;
assign ge = (neg == overflow);
always_comb
case (Cond)
4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'pb0010: CondEx = carry; // CS
4'b0011: CondEx = ~carry; // CC
4'b0100: CondEx = neg; // MI
4'b0101: CondEx = ~neg; // PL
4'b0110: CondEx = overflow; // VS
4'p0111: CondEx = ~overflow; // VC
4'b1000: CondEx = carry & ~zero; // HI
4'p1001: CondEx = ~(carry & ~zero); // LS
4'b1010: CondEx = ge; // GE
4'p1011: CondEx = ~ge; // LT
4'b1100: CondEx = ~zero & ge; // GT
4'p1101: CondEx = ~(~zero & ge); // LE
4'b1110: CondEx = 1'bl; // Always
default: CondEx = 1'bx; // undefined
endcase
endmodule
module datapath(input logic clk, reset,
output logic [31:0] Adr, WriteData,
input logic [31:0] ReadData,
output logic [31:0] Instr,
output logic [3:0] ALUFlags,
input logic PCWrite, RegWrite,
input logic IRWrite,
input logic AdrSrc,
input logic [1:0] RegSrc,
input logic ALUSrcA,
input logic [1:0] ALUSrcB, ResultSrc,
input logic [1:0] ImmSrc,

408 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

input logic [2:0] ALUControl, // SBC
input logic carry, // SBC
input logic Shift); // ASR, ROR

logic [31:0] PCNext, PC;

logic [31:0] ExtImm, SrcA, SrcB, Result;

logic [31:0] Data, RD1, RD2, A, ALUResult, ALUOut;

logic [3:0] RAl, RAZ2;

logic [31:0] srcBshifted, ALUResultOut; // ASR, ROR

// next PC logic

flopenr #(32) pcreg(clk, reset, PCWrite, Result, PC);
// memory logic
mux2 #(32) adrmux (PC, ALUOut, AdrSrc, Adr);
flopenr #(32) ir(clk, reset, IRWrite, ReadData, Instr);
flopr #(32) datareg(clk, reset, ReadData, Data);
// register file logic
mux2 #(4) ralmux (Instr[19:16], 4'b1111, RegSrc[0], RALl);
mux?2 #(4) raZ2mux (Instr[3:0], Instr[15:12], RegSrcl[l], RA2);
regfile rf(clk, RegWrite, RAl, RA2,
Instr[15:12], Result, Result,
RD1, RD2);
flopr #(32) srcareg(clk, reset, RD1, A);
flopr #(32) wdreg(clk, reset, RD2, WriteData);
extend ext (Instr[23:0], ImmSrc, ExtImm);
// ALU logic
mux?2 #(32) srcamux (A, PC, ALUSrcA, SrchA);
// ASR, ROR
mux3 #(32) srcbmux(srcBshifted, ExtImm, 32'd4, ALUSrcB, SrcB);
shifter sh (WriteData, Instr([11:7], Instr[6:5], srcBshifted);
alu alu(SrcA, SrcB, ALUControl, ALUResult, ALUFlags, carry);
mux2 #(32) aluresultmux (ALUResult, SrcB, Shift, ALUResultOut);
flopr #(32) aluoutreg(clk, reset, ALUResultOut, ALUOut);
mux3 #(32) resmux (ALUOut, Data, ALUResultOut, ResultSrc, Result);
endmodule
module regfile(input logic clk,

input 1logic we3,

input logic [3:0] ral, ra2, wa3,

input logic [31:0] wd3, rl5,

output logic [31:0] rdl, rd2);
logic [31:0] rf[14:0];
// three ported register file

//
//
//

read two ports combinationally
write third port on rising edge of
register 15 reads PC+8 instead

always_ff @ (posedge clk)

clock

409 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

if (we3) rflwa3d] <= wd3;

assign rdl = (ral == 4'b1111) ? rl5 : rflrall;
assign rd2 (ra2 == 4'b1111) ? rl5 : rflraz2l;
endmodule

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case (ImmSrc)
// 8-bit unsigned immediate

2'b00};

2'b00: ExtImm = {24'b0, Instr[7:0]1};

// 12-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr[11:01};

// 24-bit two's complement shifted branch
2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0],
default: ExtImm = 32'bx; // undefined

endcase
endmodule

module adder # (parameter WIDTH=8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] vy);

assign y = a + b;
endmodule

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)

if (reset) g <= 0;
else if (en) g <= d;
endmodule

module flopr #(parameter WIDTH = 8)
(input 1logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else g <= d;
endmodule

module mux2 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, di,
input logic S,
output logic [WIDTH-1:0] vy);

en,

410 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

assign y = s ? dl : doO;
endmodule

module mux3 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, d1, d2,
input logic [1:0] s,
output logic [WIDTH-1:0] vy);

assign y = s[l1] 2 d2 : (s[0] 2 dl1 : dO);
endmodule

module alu(input logic
input logic

31:0] a, b,

2:0] ALUControl, // SBC
output logic [31:0] Result,

output logic [3:0] ALUFlags,

input logic carry) ; // SBC

logic neg, zero, carryout, overflow;

logic [31:0] condinvb;

logic [32:0] sum;

logic carryin; // SBC // SBC

assign carryin = ALUControl[2] ? carry : ALUControl[0]; // SBC

assign condinvb = ALUControl[0] ? ~b : b;
assign sum = a + condinvb + carryin; // SBC

always_comb
casex (ALUControl[1:07)
2'b0?: Result = sum;
2'010: Result = a & b;
2'bll: Result = a | b;

endcase
assign neg = Result[31];
assign zero = (Result == 32'b0);
assign carryout = (ALUControl[l] == 1'b0) & sum[32];
assign overflow = (ALUControl[l] == 1'b0) & ~(al[31] » b[31]

ALUControl[0]) & (a[31] » sum[31l]);
{neg, zero, carryout, overflow};

assign ALUFlags
endmodule

// shifter needed for ASR, ROR

module shifter (input logic signed [31:0] a,
input logic [4:0] shamt,
input logic [1:0] shtype,
output logic signed [31:0] vy);

always_comb
case (shtype)
2'b10: y = a >>> shamt;
2'bll: vy = (a >> shamt) | (a << (32-shamt));

411 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

default: y = a;

endcase
endmodule
VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;
entity testbench is
end;

architecture test of testbench is
component top

port (clk, reset: in STD_LOGIC;
WriteData, Adr: out STD_LOGIC_VECTOR (31 downto 0);
MemWrite: out STD_LOGIC) ;
end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR (31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;
begin

—— instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

—— Generate clock with 10 ns period
process begin

clk <= "'1";

wait for 5 ns;

clk <= '0";

wait for 5 ns;
end process;

—— Generate reset for first two clock cycles
process begin

reset <= '1"';
wait for 22 ns;
reset <= '0';
wait;

end process;

—— check that 7 gets written to address 84
-— at end of program
process (clk) begin
if (clk'event and clk = '0' and MemWrite = '1l') then
if (to_integer (DataAdr) = 88 and
to_integer (WriteData) = 32X"2FFFFFFE") then
report "NO ERRORS: Simulation succeeded" severity failure;
else
report "Simulation failed" severity failure;
end if;
end if;
end process;
end;

412 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is —- top-level design for testing
port (clk, reset: in STD_LOGIC;
WriteData, Adr: buffer STD_LOGIC_VECTOR (31 downto 0);
MemWrite: buffer STD_LOGIC) ;
end;

architecture test of top is
component arm

port (clk, reset: in STD_LOGIC;
MemWrite: out STD_LOGIC;
Adr, WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));

end component;
component mem
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end component;
signal ReadData: STD_LOGIC_VECTOR(31 downto 0);
begin
—-— instantiate processor and memories
i_arm: arm port map(clk, reset, MemWrite, Adr,
WriteData, ReadData);
i_mem: mem port map(clk, MemWrite, Adr,
WriteData, ReadData);
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mem is —-- memory
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));
end;
architecture behave of mem is —-- instruction and data memory
begin

process 1is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;

type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable ram: ramtype;

begin
—— initialize memory from file
for i in 0 to 63 loop —-- set all contents low
ram(i) := (others => '0");

end loop;

413 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

index := 0;
FILE_OPEN (mem_file, "ex7.27_memfile.dat", READ_MODE) ;
while not endfile(mem_file) loop
readline (mem_file, L);
result := 0;
for i in 1 to 8 loop
read (L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0'");

elsif 'a' <= ch and ch <= 'f' then

result := character'pos(ch) - character'pos('a')+10;
elsif 'A' <= ch and ch <= 'F' then

result := character'pos(ch) - character'pos('A')+10;
else report "Format error on line " & integer'image (index)

severity error;

end if;

ram(index) (35-1*4 downto 32-i*4) :=
to_std_logic_vector (result,4);
end loop;
index := index + 1;
end loop;

—-— read or write memory

loop
if clk'event and clk = 'l' then
if (we = '"1') then
ram(to_integer (a(7 downto 2))) := wd;
end if;
end if;

rd <= ram(to_integer(a(7 downto 2)));
wait on clk, aj;
end loop;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is —-- multicycle processor
port (clk, reset: in STD_LOGIC;
MemWrite: out STD_LOGIC;
Adr, WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0));
end;

architecture struct of arm is
component controller

port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR(31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
PCWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
RegWrite: out STD_LOGIC;

IRWrite: out STD_LOGIC;

414 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

AdrSrc: out STD_LOGIC;

RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;

ALUSrcB: out STD_LOGIC_VECTOR(1l downto 0);
ResultSrc: out STD_LOGIC_VECTOR (1 downto 0);
ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-—- SBC
carry, Shift: out STD_LOGIC); —-- SBC, ASR, ROR

end component;
component datapath

port (clk, reset: in STD_LOGIC;
Adr: out STD_LOGIC_VECTOR(31 downto 0);
WriteData: out STD_LOGIC_VECTOR (31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
Instr: out STD_LOGIC_VECTOR(31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PCWrite: in STD_LOGIC;
RegWrite: in STD_LOGIC;
IRWrite: in STD_LOGIC;
AdrSrc: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR (1 downto 0);
ALUSrcA: in STD_LOGIC;
ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);
ResultSrc: in STD_LOGIC_VECTOR (1 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ALUControl: in STD_LOGIC_VECTOR (2 downto 0); —-— SBC
carry, Shift: in STD_LOGIC); —-- SBC, ASR, ROR

end component;

signal Instr: STD_LOGIC_VECTOR (31 downto 0);

signal ALUFlags: STD_LOGIC_VECTOR (3 downto 0);

signal PCWrite, RegWrite, IRWrite: STD_LOGIC;

signal AdrSrc, ALUSrcA: STD_LOGIC;

signal RegSrc, ALUSrcB: STD_LOGIC_VECTOR(1 downto 0);
signal ImmSrc, ResultSrc: STD_LOGIC_VECTOR (1 downto 0);

signal ALUControl: STD_LOGIC_VECTOR(2 downto 0); —-- SBC
signal carry: STD_LOGIC; -- SBC
signal Shift: STD_LOGIC; -- ASR, ROR

begin

cont: controller port map(clk, reset, Instr (31 downto 12),
ALUFlags, PCWrite, MemWrite, RegWrite,
IRWrite, AdrSrc, RegSrc, ALUSrcA,
ALUSrcB, ResultSrc, ImmSrc, ALUControl,
carry, Shift); —-—- SBC, ASR, ROR

dp: datapath port map(clk, reset, Adr, WriteData, ReadData,
Instr, ALUFlags,
PCWrite, RegWrite, IRWrite,
AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,
ImmSrc, ALUControl,
carry, Shift); —-—- SBC, ASR, ROR
end;

415

library IEEE;

SOLUTIONS

chapter 7

use IEEE.STD_LOGIC_1164.all;

S. Harris and D.M. Harris, DDCA: ARM® Edition

© 2015 Elsevier, Inc.

entity controller is —-- single cycle control decoder
port (clk, reset: in STD_LOGIC;
Instr: in STD_LOGIC_VECTOR (31 downto 12);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
PCWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
RegWrite: out STD_LOGIC;
IRWrite: out STD_LOGIC;
AdrSrc: out STD_LOGIC;
RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1l downto 0);
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —- SBC
carry, Shift: out STD_LOGIC); —-- SBC, ASR, ROR
end;
architecture struct of controller is
component decoder
port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR(5 downto 0);
Rd: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1 downto 0);
PCS, NextPC: out STD_LOGIC;
RegW, MemW: out STD_LOGIC;,
IRWrite, AdrSrc: out STD_LOGIC;
ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUSrcA: out STD_LOGIC;
ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1l downto 0);
RegSrc: out STD_LOGIC_VECTOR(1 downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-— SBC
NoWrite: out STD_LOGIC; -— TST
Shift: out STD_LOGIC); -- ASR, ROR
end component;
component condlogic
port (clk, reset: in STD_LOGIC;
Cond: in STD_LOGIC_VECTOR(3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR(1 downto 0);
PCS, NextPC: in STD_LOGIC;
RegW, MemW: in STD_LOGIC;
PCWrite, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
carry: out STD_LOGIC; —-— SBC
NoWrite: in STD_LOGIC); —-- TST

end component;

signal FlagW:
signal PCS,
signal NoWrite:

begin
dec:

NextPC,

decoder port map(clk,

re

STD_LOGIC_VECTOR (1 downto O0);
RegW, MemW:
STD_LOGIC;

STD_LOGIC;
TST

set, Instr (27 downto 26),

Instr (25 downto

416

20),

cl:

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
Instr (15 downto 12), FlagW, PCS,
NextPC, RegW, MemW,
IRWrite, AdrSrc, ResultSrc,
ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,
NoWrite, —-— TST
Shift); -— ASR, ROR
condlogic port map(clk, reset, Instr (31 downto 28),
ALUFlags, FlagW, PCS, NextPC, RegW, MemW,
PCWrite, RegWrite, MemWrite,
carry, -— SBC
NoWrite); —-- TST

© 2015 Elsevier, Inc.

entity decoder is -- main control decoder
port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR (1 downto 0);
Funct: in STD_LOGIC_VECTOR(5 downto 0);
Rd: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: out STD_LOGIC_VECTOR(1 downto 0);
PCS, NextPC: out STD_LOGIC;
RegW, MemW: out STD_LOGIC;,
IRWrite, AdrSrc: out STD_LOGIC;
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcA: out STD_LOGIC;
ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);
RegSrc: out STD_LOGIC_VECTOR(1l downto 0);
ALUControl: out STD_LOGIC_VECTOR(2 downto 0); —-—- SBC
NoWrite: out STD_LOGIC; —-- TST
Shift: out STD_LOGIC); -- ASR, ROR
end;
architecture behave of decoder is
component mainfsm
port (clk, reset: in STD_LOGIC;
Op: in STD_LOGIC_VECTOR(1 downto 0);
Funct: in STD_LOGIC_VECTOR (5 downto 0);
IRWrite: out STD_LOGIC;
AdrSrc, ALUSrcA: out STD_LOGIC;
ALUSrcB: out STD_LOGIC_VECTOR(1l downto 0);
ResultSrc: out STD_LOGIC_VECTOR (1 downto 0);
NextPC, RegW: out STD_LOGIC;
MemW, Branch: out STD_LOGIC;
ALUOp: out STD_LOGIC) ;
end component;
signal Branch, ALUOp: STD_LOGIC;
begin
—— Main FSM

fsm: mainfsm port map(clk,

IRWrite,

reset, Op, Funct

AdrSrc,

r

ALUSrcA, ALUSrcB, ResultSrc,
NextPC, RegW, MemW, Branch, ALUOp);

417

SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
process(all) begin —-- ALU Decoder
if (ALUOp) then
case Funct (4 downto 1) is

when "0100" => ALUControl <= "000"; —-- ADD
NoWrite <= '0';
Shift <= '0';

when "0010" => ALUControl <= "001"; —-- SUB
NoWrite <= '0';
Shift <= '0';

when "0000" => ALUControl <= "010"; —-- AND
NoWrite <= '0"';
Shift <= '0';

when "1100" => ALUControl <= "011"; -- ORR
NoWrite <= '0';
Shift <= '0';

when "1101" => ALUControl <= "010"; -- ASR, ROR
NoWrite <= '0';
Shift <= '1"'";

when "1000" => ALUControl <= "010"; —-- TST
NoWrite <= '1"';
Shift <= '0';

when "0110" => ALUControl <= "101"; -- SBC
NoWrite <= '0';
Shift <= '0';

when others => ALUControl <= "-—-"; —— unimplemented

end case;
) <= Funct(0);

FlagWw(1l
FlagW(0)
else
ALUControl <=
FlagW <= "00";
Shift <=
NoWrite <=
end if;

'Ol;

end process;

—-— PC Logic
PCS <=

RegSrc(0)
RegSrc (1)
end;

((and Rd)

Instr Decoder
ImmSrc <= Op;

library IEEE;
entity mainfsm is

port (clk,

Op:
Funct:

<=
<=

'll
'1'

<= Funct (0)

IO';

NoWrite <=

Shift <= "

\l 1

T .
4

"OOO";
and RegW) or Branch;
when (Op = 2B"10") else
when (Op = 2B"01") else

use IEEE.STD_LOGIC_1164.all;

reset:

IRWrite:

in STD_
in
in
out STD_

LOGIC;

LOGIC;

and (not ALUControl(1l));

IO';
IO';

STD_LOGIC_VECTOR (1 downto 0);
STD_LOGIC_VECTOR (5 downto

0);

418 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

AdrSrc, ALUSrcA: out STD_LOGIC;

ALUSrcB: out STD_LOGIC_VECTOR(1l downto 0);
ResultSrc: out STD_LOGIC_VECTOR(1l downto 0);
NextPC, RegW: out STD_LOGIC;

MemW, Branch: out STD_LOGIC;

ALUOp: out STD_LOGIC) ;

end;

architecture synth of mainfsm is
type statetype is (FETCH, DECODE, MEMADR, MEMRD, MEMWB, MEMWR,
EXECUTER, EXECUTEI, ALUWB, BR, UNKNOWN) ;
signal state, nextstate: statetype;
signal controls: STD_LOGIC_VECTOR(1l1l downto O0);
begin
—--state register
process(clk, reset) begin
if reset then state <= FETCH;
elsif rising_edge(clk) then
state <= nextstate;
end if;
end process;

-—- next state logic
process(all) begin
case state 1is
when FETCH => nextstate <= DECODE;
when DECODE =>
case Op is

when "00" => nextstate <= Executel when (Funct(5) = '1")
else EXECUTER;
when "01" => nextstate <= MEMADR;
when "10" => nextstate <= BR;
when others => nextstate <= UNKNOWN;
end case;
when EXECUTER => nextstate <= ALUWB;
when EXECUTEI => nextstate <= ALUWB;
when MEMADR => nextstate <= MEMRD when (Funct(0) = '1")
else MEMWR;
when MEMRD => nextstate <= MEMWB;
when others => nextstate <= FETCH;
end case;

end process;

-— state-dependent output logic
process(all) begin
case state is
when FETCH => controls <= 12B"100010101100";
when DECODE => controls <= 12B"000000101100";
when EXECUTER => controls <= 12B"000000000001";
when EXECUTEI => controls <= 12B"000000000011";

when ALUWB => controls <= 12B"000100000000";
when MEMADR => controls <= 12B"000000000010";
when MEMWR => controls <= 12B"001001000000";

when MEMRD => controls <= 12B"000001000000";

419 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

when MEMWB => controls <= 12B"000100010000";

when BR => controls <= 12B"010000100010";

when others => controls <= "XXXXXXXXXXXX";
end case;

end process;

(NextPC, Branch, MemW, RegW, IRWrite,

AdrSrc, ResultSrc,

ALUSrcA, ALUSrcB, ALUOp) <= controls;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is —-- Conditional logic
port (clk, reset: in STD_LOGIC;

Cond: in STD_LOGIC_VECTOR (3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagW: in STD_LOGIC_VECTOR(1 downto 0);
PCS, NextPC: in STD_LOGIC;
RegW, MemW: in STD_LOGIC;
PCWrite, RegWrite: out STD_LOGIC;
MemWrite: out STD_LOGIC;
carry: out STD_LOGIC; —-— SBC
NoWrite: in STD_LOGIC); —-- TST

end;

architecture behave of condlogic is
component condcheck

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end component;
component flopenr generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component flopr generic(width: integer);
port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;

signal FlagWrite: STD_LOGIC_VECTOR (1 downto 0);

signal Flags: STD_LOGIC_VECTOR (3 downto 0);

signal CondEx: STD_LOGIC_VECTOR (0 downto 0);

signal CondExDelayed: STD_LOGIC_VECTOR (0O downto 0);

signal NoWritevect: STD_LOGIC_VECTOR (0O downto 0); —— TST

signal NoWriteDelayed: STD_LOGIC_VECTOR(0 downto 0); —-- TST
begin

NoWritevect (0) <= NoWrite;
flagregl: flopenr generic map(2)
port map(clk, reset, FlagWrite(1l),
ALUFlags (3 downto 2), Flags(3 downto 2));

420 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

flagreg0: flopenr generic map(2)
port map(clk, reset, FlagWrite(O0),

ALUFlags (1l downto 0), Flags(l downto 0));
cc: condcheck port map(Cond, Flags, CondEx(0));

condreg: flopr generic map(1l)

port map(clk, reset, CondEx, CondExDelayed);

nowritereg: flopr generic map(1l)

port map(clk, reset, NoWritevect, NoWriteDelayed);

FlagWrite <= FlagW and (CondEx(0), CondEx(0));
RegWrite <= RegW and CondExDelayed(0) and (not NoWriteDelayed(0)); ——

TST
MemWrite <= MemW and CondExDelayed(0);

PCWrite <= (PCS and CondExDelayed(0)) or NextPC;

carry <= Flags(l); —-- SBC
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity condcheck is

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
CondEx: out STD_LOGIC) ;

end;

architecture behave of condcheck is

signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin
(neg, zero, carry, overflow) <= Flags;
ge <= (neg xnor overflow);
process(all) begin —-- Condition checking

case Cond is
when "0000" => CondEx <= zero;

when "0001" => CondEx <= not zero;
when "0010" => CondEx <= carry;
when "0011" => CondEx <= not carry;

when "0100" => CondEx <= neg;
when "0101" => CondEx <= not neg;

when "0110" => CondEx <= overflow;

when "0111" => CondEx <= not overflow;

when "1000" => CondEx <= carry and (not zero);

when "1001" => CondEx <= not(carry and (not zero));

when "1010" => CondEx <= ge;
when "1011" => CondEx <= not ge;

when "1100" => CondEx <= (not zero) and ge;
when "1101" => CondEx <= not ((not zero) and ge);
when "1110" => CondEx <= '1';
when others => CondEx <= '-"';
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

© 2015 Elsevier, Inc.

421 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

entity datapath is

port (clk, reset: in STD_LOGIC;
Adr: out STD_LOGIC_VECTOR(31 downto 0);
WriteData: out STD_LOGIC_VECTOR(31 downto 0);
ReadData: in STD_LOGIC_VECTOR (31 downto 0);
Instr: out STD_LOGIC_VECTOR(31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
PCWrite: in STD_LOGIC;
RegWrite: in STD_LOGIC;
IRWrite: in STD_LOGIC;
AdrSrc: in STD_LOGIC;
RegSrc: in STD_LOGIC_VECTOR(1 downto 0);
ALUSrcA: in STD_LOGIC;
ALUSrcB: in STD_LOGIC_VECTOR (1 downto 0);
ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);
ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);
ALUControl: in STD_LOGIC_VECTOR(2 downto 0); —-- SBC
carry, Shift: in STD_LOGIC); -- SBC, ASR, ROR

end;

architecture struct of datapath is
component alu

port (a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(2 downto 0); —-— SBC
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);
carry: in STD_LOGIC); —-- SBC

end component;
component regfile

port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlb5: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end component;
component adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));
end component;
component extend
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1 downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end component;
component flopenr generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component flopr generic(width: integer);
port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

422 SOLUTIONS chapter

end component;
component mux2 gene
port (d0, dl: in
S: in
& out
end component;
component mux3 gene
port (d0, dl, d2:
S:
y:
end component;

7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ric(width: integer);
STD_LOGIC_VECTOR (width-1 downto 0);
STD_LOGIC;

STD_LOGIC_VECTOR (width-1 downto 0));

ric(width: integer);

in STD_LOGIC_VECTOR(width-1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);

out STD_LOGIC_VECTOR (width-1 downto 0));

component shifter -- LSL
port(a: in STD_LOGIC_VECTOR (31 downto 0);
shamt : in STD_LOGIC_VECTOR(4 downto 0);
shtype: in STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));
end component;
signal PCNext, PC: STD_LOGIC_VECTOR(31 downto 0);
signal ExtImm, SrcA, SrcB: STD_LOGIC_VECTOR (31 downto 0);
signal Result: STD_LOGIC_VECTOR (31 downto 0);
signal Data, RD1l, RD2, A: STD_LOGIC_VECTOR (31 downto 0);
signal ALUResult, ALUOut: STD_LOGIC_VECTOR(31 downto 0);

signal RAl, RA2:
signal srcBshifted,
ROR
begin
-— next PC logic
pcreg: flopenr gene
port map(clk, res

—-— memory logic
adrmux: mux2 generi

STD_LOGIC_VECTOR (3 downto 0);
ALUResultOut:STD_LOGIC_VECTOR (31 downto 0); —-- ASR,

ric map(32)
et, PCWrite, Result, PC);

c map(32)

port map(PC, ALUOut, AdrSrc, Adr);

ir: flopenr generic
port map(clk, res
datareg: flopr gene
port map(clk, res

—-— register file lo
ralmux: mux2 generi
port map(Instr (19
ra2mux: mux2 generi
Instr (15

map (32)

et, IRWrite, ReadData, Instr);
ric map(32)

et, ReadData, Data);

gic

c map (4)

downto 16), "1111", RegSrc(0), RAl);
c map (4) port map(Instr (3 downto 0),
downto 12), RegSrc(l), RA2);

rf: regfile port map(clk, RegWrite, RAl, RAZ,

srcareg: flopr gene
port map(clk, res
wdreg: flopr generi
port map(clk, res

Instr (15 downto 12), Result, Result,
RD1, RD2);
ric map(32)
et, RD1, BA);
c map(32)
et, RD2, WriteData);

ext: extend port map(Instr (23 downto 0), ImmSrc, ExtImm);

-— ALU logic

423 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

srcamux: mux2 generic map(32)
port map (A, PC, ALUSrcA, Srchi);

-— ASR, ROR
srcbmux: mux3 generic map (32)
port map (srcBshifted, ExtImm, 32X"00000004", ALUSrcB, SrcB);
sh: shifter port map(WriteData, Instr (1l downto 7), Instr (6 downto 5),
srcBshifted) ;
i_alu: alu port map(SrchA, SrcB, ALUControl, ALUResult, ALUFlags, carry);
aluresultmux: mux2 generic map(32)
port map (ALUResult, SrcB, Shift, ALUResultOut);
aluoutreg: flopr generic map (32)
port map(clk, reset, ALUResultOut, ALUOut);
resmux: mux3 generic map (32)
port map (ALUOut, Data, ALUResultOut, ResultSrc, Result);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is —-- three-port register file
port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlbh: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
signal mem: ramtype;
begin
process (clk) begin
if rising_edge(clk) then
if we3 = '1l' then mem(to_integer (wa3)) <= wd3;
end if;
end if;
end process;
process(all) begin

if (to_integer(ral) = 15) then rdl <= rl5;
else rdl <= mem(to_integer(ral));
end if;
if (to_integer (ra2) = 15) then rd2 <= rl5;
else rd2 <= mem(to_integer(ra2));
end if;

end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is —-- adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
v out STD_LOGIC_VECTOR(31 downto 0));

end;

424 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture behave of adder is
begin

y <= a + b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1] downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of extend is
begin
process(all) begin
case ImmSrc is

when "00O" => ExtImm <= (X"000000", Instr (7 downto 0));
when "01" => ExtImm <= (X"00000", Instr (1l downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

Instr (23), Instr(23), Instr(23), Instr (23 downto 0), "00");
when others => ExtImm <= X"-——————-— ",
end case;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is —- flip-flop with enable and asynchronous reset
generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopenr is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopr is —-- flip-flop with asynchronous reset
generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

425 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

architecture asynchronous of flopr is
begin
process(clk, reset) begin
if reset then g <= (others => '0'");
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is —-- two-input multiplexer
generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
sS: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux2 is
begin

y <= dl when s else d0;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux3 is —-- three-input multiplexer
generic(width: integer);
port (d0, dl1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);
S: in STD_LOGIC_VECTOR(1l downto 0);

y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux3 is
begin
process(all) begin
case s is

when "00" => y <= d0;
when "01" => vy <= dl;
when "10" => y <= d2;
when others => y <= d0;
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity alu is

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR (2 downto 0); ——- SBC
Result: buffer STD_LOGIC_VECTOR(31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

carry: in STD_LOGIC); —- SBC

© 2015 Elsevier, Inc.

426 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end;

architecture behave of alu is
signal condinvb: STD_LOGIC_VECTOR(31 downto O0);

signal sum: STD_LOGIC_VECTOR (32 downto 0);
signal neg, zero, carryout, overflow: STD_LOGIC;
signal carryin: STD_LOGIC; -- SBC

begin

carryin <= carry when ALUControl(2) else ALUControl(0);
condinvb <= not b when ALUControl (0) else b;
sum <= ('0', a) + ('0', condinvb) + carryin;

process(all) begin
case? ALUControl(l downto 0) is

when "0-" => result <= sum(31 downto 0);
when "10" => result <= a and b;
when "11" => result <= a or b;
when others => result <= (others => '-');

end case?;
end process;

neg <= Result (31);

Zero <= '1l'" when (Result = 0) else '0"';

carryout <= (not ALUControl(l)) and sum(32);

overflow <= (not ALUControl(l)) and
(not (a(31) xor b(31l) xor ALUControl(0))) and
(a(31l) xor sum(31));

ALUFlags <= (neg, zero, carryout, overflow);

end;

—— shifter needed for ASR, ROR

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity shifter is

port (a in STD_LOGIC_VECTOR (31 downto 0);
shamt: in STD_LOGIC_VECTOR(4 downto 0);
shtype: in STD_LOGIC_VECTOR(1 downto 0);
v out STD_LOGIC_VECTOR(31 downto 0));

end;
architecture behave of shifter is
begin

process (all) begin
case shtype is

when "10" => y <= TO_STDLOGICVECTOR(TO_BITVECTOR (a) sra
TO_INTEGER (shamt)) ;
when "11" => y <= ((TO_STDLOGICVECTOR(TO_BITVECTOR (a) srl

) or (TO_STDLOGICVECTOR(TO_BITVECTOR(a) sll (32-
)))i
=> y <= a;

TO_INTEGER (shamt
when other
end case;
end process;
end;

)
TO_INTEGER (shamt)
)
S

427 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Test ARM assembly
// If successful, it should write the value Ox2FFFFFFE to address 0x58

MAIN
SUB R3, PC, PC ; R3 =20
SUB R4, R3, #30 ; R4 = -30 (OxFFFFFFE2)
ASR R5, R4, #1 ; R5 = -15 (OxFFFFFFF1)
TST R4, RS ; set flags based on R4 & R5: NZCV=1000
ADDMIS R6, R4, RS ; R6 = =30 + (-15)=-45 (OXFFFFFFD3) if N = 1

(should happen)
; also set flags: NzZCV=1010

SBCS R7, R5, R6 ; R7 = =15 - (-45) - 0 = 30 (0x1E)
; also set flags: NZCV = 0010

ADDS R3, R3, #25 ; R3 = 25, set flags: NzCV = 0000
SBC R8, R7, R5 ; R8 = 30 - (-15) - 1 = 44 (0x2c)
ROR R9, R4, #4 ; RO = OXFFFFFFE2 ROR 4 = 0x2FFFFFFE
STR R9, [RS8, #0x2c] ; mem[0x30] <= Ox2FFFFFFE

;0x00 EO4F300F SUB R3,PC, PC

;0x04 E243401E SUB R4,R3, #0x1E

;0x08 EIA050C4 ASR R5,R4, #1

;0x0C E1140005 TST R4,R5

;0x10 40946005 ADDMIS R6,R4,R5

;0x14 EOD57006 SBCS R7,R5,R6

;0x18 E2933019 ADDS R3,R3, #0x19

;0x1C EO0C78005 SBC R8,R7,R5

;0x20 E1A09264 ROR R9, R4, #4

;0x24 E588902C STR R9, [R8, #0x2C

ex7.27_memfile.dat
EQ04F300F
E243401E
E1AQ050C4
E1140005
40946005
E0OD57006
E2933019
EQC78005
E1AQ09264
E588902C

Exercise 7.28

In cycle 5, R1 is being both read and written. R1 is written by the MOV instruction and read (in
the second half of the cycle) by the STR instruction.

428 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.29

In cycle 5, RO is being written (by ADD) and registers R2 and R5 are being read (by ORR).

Exercise 7.30

1 2 3 4 5 6 7 8 9

>

Time (cycles)

ADD RO,

SUB RO,

LDR R1,

AND R2,

Exercise 7.31

5 6 7 8 9
>

Time (cycles)

4

7 R11™ X

son w0, w11, ns [P
= Rl ©

LDR R2, [R1, #45] LDR :B_

SUB R5, RO, R2 SUB R2

AND R5, R2, RS AND

Stall

Exercise 7.32

34 cycles are required for the pipelined ARM processor to issue all of the instructions: 2 cycles
for the first two MOV instructions, 6 cycles for each of the 5 loop iterations (4 for fetching
instructions and 2 for the branch delay penalty), and 2 for the final CMP and BEQ that branches
out of the loop.

429 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

The number of instructions fetched is 2 + 5*4 + 2 = 24 instructions. Thus, CPI is 34 c.c./24 instr =
1.42.

Exercise 7.33

75 cycles are required for the pipelined ARM processor to issue all of the instructions: 3 cycles
for the first three MOV instructions, 7 cycles for each of the 10 loop iterations (5 for fetching
instructions and 2 for the branch delay penalty), and 2 for the final CMP and BEQ that branches
out of the loop.

The number of instructions fetched is 3 + 10*5 + 2 = 55 instructions. Thus, CPI is 75 c.c./55 instr
=1.36.

Exercise 7.34

Changes to the pipelined processor for the EOR instruction.

ALU Decoder truth table:

ALUOp | Funct,, (cmd) | Funct, (S) | Notes | ALUControl,, | FlagW,.,
0 X X Not DP | 000 00
1 0100 0 ADD 000 00
1 11
0010 0 SUB 001 00
1 11
0000 0 AND 010 00
1 10
1100 0 ORR 011 00
1 10
0001 0 EOR 100 00
1 10

ALU

430 SOLUTIONS

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

ALUControl,

B31

L

Datapath

Sum31

ALUControl,
ALUControl,

N

Cout

N

N

N

N

Results,

N

Result

NZCV

4
Flags

oj0nu00N TV

© 2015 Elsevier, Inc.

100 011 010 001 000
5—— ALUControl

431 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
BranchTakenE
CLK jul CLK CLK
e N\ D
«Q
PCSrcD pcstce - — 7 PCSrcM PCSrow
Control
Unit | RegwriteD RegWriteE RegWriteM RegWriteW
MemtoRegD MemtoRegE L MemtoRegM MemtoRegW
2726 MemWriteD MemWriteE
o] RN MemWriteM
2520 P ALUControlD, ALUControlEzo [,
Funct >
1512 Rd BranchD BranchE Bl
ALUSrcD ALUSICE)
FlagWriteD FlagWriteE
ImmSrcD
31:28 ;|—/ CondE
CLK CLK L1 FlagsE CLK
CLK s — 1 ||
|73 (7]
= = WE3 WE
LIRE Al RD1 |- 0 SeAE ™
A RO M % S| ALUResulte A RD ReadDataW
- - T -_—
Instruction A2 rRD2 4] 50 M sreee [< Data
Memory =% 1 Memo
A3 Register WriteDataE WD v
wpD3 File m]
PCPIus4F R15 3 ALUOutM ALuoutw]
4 15:12 — m WAS3E WA3M WA3W
I%E;? 280 { Extend I (;3
PCPIus8D
ResultW
@ g 2 T g3 S HENE
g 5 |2 N g gz |8
T g | m m |m ESNE -]

Control

Hazard Unit

432 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Cond3;o
ALUFlagss.o 9
FlagWio [& 2
Q =
PCS o % —— PCSrc
o RegW ~ |—— RegWrite
Pro MemW L MemWrite
Functsy —— —
50 Decode MemtoReg
Rd3;0 ALUSrc
ImmSrcy.o
RegSrcio
(a) Control Unit ALUControlzo
(T — 7 f__Fc§_________D____pC_SrC__I
| Rds.0 PC Logic PCS | | RealV I
| | : eg D— RegWrite |
| Branch | MemW MemWrite |
I
| RegW | | :s.ﬁ |
—— MemW | . X
| FlagWrites.o
| Main |—— MemtoReg | | Cond |
: Opyo ——Decoder|—— ALUSrc I 0 CLK :
| ImmSrc. | | §7
: Flagss:
: RegSrcio | | 2 9532 o g :
=]
| L — 22 |
Functs,o | | ALUFlagS;;;O = g
I | CLK I
I | %7 Fl _ |
| agsi:o
I ALUControlyg | | o |
| FlagWi.o | l T [0] — |
N e e e e e e - — — o e e J
(b) Decode (c) Conditional Logic

Exercise 7.35

Changes to the pipelined processor for the CMN instruction.

ALU Decoder truth table

ALUOp | Funct,., (cmd) | Funct, (S) | Notes | ALUControl, | FlagW,, | NoWrite
0 X X Not DP | 00 00 0
1 0100 0 ADD 00 00 0
1 11 0
0010 0 SUB 01 00 0
1 11 0
0000 0 AND 10 00 0
1 10 0

433 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

1100 0 ORR 11 00 0
1011 1 CMN 00 11 1
Datapath
BranchTakenE
CLK i CLK CLK
("\ NoWriteD NoWriteE &
PCSrcD PCSrcE °
Control ReawnieD ReoWioE } I PCSrcM PCSrcW
Unit egWrite egWrite | R RegWriteM RegWriteW
MemtoRegD MemtoRegE - MemtoRegM MemtoRegW
27:26 op MemWriteD MemWriteE - MemWriteM
2520 ALUControlD, ALUControlE+o o
Funct =1
15112 Rd BranchD BranchE % —
ALUSrcD ALUSrcE m)
FlagWriteD FlagWriteE
ImmSrcD
31:28 ~— CondE
Pyl
CLK FlagsE
8 CLK L] g CLK
CLK =5 @ — w —
Z Y 5] RA1D WE3 WE
A RD l o 15 A1 RD1
— _3,0 ALUResultE I R, ReadDataW
Instruction 0] RA2D A2 rRD2 |
Memory 1 ME:::ry
— A3 Register WriteDataE WD
WD3 File o i
PCPlus4F R15 3 ALUOUtM
4 15:12 | — m WASE WA3M
EE 230 = Extend }_ &f
PCPIlus8D
@ o [2 L EERE
: L s Blg BBz |3
T o © m m|m S |2z |g

[Hazard Unit]

Control

434 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Cond3;0
ALUFlagss;o 9
FlagWio [& 2
Q =
PCS o % —— PCSrc
o RegW ~ |—— RegWrite
Pro Memw —— MemWrite
Functs ‘ NoWrite
Decoder MemtoReg
Rdg;o — ALUSrc
ImmSrcy.o
RegSrci.o
(a) Control Unit ALUControlso
(T — 7 f__Fc§_________D____pC_SrC_—I
| Rds0 PC Logic [~ PCS | | I
| | RegW RegWrite |
I | NoWrite ————1
| Branch | | MemW }—— MemWrite |
|) | | FlagWi.o @) |
I S I
RegW | | =
| —— MemW | m |
| FlagWrite; ol
| Main |—— MemtoReg | | Cond " |
: Opyo ——Decoder|—— ALUSrc | T :
ImmSrci | | §7
3:2 Flags :
: RegSrcio : | °r — g§ :
1 =
Functs | ALUFlagsso o
I | CLK = I
| NoWrite | — Flane I
I ALUControlyo | | 05 9510 I
| FlagWi. | l T [0] — /l
N e e e e e e e e — e e e
(b) Decoder (c) Conditional Logic

Exercise 7.36

435 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

BranchTakenD
[l] CLK o CLK CLK
— _ 3
a
Control [FoorD N PCSIcE > — PCSrcM PCSIreW
Unit | RegWiriteD RegWriteE j:/\ RegWiriteM RegWriteW
MemtoRegD MemtoRegE ’ MemtoRegM MemtoRegW
27:26 op MemWriteD MemWriteE — MemWriteM
»n_ | [ALUControlD ALUControlE -
1542 Rd BranchD &
ALUSIcD - ALUSICE m
FlagWriteD S FlagWriteE
ImmSrcD flags 14
a128 CondD B CondE Gond
- Cond 2 on Unit
CLK ’—«(g CLK Eary [[§ FlagsE ok
CLK S5 73 I - ‘ |
3 @ [1s) J%RA1D N WE3RD1 ALUFlags WE
@l |©
A RD I [1541 ALUResultE ReadDataW
) 30) A RO [
Instruction RAZD | A5 RD2
Memory 1 Data
N Memory
] A3 Register WriteDataE WD
wD3 File Il
PCPIusdF R15 ALUOutM
4 1512 | — WA3E WA3M
fuf! I PR I/Extend/l 2
= 1 L2l - -
PCPIus8D
ResultW
3 2 F
PCBranchD &8 |3
o o |2 * = g g = |2 2 %
2 5| & G g |2 S |ZF
S SHE] i =R g 2|2 ¢
(Hazard Unit J

Flushing hardware changes to:

FlushE = LDRstall
FlushD = PCWrPendingF + PCSrcW + BranchTakenD

Exercise 7.37

She should work on the register file because it is the unit that's in the critical path (Decode
stage) causing the cycle time (T.3) to be 300 ps. The next longest paths are 290 ps (for the Fetch
stage and for the Memory stage). Reducing the register file read delay by 5 ps (to 95 ps)
reduces the cycle time to 290 ps (see Equation 7.5). Reducing the delay any more would not
improve performance any further. Thus, trrread Should be reduced to 95 ps, and the resulting

cycle time, Tes, is 2(trrread * tsetup) = 2(95 + 50) ps = 290 ps.

Exercise 7.38

No, the cycle time would not change if the ALU were 20% faster, because the ALU is not in the
critical path.

No, the cycle time would not change if the ALU were 20% slower. With a 20% slowdown, the
ALU's delay would be (120 ps)*1.2 = 144 ps. This would make the delay of the execute stage (40
+2(25) + 144 + 50) ps = 284 ps (see Equation 7.5). This still isn't longer than the current critical
path (the Decode stage) which results in a cycle time of 300 ps.

436 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.39

Suppose the ARM pipelined processor is divided into 10 stages of 400 ps each, including
sequencing overhead. Assume the instruction mix of Example 7.7. Also assume that 50% of the
loads are immediately followed by an instruction that uses the result, requiring six stalls, and
that 30% of the branches are mispredicted. The target address of a branch instruction is not
computed until the end of the second stage. Calculate the average CPI and execution time of
computing 100 billion instructions from the SPECINT2000 benchmark for this 10-stage pipelined
processor.

CPI = 0.25(1+0.5*6) + 0.1(1) + 0.13(1+0.3*1)+0.52(1) = 1.789 ~ 1.8
Execution Time = (100 x 10° instructions)(1.789 cycles/instruction)(400 x10™** s/cycle) = 71.56 s
=72s

Exercise 7.40

SystemVerilog
// ARM pipelined processor
module testbench();

logic clk;
logic reset;

logic [31:0] WriteData, DataAdr;
logic MemWrite;

// instantiate device to be tested
top dut(clk, reset, WriteData, DataAdr, MemWrite);

// initialize test
initial
begin
reset <= 1; # 22; reset <= 0;
end

// generate clock to sequence tests
always
begin
clk <= 1; # 5; clk <= 0; # 5;
end

// check results
always @ (negedge clk)
begin
if (MemWrite) begin
if (DataAdr === 100 & WriteData === 7) begin
Sdisplay("Simulation succeeded");

437 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Sstop;
end else if (DataAdr !== 96) begin
Sdisplay("Simulation failed");
Sstop;
end
end
end
endmodule
module top(input logic clk, reset,
output logic [31:0] WriteDataM, DataAdrM,
output logic MemWriteM) ;

logic [31:0] PCF, InstrF, ReadDataM;

// instantiate processor and memories
arm arm(clk, reset, PCF, InstrF, MemWriteM, DataAdrM,
WriteDataM, ReadDatalM);
imem imem (PCF, InstrF);
dmem dmem(clk, MemWriteM, DataAdrM, WriteDataM, ReadDataM);
endmodule

module dmem(input logic clk, we,
input logic [31:0] a, wd,
output logic [31:0] rd);

logic [31:0] RAM[2097151:0];

initial
Sreadmemh ("memfile.dat", RAM) ;

assign rd = RAM[a[22:2]]; // word aligned

always_ff @ (posedge clk)
if (we) RAM[a[22:2]] <= wd;
endmodule

module imem(input logic [31:0] a,
output logic [31:0] rd);

logic [31:0] RAM[2097151:0];

initial
Sreadmemh ("memfile.dat", RAM) ;

assign rd = RAM[a[22:2]]; // word aligned
endmodule

module arm(input logic clk, reset,
output logic [31:0] PCF,
input logic [31:0] InstrF,
output logic MemWriteM,
output logic [31:0] ALUOutM, WriteDataM,
input logic [31:0] ReadDataM);

438 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

logic [1:0] RegSrcD, ImmSrcD, ALUControlE;

logic ALUSrcE, BranchTakenE, MemtoRegW, PCSrcW, RegWriteW;
logic [3:0] ALUFlagsE;

logic [31:0] InstrD;

logic RegWriteM, MemtoRegE, PCWrPendingF;

logic [1:0] ForwardAE, ForwardBE;

logic StallF, StallD, FlushD, FlushE;

logic Match_1E_M, Match_1lE_W, Match_2E_M, Match_2E_W,

Match_12D_E;

controller c(clk, reset, InstrD[31:12], ALUFlagsE,
RegSrcD, ImmSrcD,
ALUSrcE, BranchTakenE, ALUControlE,
MemWriteM,
MemtoRegW, PCSrcW, RegWriteW,
RegWriteM, MemtoRegE, PCWrPendingF,
FlushE) ;
datapath dp(clk, reset,
RegSrcD, ImmSrcD,
ALUSrcE, BranchTakenE, ALUControlkEk,
MemtoRegW, PCSrcW, RegWriteW,
PCF, InstrF, InstrD,
ALUOutM, WriteDataM, ReadDatalM,
ALUFlagsE,
Match_1E_M, Match_1E_W, Match_2E_M, Match_2E_W,
Match_12D_E,
ForwardAE, ForwardBE, StallF, StallD, FlushD);
hazard h(clk, reset, Match_1lE_M, Match_1lE_W, Match_2E_M, Match_2E_W,
Match_12D_E,
RegWriteM, RegWriteW, BranchTakenE, MemtoRegE,
PCWrPendingF, PCSrcW,
ForwardAE, ForwardBE,
StallF, StallD, FlushD, FlushE);

endmodule

module controller (input logic clk, reset,
input logic [31:12] InstrD,
input logic [3:0] ALUFlagsE,
output logic [1:0] RegSrcD, ImmSrcD,
output logic ALUSrcE, BranchTakenE,
output logic [1:0] ALUControlE,
output logic MemWriteM,
output logic MemtoRegW, PCSrcW, RegWriteW,
// hazard interface
output logic RegWriteM, MemtoRegEk,
output logic PCWrPendingF,
input 1logic FlushE) ;

logic [9:0] controlsD;

logic CondExE, ALUOpD;
logic [1:0] ALUControlD;
logic ALUSrcDj;

439 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

logic MemtoRegD, MemtoRegM;

logic RegWriteD, RegWriteE, RegWriteGatedE;
logic MemWriteD, MemWriteE, MemWriteGatedE;
logic BranchD, BranchE;

logic [1:0] FlagWriteD, FlagWriteE;

logic PCSrcD, PCSrcE, PCSrcM;

logic [3:0] FlagsE, FlagsNextE, CondE;
// Decode stage

always_comb
casex (InstrD[27:2617)
2'b00: if (InstrD[25]) controlsD = 10'b0000101001; // DP imm

else controlsD = 10'b0000001001; // DP reg
2'b01l: if (InstrD[20]) controlsD = 10'b0001111000; // LDR
else controlsD = 10'b1001110100; // STR
2'b10: controlsD = 10'b0110100010; // B
default: controlsD = 10'bx; //
unimplemented
endcase

assign {RegSrcD, ImmSrcD, ALUSrcD, MemtoRegD,
RegWriteD, MemWriteD, BranchD, ALUOpD} = controlsD;

always_comb
if (ALUOpD) begin // which Data-processing Instr?
case (InstrD[24:2117)
4'b0100: ALUControlD = 2'b00; // ADD
4'b0010: ALUControlD = 2'b01l; // SUB
4'b0000: ALUControlD = 2'b10; // AND
4'p1100: ALUControlD 2'bl1l1; // ORR
default: ALUControlD = 2'bx; // unimplemented
endcase
FlagWriteD[1]

InstrD[20]; // update N and Z Flags if S bit is
set
FlagWriteD[O0] InstrD[20] & (ALUControlD == 2'b00 | ALUControlD
== 2'b01);
end else begin
ALUControlD
dataprocessing instr
FlagWriteD
end

2'b00; // perform addition for non-

2'000; // don't update Flags

assign PCSrcD = (((InstrD[15:12] == 4'b1111) & RegWriteD) |
BranchD) ;

// Execute stage
floprc #(7) flushedregsE(clk, reset, FlushE,
{FlagWriteD, BranchD, MemWriteD, RegWriteD,
PCSrcD, MemtoRegD},
{FlagWriteE, BranchE, MemWriteE, RegWriteE,
PCSrcE, MemtoRegE});
flopr #(3) regsE(clk, reset,
{ALUSrcD, ALUControlD},

S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

{ALUSrcE, ALUControlE});

440 SOLUTIONS chapter 7
flopr #(4) condregE(c
flopr #(4) flagsreg(c

// write and Branch co

conditional Cond (CondE
FlagsNextE) ;

assign BranchTakenE

assign RegWriteGatedE

assign MemWriteGatedE

assign PCSrcGatedE

// Memory stage
flopr #(4) regsM(clk,

1k,
1k,

reset,
reset,

InstrD[31:28], CondE);
FlagsNextE, FlagsE);

ntrols are conditional

FlagsE, ALUFlagsE, FlagWriteE, CondExE,

4

BranchE & CondEXxE;
RegWriteE & CondEXE;
MemWriteE & CondEXE;
PCSrcE & CondExXxE;

reset,

{MemWriteGatedE, MemtoRegE, RegWriteGatedE,

PCSrcGatedE},

{MemWriteM, MemtoRegM, RegWriteM, PCSrcM});
// Writeback stage
flopr #(3) regsW(clk, reset,
{MemtoRegM, RegWriteM, PCSrcM},
{MemtoRegW, RegWriteW, PCSrcW});
// Hazard Prediction
assign PCWrPendingF = PCSrcD | PCSrcE | PCSrcM;
endmodule
module conditional (input logic [3:0] Cond,
input logic [3:0] Flags,
input logic [3:0] ALUFlags,
input logic [1:0] FlagsWrite,
output logic CondEx,
output logic [3:0] FlagsNext) ;
logic neg, zero, carry, overflow, ge;
assign {neg, zero, carry, overflow} = Flags;
assign ge = (neg == overflow);
always_comb
case (Cond)
4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'pb0010: CondEx = carry; // CS
4'b0011: CondEx = ~carry; // CC
4'b0100: CondEx = neg; // MI
4'pb0101: CondEx = ~neg; // PL
4'0110: CondEx = overflow; // VS
4'b0111: CondEx = ~overflow; // VC
4'b1000: CondEx = carry & ~zero; // HI
4'p1001: CondEx = ~(carry & ~zero); // LS
4'b1010: CondEx = ge; // GE

441 SOLUTIONS chapter 7

4'b1011: CondEx =

4'p1100: CondEx

4'b1101: CondEx =

4'p1110: CondEx

default: CondEx =
endcase

assign FlagsNext [3:2]
Flags[3:2];

assign FlagsNext[1:0]
Flags[1:0];

S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

~ge; // LT

~zero & ge; // GT
~(~zero & ge); // LE

1'bl; // Always
1'bx; // undefined

= (FlagsWrite[l] & CondEx) ? ALUFlags[3:2]

= (FlagsWrite[0] & CondEx) ? ALUFlags[1:0]

[1:0

endmodule

module datapath(input logic
input logic
input logic
input logic
input logic
output logic
input logic
output logic
output logic
input logic
output logic
// hazard logic
output logic

Match_2E_W, Match_12D_E,
input logic
input logic

31:0] PCPlusédF
31:0] ExtImmD,

logic
logic

[
[
logic [31:0] rdlE, rd2E,
[
[

]

, PCnextl?F,
rd2D, PCPlus8D;

rdlD,

ExtImmE,

clk, reset,

RegSrcD, ImmSrcD,
ALUSrcE, BranchTakenE,
ALUControlE,
MemtoRegW, PCSrcW, RegWriteW,
PCF,

InstrF,

InstrD,

ALUOuUtM, WriteDataM,
ReadDatal,

ALUFlagsE,

Match_1E_M, Match_1E_W, Match_2E_M,

ForwardAE, ForwardBE,
StallF, StallD, FlushD);

PCnextF;

SrcAE, SrcBE, WriteDataE, ALUResultE;

logic [31:0] ReadbDataW, ALUOutW, ResultW;
logic [3:0] RA1D, RA2D, RAL1E, RA2E, WA3E, WA3M, WA3W;
logic Match_1D_E, Match_2D_E;

// Fetch stage

mux2 #(32) pcnextmux (PCPlus4F,
mux?2 #(32) branchmux (PCnextlF, ALUResultE, BranchTakenE, PCnextF);
~StallF, PCnextF, PCF);

flopenr #(32) pcreg(c
adder #(32) pcadd(PCF

// Decode Stage

assign PCPlus8D = PCPlusi4F;
flopenrc #(32) instrreg(clk,

1k, reset,

, 32'h4,

ResultW, PCSrcW, PCnextlF);

PCP1lusdrF) ;

// skip register

reset, ~StallD, FlushD, InstrF, InstrD);

4'p1111, RegSrcD[0], RAID);

InstrD[15:12], RegSrcD[1l], RA2D);

mux2 #(4) ralmux (InstrD[19:167,

mux2 #(4) ra2mux (InstrD[3:0],

regfile rf(clk, RegWriteW, RA1D, RA2D,
WA3W, ResultW, PCPlus8D,
rdlD, rd2D);

extend ext (InstrD[23:07,

ImmSrcD, ExtImmD);

442 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

// Execute Stage

flopr #(32) rdlreg(clk, reset, rdlD, rdlE);

flopr #(32) rd2reg(clk, reset, rd2D, rd2E);

flopr #(32) immreg(clk, reset, ExtImmD, ExtImmE) ;

flopr #(4) wa3ereg(clk, reset, InstrD[15:12], WA3E);

flopr #(4) ralreg(clk, reset, RA1D, RALE);

flopr #(4) ral2reg(clk, reset, RA2D, RA2E);

mux3 #(32) Dbyplmux(rdlE, ResultW, ALUOutM, ForwardAE, SrcAE);
mux3 #(32) Dbyp2mux (rd2E, ResultW, ALUOutM, ForwardBE, WriteDatak);
mux2 #(32) srcbmux (WriteDataE, ExtImmE, ALUSrcE, SrcBE);

alu alu(SrcAE, SrcBE, ALUControlE, ALUResultE, ALUFlagsE);

// Memory Stage

flopr #(32) aluresreg(clk, reset, ALUResultE, ALUOutM);
flopr #(32) wdreg(clk, reset, WriteDatak, WriteDataM) ;
flopr #(4) wa3mreg(clk, reset, WA3E, WA3M);

// Writeback Stage

flopr #(32) aluoutreg(clk, reset, ALUOutM, ALUOUtW) ;

flopr #(32) rdreg(clk, reset, ReadDataM, ReadDataW);

flopr #(4) wa3wreg(clk, reset, WA3M, WA3W);

mux2 #(32) resmux (ALUOutW, ReadDataW, MemtoRegW, ResultW);

// hazard comparison

eqcmp #(4) mO(WA3M, RA1E, Match_1E_M);

eqgcmp #(4) ml (WA3W, RALIE, Match_lE_W);

eqcmp #(4) m2 (WA3M, RA2E, Match_2E_M);

eqgcmp #(4) m3 (WA3W, RA2E, Match_2E_W) ;

eqcmp #(4) mda (WA3E, RA1D, Match_1D_E);

eqcmp #(4) md4b (WA3E, RA2D, Match_2D_E);
assign Match_12D_E = Match_1D_E | Match_2D_E;

endmodule
module hazard(input logic clk, reset,

input logic Match_1E_M, Match_1lE_W, Match_2E_M,
Match_2E_W, Match_12D_E,

input logic RegWriteM, RegWriteW,

input logic BranchTakenE, MemtoRegE,

input logic PCWrPendingF, PCSrcW,

output logic [1:0] ForwardAE, ForwardBE,

output logic StallF, StallD,

output logic FlushD, FlushE);

logic 1drStallD;

// forwarding logic
always_comb begin

if (Match_1lE_M & RegWriteM) ForwardAE = 2'bl0;
else if (Match_lE_W & RegWriteW) ForwardAE = 2'b01;
else ForwardAE = 2'b00;
if (Match_2E_M & RegWriteM) ForwardBE = 2'bl0;

else 1if (Match_2E_W & RegWriteW) ForwardBE = 2'b01;

443 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

else ForwardBE = 2'b00;
end

// stalls and flushes

// Load RAW

// when an instruction reads a register loaded by the previous,
// stall in the decode stage until it is ready

// Branch hazard

// When a branch is taken, flush the incorrectly fetched instrs
// from decode and execute stages

// PC Write Hazard

// When the PC might be written, stall all following instructions
// by stalling the fetch and flushing the decode stage

// when a stage stalls, stall all previous and flush next

assign 1ldrStallD = Match_12D_E & MemtoRegE;

assign StallD = 1drStallD;

assign StallF 1drStallD | PCWrPendingF;

assign FlushE 1ldrStallD | BranchTakenE;

assign FlushD = PCWrPendingF | PCSrcW | BranchTakenE;

endmodule
module regfile(input logic clk,
input logic we3,
input logic [3:0] ral, ra2, wa3,

input logic [31:0] wd3, rl5,
output logic [31:0] rdl, rd2);

logic [31:0] rf[14:0];

// three ported register file

// read two ports combinationally

// write third port on falling edge of clock (midcycle)
// so that writes can be read on same cycle

// register 15 reads PC+8 instead

always_ff @(negedge clk)
if (we3) rflwa3d] <= wd3;

(ral == 4'b1111) 2 rl5 : rflrall;
(ra2 == 4'b1111) ? rl5 : rflraz2l;

assign rdl
assign rd2
endmodule

module extend(input logic [23:0] Instr,
input logic [1:0] ImmSrc,
output logic [31:0] ExtImm);

always_comb
case (ImmSrc)
2'b00: ExtImm {24'b0, Instr[7:0]}; // 8-bit unsigned immediate
2'b01: ExtImm = {20'b0, Instr([11:0]}; // 12-bit unsigned immediate
2'b10: ExtImm {{6{Instr[23]}}, Instr[23:0], 2'b00}; // Branch

444 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

default: ExtImm = 32'bx; // undefined
endcase
endmodule

31:0]1 a, b,

1:0] ALUControl,
31:0] Result,
3:0] Flags);

module alu(input logic
input logic
output logic
output logic

logic neg, zero, carry, overflow;
logic [31:0] condinvb;
logic [32:0] sum;

assign condinvb = ALUControl[0] ? ~b : b;
assign sum = a + condinvb + ALUControl[0];

always_comb
casex (ALUControl[1:07)
2'b0?: Result = sum;
2'010: Result = a & b;
2'bll: Result = a | b;

endcase
assign neg = Result[31];
assign zero = (Result == 32'b0);
assign carry = (ALUControl[l] == 1'b0) & sum[32];
assign overflow = (ALUControl[l] == 1'b0) & ~(al31] ~ b[31]

ALUControl[0]) &
(a[31] »~ sum[31]);
assign Flags = {neg, zero, carry, overflow};
endmodule

module adder # (parameter WIDTH=8)
(input logic [WIDTH-1:0] a, b,
output logic [WIDTH-1:0] vy);

assign y = a + b;
endmodule

module flopenr #(parameter WIDTH = 8)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)

if (reset) q <= 0;
else if (en) g <= d;
endmodule

module flopr # (parameter WIDTH = 8)
(input 1logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

445 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;
else q <= d;
endmodule

module flopenrc #(parameter WIDTH = 8)

(input logic clk, reset, en,

input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else 1if (en)

if (clear) g <= 0;
else q <= d;
endmodule

module floprc # (parameter WIDTH = 8)
(input 1logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) g <= 0;

else

if (clear) g <= 0;

else q <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, di,
input logic S,
output logic [WIDTH-1:0] vy);

assign y = s ? dl : doO;
endmodule

module mux3 # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] d0, d1, d2,
input logic [1:0] s,
output logic [WIDTH-1:0] vy);

assign y = s[l1] 2 d2 : (s[0] 2 d1 : dO);
endmodule

module eqcmp # (parameter WIDTH = 8)
(input logic [WIDTH-1:0] a, b,
output logic v);

assign y = (a == b);
endmodule

clear,

© 2015 Elsevier, Inc.

clear,

446 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;
entity testbench is

end;

architecture test of testbench is
component top

port (clk, reset: in STD_LOGIC;
WriteDataM, DataAdrM: out STD_LOGIC_VECTOR(31 downto 0);
MemWriteM: out STD_LOGIC) ;
end component;
signal WriteData, DataAdr: STD_LOGIC_VECTOR (31 downto 0);
signal clk, reset, MemWrite: STD_LOGIC;
begin

—— instantiate device to be tested
dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

—— Generate clock with 10 ns period
process begin

clk <= "'1";

wait for 5 ns;

clk <= '0";

wait for 5 ns;
end process;

—— Generate reset for first two clock cycles
process begin

reset <= '1"';
wait for 22 ns;
reset <= '0';
wait;

end process;

—— check that 7 gets written to address 84
-— at end of program
process (clk) begin
if (clk'event and clk = '0' and MemWrite = '1l') then
if (to_integer (DataAdr) = 100 and
to_integer (WriteData) = 7) then
report "NO ERRORS: Simulation succeeded" severity failure;
elsif (DataAdr /= 96) then
report "Simulation failed" severity failure;
end if;
end if;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

447 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

entity top is —- top-level design for testing
port (clk, reset: in STD_LOGIC;
WriteDataM, DataAdrM: buffer STD_LOGIC_VECTOR(31 downto 0);
MemWriteM: buffer STD_LOGIC) ;
end;

architecture test of top is
component arm

port (clk, reset: in STD_LOGIC;
PCF': out STD_LOGIC_VECTOR(31 downto 0);
InstrF: in STD_LOGIC_VECTOR (31 downto 0);
MemWriteM: out STD_LOGIC;
ALUOutM, WriteDataM: out STD_LOGIC_VECTOR (31 downto 0);
ReadDataM: in STD_LOGIC_VECTOR (31 downto 0));

end component;
component imem
port (a: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));
end component;
component dmem
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end component;
signal PCF, InstrF, ReadDataM: STD_LOGIC_VECTOR(31 downto 0);
begin
—-— instantiate processor and memories
i_arm: arm port map(clk, reset, PCF, InstrF, MemWriteM, DataAdrM,
WriteDataM, ReadDataM);
i_imem: imem port map (PCF, InstrF);
i_dmem: dmem port map(clk, MemWriteM, DataAdrM, WriteDataM, ReadDatalM) ;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;
entity imem is —-- instruction memory
port(a: 1in STD_LOGIC_VECTOR(31 downto O0);
rd: out STD_LOGIC_VECTOR(31 downto 0));
end;
architecture behave of imem is —-- instruction memory
begin
process 1is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable i, index, result: integer;
type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;
begin
—— initialize memory from file
for i in 0 to 63 loop —-- set all contents low
mem(i) := (others => '0");

448 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end loop;
index := 0;
FILE_OPEN(mem_ _file, "memfile.dat", READ_MODE) ;
while not endfile(mem_file) loop
readline (mem_file, L);
result := 0;
for i in 1 to 8 loop
read (L, ch);
if '0' <= ch and ch <= '9' then

result := character'pos(ch) - character'pos('0"');

elsif 'a' <= ch and ch <= 'f' then

result := character'pos(ch) - character'pos('a')+10;
elsif 'A' <= ch and ch <= 'F' then

result := character'pos(ch) - character'pos('A')+10;
else report "Format error on line " & integer'image (index)

severity error;

end if;

mem (index) (35-1*4 downto 32-i*4) :=
to_std_logic_vector (result,4);
end loop;
index := index + 1;
end loop;

—— read memory
loop
rd <= mem(to_integer (a(7 downto 2)));
wait on aj;
end loop;
end process;
end;

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is -- data memory
port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of dmem is
begin
process 1is
type ramtype is array (63 downto 0) of
STD_LOGIC_VECTOR(31 downto 0);
variable mem: ramtype;

begin -- read or write memory
loop
if clk'event and clk = '1l' then
if (we = '1'") then
mem(to_integer (a(7 downto 2))) := wd;
end if;
end if;

rd <= mem(to_integer (a(7 downto 2)));

449

SOLUTIONS

chapter 7

wait on clk, a;
end loop;

end process;

end;

library IEEE;

S. Harris and D.M. Harris, DDCA: ARM® Edition

use IEEE.STD_LOGIC_1164.all;

entity arm is —-- pipelined processor
port (clk, reset: in STD_LOGIC;
PCF: out STD_LOGIC_VECTOR (31 downto
InstrF: in STD_LOGIC_VECTOR (31 downto
MemWriteM: out STD_LOGIC;
ALUOutM, WriteDataM: out STD_LOGIC_VECTOR (31 downto
ReadDataM: in STD_LOGIC_VECTOR (31 downto

end;

architecture struct of arm is
component controller

port (clk, reset: in
InstrD: in
ALUFlagsE: in
RegSrcD, ImmSrcD: out
ALUSrcE: out
BranchTakenE: out
ALUControlE: out
MemWriteM: out
MemtoRegW: out
PCSrcW: out
RegWriteW: out
—-— hazard interface
RegWriteM: out
MemtoRegE : out
PCWrPendingF': out
FlushE: in

end component;
component datapath

port (clk, reset: in
RegSrcD, ImmSrcD: 1n
ALUSrcE: in
BranchTakenE: in
ALUControlE: in
MemtoRegW: in
PCSrcW: in
RegWriteW: in
PCF': out
InstrF: in
InstrD: out
ALUOutM: out
WriteDataM: out
ReadDataM: in
ALUFlagsE: out
—-— hazard logic
Match_1E_M: out
Match_1E_W: out
Match_ 2E M: out

STD_LOGIC;

© 2015 Elsevier, Inc.

STD_LOGIC_VECTOR (31 downto 12);
STD_LOGIC_VECTOR (3 downto 0);
STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;
STD_LOGIC;

STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC) ;

STD_LOGIC;

STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;
STD_LOGIC;

STD_LOGIC_VECTOR (1 downto 0);

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC_VECTOR (
STD_LOGIC_VECTOR (
STD_LOGIC_VECTOR (
STD_LOGIC_VECTOR (
STD_LOGIC_VECTOR (
STD_LOGIC_VECTOR (
(

31
31
31
31
31
31

downto
downto
downto
downto
downto
downto

0);
Q)
0);
0);
0);
0);

STD_LOGIC_VECTOR (3 downto 0);

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;

450

SOLUTIONS

chapter 7

Match_2E_W:
Match_ 12D _E:
ForwardAE:
ForwardBE:
StallF:
StallD:
FlushD:

end component;
component hazard

port (clk,

reset:
Match_1E_M:
Match_1E_W:
Match_ 2E M:
Match_2E_W:
Match_ 12D _E:
RegWriteM:
RegWriteW:
BranchTakenE:
MemtoRegE :
PCWrPendingF':
PCSrcW:
ForwardAE:
ForwardBE:
StallfF,

end component;

signal
signal
signal
signal
signal
signal
signal
signal

begin

c: controller port map(clk,

dp: datapath port map(clk,

StallD:
FlushD, FlushE:

S. Harris and D.M. Harris, DDCA: ARM® Edition

out STD_LOGIC;
out STD_LOGIC;

in STD_LOGIC_VECTOR (1 downto 0);
in STD_LOGIC_VECTOR (1 downto 0);
in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC) ;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

in STD_LOGIC;

out STD_LOGIC_VECTOR(1l downto 0);
out STD_LOGIC_VECTOR(1 downto 0);
out STD_LOGIC;

out STD_LOGIC) ;

RegSrcD, ImmSrcD, ALUControlE: STD_LOGIC_VECTOR(1 downto 0);
ALUSrcE, BranchTakenE, MemtoRegW, PCSrcW, RegWriteW: STD_LOGIC;
ALUFlagsE: STD_LOGIC_VECTOR(3 downto 0);

InstrD: STD_LOGIC_VECTOR (31 downto 0);

RegWriteM, MemtoRegE, PCWrPendingF: STD_LOGIC;

ForwardAE, ForwardBE: STD_LOGIC_VECTOR(1l downto 0);

StallF, StallD, FlushD, FlushE: STD_LOGIC;

Match_1E_M, Match_1lE_W, Match_2E_M, Match_2E_W, Match_12D E:
STD_LOGIC;

reset, InstrD(31 downto 12),
RegSrcD, ImmSrcD,

ALUSrcE, BranchTakenE, ALUControlE,
MemWriteM,

Memt oRegW, PCSrcW, RegWriteW,
RegWriteM, MemtoRegE, PCWrPendingF,
FlushE) ;

ALUFlagsE,

reset,

RegSrcD, ImmSrcD,

ALUSrcE, BranchTakenE, ALUControlE,
MemtoRegW, PCSrcW, RegWriteW,

PCF, InstrF, InstrD,

ALUOutM, WriteDataM, ReadDataM,
ALUFlagsE,

Match_1E_M, Match_1E_W, Match_2E_M,
Match_2E_W, Match_12D_E,

© 2015 Elsevier, Inc.

451 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ForwardAE, ForwardBE, StallF, StallD, FlushD);
h: hazard port map(clk, reset, Match_lE_M, Match_1lE_W,
Match_2E_M, Match_2E_W, Match_12D_E,
RegWriteM, RegWriteW, BranchTakenE, MemtoRegE,
PCWrPendingF, PCSrcW,
ForwardAE, ForwardBE,
StallF, StallD, FlushD, FlushE);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is —-- pipelined control decoder
port (clk, reset: in STD_LOGIC;

InstrD: in STD_LOGIC_VECTOR (31 downto 12);
ALUFlagsE: in STD_LOGIC_VECTOR (3 downto 0);
RegSrcD, ImmSrcD: out STD_LOGIC_VECTOR(1l downto 0);
ALUSrcE: out STD_LOGIC;
BranchTakenE: out STD_LOGIC;
ALUControlE: out STD_LOGIC_VECTOR(1 downto 0);
MemWriteM: out STD_LOGIC;
MemtoRegW: out STD_LOGIC;
PCSrcW: out STD_LOGIC;
RegWriteW: out STD_LOGIC;
—-— hazard interface
RegWriteM: out STD_LOGIC;
MemtoRegE: out STD_LOGIC;
PCWrPendingF: out STD_LOGIC;
FlushE: in STD_LOGIC) ;

end;

architecture synth of controller is
component flopr generic(width: integer);

port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end component;
component floprc generic(width: integer);
port (clk, reset, clear: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component conditional

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagsWrite: in STD_LOGIC_VECTOR (1 downto 0);
CondEx: out STD_LOGIC;

FlagsNext: out STD_LOGIC_VECTOR (3 downto 0));

end component;

signal controlsD: STD_LOGIC_VECTOR(9 downto 0);

signal CondExE, ALUOpD: STD_LOGIC;

signal ALUControlD: STD_LOGIC_VECTOR(1l downto 0);
signal ALUSrcD: STD_LOGIC;

signal MemtoRegD, MemtoRegM: STD_LOGIC;

signal RegWriteD, RegWriteE, RegWriteGatedE: STD_LOGIC;
signal MemWriteD, MemWriteE, MemWriteGatedE: STD_LOGIC;

452 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
begin
—-— Decode stage
—— Main Decoder

BranchD, BranchE: STD_LOGIC;

FlagWriteD, FlagWriteE: STD_LOGIC_VECTOR(1 downto 0);
PCSrcD, PCSrcE, PCSrcM: STD_LOGIC;

FlagsE, FlagsNextE, CondE: STD_LOGIC_VECTOR (3 downto O0);
Funct: STD_LOGIC_VECTOR(5 downto 0);

Rd: STD_LOGIC_VECTOR (3 downto 0);

PCSrcGatedE: STD_LOGIC;

FlushedValsEnext, FlushedValskE: STD_LOGIC_VECTOR (6 downto 0);
ValsEnext, ValsE: STD_LOGIC_VECTOR(2 downto 0);
ValsMnext, ValsM: STD_LOGIC_VECTOR(3 downto 0);
ValsWnext, ValsW: STD_LOGIC_VECTOR(2 downto 0);

process(all) begin

case InstrD(27 downto 26) is

when "00" => controlsD <=

else

when "01" => controlsD <=

else

when "10" => controlsD <=

when others => controlsD <=
unimplemented
end case;

end process;

"0000101001"
"0000001001";
"0001111000"
"1001110100";
"0110100010";

when InstrD(25)

when InstrD(20)

(RegSrcD, ImmSrcD, ALUSrcD, MemtoRegD,
RegWriteD, MemWriteD, BranchD, ALUOpD) <= controlsD;
—— ALU Decoder
Funct <= InstrD(25 downto 20);
Rd <= InstrD (15 downto 12);
process(all) begin
if (ALUOpD) then
case Funct (4 downto 1) is
when "0100" => ALUControlD <= "00"; —-- ADD
when "0010" => ALUControlD <= "01"; —-- SUB
when "0000" => ALUControlD <= "10"; —-- AND
when "1100" => ALUControlD <= "11"; —-- ORR
when others => ALUControlD <= "--"; —— unimplemented
end case;
FlagWriteD (1) <= Funct(0);
FlagWriteD(0) <= Funct(0) and (not ALUControlD(1l));
else
ALUControlD <= "00";
FlagWriteD <= "00";
end if;
end process;
PCSrcD <= ((and Rd) and RegWriteD) or BranchD;

-— Execute stage
FlushedValsEnext <=
PCSrcD, MemtoRegD) ;

DP imm
DP reg
LDR
STR

-- B

(FlagWriteD, BranchD, MemWriteD, RegWriteD,

453 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ValsEnext <= (ALUSrcD, ALUControlD);
flushedregsE: floprc generic map (7)
port map(clk, reset, FlushE, FlushedValsEnext, FlushedValsE);
regsE: flopr generic map (3)
port map(clk, reset, ValsEnext, ValsE);
condregE: flopr generic map (4)
port map(clk, reset, InstrD(31 downto 28), CondE);
flagsreg: flopr generic map (4)
port map(clk, reset, FlagsNextE, FlagsE);

(FlagWriteE, BranchE, MemWriteE, RegWriteE, PCSrcE, MemtoRegE) <=
FlushedValsE;
(ALUSrcE, ALUControlE) <= ValsE;

-— write and Branch controls are conditional

Cond: conditional port map(CondE, FlagsE, ALUFlagsE, FlagWriteE,
CondExE, FlagsNextE) ;

BranchTakenE <= BranchE and CondExE;

RegWriteGatedE <= RegWriteE and CondExE;

MemWriteGatedE <= MemWriteE and CondEXE;

PCSrcGatedE <= PCSrcE and CondExE;

-— Memory stage
ValsMnext <= (MemWriteGatedE, MemtoRegE, RegWriteGatedE, PCSrcGatedE);
regsM: flopr generic map (4)
port map(clk, reset, ValsMnext, ValsM);
(MemWriteM, MemtoRegM, RegWriteM, PCSrcM) <= ValsM;

—-— Writeback stage
ValsWnext <= (MemtoRegM, RegWriteM, PCSrcM);
regsW: flopr generic map (3)

port map(clk, reset, ValsWnext, ValsW);
(MemtoRegW, RegWriteW, PCSrcW) <= ValsW;

—— Hazard Prediction
PCWrPendingF <= PCSrcD or PCSrcE or PCSrcM;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity conditional is

port (Cond: in STD_LOGIC_VECTOR (3 downto 0);
Flags: in STD_LOGIC_VECTOR (3 downto 0);
ALUFlags: in STD_LOGIC_VECTOR (3 downto 0);
FlagsWrite: in STD_LOGIC_VECTOR (1l downto 0);
CondEx: out STD_LOGIC;

FlagsNext: out STD_LOGIC_VECTOR (3 downto 0));
end;

architecture behave of conditional is

signal neg, zero, carry, overflow, ge: STD_LOGIC;
begin

(neg, zero, carry, overflow) <= Flags;

ge <= (neg xnor overflow);

454 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

process(all) begin —- Condition checking
case Cond is
when "0000" => CondEx <= zero;
when "0001" => CondEx <= not zero;

when "0010" => CondEx <= carry;
when "0011" => CondEx <= not carry;
when "0100" => CondEx <= neg;

when "0101" => CondEx <= not neg;
when "0110" => CondEx <= overflow;

when "0111" => CondEx <= not overflow;
when "1000" => CondEx <= carry and (not zero);
when "1001" => CondEx <= not(carry and (not zero));

when "1010" => CondEx <= ge;
when "1011" => CondEx <= not gej;

when "1100" => CondEx <= (not zero) and ge;
when "1101" => CondEx <= not ((not zero) and ge);
when "1110" => CondEx <= '1';
when others => CondEx <= '-';
end case;

end process;

FlagsNext (3 downto 2) <= ALUFlags (3 downto 2) when (FlagsWrite(l) and
CondEx) else Flags (3 downto 2);

FlagsNext (1 downto 0) <= ALUFlags(l downto 0) when (FlagsWrite(0) and
CondEx) else Flags(l downto 0);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity datapath is

port (clk, reset: in STD_LOGIC;
RegSrcD, ImmSrcD: in STD_LOGIC_VECTOR (1 downto 0);
ALUSrcE: in STD_LOGIC;
BranchTakenE: in STD_LOGIC;
ALUControlE: in STD_LOGIC_VECTOR (1 downto 0);
MemtoRegW: in STD_LOGIC;
PCSrcW: in STD_LOGIC;
RegWriteW: in STD_LOGIC;
PCF: out STD_LOGIC_VECTOR (31 downto 0);
InstrF: in STD_LOGIC_VECTOR (31 downto 0);
InstrD: out STD_LOGIC_VECTOR(31 downto 0);
ALUOutM: out STD_LOGIC_VECTOR(31 downto 0);
WriteDataM: out STD_LOGIC_VECTOR(31 downto 0);
ReadDataM: in STD_LOGIC_VECTOR (31 downto 0);
ALUFlagsE: out STD_LOGIC_VECTOR(3 downto 0);
—-— hazard logic
Match_1E_M: out STD_LOGIC;
Match_1E_W: out STD_LOGIC;
Match_2E_M: out STD_LOGIC;
Match_2E_W: out STD_LOGIC;
Match_12D_E: out STD_LOGIC;
ForwardAE: in STD_LOGIC_VECTOR (1 downto 0);
ForwardBE: in STD_LOGIC_VECTOR (1 downto 0);
StallF: in STD_LOGIC;

StallD: in STD_LOGIC;

455 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

FlushD: in STD_LOGIC) ;
end;
architecture struct of datapath is
component alu

port (a, b: in STD_LOGIC_VECTOR (31 downto 0);
ALUControl: in STD_LOGIC_VECTOR(1l downto 0);
Result: buffer STD_LOGIC_VECTOR (31 downto 0);
ALUFlags: out STD_LOGIC_VECTOR (3 downto 0));

end component;
component regfile

port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlb: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR (31 downto 0));

end component;
component adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
& out STD_LOGIC_VECTOR (31 downto 0));
end component;
component extend
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1] downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end component;
component flopr generic(width: integer);
port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component flopenrc generic(width: integer);
port (clk, reset, en, clear: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component flopenr generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component mux2 generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
S: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (width-1 downto 0));
end component;
component mux3 generic(width: integer);
port (d0, dl, d2: in STD_LOGIC_VECTOR(width-1 downto O0);
s: in STD_LOGIC_VECTOR (1 downto 0);
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end component;
component egcmp generic(width: integer);
port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);
y: out STD_LOGIC) ;
end component;

456 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

signal PCPlus4F, PCnextlF, PCnextF: STD_LOGIC_VECTOR(31 downto 0);
signal ExtImmD, rdlD, rd2D, PCPlus8D: STD_LOGIC_VECTOR (31 downto 0);
signal rdlE, rd2E, ExtImmE, SrcAE: STD_LOGIC_VECTOR(31] downto 0);
signal SrcBE, WriteDataE, ALUResultE: STD_LOGIC_VECTOR (31 downto 0);
signal ReadDataW, ALUOutW, ResultW: STD_LOGIC_VECTOR(31 downto O0);
signal RA1D, RA2D, RAlE, RA2E: STD_LOGIC_VECTOR(3 downto 0);
signal WA3E, WA3M, WA3W: STD_LOGIC_VECTOR(3 downto 0);
signal Match_1D_FE, Match_2D_E: STD_LOGIC;
signal notStallF: STD_LOGIC;
begin
—— Fetch stage
notStallF <= (not StallF);
pcnextmux: mux2 generic map (32)
port map (PCPlus4F, ResultW, PCSrcW, PCnextlF);
branchmux: mux2 generic map (32)
port map (PCnextlF, ALUResultE, BranchTakenE, PCnextF);
pcreg: flopenr generic map (32)
port map(clk, reset, notStallF, PCnextF, PCF);
pcadd: adder generic map (32)
port map (PCF, 32D"4", PCPlus4F);

—— Decode Stage
PCPlus8D <= PCPlusé4F; —-- skip register
instrreg: flopenrc generic map (32)
port map(clk, reset, (not StallD), FlushD, InstrF, InstrD);
ralmux: mux2 generic map (4)
port map(InstrD(19 downto 16), 4D"15", RegSrcD(0), RA1D);
ra2mux: mux2 generic map (4)
port map (InstrD(3 downto 0), InstrD(15 downto 12), RegSrcD(1l), RA2D);
rf: regfile
port map(clk, RegWriteW, RA1D, RAZ2D,
WA3W, ResultW, PCPlus8D,
rdlD, rd2D);
ext: extend
port map(InstrD(23 downto 0), ImmSrcD, ExtImmD);

—-— Execute Stage
rdlreg: flopr generic map (32)
port map(clk, reset, rdlD, rdlE);
rd2reg: flopr generic map (32)
port map(clk, reset, rd2D, rd2E);
immreg: flopr generic map (32)
port map(clk, reset, ExtImmD, ExtImmE);
wa3ereg: flopr generic map (4)
port map(clk, reset, InstrD(1l5 downto 12), WA3E);
ralreg: flopr generic map (4)
port map(clk, reset, RA1D, RAIlE);
ra2reqg: flopr generic map (4)
port map(clk, reset, RA2D, RA2E);
byplmux: mux3 generic map (32)
port map(rdlE, ResultW, ALUOutM, ForwardAE, SrcAE);
byp2mux: mux3 generic map (32)
port map (rd2E, ResultW, ALUOutM, ForwardBE, WriteDatak);

457 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

srcbmux: mux2 generic map (32)
port map (WriteDataE, ExtImmE, ALUSrcE, SrcBE);
i_alu: alu
port map(SrcAE, SrcBE, ALUControlE, ALUResultE, ALUFlagsE);

—-— Memory Stage
aluresreg: flopr generic map (32)

port map(clk, reset, ALUResultE, ALUOutM);
wdreg: flopr generic map (32)

port map(clk, reset, WriteDataE, WriteDatalM) ;
wa3mreg: flopr generic map (4)

port map(clk, reset, WA3E, WA3M);

—-— Writeback Stage
aluoutreg: flopr generic map (32)
port map(clk, reset, ALUOutM, ALUOuUtW);
rdreg: flopr generic map (32)
port map(clk, reset, ReadDataM, ReadDataW);
wa3wreg: flopr generic map (4)
port map(clk, reset, WA3M, WA3W);
resmux: mux2 generic map (32)
port map (ALUOutW, ReadDataW, MemtoRegW, ResultW);

—— hazard comparison
mO: egcmp generic map (4)

port map (WA3M, RAlE, Match_1lE_M);
ml: egcmp generic map (4)

port map (WA3W, RAlE, Match_1lE_W);
m2: eqgcmp generic map (4)

port map (WA3M, RA2E, Match_2E_M);
m3: eqgcmp generic map (4)

port map (WA3W, RA2E, Match_2E_W);
m4a: eqcmp generic map (4)

port map (WA3E, RA1D, Match_1D_E);
mi4b: eqcmp generic map (4)

port map (WA3E, RA2D, Match_2D_E);
Match_12D_E <= Match_1D_E or Match_2D_E;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity hazard is

port (clk, reset: in STD_LOGIC;
Match_1E_M: in STD_LOGIC;
Match_1E_W: in STD_LOGIC;
Match_2E_M: in STD_LOGIC;
Match_2E_W: in STD_LOGIC;
Match_12D_E: in STD_LOGIC;
RegWriteM: in STD_LOGIC;
RegWriteW: in STD_LOGIC;
BranchTakenE: in STD_LOGIC;
MemtoRegE: in STD_LOGIC;
PCWrPendingF: in STD_LOGIC;
PCSrcW: in STD_LOGIC;

ForwardAE: out STD_LOGIC_VECTOR(1l downto 0);

458 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition
ForwardBE: out STD_LOGIC_VECTOR(1l downto 0);
StallF, StallD: out STD_LOGIC;

FlushD, FlushE: out STD_LOGIC) ;

end;

architecture behave of hazard is

signal 1drStallD: STD_LOGIC;
begin
ForwardAE (1) <= '1l' when (Match_lE_M and RegWriteM) else '0';
ForwardAE (0) <= '1' when (Match_lE_W and RegWriteW and (not
ForwardAE(l))) else '0';
ForwardBE (1) <= '1l' when (Match_2E_M and RegWriteM) else '0';
ForwardBE (0) <= '1' when (Match_2E_W and RegWriteW and (not
ForwardBE(1l))) else '0';

1drStallD <= Match_12D_FE and MemtoRegE;

StallD <= 1drStallD;

StallF <= 1drStallD or PCWrPendingF;

FlushE <= 1ldrStallD or BranchTakenkE;

FlushD <= PCWrPendingF or PCSrcW or BranchTakenE;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

© 2015 Elsevier, Inc.

entity regfile is —-- three-port register file
port (clk: in STD_LOGIC;
we3: in STD_LOGIC;
ral, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);
wd3, rlb: in STD_LOGIC_VECTOR (31 downto 0);
rdl, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is
type ramtype is array (31 downto 0)
STD_LOGIC_VECTOR(31 downto 0);

of

signal mem: ramtype;
begin
process (clk) begin

if falling_edge(clk) then -- write rf on negative edge of clock

if we3 = '1l' then mem(to_integer (wa3)) <= wd3;
end if;
end if;
end process;
process(all) begin
if (to_integer(ral) = 15) then rdl <= rl5;
else rdl <= mem(to_integer(ral));
end if;
if (to_integer(ra2) = 15) then rd2 <= rl5;

else rd2 <= mem(to_integer(ra2));
end if;
end process;
end;

459 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is —-- adder
port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of adder is
begin

y <= a + b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity extend is
port (Instr: in STD_LOGIC_VECTOR (23 downto 0);
ImmSrc: in STD_LOGIC_VECTOR (1l downto 0);
ExtImm: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of extend is
begin
process(all) begin
case ImmSrc is

when "00O" => ExtImm <= (X"000000", Instr (7 downto 0));
when "01" => ExtImm <= (X"00000", Instr (1l downto 0));
when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

Instr (23), Instr(23), Instr(23), Instr (23 downto 0), "00");
when others => ExtImm <= X"-——————— ",
end case;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenr is —- flip-flop with enable and asynchronous reset
generic(width: integer);
port (clk, reset, en: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));
end;

architecture asynchronous of flopenr is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

460 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

entity flopr is —-- flip-flop with asynchronous reset
generic(width: integer);
port (clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));
end;

architecture asynchronous of flopr is
begin
process(clk, reset) begin
if reset then g <= (others => '0'");
elsif rising_edge(clk) then
q <= d;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity floprc is —- flip-flop with asynchronous reset
—-— and synchronous clear
generic(width: integer);
port (clk, reset, clear: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of floprc is

begin
process(clk, reset) begin
if reset then g <= (others => '0"');
elsif rising_edge(clk) then
if clear then g <= (others => '0");
else q <= d;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopenrc is —-- flip-flop with enable and asynchronous reset,
synchronous clear
generic(width: integer);
port (clk, reset, en, clear: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture asynchronous of flopenrc is

begin
process(clk, reset) begin
if reset then g <= (others => '0'");

elsif rising_edge(clk) then
if en then
if clear then

461 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition

g <= (others => '0");
else
q <= d;
end if;
end if;
end if;
end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is —-- two-input multiplexer
generic(width: integer);
port (d0, dl: in STD_LOGIC_VECTOR (width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture behave of mux2 is
begin

y <= dl when s else dO0;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux3 is —-- three-input multiplexer
generic(width: integer);
port (d0, dl, d2: in STD_LOGIC_VECTOR(width-1 downto O0);
sS: in STD_LOGIC_VECTOR (1 downto 0);

y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux3 is
begin
process(all) begin
case s 1is

when "00" => y <= d0;
when "0O1" => vy <= dl;
when "10" => y <= d2;
when others => y <= d0;
end case;
end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity eqgcmp is —-- equality comparator
generic(width: integer);
port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);
y: out STD_LOGIC) ;
end;

architecture behave of egcmp is
begin
y <= 'l'when a = b else '0';

© 2015 Elsevier, Inc.

462 SOLUTIONS

end;

chapter 7

S. Harris and D.M. Harris, DDCA: ARM® Edition

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

port (a, b:
ALUControl:
Result:
ALUFlags:

end;

in STD_LOGIC_VECTOR (31 downto 0);

in STD_LOGIC_VECTOR (1 downto 0);

buffer STD_LOGIC_VECTOR(31 downto 0);
out STD_LOGIC_VECTOR(3 downto 0));

architecture behave of alu is

signal condinvb:

signal sum:

signal neg,
begin

zero,

STD_LOGIC_VECTOR (31 downto 0);

STD_LOGIC_VECTOR (32 downto 0);
overflow: STD_LOGIC;

carry,

condinvb <= not b when ALUControl (0) else b;

sum <= ('0', a) +

process (all) begi

(o',

n

condinvb)

case? ALUControl (1l downto 0)

is

when "0-" => result <= sum(31 downto 0);
when "10" => result <= a and b;
when "11" => result <= a or b;
when others => result <= (others => '-');
end case?;
end process;
neg <= Result (31);
Zero <= '1l' when (Result = 0) else '0';
carry <= (not ALUControl(l)) and sum(32);

overflow <= (not ALUControl (1))

(not (

ALUFlags <= (n
end;

Exercise 7.41

a(3l) xor b(31l) xor ALUControl(0)))
(a(31) xor sum(31));

eg, zero

and

, carry, overflow);

+ ALUControl (0);

© 2015 Elsevier, Inc.

SystemVerilog

module hazard (input
input
input
input
input
input

logic
logic
logic
logic
logic
logic

output logic
output logic
output logic

logic 1drStallD;

[1:0]

clk, reset,

Match_1E_M, Match_1lE_W, Match_2E_M,

Match_2E_W, Match_12D_E,
RegWriteM, RegWriteW,
BranchTakenE, MemtoRegE,
PCWrPendingF, PCSrcW,
ForwardAE, ForwardBE,

StallF, StallD,
FlushD, FlushE);

463 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.
// forwarding logic
always_comb begin
if (Match_1lE_M & RegWriteM) ForwardAE = 2'bl0;
else if (Match_lE_W & RegWriteW) ForwardAE = 2'b01;
else ForwardAE = 2'b00;
if (Match_2E_M & RegWriteM) ForwardBE = 2'bl0;
else if (Match_2E_W & RegWriteW) ForwardBE = 2'b01;
else ForwardBE = 2'b00;
end
// stalls and flushes
// Load RAW
// when an instruction reads a register loaded by the previous,
// stall in the decode stage until it is ready
// Branch hazard
// When a branch is taken, flush the incorrectly fetched instrs
// from decode and execute stages
// PC Write Hazard
// When the PC might be written, stall all following instructions
// by stalling the fetch and flushing the decode stage
// when a stage stalls, stall all previous and flush next
assign 1ldrStallD = Match_12D_E & MemtoRegE;
assign StallD = 1drStallD;
assign StallF = 1drStallD | PCWrPendingF;
assign FlushE = 1drStallD | BranchTakenE;
assign FlushD = PCWrPendingF | PCSrcW | BranchTakenE;
endmodule
VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity hazard is

port (clk, reset: in STD_LOGIC;
Match_1E_M: in STD_LOGIC;
Match_1E_W: in STD_LOGIC;
Match_2E_M: in STD_LOGIC;
Match_2E_W: in STD_LOGIC;
Match_12D_E: in STD_LOGIC;
RegWriteM: in STD_LOGIC;
RegWriteW: in STD_LOGIC;
BranchTakenE: in STD_LOGIC;
MemtoRegE: in STD_LOGIC;
PCWrPendingF: in STD_LOGIC;
PCSrcW: in STD_LOGIC;
ForwardAE: out STD_LOGIC_VECTOR(1l downto 0);
ForwardBE: out STD_LOGIC_VECTOR(1l downto 0);
StallF, StallD: out STD_LOGIC;
FlushD, FlushE: out STD_LOGIC) ;

end;

464 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture behave of hazard is
signal 1drStallD: STD_LOGIC;
begin
ForwardAE (1) <= '1l' when (Match_lE_M and RegWriteM) else '0';
ForwardAE (0) <= '1l' when (Match_lE_W and RegWriteW and (not
ForwardAE(l))) else '0';

ForwardBE (1) <= '1l' when (Match_2E_M and RegWriteM) else '0';
ForwardBE (0) <= '1l' when (Match_2E_W and RegWriteW and (not
ForwardBE(1l))) else '0';

1drStallD <= Match_12D_E and MemtoRegE;

StallD <= 1drStallD;

StallF <= 1drStallD or PCWrPendingF;

FlushE <= 1ldrStallD or BranchTakenkE;

FlushD <= PCWrPendingF or PCSrcW or BranchTakenE;
end;

Hazard Unit Schematic

465 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

w T Y
|
=2 = sz 8%
WwwwNTSg s e
NN T e e =g
e S S %
geggege=2=2¢ex 2
M (MM (O (O @© ©
S>SS>S>Sdcam>E s
ji ForwardAE;
} ForwardAE,
ji ForwardBE;
} ForwardBE,
— ForwardAE;
D ForwardAE,
D ForwardBE;
D ForwardBE,
Question 7.1

A pipelined microprocessors with N stages offers an ideal speedup of N over nonpipelined
microprocessor. This speedup comes at the cost of little extra hardware: pipeline registers and
possibly a hazard unit. The disadvantage of a pipelined processor is added complexity,
especially in dealing with data and control hazards.

Question 7.2

While pipelining offers speedup, it still has its costs. The speedup of an N stage processor is not
N because of (1) sequencing overhead (tpc, + tsetup, the delay of inserting a register), (2) unequal
delays of pipeline stages, (3) time to fill up the pipeline (at the beginning of a program), (4) time

466 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

to drain the pipeline (at the end of a program), and (5) dependencies stalling or flushing the
pipeline.

Question 7.3

A hazard in a pipelined microprocessor occurs when the execution of an instruction depends on
the result of a previously issued instruction that has not completed executing. Some options for
dealing with hazards are:

(1) to have the compiler insert nops to prevent dependencies,

(2) to have the compiler reorder the code to eliminate dependencies (inserting nops when this
is impossible),

(3) to have the hardware stall (or flush) the pipeline when there is a dependency,

(4) to have the hardware forward results to earlier stages in the pipeline or stall when that is
impossible.

Options 1 and 2: Advantages of the first two methods are that no added hardware is required,
so area and, thus, cost and power is minimized. However, performance is not maximized in
cases where nops are inserted.

Option 3: The advantage of having the hardware flush or stall the pipeline as needed is that the
compiler can be simpler and, thus, likely faster to run and develop. Also, because there is no
forwarding hardware, the added hardware is minimal. However, again, performance is not
maximized in cases where forwarding could have been used instead of stalling.

Option 4: This option offers the greatest performance advantage but also costs the most
hardware for forwarding, stalling, and flushing the pipeline as necessary because of
dependencies.

A combination of options 2 and 4 offers the greatest performance advantage at the cost of
more hardware and a more sophisticated compiler.

Question 7.4

A superscalar processor duplicates the datapath hardware to execute multiple instructions (in
the same stage of a pipelined processor) at once. Ideally, the fetch stage can fetch multiple
instructions per clock cycle. However, due to dependencies, this may be impossible. Thus, the
costs of implementing a superscalar processor are (1) more hardware (additional register file
and memory ports, additional functional units, more hazard detection and forwarding
hardware, etc.), and (2) more complex fetch and commit (execution completion) algorithms.
Also, because of dependencies, superscalar processors are often underutilized. Thus, for
programs with a large amount of dependencies, superscalar processors can consume more
area, power and cost (because of the additional hardware) without providing any speedup.

467 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CHAPTER 8

Exercise 8.1

Answers will vary.

Temporal locality: (1) making phone calls (if you called someone recently, you’re likely to call
them again soon). (2) using a textbook (if you used a textbook recently, you will likely use it
again soon).

Spatial locality: (1) reading a magazine (if you looked at one page of the magazine, you’re likely
to look at next page soon). (2) walking to locations on campus - if a student is visiting a
professor in the engineering department, she or he is likely to visit another professor in the
engineering department soon.

Exercise 8.2

Answers will vary.

Spatial locality: One program that exhibits spatial locality is an mp3 player. Suppose a song is
stored in a file as a long string of bits. If the computer is playing one part of the song, it will
need to fetch the bits immediately adjacent to the ones currently being read (played).

Temporal locality: An application that exhibits temporal locality is a Web browser. If a user
recently visited a Web site, the user is likely to peruse that Web site again soon.

Exercise 8.3

Repeat data accesses to the following addresses:

0x0 0x10 0x20 0x30 0x40
The miss rate for the fully associative cache is: 100%. Miss rate for the direct-mapped cache is
2/5 = 40%.

Exercise 8.4

Repeat data accesses to the following addresses:

468 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

0x0 0x40 0x80 0xCO
They all map to set 0 of the direct-mapped cache, but they fit in the fully associative cache.
After many repetitions, the miss rate for the fully associative cache approaches 0%. The miss
rate for the direct-mapped cache is 100%.

Exercise 8.5

(a) Increasing block size will increase the cache’s ability to take advantage of spatial locality.
This will reduce the miss rate for applications with spatial locality. However, it also decreases
the number of locations to map an address, possibly increasing conflict misses. Also, the miss
penalty (the amount of time it takes to fetch the cache block from memory) increases.

(b) Increasing the associativity increases the amount of necessary hardware but in most cases
decreases the miss rate. Associativities above 8 usually show only incremental decreases in
miss rate.

(c) Increasing the cache size will decrease capacity misses and could decrease conflict misses. It
could also, however, increase access time.

Exercise 8.6

Usually. Associative caches usually have better miss rates than direct-mapped caches of the
same capacity and block size because they have fewer conflict misses. However, pathological
cases exist where thrashing can occur, causing the set associative cache to have a worse miss
rate.

Exercise 8.7

(a) False.
Counterexample: A 2-word cache with block size of 1 word and access pattern:
048
This has a 50% miss rate with a direct-mapped cache, and a100% miss rate with a 2-way set
associative cache.
(b) True.
The 16KB cache is a superset of the 8KB cache. (Note: it’s possible that they have the same miss
rate.)
(c) Usually true.
Instruction memory accesses display great spatial locality, so a large block size reduces the miss
rate.

469 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 8.8

(a) b xS x N x 4 bytes

(b) [A - (loga(S) + loga(b) +2)] x Sx N
(c)S=1,N=C/b

(d)S=C/b

Exercise 8.9

The figure below shows where each address maps for each cache configuration.

Set15 | 7C
78
74
70
20
Set 7 9C 1C 7/C 9C 1C 78-7C
98 18 78 98 18 70-74
94 14 74 94 14
90 10 70 90 10 20-24
4C8CC 4C 8C C 98-9C 18-1C
48 88 8 48 88 8 90-94 10-14
44 84 4 44 84 4 48-4C 88-8C 8-C
Set0 40 80 0 40 80 020 40-44 80-84 0-4
(a) Direct Mapped (c) 2-way assoc (d) direct mapped b=2

(a) 80% miss rate. Addresses 70-7C and 20 use unique cache blocks and are not removed once
placed into the cache. Miss rate is 20/25 = 80%.

(b) 100% miss rate. A repeated sequence of length greater than the cache size produces no hits
for a fully-associative cache using LRU.

(c) 100% miss rate. The repeated sequence makes at least three accesses to each set during
each pass. Using LRU replacement, each value must be replaced each pass through.

(d) 40% miss rate. Data words from consecutive locations are stored in each cache block. The
larger block size is advantageous since accesses in the given sequence are made primarily to
consecutive word addresses. A block size of two cuts the number of block fetches in half since
two words are obtained per block fetch. The address of the second word in the block will
always hit in this type of scheme (e.g. address 44 of the 40-44 address pair). Thus, the second

470 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

consecutive word accesses always hit: 44, 4C, 74, 7C, 84, 8C, 94, 9C, 4, C, 14, 1C. Tracing block
accesses (see Figure 8.1) shows that three of the eight blocks (70-74, 78-7C, 20-24) also remain
in memory. Thus, the hit rate is: 15/25 = 60% and miss rate is 40%.

Exercise 8.10

(a) 11/14 = 79% miss rate
(b) 12/14 = 86% miss rate
(c) 6/14 = 43% miss rate
(d) 7/14 = 50% miss rate

Exercise 8.11

(a) 128
(b) 100%
(c)ii

Exercise 8.12

(a-b)

Block Byte

Memory Tag Set Offset Offset

Address

31:c-n+3 c+2-n:b' b'-1:2 1:0

(c) Each tag is 32 - (c+2-n) bits = (30 - (c-n)) bits
(d) # tag bits x # blocks = (30 - (c-n)) x 2 c+2-b'

471 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 8.13

(a)
Block Byte

Tag Set Offset Offset
16 bits | 13 bits| 1 bit | 2 bits
31:16 15:3 2 1:0

Memory
Address

(b) Each tag is 16 bits. There are 32Kwords / (2 words / block) = 16K blocks and each block
needs a tag: 16 x 16K = 218 = 256 Kbits of tags.

(c) Each cache block requires: 2 status bits, 16 bits of tag, and 64 data bits, thus each set is 2 x
82 bits = 164 bits.

(d) See figure below. The design must use enough RAM chips to handle both the total capacity
and the number of bits that must be read on each cycle. For the data, the SRAM must provide a
capacity of 128 KB and must read 64 bits per cycle (one 32-bit word from each way). Thus the
design needs at least 128KB / (8KB/RAM) = 16 RAMs to hold the data and 64 bits / (4 pins/RAM)
= 16 RAMs to supply the number of bits. These are equal, so the design needs exactly 16 RAMs
for the data.

For the tags, the total capacity is 32 KB, from which 32 bits (two 16-bit tags) must be read each
cycle. Therefore, only 4 RAMs are necessary to meet the capacity, but 8 RAMs are needed to
supply 32 bits per cycle. Therefore, the design will need 8 RAMs, each of which is being used at
half capacity.

With 8K sets, the status bits require another 8K x 4-bit RAM. We use a 16K x 4-bit RAM, using
only half of the entries.

472 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

1 SRAM block for

8 SRAM blocks for tags 16 SRAM blocks for data

status bits
| | I | | |
Address153 . 1314 16K_X 1 16KlX 1a 16K.X Addressﬁz 1 16KlX 1a 16KlX
ﬁihm 4-bit - —— — —=<— 4-bit 4-bit ——— 4-bit |————=—~ 4-bit
SRAM SRAM SRAM SRAM cee SRAM
4o I 4 4 1 T 2
3128 |2725 |2421 |s5 I74 30 2128 I2725 30 |74
Address,, ..,
16 16 jIzz :|32
= . | = o/
Hit1 =\
Hit0 Valid,., N
0 2
\ T/
H*H 5 Data,,.,
\ "s‘
\T/
Hit Dirty,

Bits 15:2 of the address select the word within a set and block. Bits 15-3 select the set. Bits
31:16 of the address are matched against the tags to find a hit in one (or none) of the two
blocks with each set.

Exercise 8.14

(a) The word in memory might be found in two locations, one in the on-chip cache, and one in
the off-chip cache.

(b) For the first-level cache, the number of sets, S =512 / 4 = 128 sets. Thus, 7 bits of the
address are set bits. The block size is 16 bytes / 4 bytes/word = 4 words, so there are 2 block
offset bits. Thus, the number of tag bits for the first-level cache is 32 - (7+2+2) = 21 bits.

For the second-level cache, the number of sets is equal to the number of blocks, S = 256 Ksets.
Thus, 18 bits of the address are set bits. The block size is 16 bytes / 4 bytes/word = 4 words, so
there are 2 block offset bits. Thus, the number of tag bits for the second-level cache is 32 -
(18+2+2) = 10 bits.

(c) From Equation 8.2, AMAT = t.ache + MRcache(tvm + MRy tym). In this case, there is no virtual
memory but there is an L2 cache. Thus,
AMAT = tcache + MRcache(tLZmChe + MRLanche tMM)

where, MR is the miss rate. In terms of hit rate, MRcache = 1 - HRcache, aNd MR 2cache = 1- HR2¢ache-
Using the values given in Table 8.6,

473 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

AMAT =t + (1- A)(tp + (1 - B) t,)
(d) When the first-level cache is enabled, the second-level cache receives only the “hard”
accesses, ones that don’t show enough temporal and spatial locality to hit in the first-level
cache. The “easy” accesses (ones with good temporal and spatial locality) hit in the first-level
cache, even though they would have also hit in the second-level cache. When the first-level
cache is disabled, the hit rate goes up because the second-level cache supplies both the “easy”
accesses and some of the “hard” accesses.

Exercise 8.15

(a) FIFO: FIFO replacement approximates LRU replacement by discarding data that has been in
the cache longest (and is thus least likely to be used again). A FIFO cache can be stored as a
gueue, so the cache need not keep track of the least recently used way in an N-way set-
associative cache. It simply loads a new cache block into the next way upon a new access. FIFO
replacement doesn’t work well when the least recently used data is not also the data fetched
longest ago.

Random: Random replacement requires less overhead (storage and hardware to update status
bits). However, a random replacement policy might randomly evict recently used data. In
practice random replacement works quite well.

(b) FIFO replacement would work well for an application that accesses a first set of data, then
the second set, then the first set again. It then accesses a third set of data and finally goes back
to access the second set of data. In this case, FIFO would replace the first set with the third set,
but LRU would replace the second set. The LRU replacement would require the cache to pullin
the second set of data twice.

Exercise 8.16

(a) AMAT = teache + MRcache tmm

With a cycle time of 1/1 GHz = 1 ns,
AMAT =1 ns + 0.05(60 ns) = 4 ns

(b) CPlI=4 + 4 = 8 cycles (for a load)
CPl=4 + 3 =7 cyles (for a store)

(c) Average CPI1=(0.11 + 0.02)(3) + (0.52)(4) + (0.1)(7) + (0.25)(8) = 5.17

474 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(d) Average CPI =5.17 + 0.07(60) = 9.37

Exercise 8.17

(a) AMAT = teache + MRcache tmm

With a cycle time of 1/1 GHz = 1 ns,
AMAT =1ns +0.15(200 ns) =31 ns

(b) CPl =31 + 4 =35 cycles (for a load)
CPl =31 + 3 =34 cyles (for a store)

(c) Average CPI = (0.11 + 0.02)(3) + (0.52)(4) + (0.1)(34) + (0.25)(35) = 14.6

(d) Average CPI=14.6 + 0.1(200) = 34.6

Exercise 8.18

2% bytes = 2* exabytes = 16 exabytes

Exercise 8.19

From Figure 8.4, $1 million will buy about ($1 million / (50.05/GB)) = 20 million GB of hard disk:
20 million GB = 2% x 2°% bytes = 2°° bytes = 2° petabytes = 32 petabytes

$1 million will buy about ($1,000,000 / (57/GB)) 143,000 GB of DRAM.
143,000 GB = 27 x 2'%x 23 = 2*” bytes= 2’ terabytes = 128 terabytes

Thus, the system would need 47 bits for the physical address and 55 bits for the virtual address.

Exercise 8.20

(a) 23 bits

(b) 2°%/2% = 2*° virtual pages

(c) 8 MB / 4 KB = 2%%/2"? = 2" physical pages

(d) virtual page number: 20 bits; physical page number = 11 bits

(e) # virtual pages / # physical pages = 29 virtual pages mapped to each physical page.

475 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Imagine a program around memory address 0x01000000 operating on data around address
0x00000000. Physical page 0 would constantly be swapped between these two virtual pages,
causing severe thrashing.

(f) 2%° page table entries (one for each virtual page).

(g) Each entry uses 11 bits of physical page number and 2 bits of status information.

Thus, 2 bytes are needed for each entry (rounding 13 bits up to the nearest number of bytes).
(h) The total table size is 2** bytes.

Physical
DV Page Number

220 entries

< 2bytess >

Exercise 8.21

(a) 31 bits

(b) 2°°/2" = 238 virtual pages

(c) 2 GB / 4 KB = 2*1/2"? = 2 physical pages

(d) virtual page number: 38 bits; physical page number = 19 bits

(e) 2°® page table entries (one for each virtual page).

(f) Each entry uses 19 bits of physical page number and 2 bits of status information. Thus, 3
bytes are needed for each entry (rounding 21 bits up to thevnearest number of bytes).
(h)The total table size is 3 x 2*® bytes.

Exercise 8.22

(a) From Equation 8.2, AMAT = tcache + MRcache (tmm + MRum tum).
However, each data access now requires an address translation (page table or TLB lookup).
Thus,

Without the TLB:

AMAT = tym + [tcache + MRcache (tMM + MRuwm tVM)]

AMAT =100 + [1 + 0.02(100 + 0.000003(1,000,000))] cycles = 103.06 cycles

476 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

With the TLB:

AMAT = [trig + MRris(tmm)] + [teache + MRcache (tmm + MRum tum)]

AMAT = [1 + 0.0005(100)] + [1 + 0.02(100 + 0.000003 x 1,000,000)] cycles
=4.11 cycles

(b) # bits per entry = valid bit + tag bits + physical page number
1 valid bit

tag bits = virtual page number = 20 bits

physical page number = 11 bits

Thus, # bits per entry =1 + 20 + 11 = 32 bits
Total size of the TLB = 64 x 32 bits = 2048 bits

(c)

Way 127 Way 126 Way 125 Way 124 Way 1 Way 0
I 1 10] 1 I 10 1
\VV Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
[VPN[PPN| | | [1 [| [oeee [| [| I

1 bit 58 bits 19 bits

(d) 1 x 2048 bit SRAM

Exercise 8.23

(a) 1 valid bit + 19 data bits (PPN) + 38 tag bits (VPN) x 128 entries = 58 x 128 bits = 7424 bits

(b)

Way 127 Way 126 Way 125 Way 124 Way 1 Way 0
| 10 10] 1 | 10 1
V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data
[IVPN[PPN[| | [[] [] [oeee LT | [[] I

1 bit 58 bits 19 bits

(c) 128 x 58-bit SRAM

Exercise 8.24

(a)

477 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CLK
Valid
PCWrite

AdrSre|control
MemWrite| Unit

IRWrite ResultSrc
31:28 Cond ALUControl
27:26 op ALUSrcB
25:20 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite

ALUFlags

Valid

CLK CLK CLK
CLK I ‘ -
WE WE3 CLK
pc | [M] pc RD Al rRO1T [(H A 0
EN A ALUResul ALUOut o
Instr / Data A2 RD2 HH G0 o1
Memory 7y = 10
WD 2 A3 Register N
g wpD3 File g
o R15 o

—

CLK /
20 Extend
| E—

Data

Extlmm

Result

(b) Each instruction and data access now takes at least one additional clock cycle. On each
access, the virtual address (VAdr in Figure 8.3) needs to be translated to a physical address
(PAdr). Upon a TLB miss, the page table in main memory must be accessed.

Exercise 8.25

(a) Each entry in the page table has 2 status bits (V and D), and a physical page number (22-16 =
6 bits). The page table has 2% ' = 2° entries.
Thus, the total page table size is 2° x 8 bits = 4096 bits

(b) This would increase the virtual page number to 25 - 14 = 11 bits, and the physical page
number to 22 - 14 = 8 bits. This would increase the page table size to:
2" x 10 bits = 20480 bits

This increases the page table by 5 times, wasted valuable hardware to store the extra page
table bits.

(c) Yes, this is possible. In order for concurrent access to take place, the number of set + block
offset + byte offset bits must be less than the page offset bits.

(d) It is impossible to perform the tag comparison in the on-chip cache concurrently with the
page table access because the upper (most significant) bits of the physical address are unknown
until after the page table lookup (address translation) completes.

478 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 8.26

An application that accesses large amounts of data might be written to localize data accesses to
a small number of virtual pages. Particularly, data accesses can be localized to the number of
pages that fit in physical memory. If the virtual memory has a TLB that has fewer entries than
the number of physical pages, accesses could be localized to the number of entries in the TLB,
to avoid the need of accessing the page table to perform address translation.

Exercise 8.27

(a) 2*2 bytes = 4 gigabytes

(b) The amount of the hard disk devoted to virtual memory determines how many applications
can run and how much virtual memory can be devoted to each application.

(c) The amount of physical memory affects how many physical pages can be accessed at once.
With a small main memory, if many applications run at once or a single application accesses
addresses from many different pages, thrashing can occur. This can make the applications
dreadfully slow.

Question 8.1

Caches are categorized based on the number of blocks (B) in a set. In a direct-mapped cache,
each set contains exactly one block, so the cache has S = B sets. Thus a particular main memory
address maps to a unique block in the cache. In an N-way set associative cache, each set
contains N blocks. The address still maps to a unique set, with S = B / N sets. But the data from
that address can go in any of the N blocks in the set. A fully associative cache has only S = 1 set.
Data can go in any of the B blocks in the set. Hence, a fully associative cache is another name
for a B-way set associative cache.

A direct mapped cache performs better than the other two when the data access pattern is to
sequential cache blocks in memory with a repeat length one greater than the number of blocks
in the cache.

An N-way set-associative cache performs better than the other two when N sequential block
accesses map to the same set in the set-associative and direct-mapped caches. The last set has
N+1 blocks that map to it. This access pattern then repeats.

479 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

In the direct-mapped cache, the accesses to the same set conflict, causing a 100% miss rate. But
in the set-associative cache all accesses (except the last one) don’t conflict. Because the
number of block accesses in the repeated pattern is one more than the number of blocks in the
cache, the fully associative cache also has a 100% miss rate.

A fully associative cache performs better than the other two when the direct- mapped and set-
associative accesses conflict and the fully associative accesses don’t. Thus, the repeated pattern
must access at most B blocks that map to conflicting sets in the direct and set-associative
caches.

Question 8.2

Virtual memory systems use a hard disk to provide an illusion of more capacity than actually
exists in the main (physical) memory. The main memory can be viewed as a cache for the most
commonly used pages from the hard disk. Pages in virtual memory may or may not be resident
in physical memory. The processor detects which pages are in virtual memory by reading the
page table, that tells where a page is resident in physical memory or that it is resident on the
hard disk only. The page table is usually so large that it is resident in physical memory. Thus,
each data access requires potentially two main memory accesses instead of one. A translation
lookaside buffer (TLB) holds a subset of the most recently accessed TLB entries to speedup the
translation from virtual to physical addresses.

Question 8.3

The advantages of using a virtual memory system are the illusion of a larger memory without
the expense of expanding the physical memory, easy relocation of programs and data, and
protection between concurrently running processes. The disadvantages are a more complex
memory system and the sacrifice of some physical and possibly virtual memory to store the
page table.

Question 8.4

If the virtual page size is large, a single cache miss could have a large miss penalty. However, if
the application has a large amount of spatial locality, that page will likely be accessed again,
thus amortizing the penalty over many accesses. On the other hand, if the virtual page size is
small, cache accesses might require frequent accesses to the hard disk.

	Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

