
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © Elsevier 2015
SOLUTIONS

S O L U T I O N S 1
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
CHAPTER 1

Exercise 1.1

(a) Biologists study cells at many levels. The cells are built from organelles
such as the mitochondria, ribosomes, and chloroplasts. Organelles are built of
macromolecules such as proteins, lipids, nucleic acids, and carbohydrates.
These biochemical macromolecules are built simpler molecules such as carbon
chains and amino acids. When studying at one of these levels of abstraction, bi-
ologists are usually interested in the levels above and below: what the structures
at that level are used to build, and how the structures themselves are built.

(b) The fundamental building blocks of chemistry are electrons, protons,
and neutrons (physicists are interested in how the protons and neutrons are
built). These blocks combine to form atoms. Atoms combine to form molecules.
For example, when chemists study molecules, they can abstract away the lower
levels of detail so that they can describe the general properties of a molecule
such as benzene without having to calculate the motion of the individual elec-
trons in the molecule.

Exercise 1.2

(a) Automobile designers use hierarchy to construct a car from major as-
semblies such as the engine, body, and suspension. The assemblies are con-
structed from subassemblies; for example, the engine contains cylinders, fuel
injectors, the ignition system, and the drive shaft. Modularity allows compo-
nents to be swapped without redesigning the rest of the car; for example, the
seats can be cloth, leather, or leather with a built in heater depending on the
model of the vehicle, so long as they all mount to the body in the same place.
Regularity involves the use of interchangeable parts and the sharing of parts be-
tween different vehicles; a 65R14 tire can be used on many different cars.

2 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
(b) Businesses use hierarchy in their organization chart. An employee re-
ports to a manager, who reports to a general manager who reports to a vice pres-
ident who reports to the president. Modularity includes well-defined interfaces
between divisions. The salesperson who spills a coke in his laptop calls a single
number for technical support and does not need to know the detailed organiza-
tion of the information systems department. Regularity includes the use of stan-
dard procedures. Accountants follow a well-defined set of rules to calculate
profit and loss so that the finances of each division can be combined to deter-
mine the finances of the company and so that the finances of the company can
be reported to investors who can make a straightforward comparison with other
companies.

Exercise 1.3

Ben can use a hierarchy to design the house. First, he can decide how many
bedrooms, bathrooms, kitchens, and other rooms he would like. He can then
jump up a level of hierarchy to decide the overall layout and dimensions of the
house. At the top-level of the hierarchy, he material he would like to use, what
kind of roof, etc. He can then jump to an even lower level of hierarchy to decide
the specific layout of each room, where he would like to place the doors, win-
dows, etc. He can use the principle of regularity in planning the framing of the
house. By using the same type of material, he can scale the framing depending
on the dimensions of each room. He can also use regularity to choose the same
(or a small set of) doors and windows for each room. That way, when he places
a new door or window he need not redesign the size, material, layout specifica-
tions from scratch. This is also an example of modularity: once he has designed
the specifications for the windows in one room, for example, he need not re-
specify them when he uses the same windows in another room. This will save
him both design time and, thus, money. He could also save by buying some
items (like windows) in bulk.

Exercise 1.4

An accuracy of +/- 50 mV indicates that the signal can be resolved to 100
mV intervals. There are 50 such intervals in the range of 0-5 volts, so the signal
represents log250 = 5.64 bits of information.

Exercise 1.5

(a) The hour hand can be resolved to 12 * 4 = 48 positions, which represents
log248 = 5.58 bits of information. (b) Knowing whether it is before or after noon

adds one more bit.

S O L U T I O N S 3
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 1.6

Each digit conveys log260 = 5.91 bits of information. 400010 = 1 6 4060 (1

in the 3600 column, 6 in the 60’s column, and 40 in the 1’s column).

Exercise 1.7

216 = 65,536 numbers.

Exercise 1.8

232-1 = 4,294,967,295

Exercise 1.9

(a) 216-1 = 65535; (b) 215-1 = 32767; (c) 215-1 = 32767

Exercise 1.10

(a) 232-1 = 4,294,967,295; (b) 231-1 = 2,147,483,647; (c) 231-1 =
2,147,483,647

Exercise 1.11

(a) 0; (b) -215 = -32768; (c) -(215-1) = -32767

Exercise 1.12

(a) 0; (b) -231 = -2,147,483,648; (c) -(231-1) = -2,147,483,647;

Exercise 1.13

(a) 10; (b) 54; (c) 240; (d) 2215

Exercise 1.14

(a) 14; (b) 36; (c) 215; (d) 15,012

Exercise 1.15

(a) A; (b) 36; (c) F0; (d) 8A7

4 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
Exercise 1.16

(a) E; (b) 24; (c) D7; (d) 3AA4

Exercise 1.17

(a) 165; (b) 59; (c) 65535; (d) 3489660928

Exercise 1.18

(a) 78; (b) 124; (c) 60,730; (d) 1,077,915, 649

Exercise 1.19

(a) 10100101; (b) 00111011; (c) 1111111111111111;
(d) 11010000000000000000000000000000

Exercise 1.20

(a) 1001110; (b) 1111100; (c) 1110110100111010; (d) 100 0000 0011
1111 1011 0000 0000 0001

Exercise 1.21

(a) -6; (b) -10; (c) 112; (d) -97

Exercise 1.22

(a) -2 (-8+4+2 = -2 or magnitude = 0001+1 = 0010: thus, -2); (b) -29 (-32
+ 2 + 1 = -29 or magnitude = 011100+1 = 011101: thus, -29); (c) 78; (d) -75

Exercise 1.23

(a) -2; (b) -22; (c) 112; (d) -31

Exercise 1.24

(a) -6; (b) -3; (c) 78; (d) -53

Exercise 1.25

(a) 101010; (b) 111111; (c) 11100101; (d) 1101001101

S O L U T I O N S 5
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 1.26

(a) 1110; (b) 110100; (c) 101010011; (d) 1011000111

Exercise 1.27

(a) 2A; (b) 3F; (c) E5; (d) 34D

Exercise 1.28

(a) E; (b) 34; (c) 153; (d) 2C7;

Exercise 1.29

(a) 00101010; (b) 11000001; (c) 01111100; (d) 10000000; (e) overflow

Exercise 1.30

(a) 00011000; (b) 11000101; (c) overflow; (d) overflow; (e) 01111111\

Exercise 1.31

00101010; (b) 10111111; (c) 01111100; (d) overflow; (e) overflow

Exercise 1.32

(a) 00011000; (b) 10111011; (c) overflow; (d) overflow; (e) 01111111

Exercise 1.33

(a) 00000101; (b) 11111010

Exercise 1.34

(a) 00000111; (b) 11111001

Exercise 1.35

(a) 00000101; (b) 00001010

Exercise 1.36

(a) 00000111; (b) 00001001

Exercise 1.37

6 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
(a) 52; (b) 77; (c) 345; (d) 1515

Exercise 1.38

(a) 0o16; (b) 0o64; (c) 0o339; (d) 0o1307

Exercise 1.39

(a) 1000102, 2216, 3410; (b) 1100112, 3316, 5110; (c) 0101011012, AD16,

17310; (d) 0110001001112, 62716, 157510

Exercise 1.40

(a) 0b10011; 0x13; 19; (b) 0b100101; 0x25; 37; (c) 0b11111001; 0xF9;
249; (d) 0b10101110000; 0x570; 1392

Exercise 1.41

15 greater than 0, 16 less than 0; 15 greater and 15 less for sign/magnitude

Exercise 1.42

(26-1) are greater than 0; 26 are less than 0. For sign/magnitude numbers,
(26-1) are still greater than 0, but (26-1) are less than 0.

Exercise 1.43

4, 8

Exercise 1.44

8

Exercise 1.45

5,760,000

Exercise 1.46

(5 × 109 bits/second)(60 seconds/minute)(1 byte/8 bits) = 3.75 × 1010
bytes

Exercise 1.47

46.566 gigabytes

S O L U T I O N S 7
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 1.48

2 billion

Exercise 1.49

128 kbits

Exercise 1.50

Exercise 1.51

Exercise 1.52

(a) 1101; (b) 11000 (overflows)

Exercise 1.53

-4 -3 -2 -1 0 1 2 3 4 5 6 7

100 101 110 111 000 001 010 011 Two's Complement

100
101110111

000
001 010 011

000 001 010 011 100 101 110 111

Sign/Magnitude

Unsigned

-2 -1 0 1 2 3

10 11 00 01 Two's Complement

10
11

00
01

00 01 10 11

Sign/Magnitude

Unsigned

8 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
(a) 11011101; (b) 110001000 (overflows)

Exercise 1.54

(a) 11012, no overflow; (b) 10002, no overflow

Exercise 1.55

(a) 11011101; (b) 110001000

Exercise 1.56

(a) 010000 + 001001 = 011001;
(b) 011011 + 011111 = 111010 (overflow);
(c) 111100 + 010011 = 001111;
(d) 000011 + 100000 = 100011;
(e) 110000 + 110111 = 100111;
(f) 100101 + 100001 = 000110 (overflow)

Exercise 1.57

(a) 000111 + 001101 = 010100
(b) 010001 + 011001 = 101010, overflow
(c) 100110 + 001000 = 101110
(d) 011111 + 110010 = 010001
(e) 101101 + 101010 = 010111, overflow
(f) 111110 + 100011 = 100001

Exercise 1.58

(a) 10; (b) 3B; (c) E9; (d) 13C (overflow)

Exercise 1.59

(a) 0x2A; (b) 0x9F; (c) 0xFE; (d) 0x66, overflow

Exercise 1.60

(a) 01001 - 00111 = 00010; (b) 01100 - 01111 = 11101; (c) 11010 - 01011
= 01111; (d) 00100 - 11000 = 01100

Exercise 1.61

(a) 010010 + 110100 = 000110; (b) 011110 + 110111 = 010101; (c) 100100
+ 111101 = 100001; (d) 110000 + 101011 = 011011, overflow

S O L U T I O N S 9
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 1.62

(a) 3; (b) 01111111; (c) 000000002 = -12710; 111111112 = 12810

Exercise 1.63

Exercise 1.64

(a) 001010001001; (b) 951; (c) 1000101; (d) each 4-bit group represents
one decimal digit, so conversion between binary and decimal is easy. BCD can
also be used to represent decimal fractions exactly.

Exercise 1.65

(a) 0011 0111 0001
(b) 187
(c) 95 = 1011111
(d) Addition of BCD numbers doesn't work directly. Also, the representa-

tion doesn't maximize the amount of information that can be stored; for example
2 BCD digits requires 8 bits and can store up to 100 values (0-99) - unsigned 8-
bit binary can store 28 (256) values.

Exercise 1.66

Three on each hand, so that they count in base six.

Exercise 1.67

Both of them are full of it. 4210 = 1010102, which has 3 1’s in its represen-

tation.

Exercise 1.68

Both are right.

Exercise 1.69

#include <stdio.h>

-3 -2 -1 0 1 2 3 4

000 001 010 011 100 101 110 111 Biased

10 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
void main(void)
{

char bin[80];
int i = 0, dec = 0;

printf("Enter binary number: ");
scanf("%s", bin);

while (bin[i] != 0) {
if (bin[i] == '0') dec = dec * 2;
else if (bin[i] == '1') dec = dec * 2 + 1;
else printf("Bad character %c in the number.\n", bin[i]);
i = i + 1;

}
printf("The decimal equivalent is %d\n", dec);

}

Exercise 1.70

/* This program works for numbers that don't overflow the
 range of an integer. */

#include <stdio.h>

void main(void)
{

int b1, b2, digits1 = 0, digits2 = 0;
char num1[80], num2[80], tmp, c;
int digit, num = 0, j;

printf ("Enter base #1: "); scanf("%d", &b1);
printf ("Enter base #2: "); scanf("%d", &b2);
printf ("Enter number in base %d ", b1); scanf("%s", num1);

while (num1[digits1] != 0) {
c = num1[digits1++];
if (c >= 'a' && c <= 'z') c = c + 'A' - 'a';
if (c >= '0' && c <= '9') digit = c - '0';
else if (c >= 'A' && c <= 'F') digit = c - 'A' + 10;
else printf("Illegal character %c\n", c);
if (digit >= b1) printf("Illegal digit %c\n", c);
num = num * b1 + digit;

}
while (num > 0) {

digit = num % b2;
num = num / b2;
num2[digits2++] = digit < 10 ? digit + '0' : digit + 'A' -

10;
}
num2[digits2] = 0;

for (j = 0; j < digits2/2; j++) { // reverse order of digits
tmp = num2[j];
num2[j] = num2[digits2-j-1];
num2[digits2-j-1] = tmp;

}

printf("The base %d equivalent is %s\n", b2, num2);
}

Exercise 1.71

S O L U T I O N S 11
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
XOR3

Y = A + B + C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
0
1
0
0
1

XNOR4

Y = A + B + C + D

A
B YC

B D Y
0 0 1
0 1 0
1 0 0
1 1 1

C
0
0
0
0

0 0 0
0 1 1
1 0 1
1 1 0

1
1
1
1

A

0 0 0
0 1 1
1 0 1
1 1 0

0
0
0
0

0 0 1
0 1 0
1 0 0
1 1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

D

OR3

Y = A+B+C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
1
1
1
1
1
1

(a) (b)

(c)

12 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
Exercise 1.72

Exercise 1.73

XNOR3

Y = A + B + C

B C Y
0 0
0 1
1 0
1 1

A
B
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
0
0
1
0
1
1
0

NAND5

Y = ABCDE

C D E
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

A

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

OR4

Y = A+B+C+D

Y

(b)

A
B
C
D

B D Y
0 0 0
0 1 1
1 0 1
1 1 1

C
0
0
0
0

0 0 1
0 1 1
1 0 1
1 1 1

1
1
1
1

A

0 0 1
0 1 1
1 0 1
1 1 1

0
0
0
0

0 0 1
0 1 1
1 0 1
1 1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1(a)

Y Y
A
B
C
D
E

Y
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1(c)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0

S O L U T I O N S 13
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 1.74

Exercise 1.75

Exercise 1.76

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
1
0
1
1
1

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
1
0
1
0
1
1
1

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
0
1
0
1
0

14 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
Exercise 1.77

Exercise 1.78

VIL = 2.5; VIH = 3; VOL = 1.5; VOH = 4; NML = 1; NMH = 1

Exercise 1.79

No, there is no legal set of logic levels. The slope of the transfer character-
istic never is better than -1, so the system never has any gain to compensate for
noise.

Exercise 1.80

VIL = 2; VIH = 4; VOL = 1; VOH = 4.5; NML = 1; NMH = 0.5

A B Y
0 0 0
0 1 0
1 0 0
1 1 0

Zero

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A NOR B

A B Y
0 0 0
0 1 1
1 0 0
1 1 0

AB

A B Y
0 0 1
0 1 1
1 0 0
1 1 0

NOT A

A B Y
0 0 0
0 1 0
1 0 1
1 1 0

AB

A B Y
0 0 1
0 1 0
1 0 1
1 1 0

NOT B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

NAND

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

AND

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

A B Y
0 0 0
0 1 1
1 0 0
1 1 1

B

A B Y
0 0 1
0 1 1
1 0 0
1 1 1

A + B

A B Y
0 0 0
0 1 0
1 0 1
1 1 1

A

A B Y
0 0 1
0 1 0
1 0 1
1 1 1

A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

OR

A B Y
0 0 1
0 1 1
1 0 1
1 1 1

One

2
2

N

S O L U T I O N S 15
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 1.81

The circuit functions as a buffer with logic levels VIL = 1.5; VIH = 1.8; VOL
= 1.2; VOH = 3.0. It can receive inputs from LVCMOS and LVTTL gates be-

cause their output logic levels are compatible with this gate’s input levels. How-
ever, it cannot drive LVCMOS or LVTTL gates because the 1.2 VOL exceeds

the VIL of LVCMOS and LVTTL.

Exercise 1.82

(a) AND gate; (b) VIL = 1.5; VIH = 2.25; VOL = 0; VOH = 3

Exercise 1.83

(a) XOR gate; (b) VIL = 1.25; VIH = 2; VOL = 0; VOH = 3

Exercise 1.84

Exercise 1.85

Exercise 1.86

A

B

C

D

Y

(a)

A B

C

A

B

C
Y

(b) (c)

Y
A

B C

A B

C

A

B

C

Y

(b) (c)

Y
A

B

A BA

B

C
Y

(a)

16 S O L U T I O N S c h a p t e r 1

© 2015 Elsevier, Inc.
Exercise 1.87

XOR

Exercise 1.88

Exercise 1.89

Exercise 1.90

A B

C

B

A
Y

C

A

A

BB

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

B C Y
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
0
1
0
1
0
0
0

(a) (b) (c)

A B C
Y

A

B

C

Y
A

B

C

Y

weak

weak
weak

S O L U T I O N S 17
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Question 1.1

Question 1.2

4 times. Place 22 coins on one side and 22 on the other. If one side rises,
the fake is on that side. Otherwise, the fake is among the 20 remaining. From
the group containing the fake, place 8 on one side and 8 on the other. Again,
identify which group contains the fake. From that group, place 3 on one side and
3 on the other. Again, identify which group contains the fake. Finally, place 1
coin on each side. Now the fake coin is apparent.

Question 1.3

17 minutes: (1) designer and freshman cross (2 minutes); (2) freshman re-
turns (1 minute); (3) professor and TA cross (10 minutes); (4) designer returns
(2 minutes); (5) designer and freshman cross (2 minutes).

S O L U T I O N S 11
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
CHAPTER 2

Exercise 2.1

(a)

(b)

(c)
(d)

(e)

Exercise 2.2

(a)

(b)

(c)

(d)

(e)

Exercise 2.3

(a)

Y AB AB AB+ +=

Y ABC ABC+=

Y ABC ABC ABC ABC ABC+ + + +=

Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD+ + + + + +=

Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD+ + + + + + +=

Y AB AB AB+ +=

Y ABC ABC ABC ABC ABC+ + + +=

Y ABC ABC ABC+ +=

Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD+ + + + + +=

Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD+ + + + + +=

Y A B+ =

12 S O L U T I O N S c h a p t e r 2

C D+ + 

B C D+ + + 

D

© 2015 Elsevier, Inc.
(b)

(c)
(d)

(e)

Exercise 2.4

(a)

(b)

(c)
(d)

(e)

Exercise 2.5

(a)

(b)

(c)

(d)
(e)

This can also be expressed as:

Exercise 2.6

Y A B C+ +  A B C+ +  A B C+ +  A B C+ +  A B C+ +  A B C+ + =

Y A B C+ +  A B C+ +  A B C+ + =

Y A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + +  A B+
A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + + 

=

Y A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + +  A
A B C D+ + +  A B C D+ + +  A B C D+ + + 

=

Y A B+=

Y A B C+ +  A B C+ +  A B C+ + =

Y A B C+ +  A B C+ +  A B C+ +  A B C+ +  A B C+ + =

Y A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + + 
A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + + 
A B C D+ + + 

=

Y A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + + 
A B C D+ + +  A B C D+ + +  A B C D+ + +  A B C D+ + + 
A B C D+ + + 

=

Y A B+=

Y ABC ABC+=

Y AC AB AC+ +=

Y AB BD ACD+ +=

Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABC+ + + + + + +=

Y A B  C D  A B  C D +=

S O L U T I O N S 13
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(a) Y = A + B
(b) or

(c)

(d)

(e) or

Exercise 2.7

(a)

(b)

(c)

(d)

Y AC AC BC+ += Y AC AC AB+ +=

Y AB ABC+=

Y BC BD+=

Y AB ABC ACD+ += Y AB ABC BCD+ +=

A

B

Y

A
B

Y
C

A

B

Y
C

A B

Y

C D

14 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
(e)

Exercise 2.8

Exercise 2.9

A
B

YC
D

Y

(a)

A
B

(b)
B
C

A

Y or

B
A

C

Y

(c)
C
B

A

Y

(d)
D
B

C

Y

(e)

ABCD

Y

or

ABCD

Y

S O L U T I O N S 15
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(a) Same as 2.7(a)
(b)

(c)

(d)

A
B

Y
C

A B

Y

C

A B

Y

C D

16 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
(e)

Exercise 2.10

Y

A B C D

S O L U T I O N S 17
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.11

(a)

Y

(a)

A
B

(b)

or

(c)

Y

(d)
D
B

C

Y

(e)

ABCD

Y

A B C

Y

A B C

Y

A B C

A

B Y

18 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
(b)

(c)

(d)

(e)

Exercise 2.12

A

B Y

C

A

B

YC

A
B

Y

C

D

A
B

C
D

Y

S O L U T I O N S 19
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.13

(a) Y = AC + BC
(b) Y = A
(c) Y = A + B C + B D + BD

Exercise 2.14

(a)

(b)

Y

(a)

A
B

(b)

(c)

Y

(d)
D
B

C

Y

(e)

ABCD

Y

A B C

Y

A B C

Y AB=

Y A B C+ + ABC= =

20 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
(c)

Exercise 2.15

(a)

(b)

(c)

Exercise 2.16

Exercise 2.17

Y A B C D+ +  BCD+ ABCD BCD+= =

A
B Y
C

A Y

A

B
Y

C

D

Y

(a)

A
B

(b)

A
B
C

Y

(c)

Y

ABCD

S O L U T I O N S 21
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(a)

(b)

(c)

Exercise 2.18

(a)

(b)

(c)

Exercise 2.19

4 gigarows = 4 x 230 rows = 232 rows, so the truth table has 32 inputs.

Exercise 2.20

Y B AC+=

B
Y

C
A

Y AB=

B
Y

A

Y A BC DE+ +=

B

Y

A DC E

Y B C+=

Y A C+ D B+=

Y BDE BD A C +=

22 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
Exercise 2.21

Ben is correct. For example, the following function, shown as a K-map, has

two possible minimal sum-of-products expressions. Thus, although and

 are both prime implicants, the minimal sum-of-products expression does
not have both of them.

Exercise 2.22

(a)

B

A
Y

Y = A

ACD

BCD

01 11

1

0

0

0

1

1

1

001

0

1

0

0

0

0

0

0

11

10

00

00

10
AB

CD

Y

ABD

ACD

ABC

Y = ABD + ABC + ACD

01 11

1

0

0

0

1

1

1

001

0

1

0

0

0

0

0

0

11

10

00

00

10
AB

CD

Y

ABD

ABC

Y = ABD + ABC + BCD

BCD

B
0
1

B B
0
1

S O L U T I O N S 23
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(b)

(c)

Exercise 2.23

Exercise 2.24

Exercise 2.25

C D (B C) + (B D)
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

B (C + D)
0
0
0
0
0
1
1
1

0
0
0
0
0
1
1
1

B C (B C) + (B C)
0 0
0 1
1 0
1 1

0
0
1
1

0 0
0 1
1 0
1 1

B2

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
0

1
1
1
1
1
1
1
0

B1 B0 B2 B1 B0 B2 + B1 + B0

Y AD ABC ACD ABCD+ + +=

Z ACD BD+=

24 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
Exercise 2.26

Y = (A + B)(C + D) + E

01 11

0

1

0

1

0

1

0

101

1

0

1

0

1

0

1

1

11

10

00

00

10
AB

CD

Y

D

ABC

01 11

0

0

0

1

1

1

0

101

0

0

1

0

1

0

0

0

11

10

00

00

10
AB

CD

Z

BD

Y = ABC + D

ACD

Z = ACD + BD

D

Y

BA C

Z

A
B

C
D
E Y

S O L U T I O N S 25
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.27

Exercise 2.28

Two possible options are shown below:

Exercise 2.29

A
B

D

E

F

Y

G

C

Y = ABC + D + (F + G)E

 = ABC + D + EF + EG

01 11

X

X

0

X

1

1

1

001

0

X

X

0

1

X

1

X

11

10

00

00

10
AB

CD

Y

Y = AD + AC + BD

01 11

X

X

0

X

1

1

1

001

0

X

X

0

1

X

1

X

11

10

00

00

10
AB

CD

Y

Y = A(B + C + D)(a) (b)

26 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
Two possible options are shown below:

Exercise 2.30

Option (a) could have a glitch when A=1, B=1, C=0, and D transitions from
1 to 0. The glitch could be removed by instead using the circuit in option (b).

Option (b) does not have a glitch. Only one path exists from any given input
to the output.

Exercise 2.31

Exercise 2.32

Exercise 2.33

The equation can be written directly from the description:

A
B
C
D

Y

(b)(a)

C
A

D

B

Y

Y AD ABCD BD CD+ + + ABCD D A B C+ + += =

Y

ABCD

E SA AL H+ +=

S O L U T I O N S 27
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.34

(a)

01 11

1

0

0

0

0

0

1

001

0

1

0

1

0

0

0

0

11

10

00

00

10
D3:2

Se

D1:0
01 11

1

0

1

1

0

0

1

101

0

0

0

1

0

0

0

0

11

10

00

00

10
D3:2

Sf

Sf = D3D1D0 + D3D2D1+ D3D2D0 + D3D2D1

D1:0

01 11

1

1

1

1

0

0

1

101

1

0

1

1

0

0

0

0

11

10

00

00

10
D3:2

Sc

Sc = D3D0 + D3D2 + D2D1

D1:0
01 11

1

0

0

1

0

0

1

001

1

1

0

1

0

0

0

0

11

10

00

00

10
D3:2

Sd

Sd = D3D1D0 + D3D2D1 +

 D2D1D0 + D3D2D1D0

D1:0

Se = D2D1D0 + D3D1D0

28 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
01 11

0

0

1

1

0

0

1

101

1

1

0

1

0

0

0

0

11

10

00

00

10
D3:2

Sg

Sg = D3D2D1 + D3D1D0+ D3D2D1 + D3D2D1

D1:0

S O L U T I O N S 29
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(b)

01 11

1

1

1

1

X

X

1

101

1

0

1

1

X

X

X

X

11

10

00

00

10
D3:2

Sc

Sc = D1 + D0 + D2

D1:0
01 11

1

0

0

1

X

X

1

001

1

1

0

1

X

X

X

X

11

10

00

00

10
D3:2

Sd

Sd = D2D1D0 + D2D0+ D2D1 + D1D0

D1:0

01 11

1

0

0

1

X

X

1

101

1

0

1

1

X

X

X

X

11

10

00

00

10
D3:2

Sa

Sa = D2D1D0 + D2D0 + D3 + D2D1 + D1D0

D1:0
01 11

1

1

1

0

X

X

1

101

1

1

1

0

X

X

X

X

11

10

00

00

10
D3:2

Sb

D1:0

Sb = D1D0 + D1D0 + D2

Sa = D2D1D0 + D2D0 + D3 + D1

30 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
01 11

1

0

0

0

X

X

1

001

0

1

0

1

X

X

X

X

11

10

00

00

10
D3:2

Se

D1:0
01 11

1

0

1

1

X

X

1

101

0

0

0

1

X

X

X

X

11

10

00

00

10
D3:2

Sf

Sf = D1D0 + D2D1+ D2D0 + D3

D1:0

01 11

0

0

1

1

X

X

1

101

1

1

0

1

X

X

X

X

11

10

00

00

10
D3:2

Sg

Sg = D2D1 + D2D0+ D2D1 + D3

D1:0

Se = D2D0 + D1D0

S O L U T I O N S 31
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(c)

Exercise 2.35

D3 D1D2 D0

Sa Sb Sc Sd Se Sf Sg

32 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
P has two possible minimal solutions:

Hardware implementations are below (implementing the first minimal
equation given for P).

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1
0
1
0
1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
1
0
1
0
0

A3 A1A2 A0 PD
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1

Decimal
Value

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

01 11

0

0

0

0

1

0

0

101

1

0

0

1

1

0

0

0

11

10

00

00

10
A3:2

D

A1:0
01 11

0

0

0

1

0

1

0

001

1

1

1

0

0

0

1

0

11

10

00

00

10
A3:2

P

A1:0

D = A3A2A1A0 + A3A2A1A0 + A3A2A1A0

 + A3A2A1A0 + A3A2A1A0

P = A3A2A0 + A3A1A0 + A3A2A1

 + A2A1A0

P = A3A1A0 + A3A2A1 + A2A1A0

 + A2A1A0

S O L U T I O N S 33
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.36

A3 A1A2 A0

D

P

0 1
1 X
X X

0
0
1

X X
X X
X X
X X

X
X
X
X

X XX

0
0
0
1
X
X
X
X

A3 A1A2 A0 Y2

0
0
0
0
1
1
1
1

0 0
0 0
0 0

0
0
0

0 0
0 1
1 X
X X

0
0
0
1

X XX

0
0
0
0
0
0
0
1

A7 A5A6 A4 Y1

0
0
1
1
0
0
1
1

Y0

0
1
0
1
0
1
0
1

0 000 00 000 0 0

NONE

0
0
0
0
0
0
0
0

1

Y2 A7 A6 A5 A4+ + +=

Y1 A7 A6 A5A4A3 A5A4A2+ + +=

Y0 A7 A6A5 A6A4A3 A6A4A2A1+ + +=

NONE A7A6A5A4A3A2A1A0=

34 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
Exercise 2.37

The equations and circuit for Y2:0 is the same as in Exercise 2.25, repeated

here for convenience.

A7 A5A6 A4 A3 A1A2 A0

Y2

Y1

Y0

NONE

0 1
1 X
X X

0
0
1

X X
X X
X X
X X

X
X
X
X

X XX

0
0
0
1
X
X
X
X

A3 A1A2 A0 Y2

0
0
0
0
1
1
1
1

0 0
0 0
0 0

0
0
0

0 0
0 1
1 X
X X

0
0
0
1

X XX

0
0
0
0
0
0
0
1

A7 A5A6 A4 Y1

0
0
1
1
0
0
1
1

Y0

0
1
0
1
0
1
0
1

0 000 00 000 0 0

Y2 A7 A6 A5 A4+ + +=

Y1 A7 A6 A5A4A3 A5A4A2+ + +=

Y0 A7 A6A5 A6A4A3 A6A4A2A1+ + +=

S O L U T I O N S 35
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
A7 A5A6 A4 A3 A1A2 A0

Y2

Y1

Y0

NONE

36 S O L U T I O N S c h a p t e r 2

David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture, © 2007 by Elsevier Inc.
Exercise Solutions
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
The truth table, equations, and circuit for Z2:0 are as follows.

1 1
0 1
0 1

0
1
0

0 1
0 1
0 1
0 1

0
0
0
0

1 X
1 X
1 X
1 X

1
0
0
0

1 X0

0
0
1
0
0
0
0
0
1
0
0
0

A3 A1A2 A0 Z2

0
0
0
0
0
0
0
0
0
0
0
0

0 0
0 0
0 0

0
0
0

0 1
1 0
0 0
0 0

0
0
1
0

0 0
0 0
0 1
1 0

0
0
0
0

01

0
0
0
0
0
0
1
0
0
0
0
0

A7 A5A6 A4

0

Z1

0
0
0
0
0
0
0
0
0
0
0
0

Z0

0
0
0
0
0
0
0
1
1
1
1
1

1 X
X X
X X

0
1
1

X X
X X
X X
X X

1
1
1
X

X X
X X
X X
X X

X
X
X
X

X XX

0
1
0
0
0
0
1
1
1
1
X
X

0
0
0
0
0
0
0
0
0
0
1
1

0 0
0 0
0 1

0
0
0

1 0
0 0
0 0
0 1

0
1
0
0

1 0
0 0
0 0
1 1

0
1
0
0

01

1
0
0
0
0
1
0
0
0
1
0
0 1

0
1
1
1
1

1
1
1
1
0
0

1
0
0
0
0
0
1
1
1
1
0
0

1

1
1
1
1

0
0
0
1

0
1
1
0

X X
X X
X X

X
X
X

X XX

X
X
X
X

0 1
1 X
1 X

0
1
0

X1

1
0
1
1 X

Z2 A4 A5 A6 A7+ +  A5 A6 A7+  A6A7+ +=

Z1 A2 A3 A4 A5 A6 A7+ + + + 
A3 A4 A5 A6 A7+ + +  A6A7

+
+

=

Z0 A1 A2 A3 A4 A5 A6 A7+ + + + + 
A3 A4 A5 A6 A7+ + +  A5 A6 A7+ 

+
+

=

S O L U T I O N S 37
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.38

A7 A5A6 A4 A3 A1A2 A0

Z2

Z1

Z0

Y6 A2A1A0=

Y5 A2A1=

Y4 A2A1 A2A0+=

Y3 A2=

Y2 A2 A1A0+=

Y1 A2 A1+=

Y0 A2 A1 A0+ +=

38 S O L U T I O N S c h a p t e r 2

© 2015 Elsevier, Inc.
Exercise 2.39

Exercise 2.40

Exercise 2.41

A2A1A0

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Y A C D+ A CD CD+ += =

Y CD A B  AB+ ACD BCD AB+ += =

S O L U T I O N S 39
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.42

Exercise 2.43

tpd = 3tpd_NAND2 = 60 ps
tcd = tcd_NAND2 = 15 ps

Exercise 2.44

tpd = tpd_AND2 + 2tpd_NOR2 + tpd_NAND2

 = [30 + 2 (30) + 20] ps
 = 110 ps

tcd = 2tcd_NAND2 + tcd_NOR2

 = [2 (15) + 25] ps
 = 55 ps

A B Y
0 0
0 1 0
1 0 0
1 1

00

Y01
10

11

A B

A Y
0
1

0

1

A

Y

BC
A B Y

0 0 1
0 1 0
1 0 0
1 1 0

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
1

C

A B

(a)

000
001
010
011
100
101
110
111

C
C

C

C

BC

B
C

(b) (c)

Y

B

A C Y
0 0
0 1
1 0

1

1 1

00

Y01
10

11

A C

A Y
0
1

0

1

A

Y

B
A B Y

0 0 1
0 1 0
1 0 1
1 1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

C

A B

(a)

000
001
010
011
100
101
110
111

C

B

B+C

B
C

(b) (c)

Y

B
B

40 S O L U T I O N S c h a p t e r 2

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 2.45

tpd = tpd_NOT + tpd_AND3

 = 15 ps + 40 ps
 = 55 ps

tcd = tcd_AND3

 = 30 ps

Exercise 2.46

A2 A1 A0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

S O L U T I O N S 41
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
tpd = tpd_NOR2 + tpd_AND3 + tpd_NOR3 + tpd_NAND2

 = [30 + 40 + 45 + 20] ps
 = 135 ps

tcd = 2tcd_NAND2 + tcd_OR2

 = [2 (15) + 30] ps
 = 60 ps

Exercise 2.47

A3 A1A2 A0

D

P

42 S O L U T I O N S c h a p t e r 2

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
tpd = tpd_INV + 3tpd_NAND2 + tpd_NAND3

 = [15 + 3 (20) + 30] ps
 = 105 ps

tcd = tcd_NOT + tcd_NAND2

 = [10 + 15] ps
 = 25 ps

Exercise 2.48

A7 A5A6 A4A3 A1A2 A0

Y2

Y1

Y0

NONE

S O L U T I O N S 43
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
tpd_dy = tpd_TRI_AY

 = 50 ps

Note: the propagation delay from the control (select) input to the output is
the circuit’s critical path:

tpd_sy = tpd_NOT + tpd_AND3 + tpd_TRI_SY

 = [30 + 80 + 35] ps
 = 145 ps
However, the problem specified to minimize the delay from data inputs to

output, tpd_dy.

Y

S0

D0

D2

D3

D1

S1S2

D4

D6

D7

D5

44 S O L U T I O N S c h a p t e r 2

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Question 2.1

Question 2.2

Question 2.3

A tristate buffer has two inputs and three possible outputs: 0, 1, and Z. One
of the inputs is the data input and the other input is a control input, often called
the enable input. When the enable input is 1, the tristate buffer transfers the data
input to the output; otherwise, the output is high impedance, Z. Tristate buffers
are used when multiple sources drive a single output at different times. One and
only one tristate buffer is enabled at any given time.

A
B Y

0 1
1 0
1 1

0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0 0
0 1
1 0
1 1

0
0
0
0

0 01

0
0
0
0
0
0
0
1
1
1
1
1

A3 A1A2 A0 Y

1
0
1
0
1
0
1
1
0
1
0
1

Month

Jan

01 11

X

1

0

1

1

X

1

001

1

0

1

0

X

X

0

1

11

10

00

00

10
A3:2

Y

A1:0

Y = A3A0 + A3A0 = A3 + A0

Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

A3

A0
Y

S O L U T I O N S 45
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Question 2.4

(a) An AND gate is not universal, because it cannot perform inversion
(NOT).

(b) The set {OR, NOT} is universal. It can construct any Boolean function.
For example, an OR gate with NOT gates on all of its inputs and output per-
forms the AND operation. Thus, the set {OR, NOT} is equivalent to the set
{AND, OR, NOT} and is universal.

(c) The NAND gate by itself is universal. A NAND gate with its inputs tied
together performs the NOT operation. A NAND gate with a NOT gate on its
output performs AND. And a NAND gate with NOT gates on its inputs per-
forms OR. Thus, a NAND gate is equivalent to the set {AND, OR, NOT} and
is universal.

Question 2.5

A circuit’s contamination delay might be less than its propagation delay be-
cause the circuit may operate over a range of temperatures and supply voltages,
for example, 3-3.6 V for LVCMOS (low voltage CMOS) chips. As temperature
increases and voltage decreases, circuit delay increases. Also, the circuit may
have different paths (critical and short paths) from the input to the output. A gate
itself may have varying delays between different inputs and the output, affect-
ing the gate’s critical and short paths. For example, for a two-input NAND gate,
a HIGH to LOW transition requires two nMOS transistor delays, whereas a
LOW to HIGH transition requires a single pMOS transistor delay.

S O L U T I O N S 41
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
CHAPTER 3

Exercise 3.1

Exercise 3.2

Exercise 3.3

S

R

Q

S

R

Q

42 S O L U T I O N S c h a p t e r 3
Sarah L. Harris and David Money Harris Digital Design and Coputer Architecture: ARM Edition

David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture, © 2007 by Elsevier Inc.
Exercise Solutions
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition

© 2015 Elsevier, Inc.
Exercise 3.4

Exercise 3.5

Exercise 3.6

clk

D

Q

CLK

D

Q

clk

D

Q

CLK

D

Q

S O L U T I O N S 43
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.7

The circuit is sequential because it involves feedback and the output de-
pends on previous values of the inputs. This is a SR latch. When S = 0 and R =
1, the circuit sets Q to 1. When S = 1 and R = 0, the circuit resets Q to 0. When
both S and R are 1, the circuit remembers the old value. And when both S and R
are 0, the circuit drives both outputs to 1.

Exercise 3.8

Sequential logic. This is a D flip-flop with active low asynchronous set and
reset inputs. If S and R are both 1, the circuit behaves as an ordinary D flip-flop.
If S = 0, Q is immediately set to 0. If R = 0, Q is immediately reset to 1. (This
circuit is used in the commercial 7474 flip-flop.)

Exercise 3.9

Exercise 3.10

Exercise 3.11

If A and B have the same value, C takes on that value. Otherwise, C retains
its old value.

Q

clk

Q

clk

(a)

J
K

J

K
D Q

clk

(b) Q

clk

(c)

44 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
Exercise 3.12

Make sure these next ones are correct too.

Exercise 3.13

Exercise 3.14

D

Q

Q

N1

N2

clk
R

Q

Q
R

R

D
R

clk

S O L U T I O N S 45
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.15

Exercise 3.16

From to .

Exercise 3.17

If N is even, the circuit is stable and will not oscillate.

Exercise 3.18

D Q

Q

CLK

D
Set

CLK

Q

QD
Set

CLK

Q

Q
D

Set

Set

Set

Set

1
2Ntpd
-------------- 1

2Ntcd

46 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
(a) No: no register. (b) No: feedback without passing through a register. (c)
Yes. Satisfies the definition. (d) Yes. Satisfies the definition.

Exercise 3.19

The system has at least five bits of state to represent the 24 floors that the
elevator might be on.

Exercise 3.20

The FSM has 54 = 625 states. This requires at least 10 bits to represent all
the states.

Exercise 3.21

The FSM could be factored into four independent state machines, one for
each student. Each of these machines has five states and requires 3 bits, so at
least 12 bits of state are required for the factored design.

Exercise 3.22

This finite state machine asserts the output Q for one clock cycle if A is
TRUE followed by B being TRUE.

.

s t a t e e n c o d i n g
s 1 : 0

S0 00

S1 01

S2 10

TABLE 3.1 State encoding for Exercise 3.22

c u r r e n t s t a t e i n p u t s n e x t s t a t e

s 1 s 0 a b s ' 1 s ' 0

0 0 0 X 0 0

0 0 1 X 0 1

TABLE 3.2 State transition table with binary encodings for Exercise 3.22

S O L U T I O N S 47
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
.

0 1 X 0 0 0

0 1 X 1 1 0

1 0 X X 0 0

c u r r e n t s t a t e o u t p u t

s 1 s 0 q

0 0 0

0 1 0

1 0 1

TABLE 3.3 Output table with binary encodings for Exercise 3.22

c u r r e n t s t a t e i n p u t s n e x t s t a t e

s 1 s 0 a b s ' 1 s ' 0

TABLE 3.2 State transition table with binary encodings for Exercise 3.22

S'1 S0B=

S'0 S1S0A=

Q S1=

S1

S0

S'1

S'0

CLK

Reset

B

A

S1 S0

r

Q

48 S O L U T I O N S c h a p t e r 3

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.23

This finite state machine asserts the output Q when A AND B is TRUE.

s t a t e e n c o d i n g
s 1 : 0

S0 00

S1 01

S2 10

TABLE 3.4 State encoding for Exercise 3.23

c u r r e n t s t a t e i n p u t s n e x t s t a t e o u t p u t

s 1 s 0 a b s ' 1 s ' 0 q

0 0 0 X 0 0 0

0 0 1 X 0 1 0

0 1 X 0 0 0 0

0 1 X 1 1 0 0

1 0 1 1 1 0 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

TABLE 3.5 Combined state transition and output table with binary encodings for Exercise 3.23

S'1 S1S0B S1AB+=

S'0 S1S0A=

Q' S1AB=

S O L U T I O N S 49
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.24

s t a t e e n c o d i n g
s 1 : 0

S0 000

S1 001

S2 010

TABLE 3.6 State encoding for Exercise 3.24

S1

S0

S'1

S'0

CLK

Reset

BA

S1 S0

r

Q

S0
LA: green
LB: red

S1
LA: yellow

LB: red

S4
LA: red

LB: yellow

S3
LA: red

LB: green

TA

TA

TB

TB

Reset

S2
LA: red
LB: red

S5
LA: red
LB: red

50 S O L U T I O N S c h a p t e r 3

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
S3 100

S4 101

S5 110

s t a t e e n c o d i n g
s 1 : 0

TABLE 3.6 State encoding for Exercise 3.24

c u r r e n t s t a t e i n p u t s n e x t s t a t e

s 2 s 1 s 0 t a t b s ' 2 s ' 1 s ' 0

0 0 0 0 X 0 0 1

0 0 0 1 X 0 0 0

0 0 1 X X 0 1 0

0 1 0 X X 1 0 0

1 0 0 X 0 1 0 1

1 0 0 X 1 1 0 0

1 0 1 X X 1 1 0

1 1 0 X X 0 0 0

TABLE 3.7 State transition table with binary encodings for Exercise 3.24

S'2 S2 S1=

S'1 S1S0=

S'0 S1S0 S2ta S2tb+ =

S O L U T I O N S 51
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(3.1)

FIGURE 3.1 State machine circuit for traffic light controller for Exercise 3.21

c u r r e n t s t a t e o u t p u t s

s 2 s 1 s 0 l a 1 l a 0 l b 1 l b 0

0 0 0 0 0 1 0

0 0 1 0 1 1 0

0 1 0 1 0 1 0

1 0 0 1 0 0 0

1 0 1 1 0 0 1

1 1 0 1 0 1 0

TABLE 3.8 Output table for Exercise 3.24

LA1 S1S0 S2S1+=

LA0 S2S0=

LB1 S2S1 S1S0+=

LB0 S2S1S0=

S2

S1

S'2

S'1

CLK

Reset

S1S0

r

S0S'0

S2

Ta Tb

52 S O L U T I O N S c h a p t e r 3

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.25

s t a t e e n c o d i n g
s 1 : 0

S0 000

S1 001

S2 010

S3 100

S4 101

TABLE 3.9 State encoding for Exercise 3.25

reset

S0 S1 S2 S3

S4

0/0

1/0

0/0

1/0 0/0

1/1

1/0

1/0

0/1

0/0

c u r r e n t s t a t e i n p u t n e x t s t a t e o u t p u t

s 2 s 1 s 0 a s ' 2 s ' 1 s ' 0 q

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

TABLE 3.10 Combined state transition and output table with binary encodings for Exercise 3.25

S O L U T I O N S 53
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
0 0 1 0 0 0 0 0

0 0 1 1 0 1 0 0

0 1 0 0 1 0 0 0

0 1 0 1 1 0 1 0

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 1

1 0 1 0 1 0 0 1

1 0 1 1 1 0 1 0

c u r r e n t s t a t e i n p u t n e x t s t a t e o u t p u t

s 2 s 1 s 0 a s ' 2 s ' 1 s ' 0 q

TABLE 3.10 Combined state transition and output table with binary encodings for Exercise 3.25

S'2 S2S1S0 S2S1S0+=

S'1 S2S1S0A=

S'0 A S2S0 S2S1+ =

Q S2S1S0A S2S1S0A+=

S2

S1

S'2

S'1

CLK

Reset

A

S1S0

r

S0S'0

S2

54 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
Exercise 3.26

FIGURE 3.2 State transition diagram for soda machine dispense of Exercise 3.23

S0

S5 S10 S25
Dispense

S30
Dispense

ReturnNickel
S15 S20

S35
Dispense

ReturnDime

S40
Dispense

ReturnDime
ReturnNickel

S45
Dispense

ReturnTwoDimes

Nickel

Dime

Quarter

Nickel

DimeQuarter
Nickel

Dime
Quarter

Nickel

Dime

Nickel
Quarter

Dime

Quarter

Reset

Q =N D QuarterNickel DimeNote:

QN D
Q

N
D

Q

N
D

Q

N
D

Q

N
D

Q

N
D

S O L U T I O N S 55
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.3 State Encodings for Exercise 3.26

s t a t e e n c o d i n g
s 9 : 0

S0 0000000001

S5 0000000010

S10 0000000100

S25 0000001000

S30 0000010000

S15 0000100000

S20 0001000000

S35 0010000000

S40 0100000000

S45 1000000000

c u r r e n t
s t a t e

s

i n p u t s n e x t
s t a t e

s 'n i c k e l d i m e q u a r t e r

S0 0 0 0 S0

S0 0 0 1 S25

S0 0 1 0 S10

S0 1 0 0 S5

S5 0 0 0 S5

S5 0 0 1 S30

S5 0 1 0 S15

S5 1 0 0 S10

S10 0 0 0 S10

TABLE 3.11 State transition table for Exercise 3.26

56 S O L U T I O N S c h a p t e r 3

Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
S10 0 0 1 S35

S10 0 1 0 S20

S10 1 0 0 S15

S25 X X X S0

S30 X X X S0

S15 0 0 0 S15

S15 0 0 1 S40

S15 0 1 0 S25

S15 1 0 0 S20

S20 0 0 0 S20

S20 0 0 1 S45

S20 0 1 0 S30

S20 1 0 0 S25

S35 X X X S0

S40 X X X S0

S45 X X X S0

c u r r e n t
s t a t e

s

i n p u t s n e x t s t a t e
s '

n i c k e l d i m e q u a r t e r

0000000001 0 0 0 0000000001

0000000001 0 0 1 0000001000

0000000001 0 1 0 0000000100

0000000001 1 0 0 0000000010

TABLE 3.12 State transition table for Exercise 3.26

c u r r e n t
s t a t e

s

i n p u t s n e x t
s t a t e

s 'n i c k e l d i m e q u a r t e r

TABLE 3.11 State transition table for Exercise 3.26

S O L U T I O N S 57
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
0000000010 0 0 0 0000000010

0000000010 0 0 1 0000010000

0000000010 0 1 0 0000100000

0000000010 1 0 0 0000000100

0000000100 0 0 0 0000000100

0000000100 0 0 1 0010000000

0000000100 0 1 0 0001000000

0000000100 1 0 0 0000100000

0000001000 X X X 0000000001

0000010000 X X X 0000000001

0000100000 0 0 0 0000100000

0000100000 0 0 1 0100000000

0000100000 0 1 0 0000001000

0000100000 1 0 0 0001000000

0001000000 0 0 0 0001000000

0001000000 0 0 1 1000000000

0001000000 0 1 0 0000010000

0001000000 1 0 0 0000001000

0010000000 X X X 0000000001

0100000000 X X X 0000000001

1000000000 X X X 0000000001

c u r r e n t
s t a t e

s

i n p u t s n e x t s t a t e
s '

n i c k e l d i m e q u a r t e r

TABLE 3.12 State transition table for Exercise 3.26

S'9 S6Q=

S'8 S5Q=

58 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
S'7 S2Q=

S'6 S2D S5N S6NDQ+ +=

S'5 S1D S2N S5NDQ+ +=

S'4 S1Q S6D+=

S'3 S0Q S5D S6N+ +=

S'2 S0D S1N S2NDQ+ +=

S'1 S0N S1NDQ+=

S'0 S0NDQ S3 S4 S7 S8 S9+ + + + +=

Dispense S3 S4 S7 S8 S9+ + + +=

ReturnNickel S4 S8+=

ReturnDime S7 S8+=

ReturnTwoDimes S9=

S O L U T I O N S 59
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

60 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
S9

S8

S'9

S'8

CLK

Dispense

S7S'7

Reset

r

S6

S5

S'6

S'5

S4S'4

S3S'3

S2

S1

S'2

S'1

S0S'0

N
ic

ke
l

D
im

e
Q

ua
rte

r

ReturnNickel

ReturnDime

ReturnTwoDimes

s

CLK

S O L U T I O N S 61
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.27

FIGURE 3.4 State transition diagram for Exercise 3.27

S000

S001

S011

S010

S110

S111

S101

S100

Reset

62 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
c u r r e n t
s t a t e
s 2 : 0

n e x t s t a t e
s ' 2 : 0

000 001

001 011

011 010

010 110

110 111

111 101

101 100

100 000

TABLE 3.13 State transition table for Exercise 3.27

S'2 S1S0 S2S0+=

S'1 S2S0 S1S0+=

S'0 S2 S1=

Q2 S2=

Q1 S1=

Q0 S0=

S O L U T I O N S 63
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.5 Hardware for Gray code counter FSM for Exercise 3.27

Exercise 3.28

S2

S1

S'2

S'1

CLK

ResetS1S0

r

S0S'0

S2

Q2

Q1

Q0

64 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.6 State transition diagram for Exercise 3.28

S000

S001

S011

S010

S110

S111

S101

S100

UPUP

UPUP

UPUP

UPUP

UPUP

UPUP

UPUP

UP UP

Reset

S O L U T I O N S 65
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
c u r r e n t
s t a t e
s 2 : 0

i n p u t n e x t s t a t e
s ' 2 : 0u p

000 1 001

001 1 011

011 1 010

010 1 110

110 1 111

111 1 101

101 1 100

100 1 000

000 0 100

001 0 000

011 0 001

010 0 011

110 0 010

111 0 110

101 0 111

100 0 101

TABLE 3.14 State transition table for Exercise 3.28

S'2 UPS1S0 UPS1S0 S2S0++=

S'1 S1S0 UPS2S0+ UPS2S1+=

S'0 UP S2 S1=

Q2 S2=

Q1 S1=

Q0 S0=

66 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.7 Finite state machine hardware for Exercise 3.28

Exercise 3.29

(a)

FIGURE 3.8 Waveform showing Z output for Exercise 3.29

(b) This FSM is a Mealy FSM because the output depends on the current
value of the input as well as the current state.

S2

S1

S'2

S'1

CLK

Reset
r

S0S'0

Q2

Q1

Q0

S1S0S2

UP

CLK

A

B

Z

S O L U T I O N S 67
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(c)

FIGURE 3.9 State transition diagram for Exercise 3.29

(Note: another viable solution would be to allow the state to transition from

S0 to S1 on . The arrow from S0 to S0 would then be .)

Reset

S0

S1

S2

BA/0

S3

BA/0BA/1BA/0

BA/1BA/1

A/0

BA/0

BA/1

BA/1

BA/1

BA/1BA/1

BA/0

BA/0

BA 0 BA 0

c u r r e n t s t a t e
s 1 : 0

i n p u t s n e x t s t a t e
s ' 1 : 0

o u t p u t

zb a

00 X 0 00 0

00 0 1 11 0

00 1 1 01 1

01 0 0 00 0

01 0 1 11 1

01 1 0 10 1

01 1 1 01 1

10 0 X 00 0

10 1 0 10 0

TABLE 3.15 State transition table for Exercise 3.29

68 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.10 Hardware for FSM of Exercise 3.26

Note: One could also build this functionality by registering input A, pro-
ducing both the logical AND and OR of input A and its previous (registered)

10 1 1 01 1

11 0 0 00 0

11 0 1 11 1

11 1 0 10 1

11 1 1 01 1

c u r r e n t s t a t e
s 1 : 0

i n p u t s n e x t s t a t e
s ' 1 : 0

o u t p u t

zb a

TABLE 3.15 State transition table for Exercise 3.29

S'1 BA S1 S0+  BA S1 S0+ +=

S'0 A S1 S0 B+ + =

Z BA S0 A B+ +=

S1

S0

S'1

S'0

CLK

Reset

r

Z

B A

S O L U T I O N S 69
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
value, and then muxing the two operations using B. The output of the mux is Z:
Z = AAprev (if B = 0); Z = A + Aprev (if B = 1).

Exercise 3.30

FIGURE 3.11 Factored state transition diagram for Exercise 3.30

c u r r e n t
s t a t e
s 1 : 0

i n p u t n e x t s t a t e
s ' 1 : 0a

00 0 00

00 1 01

01 0 00

TABLE 3.16 State transition table for output Y for Exercise 3.30

reset

S0

S1

S11
Y

A
A

A

A

reset

SZero

SOne

STwo

A A

A

SThree
X

A

A

A

70 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
01 1 11

11 X 11

c u r r e n t
s t a t e
t 1 : 0

i n p u t n e x t s t a t e
t ' 1 : 0a

00 0 00

00 1 01

01 0 01

01 1 10

10 0 10

10 1 11

11 X 11

TABLE 3.17 State transition table for output X for Exercise 3.30

c u r r e n t
s t a t e
s 1 : 0

i n p u t n e x t s t a t e
s ' 1 : 0a

TABLE 3.16 State transition table for output Y for Exercise 3.30

S'1 S0 S1 A+ =

S'0 S1A S0 S1 A+ +=

Y S1=

T'1 T1 T0A+=

T'0 A T1 T0+  AT0 T1T0+ +=

X T1T0=

S O L U T I O N S 71
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.12 Finite state machine hardware for Exercise 3.30

Exercise 3.31

This finite state machine is a divide-by-two counter (see Section 3.4.2)
when X = 0. When X = 1, the output, Q, is HIGH.

c u r r e n t s t a t e i n p u t n e x t s t a t e

s 1 s 0 x s ' 1 s ' 0

0 0 0 0 1

0 0 1 1 1

0 1 0 0 0

TABLE 3.18 State transition table with binary encodings for Exercise 3.31

S1

S0

S'1

S'0

CLK

ResetS0

r

S1

T1

T0

T'1

T'0

CLK

Reset
T1 T0

r

Y

X

A

72 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
Exercise 3.32

0 1 1 1 0

1 X X 0 1

c u r r e n t s t a t e o u t p u t

s 1 s 0 q

0 0 0

0 1 1

1 X 1

TABLE 3.19 Output table for Exercise 3.31

c u r r e n t s t a t e i n p u t n e x t s t a t e

s 1 s 0 x s ' 1 s ' 0

TABLE 3.18 State transition table with binary encodings for Exercise 3.31

S00
0

S01
1

S10
1

S11
1

0

0 1

1

c u r r e n t s t a t e i n p u t n e x t s t a t e

s 2 s 1 s 0 a s ' 2 s ' 1 s ' 0

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 0 1

TABLE 3.20 State transition table with binary encodings for Exercise 3.32

S O L U T I O N S 73
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.13 State transition diagram for Exercise 3.32

Q asserts whenever A is HIGH for two or more consecutive cycles.

Exercise 3.33

(a) First, we calculate the propagation delay through the combinational log-
ic:

tpd = 3tpd_XOR

 = 3 × 100 ps
 = 300 ps
Next, we calculate the cycle time:
Tc  tpcq + tpd + tsetup

  [70 + 300 + 60] ps
 = 430 ps
f = 1 / 430 ps = 2.33 GHz

(b)
Tc  tpcq + tpd + tsetup + tskew

Thus,
tskew  Tc (tpcq + tpd + tsetup), where Tc = 1 / 2 GHz = 500 ps

 [500430] ps = 70 ps

(c)

0 1 0 1 1 0 0

1 0 0 0 0 0 1

1 0 0 1 1 0 0

c u r r e n t s t a t e i n p u t n e x t s t a t e

s 2 s 1 s 0 a s ' 2 s ' 1 s ' 0

TABLE 3.20 State transition table with binary encodings for Exercise 3.32

S0
0

S1
0

S2
1

A A

A
A A

A

74 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
First, we calculate the contamination delay through the combinational log-
ic:

tcd = tcd_XOR

 = 55 ps

tccq + tcd > thold + tskew

Thus,
tskew < (tccq + tcd) - thold

 < (50 + 55) - 20
 < 85 ps

(d)

FIGURE 3.14 Alyssa’s improved circuit for Exercise 3.33

First, we calculate the propagation and contamination delays through the
combinational logic:

tpd = 2tpd_XOR

 = 2 × 100 ps
 = 200 ps

tcd = 2tcd_XOR

 = 2 × 55 ps
 = 110 ps

Next, we calculate the cycle time:
Tc  tpcq + tpd + tsetup

  [70 + 200 + 60] ps
 = 330 ps
f = 1 / 330 ps = 3.03 GHz

 tskew < (tccq + tcd) - thold

 < (50 + 110) - 20
 < 140 ps

clk

clk

S O L U T I O N S 75
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 3.34

(a) 9.09 GHz
(b) 15 ps
(c) 26 ps

Exercise 3.35

(a) Tc = 1 / 40 MHz = 25 ns

Tc  tpcq + NtCLB + tsetup

25 ns  [0.72 + N(0.61) + 0.53] ps
Thus, N < 38.9
N = 38

(b)
 tskew < (tccq + tcd_CLB) - thold

 < [(0.5 + 0.3) - 0] ns
 < 0.8 ns = 800 ps

Exercise 3.36

1.138 ns

Exercise 3.37

 P(failure)/sec = 1/MTBF = 1/(50 years * 3.15 x 107 sec/year) = 6.34 x
10-10 (EQ 3.26)

P(failure)/sec waiting for one clock cycle: N*(T0/Tc)*e-(Tc-tsetup)/Tau

 = 0.5 * (110/1000) * e-(1000-70)/100 = 5.0 x 10-6

P(failure)/sec waiting for two clock cycles: N*(T0/Tc)*[e-(Tc-tsetup)/Tau]2

 = 0.5 * (110/1000) * [e-(1000-70)/100]2 = 4.6 x 10-10

This is just less than the required probability of failure (6.34 x

10-10). Thus, 2 cycles of waiting is just adequate to meet the MTBF.

76 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
Exercise 3.38

(a) You know you've already entered metastability, so the probability that
the sampled signal is metastable is 1. Thus,

Solving for the probability of still being metastable (failing) to be 0.01:

Thus,

(b) The probability of death is the chance of still being metastable after 3
minutes

P(failure) = 1 × e -(3 min × 60 sec) / 20 sec = 0.000123

Exercise 3.39

We assume a two flip-flop synchronizer. The most significant impact on
the probability of failure comes from the exponential component. If we ignore
the T0/Tc term in the probability of failure equation, assuming it changes little

with increases in cycle time, we get:

Solving for Tc2 - Tc1, we get:

P failure  1 e
t

--–

=

P failure  e
t

--–

0.01= =

t  P failure  ln– 20 0.01  ln– 92 seconds= = =

P failure  e
t

--–

=

MTBF 1
P failure 
--------------------------- e

Tc tsetup–



= =

MTBF2

MTBF1
------------------- 10 e

Tc2 Tc1–

30ps

= =

Tc2 Tc1– 69ps=

S O L U T I O N S 77
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Thus, the clock cycle time must increase by 69 ps. This holds true for cycle
times much larger than T0 (20 ps) and the increased time (69 ps).

Exercise 3.40

Alyssa is correct. Ben’s circuit does not eliminate metastability. After the
first transition on D, D2 is always 0 because as D2 transitions from 0 to 1 or 1
to 0, it enters the forbidden region and Ben’s “metastability detector” resets the
first flip-flop to 0. Even if Ben’s circuit could correctly detect a metastable out-
put, it would asynchronously reset the flip-flop which, if the reset occurred
around the clock edge, this could cause the second flip-flop to sample a transi-
tioning signal and become metastable.

Question 3.1

78 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.15 State transition diagram for Question 3.1

c u r r e n t
s t a t e
s 5 : 0

i n p u t n e x t s t a t e
s ' 5 : 0a

000001 0 000010

000001 1 000001

TABLE 3.21 State transition table for Question 3.1

reset

Sreset

S0

S01

A
A

A

S010

A

A

A

S0101

A

S01010
Q = 1

A

A

A

AA

S O L U T I O N S 79
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
000010 0 000010

000010 1 000100

000100 0 001000

000100 1 000001

001000 0 000010

001000 1 010000

010000 0 100000

010000 1 000001

100000 0 000010

100000 1 000001

c u r r e n t
s t a t e
s 5 : 0

i n p u t n e x t s t a t e
s ' 5 : 0a

TABLE 3.21 State transition table for Question 3.1

S'5 S4A=

S'4 S3A=

S'3 S2A=

S'2 S1A=

S'1 A S1 S3 S5+ + =

S'0 A S0 S2 S4 S5+ + + =

Q S5=

80 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.16 Finite state machine hardware for Question 3.1

Question 3.2

The FSM should output the value of A until after the first 1 is received. It
then should output the inverse of A. For example, the 8-bit two’s complement
of the number 6 (00000110) is (11111010). Starting from the least significant
bit on the far right, the two’s complement is created by outputting the same val-
ue of the input until the first 1 is reached. Thus, the two least significant bits of
the two’s complement number are “10”. Then the remaining bits are inverted,
making the complete number 11111010.

S5

S4

S'5

S'4

CLK

S3S'3

Reset

r

S2

S1

S'2

S'1

S0S'0

Q

S O L U T I O N S 81
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.17 State transition diagram for Question 3.2

c u r r e n t
s t a t e
s 1 : 0

i n p u t n e x t s t a t e
s ' 1 : 0a

00 0 00

00 1 01

01 0 11

01 1 10

10 0 11

10 1 10

11 0 11

11 1 10

TABLE 3.22 State transition table for Question 3.2

Start

S0
Q = 0

S1
Q = 1

A

A

A A

S2
Q = 0

S3
Q = 1

AA

A

A

S'1 S1 S0+=

S'0 A S1 S0+ =

Q S0=

82 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.18 Finite state machine hardware for Question 3.2

Question 3.3

A latch allows input D to flow through to the output Q when the clock is
HIGH. A flip-flop allows input D to flow through to the output Q at the clock
edge. A flip-flop is preferable in systems with a single clock. Latches are pref-
erable in two-phase clocking systems, with two clocks. The two clocks are used
to eliminate system failure due to hold time violations. Both the phase and fre-
quency of each clock can be modified independently.

Question 3.4

S1

S0

S'1

S'0

CLK

Start

r
QA

S O L U T I O N S 83
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.19 State transition diagram for Question 3.4

c u r r e n t
s t a t e
s 4 : 0

n e x t s t a t e
s ' 4 : 0

00000 00001

00001 00010

TABLE 3.23 State transition table for Question 3.4

reset

S00000

S00001

S00010

S00011

S11110

S11111

84 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
00010 00011

00011 00100

00100 00101

... ...

11110 11111

11111 00000

c u r r e n t
s t a t e
s 4 : 0

n e x t s t a t e
s ' 4 : 0

TABLE 3.23 State transition table for Question 3.4

S'4 S4 S3S2S1S0=

S'3 S3 S2S1S0=

S'2 S2 S1S0=

S'1 S1 S0=

S'0 S0=

Q4:0 S4:0=

S O L U T I O N S 85
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 3.20 Finite state machine hardware for Question 3.4

Question 3.5

FIGURE 3.21 State transition diagram for edge detector circuit of Question 3.5

S4

S3

S'4

S'3

CLK

S2S'2

Reset

r

S1

S0

S'1

S'0

Q4

Q3

Q2

Q1

Q0

Reset

S0
Q = 0

S1
Q = 1

A

AA

S2
Q = 0

A

A

A

86 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
FIGURE 3.22 Finite state machine hardware for Question 3.5

Question 3.6

Pipelining divides a block of combinational logic into N stages, with a reg-
ister between each stage. Pipelining increases throughput, the number of tasks
that can be completed in a given amount of time. Ideally, pipelining increases
throughput by a factor of N. But because of the following three reasons, the

c u r r e n t
s t a t e
s 1 : 0

i n p u t n e x t s t a t e
s ' 1 : 0a

00 0 00

00 1 01

01 0 00

01 1 10

10 0 00

10 1 10

TABLE 3.24 State transition table for Question 3.5

S'1 AS1=

S'0 AS1S0=

Q S1=

S1

S0

S'1

S'0

CLK

Reset

r

Q

A

S O L U T I O N S 87
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
speedup is usually less than N: (1) The combinational logic usually cannot be
divided into N equal stages. (2) Adding registers between stages adds delay
called the sequencing overhead, the time it takes to get the signal into and out
of the register, tsetup + tpcq. (3) The pipeline is not always operating at full ca-

pacity: at the beginning of execution, it takes time to fill up the pipeline, and at
the end it takes time to drain the pipeline. However, pipelining offers significant
speedup at the cost of little extra hardware.

Question 3.7

A flip-flop with a negative hold time allows D to start changing before the
clock edge arrives.

Question 3.8

We use a divide-by-three counter (see Example 3.6 on page 155 of the text-
book) with A as the clock input followed by a negative edge-triggered flip-flop,
which samples the input, D, on the negative or falling edge of the clock, or in
this case, A. The output is the output of the divide-by-three counter, S0, OR the

output of the negative edge-triggered flip-flop, N1. Figure 3.24 shows the
waveforms of the internal signals, S0 and N1.

FIGURE 3.23 Hardware for Question 3.8

FIGURE 3.24 Waveforms for Question 3.8

Reset

A

r r s

S0S1S2

Br

N1

A

B

S1

N1

88 S O L U T I O N S c h a p t e r 3

© 2015 Elsevier, Inc.
Question 3.9

Without the added buffer, the propagation delay through the logic, tpd, must

be less than or equal to Tc - (tpcq + tsetup). However, if you add a buffer to the

clock input of the receiver, the clock arrives at the receiver later. The earliest
that the clock edge arrives at the receiver is tcd_BUF after the actual clock edge.

Thus, the propagation delay through the logic is now given an extra tcd_BUF. So,

tpd now must be less than Tc + tcd_BUF - (tpcq + tsetup).

S O L U T I O N S 85
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
CHAPTER 4

Note: the HDL files given in the following solutions are available on the
textbook’s companion website at:

http://textbooks.elsevier.com/9780123704979

Exercise 4.1

Exercise 4.2

a

b
c

y

z

a2 a1 a0

y1

y0

86 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.3

Exercise 4.4

ex4_4.tv file:
0000_0
0001_1
0010_1
0011_0
0100_1
0101_0
0110_0
0111_1
1000_1
1001_0
1010_0
1011_1
1100_0
1101_1
1110_1
1111_0

SystemVerilog

module xor_4(input logic [3:0] a,
 output logic y);

 assign y = ^a;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity xor_4 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);

 y: out STD_LOGIC);
end;

architecture synth of xor_4 is
begin
 y <= a(3) xor a(2) xor a(1) xor a(0);
end;

S O L U T I O N S 87
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 (VHDL continued on next page)

SystemVerilog

module ex4_4_testbench();
 logic clk, reset;
 logic [3:0] a;
 logic yexpected;
 logic y;
 logic [31:0] vectornum, errors;
 logic [4:0] testvectors[10000:0];

 // instantiate device under test
 xor_4 dut(a, y);

 // generate clock
 always

 begin
 clk = 1; #5; clk = 0; #5;
 end

 // at start of test, load vectors
 // and pulse reset
 initial

 begin
 $readmemb("ex4_4.tv", testvectors);
 vectornum = 0; errors = 0;
 reset = 1; #27; reset = 0;
 end

 // apply test vectors on rising edge of clk
 always @(posedge clk)

 begin
 #1; {a, yexpected} =

testvectors[vectornum];
 end

 // check results on falling edge of clk
 always @(negedge clk)

 if (~reset) begin // skip during reset
 if (y !== yexpected) begin
 $display("Error: inputs = %h", a);
 $display(" outputs = %b (%b expected)",

 y, yexpected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 5'bx) begin

$display("%d tests completed with %d errors",
 vectornum, errors);

 $finish;
 end

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use work.txt_util.all

entity ex4_4_testbench is -- no inputs or outputs
end;

architecture sim of ex4_4_testbench is
 component sillyfunction
 port(a: in STD_LOGIC_VECTOR(3 downto 0);

y: out STD_LOGIC);
 end component;
 signal a: STD_LOGIC_VECTOR(3 downto 0);
 signal y, clk, reset: STD_LOGIC;
 signal yexpected: STD_LOGIC;
 constant MEMSIZE: integer := 10000;
 type tvarray is array(MEMSIZE downto 0) of
 STD_LOGIC_VECTOR(4 downto 0);

 signal testvectors: tvarray;
 shared variable vectornum, errors: integer;
begin
 -- instantiate device under test
 dut: xor_4 port map(a, y);

 -- generate clock
 process begin
 clk <= '1'; wait for 5 ns;
 clk <= '0'; wait for 5 ns;

 end process;

 -- at start of test, load vectors
 -- and pulse reset
 process is
 file tv: TEXT;
 variable i, j: integer;
 variable L: line;
 variable ch: character;

 begin
 -- read file of test vectors
 i := 0;
 FILE_OPEN(tv, "ex4_4.tv", READ_MODE);
 while not endfile(tv) loop
 readline(tv, L);
 for j in 4 downto 0 loop

read(L, ch);
if (ch = '_') then read(L, ch);
end if;
if (ch = '0') then
testvectors(i)(j) <= '0';

else testvectors(i)(j) <= '1';
end if;

 end loop;
 i := i + 1;
 end loop;
 vectornum := 0; errors := 0;
 reset <= '1'; wait for 27 ns; reset <= '0';
 wait;

 end process;

88 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 (continued from previous page)

Exercise 4.5

VHDL

 -- apply test vectors on rising edge of clk
 process (clk) begin
 if (clk'event and clk = '1') then

 a <= testvectors(vectornum)(4 downto 1)
 after 1 ns;
 yexpected <= testvectors(vectornum)(0)
 after 1 ns;

 end if;
 end process;

 -- check results on falling edge of clk
 process (clk) begin

 if (clk'event and clk = '0' and reset = '0') then
 assert y = yexpected
 report "Error: y = " & STD_LOGIC'image(y);
 if (y /= yexpected) then
 errors := errors + 1;
 end if;
 vectornum := vectornum + 1;
 if (is_x(testvectors(vectornum))) then
 if (errors = 0) then
 report "Just kidding -- " &

 integer'image(vectornum) &
 " tests completed successfully."
 severity failure;

 else
 report integer'image(vectornum) &

 " tests completed, errors = " &
 integer'image(errors)
 severity failure;

 end if;
 end if;
 end if;

 end process;
end;

SystemVerilog

module minority(input logic a, b, c
 output logic y);

 assign y = ~a & ~b | ~a & ~c | ~b & ~c;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity minority is
 port(a, b, c: in STD_LOGIC;

 y: out STD_LOGIC);
end;

architecture synth of minority is
begin
 y <= ((not a) and (not b)) or ((not a) and (not c))
 or ((not b) and (not c));
end;

S O L U T I O N S 89
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.6

Exercise 4.7

ex4_7.tv file:
0000_111_1110
0001_011_0000
0010_110_1101
0011_111_1001
0100_011_0011
0101_101_1011
0110_101_1111
0111_111_0000
1000_111_1111
1001_111_1011
1010_111_0111
1011_001_1111
1100_000_1101
1101_011_1101
1110_100_1111
1111_100_0111

SystemVerilog

module sevenseg(input logic [3:0] data,
 output logic [6:0] segments);

 always_comb
 case (data)
 // abc_defg
 4'h0: segments = 7'b111_1110;
 4'h1: segments = 7'b011_0000;
 4'h2: segments = 7'b110_1101;
 4'h3: segments = 7'b111_1001;
 4'h4: segments = 7'b011_0011;
 4'h5: segments = 7'b101_1011;
 4'h6: segments = 7'b101_1111;
 4'h7: segments = 7'b111_0000;
 4'h8: segments = 7'b111_1111;
 4'h9: segments = 7'b111_0011;
 4'ha: segments = 7'b111_0111;
 4'hb: segments = 7'b001_1111;
 4'hc: segments = 7'b000_1101;
 4'hd: segments = 7'b011_1101;
 4'he: segments = 7'b100_1111;
 4'hf: segments = 7'b100_0111;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity seven_seg_decoder is
 port(data: in STD_LOGIC_VECTOR(3 downto 0);
 segments: out STD_LOGIC_VECTOR(6 downto 0));

end;

architecture synth of seven_seg_decoder is
begin
 process(all) begin
 case data is

-- abcdefg
 when X"0" => segments <= "1111110";
 when X"1" => segments <= "0110000";
 when X"2" => segments <= "1101101";
 when X"3" => segments <= "1111001";
 when X"4" => segments <= "0110011";
 when X"5" => segments <= "1011011";
 when X"6" => segments <= "1011111";
 when X"7" => segments <= "1110000";
 when X"8" => segments <= "1111111";
 when X"9" => segments <= "1110011";
 when X"A" => segments <= "1110111";
 when X"B" => segments <= "0011111";
 when X"C" => segments <= "0001101";
 when X"D" => segments <= "0111101";
 when X"E" => segments <= "1001111";
 when X"F" => segments <= "1000111";
 when others => segments <= "0000000";
 end case;

 end process;
end;

90 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.

S O L U T I O N S 91
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Option 1:

 (VHDL continued on next page)

SystemVerilog

module ex4_7_testbench();
 logic clk, reset;
 logic [3:0] data;
 logic [6:0] s_expected;
 logic [6:0] s;
 logic [31:0] vectornum, errors;
 logic [10:0] testvectors[10000:0];

 // instantiate device under test
 sevenseg dut(data, s);

 // generate clock
 always

 begin
 clk = 1; #5; clk = 0; #5;
 end

 // at start of test, load vectors
 // and pulse reset
 initial

 begin
 $readmemb("ex4_7.tv", testvectors);
 vectornum = 0; errors = 0;
 reset = 1; #27; reset = 0;
 end

 // apply test vectors on rising edge of clk
 always @(posedge clk)

 begin
 #1; {data, s_expected} =

testvectors[vectornum];
 end

 // check results on falling edge of clk
 always @(negedge clk)

 if (~reset) begin // skip during reset
 if (s !== s_expected) begin
 $display("Error: inputs = %h", data);
 $display(" outputs = %b (%b expected)",

 s, s_expected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 11'bx) begin

$display("%d tests completed with %d errors",
 vectornum, errors);

 $finish;
 end

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity ex4_7_testbench is -- no inputs or outputs
end;

architecture sim of ex4_7_testbench is
 component seven_seg_decoder
 port(data: in STD_LOGIC_VECTOR(3 downto 0);
 segments: out STD_LOGIC_VECTOR(6 downto 0));

 end component;
 signal data: STD_LOGIC_VECTOR(3 downto 0);
 signal s: STD_LOGIC_VECTOR(6 downto 0);
 signal clk, reset: STD_LOGIC;
 signal s_expected: STD_LOGIC_VECTOR(6 downto 0);
 constant MEMSIZE: integer := 10000;
 type tvarray is array(MEMSIZE downto 0) of
 STD_LOGIC_VECTOR(10 downto 0);

 signal testvectors: tvarray;
 shared variable vectornum, errors: integer;
begin
 -- instantiate device under test
 dut: seven_seg_decoder port map(data, s);

 -- generate clock
 process begin
 clk <= '1'; wait for 5 ns;
 clk <= '0'; wait for 5 ns;

 end process;

 -- at start of test, load vectors
 -- and pulse reset
 process is
 file tv: TEXT;
 variable i, j: integer;
 variable L: line;
 variable ch: character;

 begin
 -- read file of test vectors
 i := 0;
 FILE_OPEN(tv, "ex4_7.tv", READ_MODE);
 while not endfile(tv) loop
 readline(tv, L);
 for j in 10 downto 0 loop

read(L, ch);
if (ch = '_') then read(L, ch);
end if;
if (ch = '0') then
testvectors(i)(j) <= '0';

else testvectors(i)(j) <= '1';
end if;

 end loop;
 i := i + 1;
 end loop;

92 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 (continued from previous page)

VHDL

 vectornum := 0; errors := 0;
 reset <= '1'; wait for 27 ns; reset <= '0';
 wait;

 end process;

 -- apply test vectors on rising edge of clk
 process (clk) begin
 if (clk'event and clk = '1') then

 data <= testvectors(vectornum)(10 downto 7)
 after 1 ns;
 s_expected <= testvectors(vectornum)(6 downto 0)
 after 1 ns;

 end if;
 end process;

 -- check results on falling edge of clk
 process (clk) begin

 if (clk'event and clk = '0' and reset = '0') then
 assert s = s_expected
 report "data = " &
 integer'image(CONV_INTEGER(data)) &
 "; s = " &
 integer'image(CONV_INTEGER(s)) &
 "; s_expected = " &

 integer'image(CONV_INTEGER(s_expected));
 if (s /= s_expected) then
 errors := errors + 1;
 end if;
 vectornum := vectornum + 1;
 if (is_x(testvectors(vectornum))) then
 if (errors = 0) then
 report "Just kidding -- " &

 integer'image(vectornum) &
 " tests completed successfully."
 severity failure;

 else
 report integer'image(vectornum) &

 " tests completed, errors = " &
 integer'image(errors)
 severity failure;

 end if;
 end if;
 end if;

 end process;
end;

S O L U T I O N S 93
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Option 2 (VHDL only):

 (see Web site for file: txt_util.vhd)

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;
use work.txt_util.all;

entity ex4_7_testbench is -- no inputs or outputs
end;

architecture sim of ex4_7_testbench is
 component seven_seg_decoder
 port(data: in STD_LOGIC_VECTOR(3 downto 0);

 segments: out STD_LOGIC_VECTOR(6 downto 0));
 end component;
 signal data: STD_LOGIC_VECTOR(3 downto 0);
 signal s: STD_LOGIC_VECTOR(6 downto 0);
 signal clk, reset: STD_LOGIC;
 signal s_expected: STD_LOGIC_VECTOR(6 downto 0);
 constant MEMSIZE: integer := 10000;
 type tvarray is array(MEMSIZE downto 0) of
 STD_LOGIC_VECTOR(10 downto 0);
 signal testvectors: tvarray;
 shared variable vectornum, errors: integer;
begin
 -- instantiate device under test
 dut: seven_seg_decoder port map(data, s);

 -- generate clock
 process begin

 clk <= '1'; wait for 5 ns;
 clk <= '0'; wait for 5 ns;
 end process;

 -- at start of test, load vectors
 -- and pulse reset
 process is

 file tv: TEXT;
 variable i, j: integer;
 variable L: line;
 variable ch: character;

 begin
 -- read file of test vectors
 i := 0;
 FILE_OPEN(tv, "ex4_7.tv", READ_MODE);
 while not endfile(tv) loop
 readline(tv, L);
 for j in 10 downto 0 loop
 read(L, ch);
 if (ch = '_') then read(L, ch);
 end if;
 if (ch = '0') then

testvectors(i)(j) <= '0';
 else testvectors(i)(j) <= '1';
 end if;
 end loop;
 i := i + 1;
 end loop;

 vectornum := 0; errors := 0;
 reset <= '1'; wait for 27 ns; reset <= '0';

 wait;
 end process;

 -- apply test vectors on rising edge of clk
 process (clk) begin
 if (clk'event and clk = '1') then

 data <= testvectors(vectornum)(10 downto 7)
after 1 ns;

 s_expected <= testvectors(vectornum)(6 downto 0)
after 1 ns;

 end if;
 end process;

 -- check results on falling edge of clk
 process (clk) begin
 if (clk'event and clk = '0' and reset = '0') then
 assert s = s_expected

report "data = " & str(data) &
"; s = " & str(s) &

 "; s_expected = " & str(s_expected);
 if (s /= s_expected) then

errors := errors + 1;
 end if;
 vectornum := vectornum + 1;
 if (is_x(testvectors(vectornum))) then

if (errors = 0) then
report "Just kidding -- " &

integer'image(vectornum) &
" tests completed successfully."
severity failure;

else
report integer'image(vectornum) &

" tests completed, errors = " &
integer'image(errors)
severity failure;

end if;
 end if;
 end if;

 end process;
end;

94 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.8

Exercise 4.9

SystemVerilog

module mux8
 #(parameter width = 4)
 (input logic [width-1:0] d0, d1, d2, d3,

 d4, d5, d6, d7,
 input logic [2:0] s,
 output logic [width-1:0] y);

 always_comb
 case (s)
 0: y = d0;
 1: y = d1;
 2: y = d2;
 3: y = d3;
 4: y = d4;
 5: y = d5;
 6: y = d6;
 7: y = d7;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux8 is
 generic(width: integer := 4);
 port(d0,
 d1,
 d2,
 d3,
 d4,
 d5,
 d6,
 d7: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(2 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

architecture synth of mux8 is
begin
 with s select y <=
 d0 when "000",
 d1 when "001",
 d2 when "010",
 d3 when "011",
 d4 when "100",
 d5 when "101",
 d6 when "110",
 d7 when others;

end;

S O L U T I O N S 95
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SystemVerilog

module ex4_9
 (input logic a, b, c,

 output logic y);

 mux8 #(1) mux8_1(1'b1, 1'b0, 1'b0, 1'b1,
1'b1, 1'b1, 1'b0, 1'b0,
{a,b,c}, y);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_9 is
 port(a,
 b,
 c: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(0 downto 0));

end;

architecture struct of ex4_9 is
 component mux8
 generic(width: integer);

 port(d0, d1, d2, d3, d4, d5, d6,
 d7: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(2 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 signal sel: STD_LOGIC_VECTOR(2 downto 0);
begin
 sel <= a & b & c;

 mux8_1: mux8 generic map(1)
 port map("1", "0", "0", "1",

 "1", "1", "0", "0",
 sel, y);

end;

96 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.10

SystemVerilog

module ex4_10
 (input logic a, b, c,

 output logic y);

 mux4 #(1) mux4_1(~c, c, 1'b1, 1'b0, {a, b}, y);
endmodule

module mux4
 #(parameter width = 4)
 (input logic [width-1:0] d0, d1, d2, d3,

 input logic [1:0] s,
 output logic [width-1:0] y);

 always_comb
 case (s)
 0: y = d0;
 1: y = d1;
 2: y = d2;
 3: y = d3;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_10 is
 port(a,
 b,
 c: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(0 downto 0));

end;

architecture struct of ex4_10 is
 component mux4
 generic(width: integer);
 port(d0, d1, d2,
 d3: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 signal cb: STD_LOGIC_VECTOR(0 downto 0);
 signal c_vect: STD_LOGIC_VECTOR(0 downto 0);
 signal sel: STD_LOGIC_VECTOR(1 downto 0);
begin
 c_vect(0) <= c;
 cb(0) <= not c;
 sel <= (a & b);
 mux4_1: mux4 generic map(1)

port map(cb, c_vect, "1", "0", sel, y);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
 generic(width: integer := 4);
 port(d0,
 d1,
 d2,
 d3: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture synth of mux4 is
begin
 with s select y <=
 d0 when "00",
 d1 when "01",
 d2 when "10",
 d3 when others;

end;

S O L U T I O N S 97
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.11

A shift register with feedback, shown below, cannot be correctly described
with blocking assignments.

Exercise 4.12

Exercise 4.13

CLK

SystemVerilog

module priority(input logic [7:0] a,
 output logic [7:0] y);

 always_comb
 casez (a)

 8'b1???????: y = 8'b10000000;
 8'b01??????: y = 8'b01000000;
 8'b001?????: y = 8'b00100000;
 8'b0001????: y = 8'b00010000;
 8'b00001???: y = 8'b00001000;
 8'b000001??: y = 8'b00000100;
 8'b0000001?: y = 8'b00000010;
 8'b00000001: y = 8'b00000001;
 default: y = 8'b00000000;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority is
 port(a: in STD_LOGIC_VECTOR(7 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture synth of priority is
begin
 process(all) begin
 if a(7) = '1' then y <= "10000000";
 elsif a(6) = '1' then y <= "01000000";
 elsif a(5) = '1' then y <= "00100000";
 elsif a(4) = '1' then y <= "00010000";
 elsif a(3) = '1' then y <= "00001000";
 elsif a(2) = '1' then y <= "00000100";
 elsif a(1) = '1' then y <= "00000010";
 elsif a(0) = '1' then y <= "00000001";
 else y <= "00000000";
 end if;

 end process;
end;

98 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.14

SystemVerilog

module decoder2_4(input logic [1:0] a,
 output logic [3:0] y);

 always_comb
 case (a)
 2'b00: y = 4'b0001;
 2'b01: y = 4'b0010;
 2'b10: y = 4'b0100;
 2'b11: y = 4'b1000;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder2_4 is
 port(a: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture synth of decoder2_4 is
begin
 process(all) begin
 case a is
 when "00" => y <= "0001";
 when "01" => y <= "0010";
 when "10" => y <= "0100";
 when "11" => y <= "1000";
 when others => y <= "0000";
 end case;

 end process;
end;

S O L U T I O N S 99
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 (continued on next page)

SystemVerilog

module decoder6_64(input logic [5:0] a,
output logic [63:0] y);

 logic [11:0] y2_4;

 decoder2_4 dec0(a[1:0], y2_4[3:0]);
 decoder2_4 dec1(a[3:2], y2_4[7:4]);
 decoder2_4 dec2(a[5:4], y2_4[11:8]);

 assign y[0] = y2_4[0] & y2_4[4] & y2_4[8];
 assign y[1] = y2_4[1] & y2_4[4] & y2_4[8];
 assign y[2] = y2_4[2] & y2_4[4] & y2_4[8];
 assign y[3] = y2_4[3] & y2_4[4] & y2_4[8];
 assign y[4] = y2_4[0] & y2_4[5] & y2_4[8];
 assign y[5] = y2_4[1] & y2_4[5] & y2_4[8];
 assign y[6] = y2_4[2] & y2_4[5] & y2_4[8];
 assign y[7] = y2_4[3] & y2_4[5] & y2_4[8];
 assign y[8] = y2_4[0] & y2_4[6] & y2_4[8];
 assign y[9] = y2_4[1] & y2_4[6] & y2_4[8];
 assign y[10] = y2_4[2] & y2_4[6] & y2_4[8];
 assign y[11] = y2_4[3] & y2_4[6] & y2_4[8];
 assign y[12] = y2_4[0] & y2_4[7] & y2_4[8];
 assign y[13] = y2_4[1] & y2_4[7] & y2_4[8];
 assign y[14] = y2_4[2] & y2_4[7] & y2_4[8];
 assign y[15] = y2_4[3] & y2_4[7] & y2_4[8];
 assign y[16] = y2_4[0] & y2_4[4] & y2_4[9];
 assign y[17] = y2_4[1] & y2_4[4] & y2_4[9];
 assign y[18] = y2_4[2] & y2_4[4] & y2_4[9];
 assign y[19] = y2_4[3] & y2_4[4] & y2_4[9];
 assign y[20] = y2_4[0] & y2_4[5] & y2_4[9];
 assign y[21] = y2_4[1] & y2_4[5] & y2_4[9];
 assign y[22] = y2_4[2] & y2_4[5] & y2_4[9];
 assign y[23] = y2_4[3] & y2_4[5] & y2_4[9];
 assign y[24] = y2_4[0] & y2_4[6] & y2_4[9];
 assign y[25] = y2_4[1] & y2_4[6] & y2_4[9];
 assign y[26] = y2_4[2] & y2_4[6] & y2_4[9];
 assign y[27] = y2_4[3] & y2_4[6] & y2_4[9];
 assign y[28] = y2_4[0] & y2_4[7] & y2_4[9];
 assign y[29] = y2_4[1] & y2_4[7] & y2_4[9];
 assign y[30] = y2_4[2] & y2_4[7] & y2_4[9];
 assign y[31] = y2_4[3] & y2_4[7] & y2_4[9];

 VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder6_64 is
 port(a: in STD_LOGIC_VECTOR(5 downto 0);
 y: out STD_LOGIC_VECTOR(63 downto 0));

end;

architecture struct of decoder6_64 is
 component decoder2_4
 port(a: in STD_LOGIC_VECTOR(1 downto 0);

y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 signal y2_4: STD_LOGIC_VECTOR(11 downto 0);
begin
 dec0: decoder2_4 port map(a(1 downto 0),

y2_4(3 downto 0));
 dec1: decoder2_4 port map(a(3 downto 2),

y2_4(7 downto 4));
 dec2: decoder2_4 port map(a(5 downto 4),

y2_4(11 downto 8));

 y(0) <= y2_4(0) and y2_4(4) and y2_4(8);
 y(1) <= y2_4(1) and y2_4(4) and y2_4(8);
 y(2) <= y2_4(2) and y2_4(4) and y2_4(8);
 y(3) <= y2_4(3) and y2_4(4) and y2_4(8);
 y(4) <= y2_4(0) and y2_4(5) and y2_4(8);
 y(5) <= y2_4(1) and y2_4(5) and y2_4(8);
 y(6) <= y2_4(2) and y2_4(5) and y2_4(8);
 y(7) <= y2_4(3) and y2_4(5) and y2_4(8);
 y(8) <= y2_4(0) and y2_4(6) and y2_4(8);
 y(9) <= y2_4(1) and y2_4(6) and y2_4(8);
 y(10) <= y2_4(2) and y2_4(6) and y2_4(8);
 y(11) <= y2_4(3) and y2_4(6) and y2_4(8);
 y(12) <= y2_4(0) and y2_4(7) and y2_4(8);
 y(13) <= y2_4(1) and y2_4(7) and y2_4(8);
 y(14) <= y2_4(2) and y2_4(7) and y2_4(8);
 y(15) <= y2_4(3) and y2_4(7) and y2_4(8);
 y(16) <= y2_4(0) and y2_4(4) and y2_4(9);
 y(17) <= y2_4(1) and y2_4(4) and y2_4(9);
 y(18) <= y2_4(2) and y2_4(4) and y2_4(9);
 y(19) <= y2_4(3) and y2_4(4) and y2_4(9);
 y(20) <= y2_4(0) and y2_4(5) and y2_4(9);
 y(21) <= y2_4(1) and y2_4(5) and y2_4(9);
 y(22) <= y2_4(2) and y2_4(5) and y2_4(9);
 y(23) <= y2_4(3) and y2_4(5) and y2_4(9);
 y(24) <= y2_4(0) and y2_4(6) and y2_4(9);
 y(25) <= y2_4(1) and y2_4(6) and y2_4(9);
 y(26) <= y2_4(2) and y2_4(6) and y2_4(9);
 y(27) <= y2_4(3) and y2_4(6) and y2_4(9);
 y(28) <= y2_4(0) and y2_4(7) and y2_4(9);
 y(29) <= y2_4(1) and y2_4(7) and y2_4(9);
 y(30) <= y2_4(2) and y2_4(7) and y2_4(9);
 y(31) <= y2_4(3) and y2_4(7) and y2_4(9);

100 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
(continued from previous page)
SystemVerilog

 assign y[32] = y2_4[0] & y2_4[4] & y2_4[10];
 assign y[33] = y2_4[1] & y2_4[4] & y2_4[10];
 assign y[34] = y2_4[2] & y2_4[4] & y2_4[10];
 assign y[35] = y2_4[3] & y2_4[4] & y2_4[10];
 assign y[36] = y2_4[0] & y2_4[5] & y2_4[10];
 assign y[37] = y2_4[1] & y2_4[5] & y2_4[10];
 assign y[38] = y2_4[2] & y2_4[5] & y2_4[10];
 assign y[39] = y2_4[3] & y2_4[5] & y2_4[10];
 assign y[40] = y2_4[0] & y2_4[6] & y2_4[10];
 assign y[41] = y2_4[1] & y2_4[6] & y2_4[10];
 assign y[42] = y2_4[2] & y2_4[6] & y2_4[10];
 assign y[43] = y2_4[3] & y2_4[6] & y2_4[10];
 assign y[44] = y2_4[0] & y2_4[7] & y2_4[10];
 assign y[45] = y2_4[1] & y2_4[7] & y2_4[10];
 assign y[46] = y2_4[2] & y2_4[7] & y2_4[10];
 assign y[47] = y2_4[3] & y2_4[7] & y2_4[10];
 assign y[48] = y2_4[0] & y2_4[4] & y2_4[11];
 assign y[49] = y2_4[1] & y2_4[4] & y2_4[11];
 assign y[50] = y2_4[2] & y2_4[4] & y2_4[11];
 assign y[51] = y2_4[3] & y2_4[4] & y2_4[11];
 assign y[52] = y2_4[0] & y2_4[5] & y2_4[11];
 assign y[53] = y2_4[1] & y2_4[5] & y2_4[11];
 assign y[54] = y2_4[2] & y2_4[5] & y2_4[11];
 assign y[55] = y2_4[3] & y2_4[5] & y2_4[11];
 assign y[56] = y2_4[0] & y2_4[6] & y2_4[11];
 assign y[57] = y2_4[1] & y2_4[6] & y2_4[11];
 assign y[58] = y2_4[2] & y2_4[6] & y2_4[11];
 assign y[59] = y2_4[3] & y2_4[6] & y2_4[11];
 assign y[60] = y2_4[0] & y2_4[7] & y2_4[11];
 assign y[61] = y2_4[1] & y2_4[7] & y2_4[11];
 assign y[62] = y2_4[2] & y2_4[7] & y2_4[11];
 assign y[63] = y2_4[3] & y2_4[7] & y2_4[11];
endmodule

VHDL

 y(32) <= y2_4(0) and y2_4(4) and y2_4(10);
 y(33) <= y2_4(1) and y2_4(4) and y2_4(10);
 y(34) <= y2_4(2) and y2_4(4) and y2_4(10);
 y(35) <= y2_4(3) and y2_4(4) and y2_4(10);
 y(36) <= y2_4(0) and y2_4(5) and y2_4(10);
 y(37) <= y2_4(1) and y2_4(5) and y2_4(10);
 y(38) <= y2_4(2) and y2_4(5) and y2_4(10);
 y(39) <= y2_4(3) and y2_4(5) and y2_4(10);
 y(40) <= y2_4(0) and y2_4(6) and y2_4(10);
 y(41) <= y2_4(1) and y2_4(6) and y2_4(10);
 y(42) <= y2_4(2) and y2_4(6) and y2_4(10);
 y(43) <= y2_4(3) and y2_4(6) and y2_4(10);
 y(44) <= y2_4(0) and y2_4(7) and y2_4(10);
 y(45) <= y2_4(1) and y2_4(7) and y2_4(10);
 y(46) <= y2_4(2) and y2_4(7) and y2_4(10);
 y(47) <= y2_4(3) and y2_4(7) and y2_4(10);
 y(48) <= y2_4(0) and y2_4(4) and y2_4(11);
 y(49) <= y2_4(1) and y2_4(4) and y2_4(11);
 y(50) <= y2_4(2) and y2_4(4) and y2_4(11);
 y(51) <= y2_4(3) and y2_4(4) and y2_4(11);
 y(52) <= y2_4(0) and y2_4(5) and y2_4(11);
 y(53) <= y2_4(1) and y2_4(5) and y2_4(11);
 y(54) <= y2_4(2) and y2_4(5) and y2_4(11);
 y(55) <= y2_4(3) and y2_4(5) and y2_4(11);
 y(56) <= y2_4(0) and y2_4(6) and y2_4(11);
 y(57) <= y2_4(1) and y2_4(6) and y2_4(11);
 y(58) <= y2_4(2) and y2_4(6) and y2_4(11);
 y(59) <= y2_4(3) and y2_4(6) and y2_4(11);
 y(60) <= y2_4(0) and y2_4(7) and y2_4(11);
 y(61) <= y2_4(1) and y2_4(7) and y2_4(11);
 y(62) <= y2_4(2) and y2_4(7) and y2_4(11);
 y(63) <= y2_4(3) and y2_4(7) and y2_4(11);
end;

S O L U T I O N S 101
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.15

(a)

(b)

(c)

Y AC ABC+=

SystemVerilog

module ex4_15a(input logic a, b, c,
 output logic y);

 assign y = (a & c) | (~a & ~b & c);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_15a is
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture behave of ex4_15a is
begin
 y <= (not a and not b and c) or (not b and c);
end;

Y AB ABC A C+ + +=

SystemVerilog

module ex4_15b(input logic a, b, c,
 output logic y);

 assign y = (~a & ~b) | (~a & b & ~c) | ~(a | ~c);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_15b is
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture behave of ex4_15b is
begin
 y <= ((not a) and (not b)) or ((not a) and b and

(not c)) or (not(a or (not c)));
end;

Y ABCD ABC ABCD ABD ABCD BCD A+ + + + + +=

SystemVerilog

module ex4_15c(input logic a, b, c, d,
 output logic y);

 assign y = (~a & ~b & ~c & ~d) | (a & ~b & ~c) |
 (a & ~b & c & ~d) | (a & b & d) |

 (~a & ~b & c & ~d) | (b & ~c & d) | ~a;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_15c is
 port(a, b, c, d: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture behave of ex4_15c is
begin
 y <= ((not a) and (not b) and (not c) and (not d)) or
 (a and (not b) and (not c)) or
 (a and (not b) and c and (not d)) or
 (a and b and d) or
 ((not a) and (not b) and c and (not d)) or
 (b and (not c) and d) or (not a);

end;

102 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.16

Exercise 4.17

SystemVerilog

module ex4_16(input logic a, b, c, d, e,
 output logic y);

 assign y = ~(~(~(a & b) & ~(c & d)) & e);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_16 is
 port(a, b, c, d, e: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture behave of ex4_16 is
begin
 y <= not((not((not(a and b)) and

 (not(c and d)))) and e);

end;

S O L U T I O N S 103
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.18

SystemVerilog

module ex4_17(input logic a, b, c, d, e, f, g
 output logic y);

 logic n1, n2, n3, n4, n5;

 assign n1 = ~(a & b & c);
 assign n2 = ~(n1 & d);
 assign n3 = ~(f & g);
 assign n4 = ~(n3 | e);
 assign n5 = ~(n2 | n4);
 assign y = ~(n5 & n5);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_17 is
 port(a, b, c, d, e, f, g: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture synth of ex4_17 is
 signal n1, n2, n3, n4, n5: STD_LOGIC;
begin
 n1 <= not(a and b and c);
 n2 <= not(n1 and d);
 n3 <= not(f and g);
 n4 <= not(n3 or e);
 n5 <= not(n2 or n4);
 y <= not (n5 or n5);
end;

104 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Verilog

module ex4_18(input logic a, b, c, d,
 output logic y);

 always_comb
 casez ({a, b, c, d})

 // note: outputs cannot be assigned don’t care
 0: y = 1'b0;
 1: y = 1'b0;
 2: y = 1'b0;
 3: y = 1'b0;
 4: y = 1'b0;
 5: y = 1'b0;
 6: y = 1'b0;
 7: y = 1'b0;
 8: y = 1'b1;
 9: y = 1'b0;
 10: y = 1'b0;
 11: y = 1'b1;
 12: y = 1'b1;
 13: y = 1'b1;
 14: y = 1'b0;
 15: y = 1'b1;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_18 is
 port(a, b, c, d: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture synth of ex4_17 is
signal vars: STD_LOGIC_VECTOR(3 downto 0);
begin
 vars <= (a & b & c & d);
 process(all) begin
 case vars is
 -- note: outputs cannot be assigned don’t care

 when X"0" => y <= '0';
 when X"1" => y <= '0';
 when X"2" => y <= '0';
 when X"3" => y <= '0';
 when X"4" => y <= '0';
 when X"5" => y <= '0';
 when X"6" => y <= '0';
 when X"7" => y <= '0';
 when X"8" => y <= '1';
 when X"9" => y <= '0';
 when X"A" => y <= '0';
 when X"B" => y <= '1';
 when X"C" => y <= '1';
 when X"D" => y <= '1';
 when X"E" => y <= '0';
 when X"F" => y <= '1';
 when others => y <= '0';--should never happen
 end case;

 end process;
end;

S O L U T I O N S 105
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.19

SystemVerilog

module ex4_18(input logic [3:0] a,
 output logic p, d);

 always_comb
 case (a)
 0: {p, d} = 2'b00;
 1: {p, d} = 2'b00;
 2: {p, d} = 2'b10;
 3: {p, d} = 2'b11;
 4: {p, d} = 2'b00;
 5: {p, d} = 2'b10;
 6: {p, d} = 2'b01;
 7: {p, d} = 2'b10;
 8: {p, d} = 2'b00;
 9: {p, d} = 2'b01;
 10: {p, d} = 2'b00;
 11: {p, d} = 2'b10;
 12: {p, d} = 2'b01;
 13: {p, d} = 2'b10;
 14: {p, d} = 2'b00;
 15: {p, d} = 2'b01;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_18 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 p, d: out STD_LOGIC);

end;

architecture synth of ex4_18 is
signal vars: STD_LOGIC_VECTOR(1 downto 0);
begin
 p <= vars(1);
 d <= vars(0);
 process(all) begin
 case a is
 when X"0" => vars <= "00";
 when X"1" => vars <= "00";
 when X"2" => vars <= "10";
 when X"3" => vars <= "11";
 when X"4" => vars <= "00";
 when X"5" => vars <= "10";
 when X"6" => vars <= "01";
 when X"7" => vars <= "10";
 when X"8" => vars <= "00";
 when X"9" => vars <= "01";
 when X"A" => vars <= "00";
 when X"B" => vars <= "10";
 when X"C" => vars <= "01";
 when X"D" => vars <= "10";
 when X"E" => vars <= "00";
 when X"F" => vars <= "01";
 when others => vars <= "00";
 end case;

 end process;
end;

106 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.20

Exercise 4.21

SystemVerilog

module priority_encoder(input logic [7:0] a,
 output logic [2:0] y,
 output logic none);

 always_comb
 casez (a)

 8'b00000000: begin y = 3'd0; none = 1'b1; end
 8'b00000001: begin y = 3'd0; none = 1'b0; end
 8'b0000001?: begin y = 3'd1; none = 1'b0; end
 8'b000001??: begin y = 3'd2; none = 1'b0; end
 8'b00001???: begin y = 3'd3; none = 1'b0; end
 8'b0001????: begin y = 3'd4; none = 1'b0; end
 8'b001?????: begin y = 3'd5; none = 1'b0; end
 8'b01??????: begin y = 3'd6; none = 1'b0; end
 8'b1???????: begin y = 3'd7; none = 1'b0; end

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority_encoder is
 port(a: in STD_LOGIC_VECTOR(7 downto 0);
 y: out STD_LOGIC_VECTOR(2 downto 0);
 none: out STD_LOGIC);

end;

architecture synth of priority_encoder is
begin
 process(all) begin
 case? a is
 when "00000000" => y <= "000"; none <= '1';
 when "00000001" => y <= "000"; none <= '0';
 when "0000001-" => y <= "001"; none <= '0';
 when "000001--" => y <= "010"; none <= '0';
 when "00001---" => y <= "011"; none <= '0';
 when "0001----" => y <= "100"; none <= '0';
 when "001-----" => y <= "101"; none <= '0';
 when "01------" => y <= "110"; none <= '0';
 when "1-------" => y <= "111"; none <= '0';
 when others => y <= "000"; none <= '0';
 end case?;

 end process;
end;

S O L U T I O N S 107
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SystemVerilog

module priority_encoder2(input logic [7:0] a,
 output logic [2:0] y, z,
 output logic none);

 always_comb
 begin

 casez (a)
 8'b00000000: begin y = 3'd0; none = 1'b1; end
 8'b00000001: begin y = 3'd0; none = 1'b0; end
 8'b0000001?: begin y = 3'd1; none = 1'b0; end
 8'b000001??: begin y = 3'd2; none = 1'b0; end
 8'b00001???: begin y = 3'd3; none = 1'b0; end
 8'b0001????: begin y = 3'd4; none = 1'b0; end
 8'b001?????: begin y = 3'd5; none = 1'b0; end
 8'b01??????: begin y = 3'd6; none = 1'b0; end
 8'b1???????: begin y = 3'd7; none = 1'b0; end

 endcase

 casez (a)
 8'b00000011: z = 3'b000;
 8'b00000101: z = 3'b000;
 8'b00001001: z = 3'b000;
 8'b00010001: z = 3'b000;
 8'b00100001: z = 3'b000;
 8'b01000001: z = 3'b000;
 8'b10000001: z = 3'b000;
 8'b0000011?: z = 3'b001;
 8'b0000101?: z = 3'b001;
 8'b0001001?: z = 3'b001;
 8'b0010001?: z = 3'b001;
 8'b0100001?: z = 3'b001;
 8'b1000001?: z = 3'b001;
 8'b000011??: z = 3'b010;
 8'b000101??: z = 3'b010;
 8'b001001??: z = 3'b010;
 8'b010001??: z = 3'b010;
 8'b100001??: z = 3'b010;
 8'b00011???: z = 3'b011;
 8'b00101???: z = 3'b011;
 8'b01001???: z = 3'b011;
 8'b10001???: z = 3'b011;
 8'b0011????: z = 3'b100;
 8'b0101????: z = 3'b100;
 8'b1001????: z = 3'b100;
 8'b011?????: z = 3'b101;
 8'b101?????: z = 3'b101;
 8'b11??????: z = 3'b110;
 default: z = 3'b000;

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority_encoder2 is
 port(a: in STD_LOGIC_VECTOR(7 downto 0);
 y, z: out STD_LOGIC_VECTOR(2 downto 0);
 none: out STD_LOGIC);

end;

architecture synth of priority_encoder is
begin
 process(all) begin
 case? a is
 when "00000000" => y <= "000"; none <= '1';
 when "00000001" => y <= "000"; none <= '0';
 when "0000001-" => y <= "001"; none <= '0';
 when "000001--" => y <= "010"; none <= '0';
 when "00001---" => y <= "011"; none <= '0';
 when "0001----" => y <= "100"; none <= '0';
 when "001-----" => y <= "101"; none <= '0';
 when "01------" => y <= "110"; none <= '0';
 when "1-------" => y <= "111"; none <= '0';
 when others => y <= "000"; none <= '0';
 end case?;
 case? a is
 when "00000011" => z <= "000";
 when "00000101" => z <= "000";
 when "00001001" => z <= "000";
 when "00001001" => z <= "000";
 when "00010001" => z <= "000";
 when "00100001" => z <= "000";
 when "01000001" => z <= "000";
 when "10000001" => z <= "000";
 when "0000011-" => z <= "001";
 when "0000101-" => z <= "001";
 when "0001001-" => z <= "001";
 when "0010001-" => z <= "001";
 when "0100001-" => z <= "001";
 when "1000001-" => z <= "001";
 when "000011--" => z <= "010";
 when "000101--" => z <= "010";
 when "001001--" => z <= "010";
 when "010001--" => z <= "010";
 when "100001--" => z <= "010";
 when "00011---" => z <= "011";
 when "00101---" => z <= "011";
 when "01001---" => z <= "011";
 when "10001---" => z <= "011";
 when "0011----" => z <= "100";
 when "0101----" => z <= "100";
 when "1001----" => z <= "100";
 when "011-----" => z <= "101";
 when "101-----" => z <= "101";
 when "11------" => z <= "110";
 when others => z <= "000";
 end case?;

 end process;
end;

108 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.22

Exercise 4.23

SystemVerilog

module thermometer(input logic [2:0] a,
 output logic [6:0] y);

 always_comb
 case (a)
 0: y = 7'b0000000;
 1: y = 7'b0000001;
 2: y = 7'b0000011;
 3: y = 7'b0000111;
 4: y = 7'b0001111;
 5: y = 7'b0011111;
 6: y = 7'b0111111;
 7: y = 7'b1111111;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity thermometer is
 port(a: in STD_LOGIC_VECTOR(2 downto 0);
 y: out STD_LOGIC_VECTOR(6 downto 0));

end;

architecture synth of thermometer is
begin
 process(all) begin
 case a is
 when "000" => y <= "0000000";
 when "001" => y <= "0000001";
 when "010" => y <= "0000011";
 when "011" => y <= "0000111";
 when "100" => y <= "0001111";
 when "101" => y <= "0011111";
 when "110" => y <= "0111111";
 when "111" => y <= "1111111";
 when others => y <= "0000000";
 end case;

 end process;
end;

S O L U T I O N S 109
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.24

Exercise 4.25

SystemVerilog

module month31days(input logic [3:0] month,
output logic y);

 always_comb
 casez (month)
 1: y = 1'b1;
 2: y = 1'b0;
 3: y = 1'b1;
 4: y = 1'b0;
 5: y = 1'b1;
 6: y = 1'b0;
 7: y = 1'b1;
 8: y = 1'b1;
 9: y = 1'b0;
 10: y = 1'b1;
 11: y = 1'b0;
 12: y = 1'b1;
 default: y = 1'b0;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity month31days is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC);

end;

architecture synth of month31days is
begin
 process(all) begin
 case a is
 when X"1" => y <= '1';
 when X"2" => y <= '0';
 when X"3" => y <= '1';
 when X"4" => y <= '0';
 when X"5" => y <= '1';
 when X"6" => y <= '0';
 when X"7" => y <= '1';
 when X"8" => y <= '1';
 when X"9" => y <= '0';
 when X"A" => y <= '1';
 when X"B" => y <= '0';
 when X"C" => y <= '1';
 when others => y <= '0';
 end case;

 end process;
end;

S0
Y: 0

S1
Y: 1

S2
Y: 1

Reset

S3
Y: 0

A  B

A  B

AB

AB

A + B

A + B A + B

A + B

110 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
FIGURE 4.1 State transition diagram for Exercise 4.25

Exercise 4.26

Exercise 4.27

S0 S1
S2

if (back)
predicttaken

S3
predicttaken

S4
predicttaken

taken

taken
taken

taken

taken

taken

taken

taken

taken

taken

reset

SystemVerilog

module srlatch(input logic s, r,
 output logic q, qbar);

 always_comb
 case ({s,r})
 2'b01: {q, qbar} = 2'b01;
 2'b10: {q, qbar} = 2'b10;
 2'b11: {q, qbar} = 2'b00;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity srlatch is
 port(s, r: in STD_LOGIC;
 q, qbar: out STD_LOGIC);

end;

architecture synth of srlatch is
signal qqbar: STD_LOGIC_VECTOR(1 downto 0);
signal sr: STD_LOGIC_VECTOR(1 downto 0);
begin
 q <= qqbar(1);
 qbar <= qqbar(0);
 sr <= s & r;
 process(all) begin
 if s = '1' and r = '0'
 then qqbar <= "10";
 elsif s = '0' and r = '1'
 then qqbar <= "01";
 elsif s = '1' and r = '1'
 then qqbar <= "00";
 end if;

 end process;
end;

S O L U T I O N S 111
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.28

This circuit is in error with any delay in the inverter.

Exercise 4.29

SystemVerilog

module jkflop(input logic j, k, clk,
 output logic q);

 always @(posedge clk)
 case ({j,k})
 2'b01: q <= 1'b0;
 2'b10: q <= 1'b1;
 2'b11: q <= ~q;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity jkflop is
 port(j, k, clk: in STD_LOGIC;
 q: inout STD_LOGIC);

end;

architecture synth of jkflop is
signal jk: STD_LOGIC_VECTOR(1 downto 0);
begin
 jk <= j & k;
 process(clk) begin
 if rising_edge(clk) then
 if j = '1' and k = '0'

then q <= '1';
 elsif j = '0' and k = '1'

then q <= '0';
 elsif j = '1' and k = '1'

then q <= not q;
 end if;
 end if;

 end process;
end;

SystemVerilog

module latch3_18(input logic d, clk,
 output logic q);

 logic n1, n2, clk_b;

 assign #1 n1 = clk & d;
 assign clk_b = ~clk;
 assign #1 n2 = clk_b & q;
 assign #1 q = n1 | n2;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity latch3_18 is
 port(d, clk: in STD_LOGIC;
 q: inout STD_LOGIC);

end;

architecture synth of latch3_18 is
signal n1, clk_b, n2: STD_LOGIC;
begin
 n1 <= (clk and d) after 1 ns;
 clk_b <= (not clk);
 n2 <= (clk_b and q) after 1 ns;
 q <= (n1 or n2) after 1 ns;
end;

112 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
SystemVerilog

module trafficFSM(input logic clk, reset, ta, tb,
 output logic [1:0] la, lb);

 typedef enum logic [1:0] {S0, S1, S2, S3}
 statetype;
 statetype [1:0] state, nextstate;

 parameter green = 2'b00;
 parameter yellow = 2'b01;
 parameter red = 2'b10;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (ta) nextstate = S0;
 else nextstate = S1;
 S1: nextstate = S2;
 S2: if (tb) nextstate = S2;
 else nextstate = S3;
 S3: nextstate = S0;
 endcase

 // Output Logic
 always_comb

 case (state)
 S0: {la, lb} = {green, red};
 S1: {la, lb} = {yellow, red};
 S2: {la, lb} = {red, green};
 S3: {la, lb} = {red, yellow};

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity trafficFSM is
 port(clk, reset, ta, tb: in STD_LOGIC;
 la, lb: inout STD_LOGIC_VECTOR(1 downto 0));

end;

architecture behave of trafficFSM is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
 signal lalb: STD_LOGIC_VECTOR(3 downto 0);
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if ta then

 nextstate <= S0;
 else nextstate <= S1;
 end if;

 when S1 => nextstate <= S2;
 when S2 => if tb then

 nextstate <= S2;
 else nextstate <= S3;
 end if;

 when S3 => nextstate <= S0;
 when others => nextstate <= S0;

 end case;
 end process;

 -- output logic
 la <= lalb(3 downto 2);
 lb <= lalb(1 downto 0);
 process(all) begin
 case state is
 when S0 => lalb <= "0010";
 when S1 => lalb <= "0110";
 when S2 => lalb <= "1000";
 when S3 => lalb <= "1001";
 when others => lalb <= "1010";
 end case;

 end process;
end;

S O L U T I O N S 113
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.30

 Mode Module

 (continued on next page)

SystemVerilog

module mode(input logic clk, reset, p, r,
output logic m);

 typedef enum logic {S0, S1} statetype;
 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (p) nextstate = S1;
 else nextstate = S0;
 S1: if (r) nextstate = S0;
 else nextstate = S1;
 endcase

 // Output Logic
 assign m = state;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mode is
 port(clk, reset, p, r: in STD_LOGIC;
 m: out STD_LOGIC);

end;

architecture synth of mode is
 type statetype is (S0, S1);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if p then

 nextstate <= S1;
 else nextstate <= S0;
 end if;

 when S1 => if r then
 nextstate <= S0;

 else nextstate <= S1;
 end if;

 when others => nextstate <= S0;
 end case;
 end process;

 -- output logic
 m <= '1' when state = S1 else '0';
end;

114 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Lights Module

 (continued on next page)

SystemVerilog

module lights(input logic clk, reset, ta, tb, m,
 output logic [1:0] la, lb);

 typedef enum logic [1:0] {S0, S1, S2, S3}
 statetype;

 statetype [1:0] state, nextstate;

 parameter green = 2'b00;
 parameter yellow = 2'b01;
 parameter red = 2'b10;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (ta) nextstate = S0;
 else nextstate = S1;
 S1: nextstate = S2;
 S2: if (tb | m) nextstate = S2;
 else nextstate = S3;
 S3: nextstate = S0;
 endcase

 // Output Logic
 always_comb

 case (state)
 S0: {la, lb} = {green, red};
 S1: {la, lb} = {yellow, red};
 S2: {la, lb} = {red, green};
 S3: {la, lb} = {red, yellow};

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity lights is
 port(clk, reset, ta, tb, m: in STD_LOGIC;
 la, lb: out STD_LOGIC_VECTOR(1 downto 0));

end;

architecture synth of lights is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
 signal lalb: STD_LOGIC_VECTOR(3 downto 0);
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if ta then

 nextstate <= S0;
 else nextstate <= S1;
 end if;

 when S1 => nextstate <= S2;
 when S2 => if ((tb or m) = '1') then

 nextstate <= S2;
 else nextstate <= S3;
 end if;

 when S3 => nextstate <= S0;
 when others => nextstate <= S0;

 end case;
 end process;

 -- output logic
 la <= lalb(3 downto 2);
 lb <= lalb(1 downto 0);
 process(all) begin
 case state is
 when S0 => lalb <= "0010";
 when S1 => lalb <= "0110";
 when S2 => lalb <= "1000";
 when S3 => lalb <= "1001";
 when others => lalb <= "1010";
 end case;

 end process;
end;

S O L U T I O N S 115
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Controller Module

Exercise 4.31

SystemVerilog

module controller(input logic clk, reset, p,
 r, ta, tb,

output logic [1:0] la, lb);

 mode modefsm(clk, reset, p, r, m);
 lights lightsfsm(clk, reset, ta, tb, m, la, lb);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is
 port(clk, reset: in STD_LOGIC;
 p, r, ta: in STD_LOGIC;
 tb: in STD_LOGIC;
 la, lb: out STD_LOGIC_VECTOR(1 downto 0));

end;

architecture struct of controller is
 component mode
 port(clk, reset, p, r: in STD_LOGIC;

m: out STD_LOGIC);
 end component;
 component lights
 port(clk, reset, ta, tb, m: in STD_LOGIC;

la, lb: out STD_LOGIC_VECTOR(1 downto 0));
 end component;

begin
 modefsm: mode port map(clk, reset, p, r, m);
 lightsfsm: lights port map(clk, reset, ta, tb,

 m, la, lb);
end;

116 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.32

SystemVerilog

module fig3_42(input logic clk, a, b, c, d,
 output logic x, y);

 logic n1, n2;
 logic areg, breg, creg, dreg;

 always_ff @(posedge clk) begin
 areg <= a;
 breg <= b;
 creg <= c;
 dreg <= d;
 x <= n2;
 y <= ~(dreg | n2);

 end

 assign n1 = areg & breg;
 assign n2 = n1 | creg;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fig3_42 is
 port(clk, a, b, c, d: in STD_LOGIC;
 x, y: out STD_LOGIC);

end;

architecture synth of fig3_40 is
 signal n1, n2, areg, breg, creg, dreg: STD_LOGIC;
begin
 process(clk) begin
 if rising_edge(clk) then
 areg <= a;
 breg <= b;
 creg <= c;
 dreg <= d;
 x <= n2;
 y <= not (dreg or n2);

 end if;
 end process;

 n1 <= areg and breg;
 n2 <= n1 or creg;
end;

S O L U T I O N S 117
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.33

SystemVerilog

module fig3_69(input logic clk, reset, a, b,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;

else nextstate = S0;
 S1: if (b) nextstate = S2;

else nextstate = S0;
 S2: nextstate = S0;
 default: nextstate = S0;
 endcase

 // Output Logic
 assign q = state[1];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fig3_69 is
 port(clk, reset, a, b: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of fig3_69 is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
else nextstate <= S0;
end if;

 when S1 => if b then
 nextstate <= S2;

else nextstate <= S0;
end if;

 when S2 => nextstate <= S0;
 when others => nextstate <= S0;
 end case;

 end process;

 -- output logic
 q <= '1' when state = S2 else '0';
end;

118 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.34

SystemVerilog

module fig3_70(input logic clk, reset, a, b,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;
 else nextstate = S0;
 S1: if (b) nextstate = S2;
 else nextstate = S0;
 S2: if (a & b) nextstate = S2;
 else nextstate = S0;
 default: nextstate = S0;
 endcase

 // Output Logic
 always_comb

 case (state)
 S0: q = 0;
 S1: q = 0;
 S2: if (a & b) q = 1;
 else q = 0;
 default: q = 0;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fig3_70 is
 port(clk, reset, a, b: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of fig3_70 is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
 else nextstate <= S0;
 end if;

 when S1 => if b then
 nextstate <= S2;

 else nextstate <= S0;
 end if;

 when S2 => if (a = '1' and b = '1') then
 nextstate <= S2;

 else nextstate <= S0;
 end if;

 when others => nextstate <= S0;
 end case;
 end process;

 -- output logic
 q <= '1' when ((state = S2) and

 (a = '1' and b = '1'))
 else '0';

end;

S O L U T I O N S 119
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SystemVerilog

module ex4_34(input logic clk, reset, ta, tb,
 output logic [1:0] la, lb);

 typedef enum logic [2:0] {S0, S1, S2, S3, S4, S5}
 statetype;
 statetype [2:0] state, nextstate;

 parameter green = 2'b00;
 parameter yellow = 2'b01;
 parameter red = 2'b10;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (ta) nextstate = S0;

else nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S3;
 S3: if (tb) nextstate = S3;

else nextstate = S4;
 S4: nextstate = S5;
 S5: nextstate = S0;
 endcase

 // Output Logic
 always_comb

 case (state)
 S0: {la, lb} = {green, red};
 S1: {la, lb} = {yellow, red};
 S2: {la, lb} = {red, red};
 S3: {la, lb} = {red, green};
 S4: {la, lb} = {red, yellow};
 S5: {la, lb} = {red, red};

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_34 is
 port(clk, reset, ta, tb: in STD_LOGIC;
 la, lb: out STD_LOGIC_VECTOR(1 downto 0));

end;

architecture synth of ex4_34 is
 type statetype is (S0, S1, S2, S3, S4, S5);
 signal state, nextstate: statetype;
 signal lalb: STD_LOGIC_VECTOR(3 downto 0);
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if ta = '1' then

 nextstate <= S0;
else nextstate <= S1;
end if;

 when S1 => nextstate <= S2;
 when S2 => nextstate <= S3;
 when S3 => if tb = '1' then

 nextstate <= S3;
else nextstate <= S4;
end if;

 when S4 => nextstate <= S5;
 when S5 => nextstate <= S0;
 when others => nextstate <= S0;
 end case;

 end process;

 -- output logic
 la <= lalb(3 downto 2);
 lb <= lalb(1 downto 0);
 process(all) begin
 case state is
 when S0 => lalb <= "0010";
 when S1 => lalb <= "0110";
 when S2 => lalb <= "1010";
 when S3 => lalb <= "1000";
 when S4 => lalb <= "1001";
 when S5 => lalb <= "1010";
 when others => lalb <= "1010";
 end case;

 end process;
end;

120 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.35

S O L U T I O N S 121
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SystemVerilog

module daughterfsm(input logic clk, reset, a,
output logic smile);

 typedef enum logic [1:0] {S0, S1, S2, S3, S4}
 statetype;
 statetype [2:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;

else nextstate = S0;
 S1: if (a) nextstate = S2;

else nextstate = S0;
 S2: if (a) nextstate = S4;

else nextstate = S3;
 S3: if (a) nextstate = S1;

else nextstate = S0;
 S4: if (a) nextstate = S4;

else nextstate = S3;
 default: nextstate = S0;
 endcase

 // Output Logic
 assign smile = ((state == S3) & a) |

 ((state == S4) & ~a);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity daughterfsm is
 port(clk, reset, a: in STD_LOGIC;
 smile: out STD_LOGIC);

end;

architecture synth of daughterfsm is
 type statetype is (S0, S1, S2, S3, S4);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
else nextstate <= S0;
end if;

 when S1 => if a then
 nextstate <= S2;

else nextstate <= S0;
end if;

 when S2 => if a then
 nextstate <= S4;

else nextstate <= S3;
end if;

 when S3 => if a then
 nextstate <= S1;

else nextstate <= S0;
end if;

 when S4 => if a then
 nextstate <= S4;

else nextstate <= S3;
end if;

 when others => nextstate <= S0;
 end case;

 end process;

 -- output logic
 smile <= '1' when (((state = S3) and (a = '1')) or

 ((state = S4) and (a = '0')))
 else '0';

end;

122 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.36

S O L U T I O N S 123
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(starting on next page)

124 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
SystemVerilog

module ex4_36(input logic clk, reset, n, d, q,
 output logic dispense,

 return5, return10,
 return2_10);

 typedef enum logic [3:0] {S0 = 4'b0000,
 S5 = 4'b0001,
 S10 = 4'b0010,
 S25 = 4'b0011,
 S30 = 4'b0100,
 S15 = 4'b0101,
 S20 = 4'b0110,
 S35 = 4'b0111,
 S40 = 4'b1000,
 S45 = 4'b1001}

 statetype;
 statetype [3:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (n) nextstate = S5;
 else if (d) nextstate = S10;
 else if (q) nextstate = S25;
 else nextstate = S0;
 S5: if (n) nextstate = S10;
 else if (d) nextstate = S15;
 else if (q) nextstate = S30;
 else nextstate = S5;
 S10: if (n) nextstate = S15;
 else if (d) nextstate = S20;
 else if (q) nextstate = S35;
 else nextstate = S10;
 S25: nextstate = S0;
 S30: nextstate = S0;
 S15: if (n) nextstate = S20;
 else if (d) nextstate = S25;
 else if (q) nextstate = S40;
 else nextstate = S15;
 S20: if (n) nextstate = S25;
 else if (d) nextstate = S30;
 else if (q) nextstate = S45;
 else nextstate = S20;
 S35: nextstate = S0;
 S40: nextstate = S0;
 S45: nextstate = S0;
 default: nextstate = S0;
 endcase

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_36 is
 port(clk, reset, n, d, q: in STD_LOGIC;
 dispense, return5, return10: out STD_LOGIC;
 return2_10: out STD_LOGIC);

end;

architecture synth of ex4_36 is
 type statetype is (S0, S5, S10, S25, S30, S15, S20,

 S35, S40, S45);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 =>
 if n then nextstate <= S5;
 elsif d then nextstate <= S10;
 elsif q then nextstate <= S25;
 else nextstate <= S0;
 end if;
 when S5 =>
 if n then nextstate <= S10;
 elsif d then nextstate <= S15;
 elsif q then nextstate <= S30;
 else nextstate <= S5;
 end if;
 when S10 =>
 if n then nextstate <= S15;
 elsif d then nextstate <= S20;
 elsif q then nextstate <= S35;
 else nextstate <= S10;
 end if;
 when S25 => nextstate <= S0;
 when S30 => nextstate <= S0;
 when S15 =>
 if n then nextstate <= S20;
 elsif d then nextstate <= S25;
 elsif q then nextstate <= S40;
 else nextstate <= S15;
 end if;
 when S20 =>
 if n then nextstate <= S25;
 elsif d then nextstate <= S30;
 elsif q then nextstate <= S45;
 else nextstate <= S20;
 end if;
 when S35 => nextstate <= S0;
 when S40 => nextstate <= S0;
 when S45 => nextstate <= S0;
 when others => nextstate <= S0;

 end case;
 end process;

S O L U T I O N S 125
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 (continued from previous page)

Exercise 4.37

SystemVerilog

 // Output Logic
 assign dispense = (state == S25) |

 (state == S30) |
 (state == S35) |
 (state == S40) |
 (state == S45);

 assign return5 = (state == S30) |
 (state == S40);

 assign return10 = (state == S35) |
 (state == S40);

 assign return2_10 = (state == S45);
endmodule

VHDL

 -- output logic
 dispense <= '1' when ((state = S25) or

(state = S30) or
(state = S35) or
(state = S40) or
(state = S45))

else '0';
 return5 <= '1' when ((state = S30) or

(state = S40))
else '0';

 return10 <= '1' when ((state = S35) or
(state = S40))

else '0';
 return2_10 <= '1' when (state = S45)

else '0';
end;

126 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.38

SystemVerilog

module ex4_37(input logic clk, reset,
 output logic [2:0] q);

 typedef enum logic [2:0] {S0 = 3'b000,
 S1 = 3'b001,
 S2 = 3'b011,
 S3 = 3'b010,
 S4 = 3'b110,
 S5 = 3'b111,
 S6 = 3'b101,
 S7 = 3'b100}

 statetype;

 statetype [2:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S3;
 S3: nextstate = S4;
 S4: nextstate = S5;
 S5: nextstate = S6;
 S6: nextstate = S7;
 S7: nextstate = S0;
 endcase

 // Output Logic
 assign q = state;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_37 is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(2 downto 0));

end;

architecture synth of ex4_37 is
 signal state: STD_LOGIC_VECTOR(2 downto 0);
 signal nextstate: STD_LOGIC_VECTOR(2 downto 0);
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= "000";
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when "000" => nextstate <= "001";
 when "001" => nextstate <= "011";
 when "011" => nextstate <= "010";
 when "010" => nextstate <= "110";
 when "110" => nextstate <= "111";
 when "111" => nextstate <= "101";
 when "101" => nextstate <= "100";
 when "100" => nextstate <= "000";
 when others => nextstate <= "000";

 end case;
 end process;

 -- output logic
 q <= state;
end;

S O L U T I O N S 127
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(continued on next page)

SystemVerilog

module ex4_38(input logic clk, reset, up,
 output logic [2:0] q);

 typedef enum logic [2:0] {
 S0 = 3'b000,
 S1 = 3'b001,
 S2 = 3'b011,
 S3 = 3'b010,
 S4 = 3'b110,
 S5 = 3'b111,
 S6 = 3'b101,
 S7 = 3'b100} statetype;

 statetype [2:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (up) nextstate = S1;

else nextstate = S7;
 S1: if (up) nextstate = S2;

else nextstate = S0;
 S2: if (up) nextstate = S3;

else nextstate = S1;
 S3: if (up) nextstate = S4;

else nextstate = S2;
 S4: if (up) nextstate = S5;

else nextstate = S3;
 S5: if (up) nextstate = S6;

else nextstate = S4;
 S6: if (up) nextstate = S7;

else nextstate = S5;
 S7: if (up) nextstate = S0;

else nextstate = S6;
 endcase

 // Output Logic
 assign q = state;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_38 is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 up: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(2 downto 0));

end;

architecture synth of ex4_38 is
 signal state: STD_LOGIC_VECTOR(2 downto 0);
 signal nextstate: STD_LOGIC_VECTOR(2 downto 0);
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= "000";
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when "000" => if up then

 nextstate <= "001";
 else
 nextstate <= "100";
 end if;

 when "001" => if up then
 nextstate <= "011";
 else
 nextstate <= "000";
 end if;

 when "011" => if up then
 nextstate <= "010";
 else
 nextstate <= "001";
 end if;

 when "010" => if up then
 nextstate <= "110";
 else
 nextstate <= "011";
 end if;

128 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 (continued from previous page)

Exercise 4.39

VHDL

 when "110" => if up then
 nextstate <= "111";
 else
 nextstate <= "010";
 end if;

 when "111" => if up then
 nextstate <= "101";
 else
 nextstate <= "110";
 end if;

 when "101" => if up then
 nextstate <= "100";
 else
 nextstate <= "111";
 end if;

 when "100" => if up then
 nextstate <= "000";
 else
 nextstate <= "101";
 end if;

 when others => nextstate <= "000";
 end case;
 end process;

 -- output logic
 q <= state;
end;

S O L U T I O N S 129
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 Option 1

SystemVerilog

module ex4_39(input logic clk, reset, a, b,
 output logic z);

 typedef enum logic [1:0] {S0, S1, S2, S3}
 statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: case ({b,a})

2'b00: nextstate = S0;
2'b01: nextstate = S3;
2'b10: nextstate = S0;
2'b11: nextstate = S1;

endcase
 S1: case ({b,a})

2'b00: nextstate = S0;
2'b01: nextstate = S3;
2'b10: nextstate = S2;
2'b11: nextstate = S1;

endcase
 S2: case ({b,a})

2'b00: nextstate = S0;
2'b01: nextstate = S3;
2'b10: nextstate = S2;
2'b11: nextstate = S1;

endcase
 S3: case ({b,a})

2'b00: nextstate = S0;
2'b01: nextstate = S3;
2'b10: nextstate = S2;
2'b11: nextstate = S1;

endcase
 default: nextstate = S0;
 endcase

 // Output Logic
 always_comb

 case (state)
 S0: z = a & b;
 S1: z = a | b;
 S2: z = a & b;
 S3: z = a | b;
 default: z = 1'b0;

 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_39 is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 a, b: in STD_LOGIC;
 z: out STD_LOGIC);

end;

architecture synth of ex4_39 is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
 signal ba: STD_LOGIC_VECTOR(1 downto 0);
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 ba <= b & a;
 process(all) begin
 case state is
 when S0 =>

case (ba) is
when "00" => nextstate <= S0;
when "01" => nextstate <= S3;
when "10" => nextstate <= S0;
when "11" => nextstate <= S1;
when others => nextstate <= S0;

end case;
 when S1 =>

case (ba) is
when "00" => nextstate <= S0;
when "01" => nextstate <= S3;
when "10" => nextstate <= S2;
when "11" => nextstate <= S1;
when others => nextstate <= S0;

end case;
 when S2 =>

case (ba) is
when "00" => nextstate <= S0;
when "01" => nextstate <= S3;
when "10" => nextstate <= S2;
when "11" => nextstate <= S1;
when others => nextstate <= S0;

end case;
 when S3 =>

case (ba) is
when "00" => nextstate <= S0;
when "01" => nextstate <= S3;
when "10" => nextstate <= S2;
when "11" => nextstate <= S1;
when others => nextstate <= S0;

end case;
 when others => nextstate <= S0;
 end case;

 end process;

130 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 (continued from previous page)

 Option 2

VHDL

 -- output logic
 process(all) begin
 case state is
 when S0 => if (a = '1' and b = '1')

 then z <= '1';
 else z <= '0';
 end if;

 when S1 => if (a = '1' or b = '1')
 then z <= '1';
 else z <= '0';
 end if;

 when S2 => if (a = '1' and b = '1')
 then z <= '1';
 else z <= '0';
 end if;

 when S3 => if (a = '1' or b = '1')
 then z <= '1';
 else z <= '0';
 end if;

 when others => z <= '0';
 end case;

 end process;
end;

SystemVerilog

module ex4_37(input logic clk, a, b,
 output logic z);

 logic aprev;

 // State Register
 always_ff @(posedge clk)

 aprev <= a;

 assign z = b ? (aprev | a) : (aprev & a);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_37 is
 port(clk: in STD_LOGIC;
 a, b: in STD_LOGIC;
 z: out STD_LOGIC);

end;

architecture synth of ex4_37 is
 signal aprev, n1and, n2or: STD_LOGIC;
begin
 -- state register
 process(clk) begin
 if rising_edge(clk) then
 aprev <= a;

 end if;
 end process;

 z <= (a or aprev) when b = '1' else
 (a and aprev);

end;

S O L U T I O N S 131
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.40

(continued on next page)

SystemVerilog

module fsm_y(input clk, reset, a,
 output y);

 typedef enum logic [1:0] {S0=2'b00, S1=2'b01,
 S11=2'b11} statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;

else nextstate = S0;
 S1: if (a) nextstate = S11;

else nextstate = S0;
 S11: nextstate = S11;
 default: nextstate = S0;
 endcase

 // Output Logic
 assign y = state[1];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm_y is
 port(clk, reset, a: in STD_LOGIC;
 y: out STD_LOGIC);

end;

architecture synth of fsm_y is
 type statetype is (S0, S1, S11);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
else nextstate <= S0;
end if;

 when S1 => if a then
 nextstate <= S11;
else nextstate <= S0;
end if;

 when S11 => nextstate <= S11;
 when others => nextstate <= S0;
 end case;

 end process;

 -- output logic
 y <= '1' when (state = S11) else '0';
end;

132 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 (continued from previous page)

Exercise 4.41

SystemVerilog

module fsm_x(input logic clk, reset, a,
 output logic x);

 typedef enum logic [1:0] {S0, S1, S2, S3}
 statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;
 else nextstate = S0;
 S1: if (a) nextstate = S2;
 else nextstate = S1;
 S2: if (a) nextstate = S3;
 else nextstate = S2;
 S3: nextstate = S3;
 endcase

 // Output Logic
 assign x = (state == S3);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm_x is
 port(clk, reset, a: in STD_LOGIC;
 x: out STD_LOGIC);

end;

architecture synth of fsm_x is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
 else nextstate <= S2;
 end if;

 when S1 => if a then
 nextstate <= S2;

 else nextstate <= S1;
 end if;

 when S2 => if a then
 nextstate <= S3;

 else nextstate <= S2;
 end if;

 when S3 => nextstate <= S3;
 when others => nextstate <= S0;

 end case;
 end process;

 -- output logic
 x <= '1' when (state = S3) else '0';
end;

S O L U T I O N S 133
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.42

SystemVerilog

module ex4_41(input logic clk, start, a,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2, S3}
 statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge start)

 if (start) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;

else nextstate = S0;
 S1: if (a) nextstate = S2;

else nextstate = S3;
 S2: if (a) nextstate = S2;

else nextstate = S3;
 S3: if (a) nextstate = S2;

else nextstate = S3;
 endcase

 // Output Logic
 assign q = state[0];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_41 is
 port(clk, start, a: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of ex4_41 is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, start) begin
 if start then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
else nextstate <= S0;
end if;

 when S1 => if a then
 nextstate <= S2;
else nextstate <= S3;
end if;

 when S2 => if a then
 nextstate <= S2;
else nextstate <= S3;
end if;

 when S3 => if a then
 nextstate <= S2;
else nextstate <= S3;
end if;

 when others => nextstate <= S0;
 end case;

 end process;

 -- output logic
 q <= '1' when ((state = S1) or (state = S3))
 else '0';

end;

134 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.43

SystemVerilog

module ex4_42(input logic clk, reset, x,
 output logic q);

 typedef enum logic [1:0] {S0, S1, S2, S3}
 statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S00;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S00: if (x) nextstate = S11;
 else nextstate = S01;
 S01: if (x) nextstate = S10;
 else nextstate = S00;
 S10: nextstate = S01;
 S11: nextstate = S01;
 endcase

 // Output Logic
 assign q = state[0] | state[1];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_42 is
 port(clk, reset, x: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of ex4_42 is
 type statetype is (S00, S01, S10, S11);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S00;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 -- next state logic
 process(all) begin
 case state is
 when S00 => if x then

 nextstate <= S11;
 else nextstate <= S01;
 end if;

 when S01 => if x then
 nextstate <= S10;

 else nextstate <= S00;
 end if;

 when S10 => nextstate <= S01;
 when S11 => nextstate <= S01;
 when others => nextstate <= S00;

 end case;
 end process;

 -- output logic
 q <= '0' when (state = S00) else '1';
end;

S O L U T I O N S 135
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.44

SystemVerilog

module ex4_43(input clk, reset, a,
 output q);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb

 case (state)
 S0: if (a) nextstate = S1;

else nextstate = S0;
 S1: if (a) nextstate = S2;

else nextstate = S0;
 S2: if (a) nextstate = S2;

else nextstate = S0;
 default: nextstate = S0;
 endcase

 // Output Logic
 assign q = state[1];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_43 is
 port(clk, reset, a: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of ex4_43 is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk, reset) begin
 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;
 end if;

 end process;

 -- next state logic
 process(all) begin
 case state is
 when S0 => if a then

 nextstate <= S1;
else nextstate <= S0;
end if;

 when S1 => if a then
 nextstate <= S2;
else nextstate <= S0;
end if;

 when S2 => if a then
 nextstate <= S2;
else nextstate <= S0;
end if;

 when others => nextstate <= S0;
 end case;

 end process;

 -- output logic
 q <= '1' when (state = S2) else '0';
end;

136 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
(a)

(d)

Exercise 4.45

SystemVerilog

module ex4_44a(input logic clk, a, b, c, d,
 output logic q);

 logic areg, breg, creg, dreg;

 always_ff @(posedge clk)
 begin
 areg <= a;
 breg <= b;
 creg <= c;
 dreg <= d;
 q <= ((areg ^ breg) ^ creg) ^ dreg;

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_44a is
 port(clk, a, b, c, d: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of ex4_44a is
 signal areg, breg, creg, dreg: STD_LOGIC;
begin
 process(clk) begin
 if rising_edge(clk) then
 areg <= a;
 breg <= b;
 creg <= c;
 dreg <= d;
 q <= ((areg xor breg) xor creg) xor dreg;
 end if;

 end process;
end;

SystemVerilog

module ex4_44d(input logic clk, a, b, c, d,
 output logic q);

 logic areg, breg, creg, dreg;

 always_ff @(posedge clk)
 begin
 areg <= a;
 breg <= b;
 creg <= c;
 dreg <= d;
 q <= (areg ^ breg) ^ (creg ^ dreg);

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_44d is
 port(clk, a, b, c, d: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of ex4_44d is
 signal areg, breg, creg, dreg: STD_LOGIC;
begin
 process(clk) begin
 if rising_edge(clk) then
 areg <= a;
 breg <= b;
 creg <= c;
 dreg <= d;
 q <= (areg xor breg) xor (creg xor dreg);
 end if;

 end process;
end;

S O L U T I O N S 137
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 4.46

A signal declared as tri can have multiple drivers.

Exercise 4.47

SystemVerilog

module ex4_45(input logic clk, c,
 input logic [1:0] a, b,
 output logic [1:0] s);

 logic [1:0] areg, breg;
 logic creg;
 logic [1:0] sum;
 logic cout;

 always_ff @(posedge clk)
 {areg, breg, creg, s} <= {a, b, c, sum};

 fulladder fulladd1(areg[0], breg[0], creg,
sum[0], cout);

 fulladder fulladd2(areg[1], breg[1], cout,
sum[1],);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex4_45 is
 port(clk, c: in STD_LOGIC;
 a, b: in STD_LOGIC_VECTOR(1 downto 0);
 s: out STD_LOGIC_VECTOR(1 downto 0));

end;

architecture synth of ex4_45 is
 component fulladder is
 port(a, b, cin: in STD_LOGIC;

s, cout: out STD_LOGIC);
 end component;
 signal creg: STD_LOGIC;
 signal areg, breg, cout: STD_LOGIC_VECTOR(1 downto
0);
 signal sum: STD_LOGIC_VECTOR(1 downto 0);
begin
 process(clk) begin
 if rising_edge(clk) then
 areg <= a;
 breg <= b;
 creg <= c;
 s <= sum;
 end if;

 end process;

 fulladd1: fulladder
 port map(areg(0), breg(0), creg, sum(0), cout(0));

 fulladd2: fulladder
 port map(areg(1), breg(1), cout(0), sum(1),

cout(1));
end;

138 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
Exercise 4.48

They have the same function.

Exercise 4.49

SystemVerilog

module syncbad(input logic clk,
 input logic d,
 output logic q);

 logic n1;

 always_ff @(posedge clk)
 begin

 q <= n1;// nonblocking
 n1 <= d; // nonblocking

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture bad of syncbad is
begin
 process(clk)
 variable n1: STD_LOGIC;
 begin
 if rising_edge(clk) then
 q <= n1; -- nonblocking
 n1 <= d; -- nonblocking
 end if;
 end process;
end;

B
A

CLK

X

C Y

S O L U T I O N S 139
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
They do not have the same function.

Exercise 4.50

(a) Problem: Signal d is not included in the sensitivity list of the always
statement. Correction shown below (changes are in bold).
module latch(input logic clk,

 input logic [3:0] d,
 output logic [3:0] q);

 always_latch
 if (clk) q <= d;

endmodule

(b) Problem: Signal b is not included in the sensitivity list of the always
statement. Correction shown below (changes are in bold).

module gates(input logic [3:0] a, b,
 output logic [3:0] y1, y2, y3, y4, y5);

 always_comb
 begin

y1 = a & b;
y2 = a | b;
y3 = a ^ b;
y4 = ~(a & b);
y5 = ~(a | b);

 end
endmodule

(c) Problem: The sensitivity list should not include the word “posedge”.
The always statement needs to respond to any changes in s, not just the pos-
itive edge. Signals d0 and d1 need to be added to the sensitivity list. Also, the
always statement implies combinational logic, so blocking assignments should
be used.

B
A

CLK

X

C
Y

code1

code2

B
A

CLK

X

C Y

140 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
module mux2(input logic [3:0] d0, d1,
 input logic s,
 output logic [3:0] y);

 always_comb
 if (s) y = d1;

 else y = d0;
endmodule

(d) Problem: This module will actually work in this case, but it’s good prac-
tice to use nonblocking assignments in always statements that describe se-
quential logic. Because the always block has more than one statement in it, it
requires a begin and end.
module twoflops(input logic clk,

 input logic d0, d1,
 output logic q0, q1);

always_ff @(posedge clk)
begin
 q1 <= d1; // nonblocking assignment
 q0 <= d0; // nonblocking assignment
end

endmodule

(e) Problem: out1 and out2 are not assigned for all cases. Also, it would be
best to separate the next state logic from the state register. reset is also missing
in the input declaration.
module FSM(input logic clk,

 input logic reset,
 input logic a,
 output logic out1, out2);

 logic state, nextstate;

 // state register
 always_ff @(posedge clk, posedge reset)

if (reset)
 state <= 1'b0;
else

 state <= nextstate;

 // next state logic
 always_comb

 case (state)
 1'b0: if (a) nextstate = 1'b1;

else nextstate = 1'b0;
 1'b1: if (~a) nextstate = 1'b0;

else nextstate = 1'b1;
 endcase

// output logic (combinational)
 always_comb

 if (state == 0) {out1, out2} = {1'b1, 1'b0};
 else {out1, out2} = {1'b0, 1'b1};
endmodule

(f) Problem: A priority encoder is made from combinational logic, so the
HDL must completely define what the outputs are for all possible input combi-
nations. So, we must add an else statement at the end of the always block.
module priority(input logic [3:0] a,

S O L U T I O N S 141
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 output logic [3:0] y);

always_comb
 if (a[3]) y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;
 else y = 4'b0000;

endmodule

(g) Problem: the next state logic block has no default statement. Also, state
S2 is missing the S.

module divideby3FSM(input logic clk,
input logic reset,
output logic out);

 logic [1:0] state, nextstate;

 parameter S0 = 2'b00;
 parameter S1 = 2'b01;
 parameter S2 = 2'b10;

 // State Register
 always_ff @(posedge clk, posedge reset)

 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
always_comb
 case (state)

S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

 endcase

 // Output Logic
 assign out = (state == S2);
endmodule

(h) Problem: the ~ is missing on the first tristate.
module mux2tri(input logic [3:0] d0, d1,

 input logic s,
 output logic [3:0] y);

 tristate t0(d0, ~s, y);
 tristate t1(d1, s, y);

endmodule

(i) Problem: an output, in this case, q, cannot be assigned in multiple al-
ways or assignment statements. Also, the flip-flop does not include an enable,
so it should not be named floprsen.

module floprs(input logic clk,
 input logic reset,
 input logic set,
 input logic [3:0] d,
 output logic [3:0] q);

always_ff @(posedge clk, posedge reset, posedge set)

142 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 if (reset) q <= 0;
 else if (set) q <= 1;
 else q <= d;

endmodule

(j) Problem: this is a combinational module, so nonconcurrent (blocking)
assignment statements (=) should be used in the always statement, not concur-
rent assignment statements (<=). Also, it's safer to use always @(*) for combi-
national logic to make sure all the inputs are covered.

module and3(input logic a, b, c,
 output logic y);

 logic tmp;

always_comb
 begin
 tmp = a & b;
 y = tmp & c;
 end

endmodule

Exercise 4.51

It is necessary to write
q <= '1' when state = S0 else '0';

rather than simply
q <= (state = S0);

because the result of the comparison (state = S0) is of type Boolean
(true and false) and q must be assigned a value of type STD_LOGIC ('1'
and '0').

Exercise 4.52

(a) Problem: both clk and d must be in the process statement.
architecture synth of latch is
begin
 process(clk, d) begin
 if clk = '1' then q <= d;
 end if;
 end process;
end;

(b) Problem: both a and b must be in the process statement.
architecture proc of gates is
begin
 process(all) begin
 y1 <= a and b;
 y2 <= a or b;
 y3 <= a xor b;

S O L U T I O N S 143
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 y4 <= a nand b;
 y5 <= a nor b;

 end process;
end;

(c) Problem: The end if and end process statements are missing.
architecture synth of flop is
begin
 process(clk)

 if clk'event and clk = '1' then
 q <= d;
 end if;
end process;

end;

(d) Problem: The final else statement is missing. Also, it’s better to use
“process(all)” instead of “process(a)”
architecture synth of priority is
begin
 process(all) begin

 if a(3) = '1' then y <= "1000";
 elsif a(2) = '1' then y <= "0100";
 elsif a(1) = '1' then y <= "0010";
 elsif a(0) = '1' then y <= "0001";
 else y <= "0000";
 end if;

 end process;
end;

(e) Problem: The default statement is missing in the nextstate case
statement. Also, it’s better to use the updated statements: “if reset”, “ris-
ing_edge(clk)”, and “process(all)”.

architecture synth of divideby3FSM is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin

 if reset then state <= S0;
 elsif rising_edge(clk) then
 state <= nextstate;

 end if;
 end process;

 process(all) begin
 case state is
 when S0 => nextstate <= S1;
 when S1 => nextstate <= S2;
 when S2 => nextstate <= S0;
 when others => nextstate <= S0;
 end case;

 end process;

 q <= '1' when state = S0 else '0';
end;

(f) Problem: The select signal on tristate instance t0 must be inverted.
However, VHDL does not allow logic to be performed within an instance dec-
laration. Thus, an internal signal, sbar, must be declared.
architecture struct of mux2 is
 component tristate

144 S O L U T I O N S c h a p t e r 4

© 2015 Elsevier, Inc.
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));

 end component;
 signal sbar: STD_LOGIC;
begin
 sbar <= not s;
 t0: tristate port map(d0, sbar, y);
 t1: tristate port map(d1, s, y);
end;

(g) Problem: The q output cannot be assigned in two process or assignment
statements. Also, it’s better to use the updated statements: “if reset”, and “ris-
ing_edge(clk)”.

architecture asynchronous of flopr is
begin
 process(clk, reset, set) begin
 if reset then
 q <= '0';
 elsif set then

 q <= '1';
 elsif rising_edge(clk) then

 q <= d;
 end if;
 end process;
end;

Question 4.1

Question 4.2

HDLs support blocking and nonblocking assignments in an always /
process statement. A group of blocking assignments are evaluated in the or-
der they appear in the code, just as one would expect in a standard programming

SystemVerilog

assign result = sel ? data : 32'b0;

VHDL

 result <= data when sel = '1' else X"00000000";

S O L U T I O N S 145
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
language. A group of nonblocking assignments are evaluated concurrently; all
of the statements are evaluated before any of the left hand sides are updated.

See HDL Examples 4.24 and 4.29 for comparisons of blocking and non-
blocking assignments. Blocking and nonblocking assignment guidelines are
given on page 206.

Question 4.3

The SystemVerilog statement performs the bit-wise AND of the 16 least
significant bits of data with 0xC820. It then ORs these 16 bits to produce the 1-
bit result.

SystemVerilog

In a SystemVerilog always statement, = indicates a
blocking assignment and <= indicates a nonblocking
assignment.

Do not confuse either type with continuous assign-
ment using the assign statement. assign state-
ments are normally used outside always statements
and are also evaluated concurrently.

VHDL

In a VHDL process statement, := indicates a block-
ing assignment and <= indicates a nonblocking assign-
ment (also called a concurrent assignment). This is the
first section where := is introduced.

Nonblocking assignments are made to outputs and
to signals. Blocking assignments are made to vari-
ables, which are declared in process statements (see
the next example).

<= can also appear outside process statements,
where it is also evaluated concurrently.

S O L U T I O N S 139
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
CHAPTER 5

Note: the HDL files given in the following solutions are available on the
textbook’s companion website at:

http://textbooks.elsevier.com/9780123704979 .

Exercise 5.1

(a) From Equation 5.1, we find the 64-bit ripple-carry adder delay to be:

(b) From Equation 5.6, we find the 64-bit carry-lookahead adder delay to
be:

(Note: the actual delay is only 7.2 ns because the first AND_OR gate only
has a 150 ps delay.)

(c) From Equation 5.11, we find the 64-bit prefix adder delay to be:

tripple NtFA 64 450 ps  28.8 ns= = =

tCLA tpg tpg_block
N
k
---- 1– 
  tAND_OR ktFA+ + +=

tCLA 150 6 150  64
4

------ 1– 
  300 4 450 + + + 7.35 ns= =

tPA tpg N tpg_prefix  tXOR+
2

log+=

tPA 150 6 300  150+ +  2.1 ns= =

150

140 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.2

(a) The fundamental building block of both the ripple-carry and carry-loo-
kahead adders is the full adder. We use the full adder from Figure 4.8, shown
again here for convenience:

FIGURE 5.1 Full adder implementation

The full adder delay is three two-input gates.

The full adder area is five two-input gates.

The full adder capacitance is five two-input gates.

Thus, the ripple-carry adder delay, area, and capacitance are:

Using the carry-lookahead adder from Figure 5.6, we can calculate delay,
area, and capacitance. Using Equation 5.6:

p

g s

un1_cout cout

cout

s

cin

b
a

tFA 3 50  ps 150 ps= =

AFA 5 15 m2  75 m2
= =

CFA 5 20 fF  100 fF= =

tripple NtFA 64 150 ps  9.6 ns= = =

Aripple NAFA 64 75 m2  4800 m2
= = =

Cripple NCFA 64 100 fF  6.4 pF= = =

tCLA 50 6 50  15 100  4 150 + + +  ps 2.45 ns= =

S O L U T I O N S 141
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(The actual delay is only 2.4 ns because the first AND_OR gate only con-
tributes one gate delay.)

For each 4-bit block of the 64-bit carry-lookahead adder, there are 4 full ad-
ders, 8 two-input gates to generate Pi and Gi, and 11 two-input gates to generate

Pi:j and Gi:j. Thus, the area and capacitance are:

Now solving for power using Equation 1.4,

.

(b) Compared to the ripple-carry adder, the carry-lookahead adder is almost
twice as large and uses almost twice the power, but is almost four times as fast.
Thus for performance-limited designs where area and power are not constraints,
the carry-lookahead adder is the clear choice. On the other hand, if either area
or power are the limiting constraints, one would choose a ripple-carry adder if
performance were not a constraint.

Exercise 5.3

ACLAblock 4 75  19 15 +  m2
585 m2

= =

ACLA 16 585  m2
9360 m2

= =

CCLAblock 4 100  19 20 +  fF 780 fF= =

CCLA 16 780  fF 12.48 pF= =

Pdynamic_ripple
1
2
---CVDD

2 f 1
2
--- 6.4 pF  1.2 V 2 100MHz  0.461 mW= = =

Pdynamic_CLA
1
2
---CVDD

2 f 1
2
--- 12.48 pF  1.2 V 2 100MHz  0.899 mW= = =

r i p p l e -
c a r r y

c a r r y - l o o k a h e a d c l a / r i p p l e

Area (m2) 4800 9360 1.95

Delay (ns) 9.6 2.45 0.26

Power (mW) 0.461 0.899 1.95

TABLE 5.1 CLA and ripple-carry adder comparison

142 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
A designer might choose to use a ripple-carry adder instead of a carry-loo-
kahead adder if chip area is the critical resource and delay is not the critical con-
straint.

Exercise 5.4

S O L U T I O N S 143
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SystemVerilog

module prefixadd16(input logic [15:0] a, b,
input logic cin,
output logic [15:0] s,
output logic cout);

 logic [14:0] p, g;
 logic [7:0] pij_0, gij_0, pij_1, gij_1,

 pij_2, gij_2, pij_3, gij_3;
 logic [15:0] gen;

 pgblock pgblock_top(a[14:0], b[14:0], p, g);
 pgblackblock pgblackblock_0({p[14], p[12], p[10],
 p[8], p[6], p[4], p[2], p[0]},
 {g[14], g[12], g[10], g[8], g[6], g[4], g[2], g[0]},
 {p[13], p[11], p[9], p[7], p[5], p[3], p[1], 1'b0},
 {g[13], g[11], g[9], g[7], g[5], g[3], g[1], cin},

pij_0, gij_0);

 pgblackblock pgblackblock_1({pij_0[7], p[13],
 pij_0[5], p[9], pij_0[3], p[5], pij_0[1], p[1]},

 {gij_0[7], g[13], gij_0[5], g[9], gij_0[3],
 g[5], gij_0[1], g[1]},
 { {2{pij_0[6]}}, {2{pij_0[4]}}, {2{pij_0[2]}},

 {2{pij_0[0]}} },
 { {2{gij_0[6]}}, {2{gij_0[4]}}, {2{gij_0[2]}},

 {2{gij_0[0]}} },
pij_1, gij_1);

 pgblackblock pgblackblock_2({pij_1[7], pij_1[6],
pij_0[6], p[11], pij_1[3], pij_1[2], pij_0[2], p[3]},
{gij_1[7], gij_1[6], gij_0[6], g[11], gij_1[3],
gij_1[2], gij_0[2], g[3]},
{ {4{pij_1[5]}}, {4{pij_1[1]}} },
{ {4{gij_1[5]}}, {4{gij_1[1]}} },
 pij_2, gij_2);

 pgblackblock pgblackblock_3({pij_2[7], pij_2[6],
 pij_2[5], pij_2[4], pij_1[5], pij_1[4],
 pij_0[4], p[7]},

 {gij_2[7], gij_2[6], gij_2[5],
 gij_2[4], gij_1[5], gij_1[4], gij_0[4], g[7]},
 { 8{pij_2[3]} },{ 8{gij_2[3]} }, pij_3, gij_3);

 sumblock sum_out(a, b, gen, s);

 assign gen = {gij_3, gij_2[3:0],
 gij_1[1:0], gij_0[0], cin};

 assign cout = (a[15] & b[15]) |
 (gen[15] & (a[15] | b[15]));

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity prefixadd16 is
 port(a, b: in STD_LOGIC_VECTOR(15 downto 0);
 cin: in STD_LOGIC;
 s: out STD_LOGIC_VECTOR(15 downto 0);
 cout: out STD_LOGIC);

end;

architecture synth of prefixadd16 is
 component pgblock
 port(a, b: in STD_LOGIC_VECTOR(14 downto 0);

p, g: out STD_LOGIC_VECTOR(14 downto 0));
 end component;

 component pgblackblock is
 port (pik, gik: in STD_LOGIC_VECTOR(7 downto 0);

 pkj, gkj: in STD_LOGIC_VECTOR(7 downto 0);
pij: out STD_LOGIC_VECTOR(7 downto 0);
gij: out STD_LOGIC_VECTOR(7 downto 0));

 end component;

 component sumblock is
 port (a, b, g: in STD_LOGIC_VECTOR(15 downto 0);

 s: out STD_LOGIC_VECTOR(15 downto 0));
 end component;

 signal p, g: STD_LOGIC_VECTOR(14 downto 0);
 signal pij_0, gij_0, pij_1, gij_1,

pij_2, gij_2, gij_3:
 STD_LOGIC_VECTOR(7 downto 0);

 signal gen: STD_LOGIC_VECTOR(15 downto 0);
 signal pik_0, pik_1, pik_2, pik_3,

gik_0, gik_1, gik_2, gik_3,
pkj_0, pkj_1, pkj_2, pkj_3,
gkj_0, gkj_1, gkj_2, gkj_3, dummy:
 STD_LOGIC_VECTOR(7 downto 0);

begin
 pgblock_top: pgblock
 port map(a(14 downto 0), b(14 downto 0), p, g);

 pik_0 <=
 (p(14)&p(12)&p(10)&p(8)&p(6)&p(4)&p(2)&p(0));

 gik_0 <=
 (g(14)&g(12)&g(10)&g(8)&g(6)&g(4)&g(2)&g(0));

 pkj_0 <=
 (p(13)&p(11)&p(9)&p(7)&p(5)& p(3)& p(1)&'0');

 gkj_0 <=
 (g(13)&g(11)&g(9)&g(7)&g(5)& g(3)& g(1)& cin);

 pgblackblock_0: pgblackblock
port map(pik_0, gik_0, pkj_0, gkj_0,
pij_0, gij_0);

144 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 (continued from previouspage)

Verilog VHDL

 pik_1 <= (pij_0(7)&p(13)&pij_0(5)&p(9)&
 pij_0(3)&p(5)&pij_0(1)&p(1));

 gik_1 <= (gij_0(7)&g(13)&gij_0(5)&g(9)&
 gij_0(3)&g(5)&gij_0(1)&g(1));

 pkj_1 <= (pij_0(6)&pij_0(6)&pij_0(4)&pij_0(4)&
 pij_0(2)&pij_0(2)&pij_0(0)&pij_0(0));

 gkj_1 <= (gij_0(6)&gij_0(6)&gij_0(4)&gij_0(4)&
 gij_0(2)&gij_0(2)&gij_0(0)&gij_0(0));

 pgblackblock_1: pgblackblock
 port map(pik_1, gik_1, pkj_1, gkj_1,

 pij_1, gij_1);

 pik_2 <= (pij_1(7)&pij_1(6)&pij_0(6)&
 p(11)&pij_1(3)&pij_1(2)&
 pij_0(2)&p(3));

 gik_2 <= (gij_1(7)&gij_1(6)&gij_0(6)&
 g(11)&gij_1(3)&gij_1(2)&
 gij_0(2)&g(3));

 pkj_2 <= (pij_1(5)&pij_1(5)&pij_1(5)&pij_1(5)&
 pij_1(1)&pij_1(1)&pij_1(1)&pij_1(1));
 gkj_2 <= (gij_1(5)&gij_1(5)&gij_1(5)&gij_1(5)&
 gij_1(1)&gij_1(1)&gij_1(1)&gij_1(1));

 pgblackblock_2: pgblackblock
 port map(pik_2, gik_2, pkj_2, gkj_2, pij_2, gij_2);

 pik_3 <= (pij_2(7)&pij_2(6)&pij_2(5)&
pij_2(4)&pij_1(5)&pij_1(4)&
pij_0(4)&p(7));

 gik_3 <= (gij_2(7)&gij_2(6)&gij_2(5)&
gij_2(4)&gij_1(5)&gij_1(4)&
gij_0(4)&g(7));

 pkj_3 <= (pij_2(3),pij_2(3),pij_2(3),pij_2(3),
 pij_2(3),pij_2(3),pij_2(3),pij_2(3));
 gkj_3 <= (gij_2(3),gij_2(3),gij_2(3),gij_2(3),
 gij_2(3),gij_2(3),gij_2(3),gij_2(3));

 pgblackblock_3: pgblackblock
 port map(pik_3, gik_3, pkj_3, gkj_3, dummy,

gij_3);

 sum_out: sumblock
 port map(a, b, gen, s);

 gen <= (gij_3&gij_2(3 downto 0)&gij_1(1 downto 0)&
 gij_0(0)&cin);

 cout <= (a(15) and b(15)) or
 (gen(15) and (a(15) or b(15)));

end;

S O L U T I O N S 145
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 (continued from previous page)

Exercise 5.5

SystemVerilog

module pgblock(input logic [14:0] a, b,
 output logic [14:0] p, g);

 assign p = a | b;
 assign g = a & b;

endmodule

module pgblackblock(input logic [7:0] pik, gik,
pkj, gkj,

output logic [7:0] pij, gij);

 assign pij = pik & pkj;
 assign gij = gik | (pik & gkj);

endmodule

module sumblock(input logic [15:0] a, b, g,
 output logic [15:0] s);

 assign s = a ^ b ^ g;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity pgblock is
 port(a, b: in STD_LOGIC_VECTOR(14 downto 0);
 p, g: out STD_LOGIC_VECTOR(14 downto 0));

end;

architecture synth of pgblock is
begin
 p <= a or b;
 g <= a and b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity pgblackblock is
 port(pik, gik, pkj, gkj:

in STD_LOGIC_VECTOR(7 downto 0);
 pij, gij:

out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of pgblackblock is
begin
 pij <= pik and pkj;
 gij <= gik or (pik and gkj);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sumblock is
 port(a, b, g: in STD_LOGIC_VECTOR(15 downto 0);
 s: out STD_LOGIC_VECTOR(15 downto 0));

end;

architecture synth of sumblock is
begin
 s <= a xor b xor g;
end;

146 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
FIGURE 5.2 16-bit prefix adder with “gray cells”

Exercise 5.6

0:-1

-1

2:1

1:-12:-1

012

4:3

3

6:5

5:36:3

456

5:-16:-1 3:-14:-1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

BiAi

Gi:iPi:i

Gk-1:jPk-1:jGi:kPi:k

Gi:jPi:j

i
i:j

BiAiGi-1:-1

Si

iLegend

Gk-1:jGi:k Pi:k

Gi:j

i:j

S O L U T I O N S 147
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 5.3 Schematic of a 16-bit Kogge-Stone adder

Exercise 5.7

(a) We show an 8-bit priority circuit in Figure 5.4. In the figure X7 = A7,

X7:6 = A7A6, X7:5 = A7A6A5, and so on. The priority encoder’s delay is log2N 2-

input AND gates followed by a final row of 2-input AND gates. The final stage
is an (N/2)-input OR gate. Thus, in general, the delay of an N-input priority en-
coder is:

tpd_priority = (log2N+1)tpd_AND2 + tpd_ORN/2

0:-1

-1

2:1

012

4:3

3

6:5

456

8:7

7

10:9

8910

12:11

11

14:13

121314

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

BiAi

Gi:iPi:i

Gk-1:jPk-1:jGi:kPi:k

Gi:jPi:j

i
i:j

BiAiGi-1:-1

Si

iLegend

13:12 11:10 1:03:25:47:69:8

4:16:38:510:712:914:11 13:10 11:8 3:05:27:49:6

4:-16:-18:110:312:514:7 13:6 11:4 3:-15:-17:09:2

2:-1 1:-1

148 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
FIGURE 5.4 8-input priority encoder

Y0 Y1 Y2 Y3
Y4 Y5 Y6 Y7

A0 A1 A2 A3
A4 A5 A6 A7

A0 A1 A2 A3
A4 A5 A6 A7

X7:6

X7

X7:5X7:4

X7:3X7:2X7:1

Z0 Z2 Z3

Y1Y3Y5Y7 Y2Y3Y6Y7 Y4Y5Y6Y7

S O L U T I O N S 149
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 5.8

SystemVerilog

module priorityckt(input logic [7:0] a,
output logic [2:0] z);

 logic [7:0] y;
 logic x7, x76, x75, x74, x73, x72, x71;
 logic x32, x54, x31;
 logic [7:0] abar;

 // row of inverters
 assign abar = ~a;

 // first row of AND gates
 assign x7 = abar[7];
 assign x76 = abar[6] & x7;
 assign x54 = abar[4] & abar[5];
 assign x32 = abar[2] & abar[3];

 // second row of AND gates
 assign x75 = abar[5] & x76;
 assign x74 = x54 & x76;
 assign x31 = abar[1] & x32;

 // third row of AND gates
 assign x73 = abar[3] & x74;
 assign x72 = x32 & x74;
 assign x71 = x31 & x74;

 // fourth row of AND gates
 assign y = {a[7], a[6] & x7, a[5] & x76,

 a[4] & x75, a[3] & x74, a[2] & x73,
 a[1] & x72, a[0] & x71};

 // row of OR gates
 assign z = { |{y[7:4]},

 |{y[7:6], y[3:2]},
 |{y[1], y[3], y[5], y[7]} };

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priorityckt is
 port(a: in STD_LOGIC_VECTOR(7 downto 0);
 z: out STD_LOGIC_VECTOR(2 downto 0));

end;

architecture synth of priorityckt is
 signal y, abar: STD_LOGIC_VECTOR(7 downto 0);
 signal x7, x76, x75, x74, x73, x72, x71,

x32, x54, x31: STD_LOGIC;
begin
 -- row of inverters
 abar <= not a;

 -- first row of AND gates
 x7 <= abar(7);
 x76 <= abar(6) and x7;
 x54 <= abar(4) and abar(5);
 x32 <= abar(2) and abar(3);

 -- second row of AND gates
 x75 <= abar(5) and x76;
 x74 <= x54 and x76;
 x31 <= abar(1) and x32;

 -- third row of AND gates
 x73 <= abar(3) and x74;
 x72 <= x32 and x74;
 x71 <= x31 and x74;

 -- fourth row of AND gates
 y <= (a(7) & (a(6) and x7) & (a(5) and x76) &

 (a(4) and x75) & (a(3) and x74) & (a(2) and
x73) &
 (a(1) and x72) & (a(0) and x71));

 -- row of OR gates
 z <= ((y(7) or y(6) or y(5) or y(4)) &

(y(7) or y(6) or y(3) or y(2)) &
(y(1) or y(3) or y(5) or y(7)));

end;

150 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
(a)

(b)

(c)

Exercise 5.9

A31

B31

A30

B30

A0

B0

Not
Equal

A > B

-

B A

[N-1]

N

N N

A <= B

-

B A

[N-1]

N

N N

151 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(a) Answers will vary.

3 and 5: 3 – 5 = 00112 – 01012 = 00112 + 10102 + 1 = 11102 (= -210). The sign bit (most

significant bit) is 1, so the 4-bit signed comparator of Figure 5.12 correctly computes

that 3 is less than 5.

(b) Answers will vary.

-3 and 6: -3 – 6 = 1101 – 0110 = 1101 + 1001 + 1 = 01112 (= -7, but overflow occurred –

the result should be -9). The sign bit (most significant bit) is 0, so the 4-bit signed

comparator of Figure 5.12 incorrectly computes that -3 is not less than 6.

(c) In the general, the N-bit signed comparator of Figure 5.12 operates incorrectly upon

overflow.

Exercise 5.10

If no overflow occurs, connect the sign bit (i.e., most significant bit) of the result to the

LessThan output.

If overflow occurs, invert the sign bit of the result and connect it to the LessThan output.

Overflow occurs when (1) the two inputs have different signs, AND (2) the sign of the

subtraction result has a different sign than the A input, as shown in the figure below.

R
e
s
u
lt
N
-1

We could also have built this as: LessThan = N ⊕ V, where N is ResultN-1 and V is the Overflow

signal.

Exercise 5.11

SystemVerilog
module alu(input logic [31:0] a, b,

 input logic [1:0] ALUControl,

 output logic [31:0] Result);

 logic [31:0] condinvb;

 logic [32:0] sum;

 assign condinvb = ALUControl[0] ? ~b : b;

 assign sum = a + condinvb + ALUControl[0];

 always_comb

 casex (ALUControl[1:0])

152 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 2'b0?: Result = sum;

 2'b10: Result = a & b;

 2'b11: Result = a | b;

 endcase

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

begin

 condinvb <= not b when ALUControl(0) else b;

 sum <= ('0', a) + ('0', condinvb) + ALUControl(0);

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and b;

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

end;

Exercise 5.12

SystemVerilog
module alu(input logic [31:0] a, b,

 input logic [1:0] ALUControl,

 output logic [31:0] Result,

 output logic [3:0] ALUFlags);

 logic neg, zero, carry, overflow;

 logic [31:0] condinvb;

 logic [32:0] sum;

 assign condinvb = ALUControl[0] ? ~b : b;

 assign sum = a + condinvb + ALUControl[0];

 always_comb

 casex (ALUControl[1:0])

 2'b0?: Result = sum;

 2'b10: Result = a & b;

 2'b11: Result = a | b;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carry = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) &

 ~(a[31] ^ b[31] ^ ALUControl[0]) &

 (a[31] ^ sum[31]);

153 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 assign ALUFlags = {neg, zero, carry, overflow};

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal neg, zero, carry, overflow: STD_LOGIC;

begin

 condinvb <= not b when ALUControl(0) else b;

 sum <= ('0', a) + ('0', condinvb) + ALUControl(0);

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and b;

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carry <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carry, overflow);

end;

Exercise 5.13

SystemVerilog
module testbench();

 logic clk;

 logic [31:0] a, b, y, y_expected;

 logic [1:0] ALUControl;

 logic [31:0] vectornum, errors;

 logic [99:0] testvectors[10000:0];

 // instantiate device under test

 alu dut(a, b, ALUControl, y);

 // generate clock

 always begin

 clk = 1; #50; clk = 0; #50;

 end

 // at start of test, load vectors

 initial begin

 $readmemh("ex5.13_alu.tv", testvectors);

 vectornum = 0; errors = 0;

 end

154 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // apply test vectors at rising edge of clock

 always @(posedge clk)

 begin

 #1;

 ALUControl = testvectors[vectornum][97:96];

 a = testvectors[vectornum][95:64];

 b = testvectors[vectornum][63:32];

 y_expected = testvectors[vectornum][31:0];

 end

 // check results on falling edge of clock

 always @(negedge clk)

 begin

 if (y !== y_expected) begin

 $display("Error in vector %d", vectornum);

 $display(" Inputs : a = %h, b = %h, ALUControl = %b", a, b, ALUControl);

 $display(" Outputs: y = %h (%h expected)",

 y, y_expected);

 errors = errors+1;

 end

 vectornum = vectornum + 1;

 if (testvectors[vectornum][0] === 1'bx) begin

 $display("%d tests completed with %d errors", vectornum, errors);

 $stop;

 end

 end

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

use IEEE.STD_LOGIC_ARITH.all;

entity testbench is -- no inputs or outputs

end;

architecture sim of testbench is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal a, b, Result, Result_expected: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUControl: STD_LOGIC_VECTOR(1 downto 0);

 signal clk, reset: STD_LOGIC;

 constant MEMSIZE: integer := 99;

 type tvarray is array(MEMSIZE downto 0) of STD_LOGIC_VECTOR(99 downto 0);

 shared variable testvectors: tvarray;

 shared variable vectornum, errors: integer;

begin

 -- instantiate device under test

 dut: alu port map(a, b, ALUControl, Result);

 -- generate clock

 process begin

 clk <= '1'; wait for 5 ns;

 clk <= '0'; wait for 5 ns;

 end process;

 -- at start of test, pulse reset

155 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 process begin

 reset <= '1'; wait for 27 ns; reset <= '0';

 wait;

 end process;

 -- run tests

 -- at start of test, load vectors

 process is

 file tv: TEXT;

 variable i, index, count: integer;

 variable L: line;

 variable ch: character;

 variable readvalue: integer;

 begin

 -- read file of test vectors

 i := 0;

 index := 0;

 FILE_OPEN(tv, "ex5.13_alu.tv", READ_MODE);

 report "Opening file\n";

 while (not endfile(tv)) loop

 readline(tv, L);

 readvalue := 0;

 count := 3;

 for i in 1 to 28 loop

 read(L, ch);

 report "Line: " & integer'image(index) & " i = " &

 integer'image(i) & " char = " &

 character'image(ch)

 severity error;

 if '0' <= ch and ch <= '9' then

 readvalue := readvalue*16 + character'pos(ch)

 - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 readvalue := readvalue*16 + character'pos(ch)

 - character'pos('a')+10;

 else report "Format error on line " &

 integer'image(index) & " i = " &

 integer'image(i) & " char = " &

 character'image(ch)

 severity error;

 end if;

 -- load vectors

 -- assign first 4 bits (will be used for ALUControl)

 if (i = 1) then

 testvectors(index)(99 downto 96) := CONV_STD_LOGIC_VECTOR(readvalue, 4);

 count := count - 1;

 readvalue := 0; -- reset readvalue

 -- assign a, b, and Result (in testvectors) in

 -- 32-bit increments

 elsif ((i = 10) or (i = 19) or (i = 28)) then

 testvectors(index)((count*32 + 31) downto (count*32)) :=

CONV_STD_LOGIC_VECTOR(readvalue, 32);

 count := count - 1;

 readvalue := 0; -- reset readvalue

 end if;

 end loop;

 index := index + 1;

 end loop;

 vectornum := 0; errors := 0;

156 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 reset <= '1'; wait for 27 ns; reset <= '0';

 wait;

 end process;

 -- apply test vectors on rising edge of clk

 process (clk) begin

 if (clk'event and clk = '1') then

 ALUControl <= testvectors(vectornum)(97 downto 96)

 after 1 ns;

 a <= testvectors(vectornum)(95 downto 64)

 after 1 ns;

 b <= testvectors(vectornum)(63 downto 32)

 after 1 ns;

 Result_expected <= testvectors(vectornum)(31 downto 0)

 after 1 ns;

 end if;

 end process;

 -- check results on falling edge of clk

 process (clk) begin

 if (clk'event and clk = '0' and reset = '0') then

 if (is_x(testvectors(vectornum))) then

 if (errors = 0) then

 report "Just kidding -- " & integer'image(vectornum) & " tests completed

successfully. NO ERRORS." severity failure;

 else

 report integer'image(vectornum) & " tests completed, errors = " &

integer'image(errors) severity failure;

 end if;

 end if;

 assert Result = Result_expected

 report "Error: vectornum = " &

 integer'image(vectornum) &

 ", a = " & integer'image(CONV_INTEGER(a)) &

 ", b = " & integer'image(CONV_INTEGER(b)) &

 ", Result = " & integer'image(CONV_INTEGER(Result)) &

 ", ALUControl = " & integer'image(CONV_INTEGER(ALUControl));

 if (Result /= Result_expected) then

 errors := errors + 1;

 end if;

 vectornum := vectornum + 1;

 end if;

 end process;

end;

Testvector file (ex5.13_alu.tv)
0_00000000_00000000_00000000

0_00000000_ffffffff_ffffffff

0_00000001_ffffffff_00000000

0_000000ff_00000001_00000100

1_00000000_00000000_00000000

1_00000000_ffffffff_00000001

1_00000001_00000001_00000000

1_00000100_00000001_000000ff

2_ffffffff_ffffffff_ffffffff

2_ffffffff_12345678_12345678

2_12345678_87654321_02244220

2_00000000_ffffffff_00000000

3_ffffffff_ffffffff_ffffffff

3_12345678_87654321_97755779

157 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

3_00000000_ffffffff_ffffffff

3_00000000_00000000_00000000

Exercise 5.14

SystemVerilog
module testbench();

 logic clk;

 logic [31:0] a, b, y, y_expected;

 logic [1:0] ALUControl;

 logic [3:0] ALUFlags, ALUFlags_expected;

 logic [31:0] vectornum, errors;

 logic [103:0] testvectors[10000:0];

 // instantiate device under test

 alu dut(a, b, ALUControl, y, ALUFlags);

 // generate clock

 always begin

 clk = 1; #50; clk = 0; #50;

 end

 // at start of test, load vectors

 initial begin

 $readmemh("ex5.14_alu.tv", testvectors);

 vectornum = 0; errors = 0;

 end

 // apply test vectors at rising edge of clock

 always @(posedge clk)

 begin

 #1;

 ALUControl = testvectors[vectornum][101:100];

 a = testvectors[vectornum][99:68];

 b = testvectors[vectornum][67:36];

 y_expected = testvectors[vectornum][35:4];

 ALUFlags_expected = testvectors[vectornum][3:0];

 end

 // check results on falling edge of clock

 always @(negedge clk)

 begin

 if (y !== y_expected || ALUFlags !== ALUFlags_expected) begin

 $display("Error in vector %d", vectornum);

 $display(" Inputs : a = %h, b = %h, ALUControl = %b", a, b, ALUControl);

 $display(" Outputs: y = %h (%h expected), ALUFlags = %h (%h expected)",

 y, y_expected, ALUFlags, ALUFlags_expected);

 errors = errors+1;

 end

 vectornum = vectornum + 1;

 if (testvectors[vectornum][0] === 1'bx) begin

 $display("%d tests completed with %d errors", vectornum, errors);

 $stop;

 end

 end

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

158 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

use IEEE.STD_LOGIC_ARITH.all;

entity testbench is -- no inputs or outputs

end;

architecture sim of testbench is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

 end component;

 signal a, b, Result, Result_expected: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUControl: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUFlags, ALUFlags_expected: STD_LOGIC_VECTOR(3 downto 0);

 signal clk, reset: STD_LOGIC;

 constant MEMSIZE: integer := 99;

 type tvarray is array(MEMSIZE downto 0) of STD_LOGIC_VECTOR(103 downto 0);

 shared variable testvectors: tvarray;

 shared variable vectornum, errors: integer;

begin

 -- instantiate device under test

 dut: alu port map(a, b, ALUControl, Result, ALUFlags);

 -- generate clock

 process begin

 clk <= '1'; wait for 5 ns;

 clk <= '0'; wait for 5 ns;

 end process;

 -- at start of test, pulse reset

 process begin

 reset <= '1'; wait for 27 ns; reset <= '0';

 wait;

 end process;

 -- run tests

 -- at start of test, load vectors

 process is

 file tv: TEXT;

 variable i, index, count: integer;

 variable L: line;

 variable ch: character;

 variable readvalue: integer;

 begin

 -- read file of test vectors

 i := 0;

 index := 0;

 FILE_OPEN(tv, "ex5.14_alu.tv", READ_MODE);

 report "Opening file\n";

 while (not endfile(tv)) loop

 readline(tv, L);

 readvalue := 0;

 count := 3;

 for i in 1 to 30 loop

 read(L, ch);

 report "Line: " & integer'image(index) & " i = " &

 integer'image(i) & " char = " &

 character'image(ch)

 severity error;

 if '0' <= ch and ch <= '9' then

 readvalue := readvalue*16 + character'pos(ch)

 - character'pos('0');

159 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 elsif 'a' <= ch and ch <= 'f' then

 readvalue := readvalue*16 + character'pos(ch)

 - character'pos('a')+10;

 else report "Format error on line " &

 integer'image(index) & " i = " &

 integer'image(i) & " char = " &

 character'image(ch)

 severity error;

 end if;

 -- load vectors

 -- assign first 4 bits (will be used for ALUControl)

 if (i = 1) then

 testvectors(index)(103 downto 100) := CONV_STD_LOGIC_VECTOR(readvalue, 4);

 count := count - 1;

 readvalue := 0; -- reset readvalue

 -- assign a. b, and Result (in testvectors) in

 -- 32-bit increments

 elsif ((i = 10) or (i = 19) or (i = 28)) then

 testvectors(index)((count*32 + 35) downto (count*32+4)) :=

CONV_STD_LOGIC_VECTOR(readvalue, 32);

 count := count - 1;

 readvalue := 0; -- reset readvalue

 -- assign ALUFlags (in testvectors)

 elsif (i=30) then

 testvectors(index)(3 downto 0) := CONV_STD_LOGIC_VECTOR(readvalue, 4);

 end if;

 end loop;

 index := index + 1;

 end loop;

 vectornum := 0; errors := 0;

 reset <= '1'; wait for 27 ns; reset <= '0';

 wait;

 end process;

 -- apply test vectors on rising edge of clk

 process (clk) begin

 if (clk'event and clk = '1') then

 ALUControl <= testvectors(vectornum)(101 downto 100)

 after 1 ns;

 a <= testvectors(vectornum)(99 downto 68)

 after 1 ns;

 b <= testvectors(vectornum)(67 downto 36)

 after 1 ns;

 Result_expected <= testvectors(vectornum)(35 downto 4)

 after 1 ns;

 ALUFlags_expected <= testvectors(vectornum)(3 downto 0)

 after 1 ns;

 end if;

 end process;

 -- check results on falling edge of clk

 process (clk) begin

 if (clk'event and clk = '0' and reset = '0') then

 if (is_x(testvectors(vectornum))) then

 if (errors = 0) then

 report "Just kidding -- " & integer'image(vectornum) & " tests completed

successfully. NO ERRORS." severity failure;

 else

 report integer'image(vectornum) & " tests completed, errors = " &

integer'image(errors) severity failure;

160 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end if;

 end if;

 assert Result = Result_expected

 report "Error: vectornum = " &

 integer'image(vectornum) &

 ", a = " & integer'image(CONV_INTEGER(a)) &

 ", b = " & integer'image(CONV_INTEGER(b)) &

 ", Result = " & integer'image(CONV_INTEGER(Result)) &

 ", ALUControl = " & integer'image(CONV_INTEGER(ALUControl));

 assert ALUFlags = ALUFlags_expected

 report "Error: ALUFlags = " & integer'image(CONV_INTEGER(ALUFlags));

 if ((Result /= Result_expected) or

 (ALUFlags /= ALUFlags_expected)) then

 errors := errors + 1;

 end if;

 vectornum := vectornum + 1;

 end if;

 end process;

end;

Testvectors file (ex5.14_alu.tv)
0_00000000_00000000_00000000_4

0_00000000_ffffffff_ffffffff_8

0_00000001_ffffffff_00000000_6

0_000000ff_00000001_00000100_0

1_00000000_00000000_00000000_6

1_00000000_ffffffff_00000001_0

1_00000001_00000001_00000000_6

1_00000100_00000001_000000ff_2

2_ffffffff_ffffffff_ffffffff_8

2_ffffffff_12345678_12345678_0

2_12345678_87654321_02244220_0

2_00000000_ffffffff_00000000_4

3_ffffffff_ffffffff_ffffffff_8

3_12345678_87654321_97755779_8

3_00000000_ffffffff_ffffffff_8

3_00000000_00000000_00000000_4

Exercise 5.15

(a) �� = �

�� = � + �̅

�
 = �̅� = �����

�� = �̅ = ������

(b)

CZ

HS

LS

HI

LO

161 SOLUTIONS chapter 5 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 5.16

(a)
� = �⊕�

�� = � + (�⊕ �)

� = �� = �(� ⊕ �)

�� =
� = �⊕�

(b)

VZ

GE

LE

GT

LT

N

S O L U T I O N S 162
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.

Exercise 5.17
A 2-bit left shifter creates the output by appending two zeros to the least
significant bits of the input and dropping the two most significant bits.

FIGURE 5.6 2-bit left shifter, 32-bit input and output

2-bit Left Shifter

Exercise 5.18

A31

...

A30

A29

A28

A3
A2

A1

A0

...

Y31

Y30

Y5
Y4

Y3
Y2
Y1

Y0

...
SystemVerilog

module leftshift2_32(input logic [31:0] a,
output logic [31:0] y);

 assign y = {a[29:0], 2'b0};

endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity leftshift2_32 is
 port(a: in STD_LOGIC_VECTOR(31 downto 0);
 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture synth of leftshift2_32 is
begin
 y <= a(29 downto 0) & "00";
end;

163 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
rotamt1:0A3 A2 A1 A0

Y3

Y2

Y1

Y0

(a) (b)

A3 A2 A1 A0

Y3

Y2

Y1

Y0

S1:0

S1:0

S1:0

S1:0

rotamt1:0

00

01

10

11

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

2 2

Rotate
Left

Rotate
Right

S O L U T I O N S 164
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
4-bit Left and Right Rotator

SystemVerilog

module ex5_14(a, right_rotated, left_rotated,
shamt);

 input logic [3:0] a;
 output logic [3:0] right_rotated;
 output logic [3:0] left_rotated;
 input logic [1:0] shamt;

 // right rotated
 always_comb
 case(shamt)

 2'b00: right_rotated = a;
 2'b01: right_rotated =
 {a[0], a[3], a[2], a[1]};
 2'b10: right_rotated =
 {a[1], a[0], a[3], a[2]};
 2'b11: right_rotated =
 {a[2], a[1], a[0], a[3]};
 default: right_rotated = 4'bxxxx;

 endcase

 // left rotated
 always_comb
 case(shamt)

 2'b00: left_rotated = a;
 2'b01: left_rotated =
 {a[2], a[1], a[0], a[3]};
 2'b10: left_rotated =
 {a[1], a[0], a[3], a[2]};
 2'b11: left_rotated =
 {a[0], a[3], a[2], a[1]};

 default: left_rotated = 4'bxxxx;
 endcase

endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity ex5_14 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 right_rotated, left_rotated: out

STD_LOGIC_VECTOR(3 downto 0);
 shamt: in STD_LOGIC_VECTOR(1 downto 0));

end;

architecture synth of ex5_14 is
begin

-- right-rotated
 process(all) begin
 case shamt is
 when "00" => right_rotated <= a;
 when "01" => right_rotated <=

(a(0), a(3), a(2), a(1));
 when "10" => right_rotated <=

(a(1), a(0), a(3), a(2));
 when "11" => right_rotated <=

(a(2), a(1), a(0), a(3));
 when others => right_rotated <= "XXXX";
 end case;

 end process;

-- left-rotated
 process(all) begin
 case shamt is
 when "00" => left_rotated <= a;
 when "01" => left_rotated <=

(a(2), a(1), a(0), a(3));
 when "10" => left_rotated <=

(a(1), a(0), a(3), a(2));
 when "11" => left_rotated <=

(a(0), a(3), a(2), a(1));
 when others => left_rotated <= "XXXX";
 end case;

 end process;
end;

165 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.19

FIGURE 5.7 8-bit left shifter using 24 2:1 multiplexers

A7

A6

A5

A4

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

A3

A2

A1

A0

Y7

Y5

Y3

Y1

A6

A5

A4

A3

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

A2

A1

A0

Y6

Y4

Y2

Y0

shamt0

shamt1

shamt2

S O L U T I O N S 166
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 5.20

Any N-bit shifter can be built by using log2N columns of 2-bit shifters. The

first column of multiplexers shifts or rotates 0 to 1 bit, the second column shifts
or rotates 0 to 3 bits, the following 0 to 7 bits, etc. until the final column shifts
or rotates 0 to N-1 bits. The second column of multiplexers takes its inputs from
the first column of multiplexers, the third column takes its input from the second
column, and so forth. The 1-bit select input of each column is a single bit of the
shamt (shift amount) control signal, with the least significant bit for the left-
most column and the most significant bit for the right-most column.

Exercise 5.21

(a) B = 0, C = A, k = shamt
(b) B = AN-1 (the most significant bit of A), repeated N times to fill all N bits

of B
(c) B = A, C = 0, k = N - shamt
(d) B = A, C = A, k = shamt
(e) B = A, C = A, k = N - shamt

Exercise 5.22

tpd_MULT4 = tAND + 8tFA

For N = 1, the delay is tAND. For N > 1, an N × N multiplier has N-bit operands,
N partial products, and N-1 stages of 1-bit adders. The delay is through the
AND gate, then through all N adders in the first stage, and finally through 2
adder delays for each of the remaining stages. So the propagation is:

tpd_MULTN = tAND + [N + 2(N-1)]tFA

Exercise 5.23

tpd_DIV4 = 4 (4tFA + tMUX) = 16tFA + 4tMUX

tpd_DIVN = N2tFA + NtMUX

Exercise 5.24

167 S O L U T I O N S c h a p t e r 5

1yj2
j N 1–+

© 2015 Elsevier, Inc.
Recall that a two’s complement number has the same weights for the least

significant N-1 bits, regardless of the sign. The sign bit has a weight of -2N-1.
Thus, the product of two N-bit complement numbers, y and x is:

Thus,

The two negative partial products are formed by taking the two’s comple-
ment (inverting the bits and adding 1). Figure 5.8 shows a 4 x 4 multiplier.
Figure 5.8 (b) shows the partial products using the above equation. Figure 5.8
(c) shows a simplified version, pushing through the 1’s. This is known as a mod-
ified Baugh-Wooley multiplier. It can be built using a hierarchy of adders.

FIGURE 5.8 Multiplier: (a) symbol, (b) function, (c) simplified function

Exercise 5.25

P y– N 1– 2
N 1– yj2

j

j 0=

N 2–

+
 
 
 
 

x– N 1– 2
N 1– xi2

i

i 0=

N 2–

+
 
 
 
 

=

xiyj2
i j+ xN 1– yN 1– 2

2N 2– xiyN 1– 2
i N 1–+ xN –

j 0=

N 2–

–

i 0=

N 2–

–+

j 0=

N 2–


i 0=

N 2–



(a) (b)

x

x

A B

P

B3 B2 B1 B0

A2B0 A1B0 A0B0

A3 A2 A1 A0

A2B1 A1B1 A0B1

A2B2 A1B2 A0B2

 1 1 A3B2 A3B1 A3B0 1 1 1

+

P7 P6 P5 P4 P3 P2 P1 P0

(c)

44

8

A3B3

 1

 1 1 A2B3 A1B3 A0B3 1 1 1

1

x B3 B2 B1 B0

1 A0B3 A2B0 A1B0 A0B0

A3 A2 A1 A0

A1B3 A2B1 A1B1 A0B1

A2B3 A2B2 A1B2 A0B2

 1 A3B3 A3B2 A3B1 A3B0+

P7 P6 P5 P4 P3 P2 P1 P0

S O L U T I O N S 168
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 5.9 Sign extension unit (a) symbol, (b) underlying hardware

Exercise 5.26

FIGURE 5.10 Zero extension unit (a) symbol, (b) underlying hardware

A3

A2

A1

A0

Y3

Y2

Y1

Y0

Y7

Y6

Y5

Y4

Sign Extend
4 8

(a) (b)

A3:0 Y7:0

SystemVerilog

module signext4_8(input logic [3:0] a,
output logic [7:0] y);

 assign y = { {4{a[3]}}, a};

endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity signext4_8 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture synth of signext4_8 is
begin

169 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.27

Exercise 5.28

(a)

(b)

(c)

SystemVerilog

module zeroext4_8(input logic [3:0] a,
 output logic [7:0] y);

 assign y = {4'b0, a};

endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity zeroext4_8 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture synth of zeroext4_8 is
begin
 y <= "0000" & a(3 downto 0);
end;

111001.000

001001 0
1100

1100

100.110

 110 0

-

-
 11 00
 11 00-

 0

0 2
12

1–
2

12
1–

2
12

-----------------+
 
 
 


2
11

1–
2

12
1–

2
12

-----------------+
 
 
 

– 2
11

1–
2

12
1–

2
12

-----------------+
 
 
 


2
11 2

12
1–

2
12

-----------------+
 
 
 

– 2
11

1–
2

12
1–

2
12

-----------------+
 
 
 


S O L U T I O N S 170
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 5.29

(a) 1000 1101 . 1001 0000 = 0x8D90
(b) 0010 1010 . 0101 0000 = 0x2A50
(c) 1001 0001 . 0010 1000 = 0x9128

Exercise 5.30

(a) 111110.100000 = 0xFA0
(b) 010000.010000 = 0x410
(c) 101000.000101 = 0xA05

Exercise 5.31

(a) 1111 0010 . 0111 0000 = 0xF270
(b) 0010 1010 . 0101 0000 = 0x2A50
(c) 1110 1110 . 1101 1000 = 0xEED8

Exercise 5.32

(a) 100001.100000 = 0x860
(b) 010000.010000 = 0x410
(c) 110111.111011 = 0xDFB

Exercise 5.33

(a) -1101.1001 = -1.1011001  23

Thus, the biased exponent = 127 + 3 = 130 = 1000 00102

In IEEE 754 single-precision floating-point format:
1 1000 0010 101 1001 0000 0000 0000 0000 = 0xC1590000

(b) 101010.0101 = 1.010100101  25

Thus, the biased exponent = 127 + 5 = 132 = 1000 01002

In IEEE 754 single-precision floating-point format:
0 1000 0100 010 1001 0100 0000 0000 0000 = 0x42294000

(c) -10001.00101 = -1.000100101  24

Thus, the biased exponent = 127 + 4 = 131 = 1000 00112

In IEEE 754 single-precision floating-point format:
1 1000 0011 000 1001 0100 0000 0000 0000 = 0xC1894000

171 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.34

(a) -11110.1 = -1.111101  24

Thus, the biased exponent = 127 + 4 = 131 = 1000 00112

In IEEE 754 single-precision floating-point format:
1 1000 0011 111 1010 0000 0000 0000 0000 = 0xC1F40000

(b) 10000.01 = 1.000001  24

Thus, the biased exponent = 127 + 4 = 131 = 1000 00112

In IEEE 754 single-precision floating-point format:
0 1000 0011 000 0010 0100 0000 0000 0000 = 0x41820000

(c) -1000.000101 = -1.000000101  23

Thus, the biased exponent = 127 + 3 = 130 = 1000 00102

In IEEE 754 single-precision floating-point format:
1 1000 0010 000 0001 0100 0000 0000 0000 = 0xC1014000

Exercise 5.35

(a) 5.5
(b) -0000.00012 = -0.0625

(c) -8

Exercise 5.36

(a) 29.65625
(b) -25.1875
(c) -23.875

Exercise 5.37

When adding two floating point numbers, the number with the smaller ex-
ponent is shifted to preserve the most significant bits. For example, suppose we

were adding the two floating point numbers 1.0  20 and 1.0  2-27. We make
the two exponents equal by shifting the second number right by 27 bits. Because
the mantissa is limited to 24 bits, the second number (1.000 0000 0000 0000

0000  2-27) becomes 0.000 0000 0000 0000 0000  20, because the 1 is shifted

off to the right. If we had shifted the number with the larger exponent (1.0  20)
to the left, we would have shifted off the more significant bits (on the order of

20 instead of on the order of 2-27).

S O L U T I O N S 172
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 5.38

(a) C0123456
(b) D1E072C3
(c) 5F19659A

Exercise 5.39

(a)
0xC0D20004 = 1 1000 0001 101 0010 0000 0000 0000 0100

 = - 1.101 0010 0000 0000 0000 01  22

0x72407020 = 0 1110 0100 100 0000 0111 0000 0010 0000

 = 1.100 0000 0111 0000 001  2101

When adding these two numbers together, 0xC0D20004 becomes:

0  2101 because all of the significant bits shift off the right when making
the exponents equal. Thus, the result of the addition is simply the second num-
ber:

0x72407020

(b)
0xC0D20004 = 1 1000 0001 101 0010 0000 0000 0000 0100

 = - 1.101 0010 0000 0000 0000 01  22

0x40DC0004 = 0 1000 0001 101 1100 0000 0000 0000 0100

 = 1.101 1100 0000 0000 0000 01  22

 1.101 1100 0000 0000 0000 01  22

 - 1.101 0010 0000 0000 0000 01  22

= 0.000 1010  22

= 1.010  2-2

= 0 0111 1101 010 0000 0000 0000 0000 0000
= 0x3EA00000

(c)
0x5FBE4000 = 0 1011 1111 011 1110 0100 0000 0000 0000 0000

 = 1.011 1110 01  264

0x3FF80000 = 0 0111 1111 111 1000 0000 0000 0000 0000

 = 1.111 1  20

0xDFDE4000 = 1 1011 1111 101 1110 0100 0000 0000 0000 0000

 = - 1.101 1110 01  264

173 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Thus, (1.011 1110 01  264 + 1.111 1  20) = 1.011 1110 01  264

And, (1.011 1110 01  264 + 1.111 1  20) - 1.101 1110 01  264 =

 - 0.01  264 = -1.0  264

 = 1 1011 1101 000 0000 0000 0000 0000 0000
 = 0xDE800000

This is counterintuitive because the second number (0x3FF80000) does not

affect the result because its order of magnitude is less than 223 of the other num-
bers. This second number’s significant bits are shifted off when the exponents
are made equal.

Exercise 5.40

We only need to change step 5.

1. Extract exponent and fraction bits.

2. Prepend leading 1 to form the mantissa.

3. Compare exponents.

4. Shift smaller mantissa if necessary.

5. If one number is negative: Subtract it from the other number. If the result
is negative, take the absolute value of the result and make the sign bit 1.

If both numbers are negative: Add the numbers and make the sign bit 1.
If both numbers are positive: Add the numbers and make the sign bit 0.

6. Normalize mantissa and adjust exponent if necessary.

7. Round result

8. Assemble exponent and fraction back into floating-point number

Exercise 5.41

(a) 2(231 - 1 - 223) = 232 - 2 - 224 = 4,278,190,078

(b) 2(231 - 1) = 232 - 2 = 4,294,967,294

S O L U T I O N S 174
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(c) and NaN are given special representations because they are often used in

calculations and in representing results. These values also give useful information to the
user as return values, instead of returning garbage upon overflow, underflow, or divide
by zero.

Exercise 5.42

(a) 245 = 11110101 = 1.1110101  27

 = 0 1000 0110 111 0101 0000 0000 0000 0000
 = 0x43750000

0.0625 = 0.0001 = 1.0  2-4

 = 0 0111 1011 000 0000 0000 0000 0000 0000
 = 0x3D800000

(b) 0x43750000 is greater than 0x3D800000, so magnitude comparison
gives the correct result.

(c)

1.1110101  27 = 0 0000 0111 111 0101 0000 0000 0000 0000
 = 0x03F50000

1.0  2-4 = 0 1111 1100 000 0000 0000 0000 0000 0000
 = 0x7E000000

(d) No, integer comparison no longer works. 7E000000 > 03F50000 (indi-

cating that 1.0  2-4 is greater than 1.1110101  27, which is incorrect.)
(e) It is convenient for integer comparison to work with floating-point num-

bers because then the computer can compare numbers without needing to ex-
tract the mantissa, exponent, and sign.

Exercise 5.43



175 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
FIGURE 5.11 Floating-point adder hardware: (a) block diagram, (b) underlying hardware

-

32

[30:23] [22:0]

A31:0

ExpA7:0 MantA23:0

ExpB7:0
ExpA7:0

-

[7]

24

32

[30:23] [22:0]

B31:0

ExpB7:0 MantB23:0

24

01

shamt7:0ExpA < ExpB

Exponent
Compare

ExpB7:0 ExpA7:0

8 8

8 8

Exp7:0 shamt7:0ExpA<ExpB

Shift
Mantissa

MantA23:0 MantB23:0

24 24

24

ExpA<ExpB

Add Mantissas
and Normalize

MantA23:0MantB23:0

24 24

24

Fract22:0

ExpA<ExpB
24

S31:0

32

[30:23] [22:0][31]

01

Exp7:0

>>

[4:0]

01

MantA23:0MantB23:0ExpA < ExpB shamt7:0

24

ShiftedMant23:0

01

shamt7:0

[7]
[6]
[5]

[4]

[3]

24 24

+

01

01

MantB23:0MantA23:0

ExpA < ExpB

ShiftedMant23:0

ShiftedMant23:0 ShiftedMant23:0

[23:1] [22:0]

25

[24]

23

Fract22:0
Exp7:0 Fract22:0

E
xp

onent C
om

pare
S

hift M
antissa

A
dd M

antissas and N
orm

alize

(a) (b)

S O L U T I O N S 176
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
SystemVerilog

module fpadd(input logic [31:0] a, b,
 output logic [31:0] s);

 logic [7:0] expa, expb, exp_pre, exp, shamt;
 logic alessb;
 logic [23:0] manta, mantb, shmant;
 logic [22:0] fract;

 assign {expa, manta} = {a[30:23], 1'b1, a[22:0]};
 assign {expb, mantb} = {b[30:23], 1'b1, b[22:0]};
 assign s = {1'b0, exp, fract};

 expcomp expcomp1(expa, expb, alessb, exp_pre,
shamt);

 shiftmant shiftmant1(alessb, manta, mantb,
 shamt, shmant);

 addmant addmant1(alessb, manta, mantb,
shmant, exp_pre, fract, exp);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity fpadd is
 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
 s: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture synth of fpadd is
 component expcomp

 port(expa, expb: in STD_LOGIC_VECTOR(7 downto 0);
alessb: inout STD_LOGIC;

 exp,shamt: out STD_LOGIC_VECTOR(7 downto 0));
 end component;

 component shiftmant
 port(alessb: in STD_LOGIC;

 manta: in STD_LOGIC_VECTOR(23 downto 0);
 mantb: in STD_LOGIC_VECTOR(23 downto 0);
shamt: in STD_LOGIC_VECTOR(7 downto 0);

 shmant: out STD_LOGIC_VECTOR(23 downto 0));
 end component;

 component addmant
 port(alessb: in STD_LOGIC;

 manta: in STD_LOGIC_VECTOR(23 downto 0);
 mantb: in STD_LOGIC_VECTOR(23 downto 0);
 shmant: in STD_LOGIC_VECTOR(23 downto 0);
exp_pre: in STD_LOGIC_VECTOR(7 downto 0);

 fract: out STD_LOGIC_VECTOR(22 downto 0);
 exp: out STD_LOGIC_VECTOR(7 downto 0));

 end component;

 signal expa, expb: STD_LOGIC_VECTOR(7 downto 0);
 signal exp_pre, exp: STD_LOGIC_VECTOR(7 downto 0);
 signal shamt: STD_LOGIC_VECTOR(7 downto 0);
 signal alessb: STD_LOGIC;
 signal manta: STD_LOGIC_VECTOR(23 downto 0);
 signal mantb: STD_LOGIC_VECTOR(23 downto 0);
 signal shmant: STD_LOGIC_VECTOR(23 downto 0);
 signal fract: STD_LOGIC_VECTOR(22 downto 0);
begin

 expa <= a(30 downto 23);
 manta <= '1' & a(22 downto 0);
 expb <= b(30 downto 23);
 mantb <= '1' & b(22 downto 0);

 s <= '0' & exp & fract;

 expcomp1: expcomp
 port map(expa, expb, alessb, exp_pre, shamt);

 shiftmant1: shiftmant
 port map(alessb, manta, mantb, shamt, shmant);

 addmant1: addmant
 port map(alessb, manta, mantb, shmant,

 exp_pre, fract, exp);

end;

177 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 (continued from previous page)

 (continued on next page)

SystemVerilog

module expcomp(input logic [7:0] expa, expb,
 output logic alessb,
 output logic [7:0] exp, shamt);

 logic [7:0] aminusb, bminusa;

 assign aminusb = expa - expb;
 assign bminusa = expb - expa;
 assign alessb = aminusb[7];

 always_comb
 if (alessb) begin
 exp = expb;
 shamt = bminusa;
 end
 else begin
 exp = expa;
 shamt = aminusb;

 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity expcomp is
 port(expa, expb: in STD_LOGIC_VECTOR(7 downto 0);
 alessb: inout STD_LOGIC;

 exp,shamt: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of expcomp is
 signal aminusb: STD_LOGIC_VECTOR(7 downto 0);
 signal bminusa: STD_LOGIC_VECTOR(7 downto 0);
begin
 aminusb <= expa - expb;
 bminusa <= expb - expa;
 alessb <= aminusb(7);

 exp <= expb when alessb = '1' else expa;
 shamt <= bminusa when alessb = '1' else aminusb;

end;

S O L U T I O N S 178
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 (continued from previous page)

SystemVerilog

module shiftmant(input logic alessb,
 input logic [23:0] manta, mantb,
 input logic [7:0] shamt,
 output logic [23:0] shmant);

 logic [23:0] shiftedval;

 assign shiftedval = alessb ?
 (manta >> shamt) : (mantb >> shamt);

 always_comb
 if (shamt[7] | shamt[6] | shamt[5] |
 (shamt[4] & shamt[3]))
 shmant = 24'b0;
 else
 shmant = shiftedval;

endmodule

module addmant(input logic alessb,
 input logic [23:0] manta,

 mantb, shmant,
 input logic [7:0] exp_pre,
 output logic [22:0] fract,
 output logic [7:0] exp);

 logic [24:0] addresult;
 logic [23:0] addval;

 assign addval = alessb ? mantb : manta;
 assign addresult = shmant + addval;
 assign fract = addresult[24] ?

addresult[23:1] :
addresult[22:0];

 assign exp = addresult[24] ?
(exp_pre + 1) :
exp_pre;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use ieee.numeric_std.all;
use IEEE.std_logic_unsigned.all;

entity shiftmant is
 port(alessb: in STD_LOGIC;

 manta: in STD_LOGIC_VECTOR(23 downto 0);
 mantb: in STD_LOGIC_VECTOR(23 downto 0);
shamt: in STD_LOGIC_VECTOR(7 downto 0);

 shmant: out STD_LOGIC_VECTOR(23 downto 0));
end;

architecture synth of shiftmant is
 signal shiftedval: unsigned (23 downto 0);
 signal shiftamt_vector: STD_LOGIC_VECTOR (7 downto
0);
begin

 shiftedval <= SHIFT_RIGHT(unsigned(manta), to_in-
teger(unsigned(shamt))) when alessb = '1'

 else SHIFT_RIGHT(unsigned(mantb), to_in-
teger(unsigned(shamt)));

 shmant <= X"000000" when (shamt > 22)
else STD_LOGIC_VECTOR(shiftedval);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity addmant is
 port(alessb: in STD_LOGIC;
 manta: in STD_LOGIC_VECTOR(23 downto 0);
 mantb: in STD_LOGIC_VECTOR(23 downto 0);
 shmant: in STD_LOGIC_VECTOR(23 downto 0);
 exp_pre: in STD_LOGIC_VECTOR(7 downto 0);
 fract: out STD_LOGIC_VECTOR(22 downto 0);
 exp: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture synth of addmant is
 signal addresult: STD_LOGIC_VECTOR(24 downto 0);
 signal addval: STD_LOGIC_VECTOR(23 downto 0);
begin
 addval <= mantb when alessb = '1' else manta;
 addresult <= ('0'&shmant) + addval;
 fract <= addresult(23 downto 1)

 when addresult(24) = '1'
 else addresult(22 downto 0);

 exp <= (exp_pre + 1)
 when addresult(24) = '1'
 else exp_pre;

end;

179 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.44

(a)

• Extract exponent and fraction bits.

• Prepend leading 1 to form the mantissa.

• Add exponents.

• Multiply mantissas.

• Round result and truncate mantissa to 24 bits.

• Assemble exponent and fraction back into floating-point number

S O L U T I O N S 180
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(b)

FIGURE 5.12 Floating-point multiplier block diagram

32

[30:23] [22:0]

A31:0

ExpA7:0 MantA23:0

ExpB7:0
ExpA7:0

24

32

[30:23] [22:0]

B31:0

ExpB7:0 MantB23:0

24

Add
Exponents

ExpB7:0 ExpA7:0

8 8

8

Exp7:0

Multiply Mantissas,
Round, and Truncate

MantA23:0 MantB23:0

24 24

23

S31:0

32

[30:23] [22:0][31]

Exp7:0

MantB23:0 MantA23:0

Fract22:0

Fract22:0
Exp7:0

A
dd E

xponents
M

ultiply M
antissas

(a) (b)

x

+

8 8

8

24 24

48

Fract22:0

[46:24]

23

-

01

126 127

01

23
[45:23]

Result47:0

Result47

Result47

181 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
(c)

Exercise 5.45

(a) Figure on next page

SystemVerilog

module fpmult(input logic [31:0] a, b,
 output logic [31:0] m);

 logic [7:0] expa, expb, exp;
 logic [23:0] manta, mantb;
 logic [22:0] fract;
 logic [47:0] result;

 assign {expa, manta} = {a[30:23], 1'b1, a[22:0]};
 assign {expb, mantb} = {b[30:23], 1'b1, b[22:0]};
 assign m = {1'b0, exp, fract};

 assign result = manta * mantb;
 assign fract = result[47] ?

 result[46:24] :
 result[45:23];

 assign exp = result[47] ?
 (expa + expb - 126) :
 (expa + expb - 127);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity fpmult is
 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
 m: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture synth of fpmult is
 signal expa, expb, exp:
 STD_LOGIC_VECTOR(7 downto 0);

 signal manta, mantb:
 STD_LOGIC_VECTOR(23 downto 0);

 signal fract:
 STD_LOGIC_VECTOR(22 downto 0);

 signal result:
 STD_LOGIC_VECTOR(47 downto 0);
begin
 expa <= a(30 downto 23);
 manta <= '1' & a(22 downto 0);
 expb <= b(30 downto 23);
 mantb <= '1' & b(22 downto 0);

 m <= '0' & exp & fract;
 result <= manta * mantb;
 fract <= result(46 downto 24)

 when (result(47) = '1')
 else result(45 downto 23);

 exp <= (expa + expb - 126)
 when (result(47) = '1')
 else (expa + expb - 127);

end;

182 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
16
:1

5

15

18
:1

7

17
:1

5
18

:1
5

16
17

18

20
:1

9

19

2
2:

21

21
:1

9
2

2:
19

2
0

21
22

21
:1

5
2

2:
15

19
:1

5
20

:1
5

24
:2

3
2

6:
25

25
:2

3
2

6:
23

24
25

26

28
:2

7

2
7

30
:2

9

29
:2

7
30

:2
7

28
29

30

29
:2

3
30

:2
3

27
:2

3
28

:2
3

25
:1

5
2

6:
15

23
:1

5
24

:1
5

29
:1

5
30

:1
5

27
:1

5
28

:1
5

31

16
17

18
19

2
0

21
22

23
24

25
26

2
7

28
29

30
31

B
i

A
i

G
i:i

P
i:i

G
k-

1
:j

P
k-

1
:jG

i:k
P

i:k

G
i:j

P
i:j

i
i:j

B
i

A
i

G
i-

1
:-

1 S
ii

Le
ge

nd

23

0
:-

1

-1

2:
1

1
:-

1
2

:-
1

0
1

2

4:
3

3

6:
5

5:
3

6:
3

4
5

6

5
:-

1
6

:-
1

3
:-

1
4

:-
1

8:
7

7

1
0:

9

9:
7

1
0:

7

8
9

10

12
:1

1

11

14
:1

3

13
:1

1
14

:1
1

12
1

3
14

13
:7

14
:7

11
:7

1
2:

7

9
:-

1
1

0:
-1

7
:-

1
8

:-
1

1
3

:-
1

1
4

:-
1

1
1

:-
1

1
2

:-
1

0
1

2
3

4
5

6
7

8
9

10
11

12
1

3
14

15

2
5

:-
1

2
6

:-
1

2
3:

-1
2

4
:-

1
2

9
:-

1
3

0:
-1

2
7

:-
1

2
8:

-1
1

8
:-

1
1

5
:-

1
1

6
:-

1
2

1
:-

1
2

2
:-

1
1

9
:-

1
2

0
:-

1
1

7:
-1

R
ow

 1

R
ow

 2

R
ow

 3

R
ow

 4

R
ow

 5

S O L U T I O N S 183
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
5.45 (b)

SystemVerilog

module prefixadd(input logic [31:0] a, b,
 input logic cin,
 output logic [31:0] s,
 output logic cout);

 logic [30:0] p, g;
 // p and g prefixes for rows 1 - 5
 logic [15:0] p1, p2, p3, p4, p5;
 logic [15:0] g1, g2, g3, g4, g5;

 pandg row0(a, b, p, g);
 blackbox row1({p[30],p[28],p[26],p[24],p[22],

 p[20],p[18],p[16],p[14],p[12],
 p[10],p[8],p[6],p[4],p[2],p[0]},
 {p[29],p[27],p[25],p[23],p[21],
 p[19],p[17],p[15],p[13],p[11],
 p[9],p[7],p[5],p[3],p[1],1'b0},
 {g[30],g[28],g[26],g[24],g[22],
 g[20],g[18],g[16],g[14],g[12],
 g[10],g[8],g[6],g[4],g[2],g[0]},
 {g[29],g[27],g[25],g[23],g[21],
 g[19],g[17],g[15],g[13],g[11],
 g[9],g[7],g[5],g[3],g[1],cin},
 p1, g1);

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity prefixadd is
 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
 cin: in STD_LOGIC;
 s: out STD_LOGIC_VECTOR(31 downto 0);
 cout: out STD_LOGIC);

end;

architecture synth of prefixadd is
 component pgblock
 port(a, b: in STD_LOGIC_VECTOR(30 downto 0);

p, g: out STD_LOGIC_VECTOR(30 downto 0));
 end component;

 component pgblackblock is
 port (pik, gik: in STD_LOGIC_VECTOR(15 downto 0);

 pkj, gkj: in STD_LOGIC_VECTOR(15 downto 0);
pij: out STD_LOGIC_VECTOR(15 downto 0);
gij: out STD_LOGIC_VECTOR(15 downto 0));

 end component;

 component sumblock is
 port (a, b, g: in STD_LOGIC_VECTOR(31 downto 0);

 s: out STD_LOGIC_VECTOR(31 downto 0));
 end component;

 signal p, g: STD_LOGIC_VECTOR(30 downto 0);
 signal pik_1, pik_2, pik_3, pik_4, pik_5,

gik_1, gik_2, gik_3, gik_4, gik_5,
pkj_1, pkj_2, pkj_3, pkj_4, pkj_5,
gkj_1, gkj_2, gkj_3, gkj_4, gkj_5,
p1, p2, p3, p4, p5,
g1, g2, g3, g4, g5:
 STD_LOGIC_VECTOR(15 downto 0);

 signal g6: STD_LOGIC_VECTOR(31 downto 0);

begin
 row0: pgblock
 port map(a(30 downto 0), b(30 downto 0), p, g);

 pik_1 <=
 (p(30)&p(28)&p(26)&p(24)&p(22)&p(20)&p(18)&p(16)&
 p(14)&p(12)&p(10)&p(8)&p(6)&p(4)&p(2)&p(0));

 gik_1 <=
 (g(30)&g(28)&g(26)&g(24)&g(22)&g(20)&g(18)&g(16)&
 g(14)&g(12)&g(10)&g(8)&g(6)&g(4)&g(2)&g(0));

 pkj_1 <=
 (p(29)&p(27)&p(25)&p(23)&p(21)&p(19)&p(17)&p(15)&
 p(13)&p(11)&p(9)&p(7)&p(5)&p(3)&p(1)&'0');

 gkj_1 <=
 (g(29)&g(27)&g(25)&g(23)&g(21)&g(19)&g(17)&g(15)&
 g(13)&g(11)&g(9)&g(7)&g(5)& g(3)& g(1)& cin);

 row1: pgblackblock
port map(pik_1, gik_1, pkj_1, gkj_1,

p1, g1);

184 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 (continued on next page)
 (continued from previous page)

 (continued on next page)

SystemVerilog

 blackbox row2({p1[15],p[29],p1[13],p[25],p1[11],
 p[21],p1[9],p[17],p1[7],p[13],
 p1[5],p[9],p1[3],p[5],p1[1],p[1]},

 {{2{p1[14]}},{2{p1[12]}},{2{p1[10]}},
 {2{p1[8]}},{2{p1[6]}},{2{p1[4]}},
 {2{p1[2]}},{2{p1[0]}}},
 {g1[15],g[29],g1[13],g[25],g1[11],
 g[21],g1[9],g[17],g1[7],g[13],
 g1[5],g[9],g1[3],g[5],g1[1],g[1]},
 {{2{g1[14]}},{2{g1[12]}},{2{g1[10]}},

 {2{g1[8]}},{2{g1[6]}},{2{g1[4]}},
 {2{g1[2]}},{2{g1[0]}}},
 p2, g2);

 blackbox row3({p2[15],p2[14],p1[14],p[27],p2[11],
 p2[10],p1[10],p[19],p2[7],p2[6],

 p1[6],p[11],p2[3],p2[2],p1[2],p[3]},
 {{4{p2[13]}},{4{p2[9]}},{4{p2[5]}},

 {4{p2[1]}}},
 {g2[15],g2[14],g1[14],g[27],g2[11],

 g2[10],g1[10],g[19],g2[7],g2[6],
 g1[6],g[11],g2[3],g2[2],g1[2],g[3]},
 {{4{g2[13]}},{4{g2[9]}},{4{g2[5]}},

 {4{g2[1]}}},
 p3, g3);

VHDL

 pik_2 <= p1(15)&p(29)&p1(13)&p(25)&p1(11)&
 p(21)&p1(9)&p(17)&p1(7)&p(13)&
 p1(5)&p(9)&p1(3)&p(5)&p1(1)&p(1);

 gik_2 <= g1(15)&g(29)&g1(13)&g(25)&g1(11)&
 g(21)&g1(9)&g(17)&g1(7)&g(13)&
 g1(5)&g(9)&g1(3)&g(5)&g1(1)&g(1);

 pkj_2 <=
 p1(14)&p1(14)&p1(12)&p1(12)&p1(10)&p1(10)&
 p1(8)&p1(8)&p1(6)&p1(6)&p1(4)&p1(4)&
 p1(2)&p1(2)&p1(0)&p1(0);

 gkj_2 <=
 g1(14)&g1(14)&g1(12)&g1(12)&g1(10)&g1(10)&
 g1(8)&g1(8)&g1(6)&g1(6)&g1(4)&g1(4)&
 g1(2)&g1(2)&g1(0)&g1(0);

 row2: pgblackblock
 port map(pik_2, gik_2, pkj_2, gkj_2,

 p2, g2);

 pik_3 <= p2(15)&p2(14)&p1(14)&p(27)&p2(11)&
 p2(10)&p1(10)&p(19)&p2(7)&p2(6)&
 p1(6)&p(11)&p2(3)&p2(2)&p1(2)&p(3);

 gik_3 <= g2(15)&g2(14)&g1(14)&g(27)&g2(11)&
 g2(10)&g1(10)&g(19)&g2(7)&g2(6)&
 g1(6)&g(11)&g2(3)&g2(2)&g1(2)&g(3);

 pkj_3 <= p2(13)&p2(13)&p2(13)&p2(13)&
 p2(9)&p2(9)&p2(9)&p2(9)&
 p2(5)&p2(5)&p2(5)&p2(5)&
 p2(1)&p2(1)&p2(1)&p2(1);

 gkj_3 <= g2(13)&g2(13)&g2(13)&g2(13)&
 g2(9)&g2(9)&g2(9)&g2(9)&
 g2(5)&g2(5)&g2(5)&g2(5)&
 g2(1)&g2(1)&g2(1)&g2(1);

 row3: pgblackblock
 port map(pik_3, gik_3, pkj_3, gkj_3, p3, g3);

S O L U T I O N S 185
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 (continued on next page)

SystemVerilog

 blackbox row4({p3[15:12],p2[13:12],
 p1[12],p[23],p3[7:4],
 p2[5:4],p1[4],p[7]},
 {{8{p3[11]}},{8{p3[3]}}},
 {g3[15:12],g2[13:12],
 g1[12],g[23],g3[7:4],
 g2[5:4],g1[4],g[7]},
 {{8{g3[11]}},{8{g3[3]}}},
 p4, g4);

 blackbox row5({p4[15:8],p3[11:8],p2[9:8],
 p1[8],p[15]},
 {{16{p4[7]}}},
 {g4[15:8],g3[11:8],g2[9:8],
 g1[8],g[15]},
 {{16{g4[7]}}},
 p5,g5);

 sum row6({g5,g4[7:0],g3[3:0],g2[1:0],g1[0],cin},
a, b, s);

 // generate cout
 assign cout = (a[31] & b[31]) |

 (g5[15] & (a[31] | b[31]));

endmodule

VHDL

 pik_4 <= p3(15 downto 12)&p2(13 downto 12)&
 p1(12)&p(23)&p3(7 downto 4)&
 p2(5 downto 4)&p1(4)&p(7);

 gik_4 <= g3(15 downto 12)&g2(13 downto 12)&
 g1(12)&g(23)&g3(7 downto 4)&
 g2(5 downto 4)&g1(4)&g(7);

 pkj_4 <= p3(11)&p3(11)&p3(11)&p3(11)&
 p3(11)&p3(11)&p3(11)&p3(11)&
 p3(3)&p3(3)&p3(3)&p3(3)&
 p3(3)&p3(3)&p3(3)&p3(3);

 gkj_4 <= g3(11)&g3(11)&g3(11)&g3(11)&
 g3(11)&g3(11)&g3(11)&g3(11)&
 g3(3)&g3(3)&g3(3)&g3(3)&
 g3(3)&g3(3)&g3(3)&g3(3);

 row4: pgblackblock
 port map(pik_4, gik_4, pkj_4, gkj_4, p4, g4);

 pik_5 <= p4(15 downto 8)&p3(11 downto 8)&
 p2(9 downto 8)&p1(8)&p(15);

 gik_5 <= g4(15 downto 8)&g3(11 downto 8)&
 g2(9 downto 8)&g1(8)&g(15);

 pkj_5 <= p4(7)&p4(7)&p4(7)&p4(7)&
 p4(7)&p4(7)&p4(7)&p4(7)&
 p4(7)&p4(7)&p4(7)&p4(7)&
 p4(7)&p4(7)&p4(7)&p4(7);
 gkj_5 <= g4(7)&g4(7)&g4(7)&g4(7)&
 g4(7)&g4(7)&g4(7)&g4(7)&
 g4(7)&g4(7)&g4(7)&g4(7)&
 g4(7)&g4(7)&g4(7)&g4(7);

 row5: pgblackblock
 port map(pik_5, gik_5, pkj_5, gkj_5, p5, g5);

 g6 <= (g5 & g4(7 downto 0) & g3(3 downto 0) &
g2(1 downto 0) & g1(0) & cin);

 row6: sumblock
port map(g6, a, b, s);

 -- generate cout
 cout <= (a(31) and b(31)) or

(g6(31) and (a(31) or b(31)));

end;

186 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 (continued from previous page)

SystemVerilog

module pandg(input logic [30:0] a, b,
 output logic [30:0] p, g);

 assign p = a | b;
 assign g = a & b;

endmodule

module blackbox(input logic [15:0] pleft, pright,
 gleft, gright,

 output logic [15:0] pnext, gnext);

 assign pnext = pleft & pright;
 assign gnext = pleft & gright | gleft;
endmodule

module sum(input logic [31:0] g, a, b,
 output logic [31:0] s);

 assign s = a ^ b ^ g;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity pgblock is
 port(a, b: in STD_LOGIC_VECTOR(30 downto 0);
 p, g: out STD_LOGIC_VECTOR(30 downto 0));

end;

architecture synth of pgblock is
begin
 p <= a or b;
 g <= a and b;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity pgblackblock is
 port(pik, gik, pkj, gkj:
 in STD_LOGIC_VECTOR(15 downto 0);
 pij, gij:
 out STD_LOGIC_VECTOR(15 downto 0));

end;

architecture synth of pgblackblock is
begin
 pij <= pik and pkj;
 gij <= gik or (pik and gkj);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sumblock is
 port(g, a, b: in STD_LOGIC_VECTOR(31 downto 0);
 s: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture synth of sumblock is
begin
 s <= a xor b xor g;
end;

S O L U T I O N S 187
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
5.41 (c) Using Equation 5.11 to find the delay of the prefix adder:

We find the delays for each block:
tpg = 100 ps

tpg_prefix = 200 ps

tXOR = 100 ps

Thus,
tPA = [100 + 5(200) + 100] ps = 1200 ps = 1.2 ns

5.41 (d) To make a pipelined prefix adder, add pipeline registers between
each of the rows of the prefix adder. Now each stage will take 200 ps plus the

tPA tpg N tpg_prefix  tXOR+
2

log+=

188 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
sequencing overhead, tpq + tsetup= 80ps. Thus each cycle is 280 ps and the de-

sign can run at 3.57 GHz.

S O L U T I O N S 189
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
16
:1

5

15

1
8:

17

17
:1

5
1

8:
15

16
17

18

2
0:

1
9

19

22
:2

1

21
:1

9
22

:1
9

20
2

1
2

2 21
:1

5
22

:1
5

1
9:

15
2

0:
1

5

24
:2

3
2

6:
25

25
:2

3
2

6:
23

2
4

25
26

2
8:

27

27

3
0:

2
9

2
9:

27
3

0:
2

7

28
29

30

2
9:

23
3

0:
2

3
2

7:
23

2
8:

23

25
:1

5
2

6:
15

23
:1

5
24

:1
5

2
9:

15
3

0:
1

5
2

7:
15

2
8:

15

3
1

16
17

18
19

20
2

1
2

2
2

3
2

4
25

26
27

28
29

30
3

1

B
i

A
i

G
i:i

P
i:i

G
k-

1
:j

P
k-

1
:jG

i:k
P

i:k

G
i:j

P
i:j

i
i:j

B
i

A
i

G
i-

1
:-

1 S
ii

Le
ge

nd

2
3

0
:-

1

-1

2
:1

1
:-

1
2

:-
1

0
1

2

4:
3

3

6:
5

5:
3

6:
3

4
5

6

5:
-1

6:
-1

3:
-1

4:
-1

8:
7

7

10
:9

9
:7

10
:7

8
9

1
0

12
:1

1

1
1

14
:1

3

13
:1

1
14

:1
1

1
2

1
3

1
4

13
:7

1
4:

7
11

:7
12

:7

9
:-

1
10

:-
1

7:
-1

8:
-1

13
:-

1
1

4:
-1

11
:-

1
12

:-
1

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

15

2
5:

-1
2

6:
-1

2
3:

-1
2

4:
-1

29
:-

1
30

:-
1

27
:-

1
28

:-
1

1
8:

-1
1

5:
-1

1
6:

-1
21

:-
1

2
2:

-1
19

:-
1

20
:-

1
1

7:
-1

is
te

r

is
te

r

is
te

r

is
te

r

is
te

r

is
te

r

is
te

r

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

190 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
5.45 (e)

SystemVerilog

module prefixaddpipe(input logic clk, cin,
 input logic [31:0] a, b,
 output logic [31:0] s, output cout);

 // p and g prefixes for rows 0 - 5
 logic [30:0] p0, p1, p2, p3, p4, p5;
 logic [30:0] g0, g1, g2, g3, g4, g5;
 logic p_1_0, p_1_1, p_1_2, p_1_3, p_1_4, p_1_5,

 g_1_0, g_1_1, g_1_2, g_1_3, g_1_4, g_1_5;

 // pipeline values for a and b
 logic [31:0] a0, a1, a2, a3, a4, a5,

 b0, b1, b2, b3, b4, b5;

 // row 0
 flop #(2) flop0_pg_1(clk, {1'b0,cin}, {p_1_0,g_1_0});
 pandg row0(clk, a[30:0], b[30:0], p0, g0);

 // row 1
 flop #(2) flop1_pg_1(clk, {p_1_0,g_1_0}, {p_1_1,g_1_1});

flop #(30) flop1_pg(clk,
{p0[29],p0[27],p0[25],p0[23],p0[21],p0[19],p0[17],p0[15],

 p0[13],p0[11],p0[9],p0[7],p0[5],p0[3],p0[1],

g0[29],g0[27],g0[25],g0[23],g0[21],g0[19],g0[17],g0[15],
 g0[13],g0[11],g0[9],g0[7],g0[5],g0[3],g0[1]},

{p1[29],p1[27],p1[25],p1[23],p1[21],p1[19],p1[17],p1[15],
 p1[13],p1[11],p1[9],p1[7],p1[5],p1[3],p1[1],

g1[29],g1[27],g1[25],g1[23],g1[21],g1[19],g1[17],g1[15],
 g1[13],g1[11],g1[9],g1[7],g1[5],g1[3],g1[1]});

 blackbox row1(clk,
 {p0[30],p0[28],p0[26],p0[24],p0[22],

 p0[20],p0[18],p0[16],p0[14],p0[12],
 p0[10],p0[8],p0[6],p0[4],p0[2],p0[0]},

 {p0[29],p0[27],p0[25],p0[23],p0[21],
 p0[19],p0[17],p0[15],p0[13],p0[11],
 p0[9],p0[7],p0[5],p0[3],p0[1],1'b0},

 {g0[30],g0[28],g0[26],g0[24],g0[22],
 g0[20],g0[18],g0[16],g0[14],g0[12],
 g0[10],g0[8],g0[6],g0[4],g0[2],g0[0]},

 {g0[29],g0[27],g0[25],g0[23],g0[21],
 g0[19],g0[17],g0[15],g0[13],g0[11],
 g0[9],g0[7],g0[5],g0[3],g0[1],g_1_0},

 {p1[30],p1[28],p1[26],p1[24],p1[22],p1[20],
 p1[18],p1[16],p1[14],p1[12],p1[10],p1[8],
 p1[6],p1[4],p1[2],p1[0]},

 {g1[30],g1[28],g1[26],g1[24],g1[22],g1[20],
 g1[18],g1[16],g1[14],g1[12],g1[10],g1[8],
 g1[6],g1[4],g1[2],g1[0]});

 // row 2
 flop #(2) flop2_pg_1(clk, {p_1_1,g_1_1}, {p_1_2,g_1_2});

flop #(30) flop2_pg(clk,
{p1[28:27],p1[24:23],p1[20:19],p1[16:15],p1[12:11],

S O L U T I O N S 191
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
p1[8:7],p1[4:3],p1[0],
g1[28:27],g1[24:23],g1[20:19],g1[16:15],g1[12:11],
g1[8:7],g1[4:3],g1[0]},
 {p2[28:27],p2[24:23],p2[20:19],p2[16:15],p2[12:11],

p2[8:7],p2[4:3],p2[0],
 g2[28:27],g2[24:23],g2[20:19],g2[16:15],g2[12:11],
 g2[8:7],g2[4:3],g2[0]});
 blackbox row2(clk,

{p1[30:29],p1[26:25],p1[22:21],p1[18:17],p1[14:13],p1[10:9],p1[6:5],p1[2:1]
},

 { {2{p1[28]}}, {2{p1[24]}}, {2{p1[20]}}, {2{p1[16]}}, {2{p1[12]}},
{2{p1[8]}},
 {2{p1[4]}}, {2{p1[0]}} },

{g1[30:29],g1[26:25],g1[22:21],g1[18:17],g1[14:13],g1[10:9],g1[6:5],g1[2:1]
},

 { {2{g1[28]}}, {2{g1[24]}}, {2{g1[20]}}, {2{g1[16]}}, {2{g1[12]}},
{2{g1[8]}},
 {2{g1[4]}}, {2{g1[0]}} },

{p2[30:29],p2[26:25],p2[22:21],p2[18:17],p2[14:13],p2[10:9],p2[6:5],p2[2:1]
},

{g2[30:29],g2[26:25],g2[22:21],g2[18:17],g2[14:13],g2[10:9],g2[6:5],g2[2:1]
});

 // row 3
 flop #(2) flop3_pg_1(clk, {p_1_2,g_1_2}, {p_1_3,g_1_3});
 flop #(30) flop3_pg(clk, {p2[26:23],p2[18:15],p2[10:7],p2[2:0],
 g2[26:23],g2[18:15],g2[10:7],g2[2:0]},
{p3[26:23],p3[18:15],p3[10:7],p3[2:0],
 g3[26:23],g3[18:15],g3[10:7],g3[2:0]});
 blackbox row3(clk,

 {p2[30:27],p2[22:19],p2[14:11],p2[6:3]},
 { {4{p2[26]}}, {4{p2[18]}}, {4{p2[10]}}, {4{p2[2]}} },
 {g2[30:27],g2[22:19],g2[14:11],g2[6:3]},
 { {4{g2[26]}}, {4{g2[18]}}, {4{g2[10]}}, {4{g2[2]}} },
 {p3[30:27],p3[22:19],p3[14:11],p3[6:3]},
 {g3[30:27],g3[22:19],g3[14:11],g3[6:3]});

 // row 4
 flop #(2) flop4_pg_1(clk, {p_1_3,g_1_3}, {p_1_4,g_1_4});
 flop #(30) flop4_pg(clk, {p3[22:15],p3[6:0],
 g3[22:15],g3[6:0]},

{p4[22:15],p4[6:0],
 g4[22:15],g4[6:0]});

 blackbox row4(clk,
 {p3[30:23],p3[14:7]},

 { {8{p3[22]}}, {8{p3[6]}} },
 {g3[30:23],g3[14:7]},

 { {8{g3[22]}}, {8{g3[6]}} },
 {p4[30:23],p4[14:7]},
 {g4[30:23],g4[14:7]});

 // row 5
 flop #(2) flop5_pg_1(clk, {p_1_4,g_1_4}, {p_1_5,g_1_5});
 flop #(30) flop5_pg(clk, {p4[14:0],g4[14:0]},

{p5[14:0],g5[14:0]});

192 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 blackbox row5(clk,
 p4[30:15],

 {16{p4[14]}},
 g4[30:15],
 {16{g4[14]}},
 p5[30:15], g5[30:15]);

 // pipeline registers for a and b
 flop #(64) flop0_ab(clk, {a,b}, {a0,b0});
 flop #(64) flop1_ab(clk, {a0,b0}, {a1,b1});
 flop #(64) flop2_ab(clk, {a1,b1}, {a2,b2});
 flop #(64) flop3_ab(clk, {a2,b2}, {a3,b3});
 flop #(64) flop4_ab(clk, {a3,b3}, {a4,b4});
 flop #(64) flop5_ab(clk, {a4,b4}, {a5,b5});

 sum row6(clk, {g5,g_1_5}, a5, b5, s);
 // generate cout
 assign cout = (a5[31] & b5[31]) | (g5[30] & (a5[31] | b5[31]));
endmodule

// submodules
module pandg(input logic clk,

input logic [30:0] a, b,
output logic [30:0] p, g);

 always_ff @(posedge clk)
 begin
 p <= a | b;
 g <= a & b;
 end

endmodule

module blackbox(input logic clk,
 input logic [15:0] pleft, pright, gleft, gright,
 output logic [15:0] pnext, gnext);

 always_ff @(posedge clk)
 begin
 pnext <= pleft & pright;
 gnext <= pleft & gright | gleft;
 end
endmodule

module sum(input logic clk,
 input logic [31:0] g, a, b,
 output logic [31:0] s);

 always_ff @(posedge clk)
 s <= a ^ b ^ g;
endmodule

module flop
 #(parameter width = 8)
 (input logic clk,
 input logic [width-1:0] d,
 output logic [width-1:0] q);

 always_ff @(posedge clk)
 q <= d;
endmodule

S O L U T I O N S 193
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
5.45 (e)

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity prefixaddpipe is
 port(clk: in STD_LOGIC;

 a, b: in STD_LOGIC_VECTOR(31 downto 0);
 cin: in STD_LOGIC;
 s: out STD_LOGIC_VECTOR(31 downto 0);
 cout: out STD_LOGIC);

end;

architecture synth of prefixaddpipe is
 component pgblock

 port(clk: in STD_LOGIC;
a, b: in STD_LOGIC_VECTOR(30 downto 0);
p, g: out STD_LOGIC_VECTOR(30 downto 0));

 end component;
 component sumblock is

 port (clk: in STD_LOGIC;
a, b, g: in STD_LOGIC_VECTOR(31 downto 0);
s: out STD_LOGIC_VECTOR(31 downto 0));

 end component;
 component flop is generic(width: integer);

 port(clk: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;
 component flop1 is

 port(clk: in STD_LOGIC;
d: in STD_LOGIC;
q: out STD_LOGIC);

 end component;
 component row1 is

 port(clk: in STD_LOGIC;
p0, g0: in STD_LOGIC_VECTOR(30 downto 0);
p_1_0, g_1_0: in STD_LOGIC;
p1, g1: out STD_LOGIC_VECTOR(30 downto 0));

 end component;
 component row2 is

 port(clk: in STD_LOGIC;
p1, g1: in STD_LOGIC_VECTOR(30 downto 0);
p2, g2: out STD_LOGIC_VECTOR(30 downto 0));

 end component;
 component row3 is

 port(clk: in STD_LOGIC;
p2, g2: in STD_LOGIC_VECTOR(30 downto 0);
p3, g3: out STD_LOGIC_VECTOR(30 downto 0));

 end component;
 component row4 is

 port(clk: in STD_LOGIC;
p3, g3: in STD_LOGIC_VECTOR(30 downto 0);
p4, g4: out STD_LOGIC_VECTOR(30 downto 0));

 end component;
 component row5 is

 port(clk: in STD_LOGIC;
p4, g4: in STD_LOGIC_VECTOR(30 downto 0);
p5, g5: out STD_LOGIC_VECTOR(30 downto 0));

 end component;

194 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 -- p and g prefixes for rows 0 - 5
 signal p0, p1, p2, p3, p4, p5: STD_LOGIC_VECTOR(30 downto 0);
 signal g0, g1, g2, g3, g4, g5: STD_LOGIC_VECTOR(30 downto 0);

 -- p and g prefixes for column -1, rows 0 - 5
 signal p_1_0, p_1_1, p_1_2, p_1_3, p_1_4, p_1_5,

 g_1_0, g_1_1, g_1_2, g_1_3, g_1_4, g_1_5: STD_LOGIC;

 -- pipeline values for a and b
 signal a0, a1, a2, a3, a4, a5,

 b0, b1, b2, b3, b4, b5: STD_LOGIC_VECTOR(31 downto 0);

 -- final generate signal
 signal g5_all: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- p and g calculations
 row0_reg: pgblock port map(clk, a(30 downto 0), b(30 downto 0), p0, g0);
 row1_reg: row1 port map(clk, p0, g0, p_1_0, g_1_0, p1, g1);
 row2_reg: row2 port map(clk, p1, g1, p2, g2);
 row3_reg: row3 port map(clk, p2, g2, p3, g3);
 row4_reg: row4 port map(clk, p3, g3, p4, g4);
 row5_reg: row5 port map(clk, p4, g4, p5, g5);

 -- pipeline registers for a and b
 flop0_a: flop generic map(32) port map (clk, a, a0);
 flop0_b: flop generic map(32) port map (clk, b, b0);
 flop1_a: flop generic map(32) port map (clk, a0, a1);
 flop1_b: flop generic map(32) port map (clk, b0, b1);
 flop2_a: flop generic map(32) port map (clk, a1, a2);
 flop2_b: flop generic map(32) port map (clk, b1, b2);
 flop3_a: flop generic map(32) port map (clk, a2, a3);
 flop3_b: flop generic map(32) port map (clk, b2, b3);
 flop4_a: flop generic map(32) port map (clk, a3, a4);
 flop4_b: flop generic map(32) port map (clk, b3, b4);
 flop5_a: flop generic map(32) port map (clk, a4, a5);
 flop5_b: flop generic map(32) port map (clk, b4, b5);

 -- pipeline p and g for column -1
 p_1_0 <= '0'; flop_1_g0: flop1 port map (clk, cin, g_1_0);
 flop_1_p1: flop1 port map (clk, p_1_0, p_1_1);
 flop_1_g1: flop1 port map (clk, g_1_0, g_1_1);
 flop_1_p2: flop1 port map (clk, p_1_1, p_1_2);
 flop_1_g2: flop1 port map (clk, g_1_1, g_1_2);
 flop_1_p3: flop1 port map (clk, p_1_2, p_1_3); flop_1_g3:
 flop1 port map (clk, g_1_2, g_1_3);
 flop_1_p4: flop1 port map (clk, p_1_3, p_1_4);
 flop_1_g4: flop1 port map (clk, g_1_3, g_1_4);
 flop_1_p5: flop1 port map (clk, p_1_4, p_1_5);
 flop_1_g5: flop1 port map (clk, g_1_4, g_1_5);

 -- generate sum and cout
 g5_all <= (g5&g_1_5);
 row6: sumblock port map(clk, g5_all, a5, b5, s);

 -- generate cout
 cout <= (a5(31) and b5(31)) or (g5(30) and (a5(31) or b5(31)));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity pgblock is
 port(clk: in STD_LOGIC;

S O L U T I O N S 195
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 a, b: in STD_LOGIC_VECTOR(30 downto 0);
 p, g: out STD_LOGIC_VECTOR(30 downto 0));

end;

architecture synth of pgblock is
begin
 process(clk) begin

 if rising_edge(clk) then
 p <= a or b;
 g <= a and b;
 end if;

 end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity blackbox is
 port(clk: in STD_LOGIC;

 pik, pkj, gik, gkj:
 in STD_LOGIC_VECTOR(15 downto 0);

 pij, gij:
 out STD_LOGIC_VECTOR(15 downto 0));

end;

architecture synth of blackbox is
begin
 process(clk) begin

 if rising_edge(clk) then
 pij <= pik and pkj;
 gij <= gik or (pik and gkj);
 end if;

 end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sumblock is
 port(clk: in STD_LOGIC;

 g, a, b: in STD_LOGIC_VECTOR(31 downto 0);
 s: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture synth of sumblock is
begin
 process(clk) begin

 if rising_edge(clk) then
 s <= a xor b xor g;
 end if;

 end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity flop is -- parameterizable flip flop
 generic(width: integer);
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture synth of flop is
begin
 process(clk) begin

 if rising_edge(clk) then
 q <= d;

196 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 end if;
 end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity flop1 is -- 1-bit flip flop
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC;
 q: out STD_LOGIC);

end;

architecture synth of flop1 is
begin
 process(clk) begin
 if rising_edge(clk) then

 q <= d;
 end if;
 end process;
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row1 is
 port(clk: in STD_LOGIC;

 p0, g0: in STD_LOGIC_VECTOR(30 downto 0);
 p_1_0, g_1_0: in STD_LOGIC;
 p1, g1: out STD_LOGIC_VECTOR(30 downto 0));

end;

architecture synth of row1 is
 component blackbox is
 port (clk: in STD_LOGIC;

 pik, pkj: in STD_LOGIC_VECTOR(15 downto 0);
 gik, gkj: in STD_LOGIC_VECTOR(15 downto 0);
 pij: out STD_LOGIC_VECTOR(15 downto 0);
 gij: out STD_LOGIC_VECTOR(15 downto 0));

 end component;
 component flop is generic(width: integer);
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 -- internal signals for calculating p, g
 signal pik_0, gik_0, pkj_0, gkj_0,

 pij_0, gij_0: STD_LOGIC_VECTOR(15 downto 0);

 -- internal signals for pipeline registers
 signal pg0_in, pg1_out: STD_LOGIC_VECTOR(29 downto 0);

begin
 pg0_in <= (p0(29)&p0(27)&p0(25)&p0(23)&p0(21)&p0(19)&p0(17)&p0(15)&

 p0(13)&p0(11)&p0(9)&p0(7)&p0(5)&p0(3)&p0(1)&
 g0(29)&g0(27)&g0(25)&g0(23)&g0(21)&g0(19)&g0(17)&g0(15)&
 g0(13)&g0(11)&g0(9)&g0(7)&g0(5)&g0(3)&g0(1));

 flop1_pg: flop generic map(30) port map (clk, pg0_in, pg1_out);

 p1(29) <= pg1_out(29); p1(27)<= pg1_out(28); p1(25)<= pg1_out(27);
 p1(23) <= pg1_out(26);
 p1(21) <= pg1_out(25); p1(19) <= pg1_out(24); p1(17) <= pg1_out(23);
 p1(15) <= pg1_out(22); p1(13) <= pg1_out(21); p1(11) <= pg1_out(20);
 p1(9) <= pg1_out(19); p1(7) <= pg1_out(18); p1(5) <= pg1_out(17);
 p1(3) <= pg1_out(16); p1(1) <= pg1_out(15);
 g1(29) <= pg1_out(14); g1(27) <= pg1_out(13); g1(25) <= pg1_out(12);
 g1(23) <= pg1_out(11); g1(21) <= pg1_out(10); g1(19) <= pg1_out(9);
 g1(17) <= pg1_out(8); g1(15) <= pg1_out(7); g1(13) <= pg1_out(6);

S O L U T I O N S 197
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
 g1(11) <= pg1_out(5); g1(9) <= pg1_out(4); g1(7) <= pg1_out(3);
 g1(5) <= pg1_out(2); g1(3) <= pg1_out(1); g1(1) <= pg1_out(0);

 -- pg calculations
 pik_0 <= (p0(30)&p0(28)&p0(26)&p0(24)&p0(22)&p0(20)&p0(18)&p0(16)&

p0(14)&p0(12)&p0(10)&p0(8)&p0(6)&p0(4)&p0(2)&p0(0));
 gik_0 <= (g0(30)&g0(28)&g0(26)&g0(24)&g0(22)&g0(20)&g0(18)&g0(16)&

g0(14)&g0(12)&g0(10)&g0(8)&g0(6)&g0(4)&g0(2)&g0(0));
 pkj_0 <= (p0(29)&p0(27)&p0(25)&p0(23)&p0(21)& p0(19)& p0(17)&p0(15)&

p0(13)&p0(11)&p0(9)&p0(7)&p0(5)&p0(3)&p0(1)&p_1_0);
 gkj_0 <= (g0(29)&g0(27)&g0(25)&g0(23)&g0(21)&g0(19)&g0(17)&g0(15)&

g0(13)&g0(11)&g0(9)&g0(7)&g0(5)& g0(3)&g0(1)&g_1_0);

 row1: blackbox port map(clk, pik_0, pkj_0, gik_0, gkj_0, pij_0, gij_0);

 p1(30) <= pij_0(15); p1(28) <= pij_0(14); p1(26) <= pij_0(13);
 p1(24) <= pij_0(12); p1(22) <= pij_0(11); p1(20) <= pij_0(10);
 p1(18) <= pij_0(9); p1(16) <= pij_0(8); p1(14) <= pij_0(7);
 p1(12) <= pij_0(6); p1(10) <= pij_0(5); p1(8) <= pij_0(4);
 p1(6) <= pij_0(3); p1(4) <= pij_0(2); p1(2) <= pij_0(1); p1(0) <= pij_0(0);

 g1(30) <= gij_0(15); g1(28) <= gij_0(14); g1(26) <= gij_0(13);
 g1(24) <= gij_0(12); g1(22) <= gij_0(11); g1(20) <= gij_0(10);
 g1(18) <= gij_0(9); g1(16) <= gij_0(8); g1(14) <= gij_0(7);
 g1(12) <= gij_0(6); g1(10) <= gij_0(5); g1(8) <= gij_0(4);
 g1(6) <= gij_0(3); g1(4) <= gij_0(2); g1(2) <= gij_0(1); g1(0) <= gij_0(0);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row2 is
 port(clk: in STD_LOGIC;

 p1, g1: in STD_LOGIC_VECTOR(30 downto 0);
 p2, g2: out STD_LOGIC_VECTOR(30 downto 0));

end;

architecture synth of row2 is
 component blackbox is

 port (clk: in STD_LOGIC;
pik, pkj: in STD_LOGIC_VECTOR(15 downto 0);
gik, gkj: in STD_LOGIC_VECTOR(15 downto 0);
pij: out STD_LOGIC_VECTOR(15 downto 0);
gij: out STD_LOGIC_VECTOR(15 downto 0));

 end component;
 component flop is generic(width: integer);

 port(clk: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 -- internal signals for calculating p, g
 signal pik_1, gik_1, pkj_1, gkj_1,

pij_1, gij_1: STD_LOGIC_VECTOR(15 downto 0);

 -- internal signals for pipeline registers
 signal pg1_in, pg2_out: STD_LOGIC_VECTOR(29 downto 0);

begin
 pg1_in <= (p1(28 downto 27)&p1(24 downto 23)&p1(20 downto 19)&

 p1(16 downto 15)&
 p1(12 downto 11)&p1(8 downto 7)&p1(4 downto 3)&p1(0)&
 g1(28 downto 27)&g1(24 downto 23)&g1(20 downto 19)&
 g1(16 downto 15)&
 g1(12 downto 11)&g1(8 downto 7)&g1(4 downto 3)&g1(0));

 flop2_pg: flop generic map(30) port map (clk, pg1_in, pg2_out);

198 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 p2(28 downto 27) <= pg2_out(29 downto 28);
 p2(24 downto 23) <= pg2_out(27 downto 26);
 p2(20 downto 19) <= pg2_out(25 downto 24);
 p2(16 downto 15) <= pg2_out(23 downto 22);
 p2(12 downto 11) <= pg2_out(21 downto 20);
 p2(8 downto 7) <= pg2_out(19 downto 18);
 p2(4 downto 3) <= pg2_out(17 downto 16);
 p2(0) <= pg2_out(15);
 g2(28 downto 27) <= pg2_out(14 downto 13);
 g2(24 downto 23) <= pg2_out(12 downto 11);
 g2(20 downto 19) <= pg2_out(10 downto 9);
 g2(16 downto 15) <= pg2_out(8 downto 7);
 g2(12 downto 11) <= pg2_out(6 downto 5);
 g2(8 downto 7) <= pg2_out(4 downto 3);
 g2(4 downto 3) <= pg2_out(2 downto 1); g2(0) <= pg2_out(0);

 -- pg calculations
 pik_1 <= (p1(30 downto 29)&p1(26 downto 25)&p1(22 downto 21)&

 p1(18 downto 17)&p1(14 downto 13)&p1(10 downto 9)&
 p1(6 downto 5)&p1(2 downto 1));

 gik_1 <= (g1(30 downto 29)&g1(26 downto 25)&g1(22 downto 21)&
 g1(18 downto 17)&g1(14 downto 13)&g1(10 downto 9)&
 g1(6 downto 5)&g1(2 downto 1));

 pkj_1 <= (p1(28)&p1(28)&p1(24)&p1(24)&p1(20)&p1(20)&p1(16)&p1(16)&
 p1(12)&p1(12)&p1(8)&p1(8)&p1(4)&p1(4)&p1(0)&p1(0));

 gkj_1 <= (g1(28)&g1(28)&g1(24)&g1(24)&g1(20)&g1(20)&g1(16)&g1(16)&
 g1(12)&g1(12)&g1(8)&g1(8)&g1(4)&g1(4)&g1(0)&g1(0));

 row2: blackbox
 port map(clk, pik_1, pkj_1, gik_1, gkj_1, pij_1, gij_1);

 p2(30 downto 29) <= pij_1(15 downto 14);
 p2(26 downto 25) <= pij_1(13 downto 12);
 p2(22 downto 21) <= pij_1(11 downto 10);
 p2(18 downto 17) <= pij_1(9 downto 8);
 p2(14 downto 13) <= pij_1(7 downto 6); p2(10 downto 9) <= pij_1(5 downto 4);
 p2(6 downto 5) <= pij_1(3 downto 2); p2(2 downto 1) <= pij_1(1 downto 0);

 g2(30 downto 29) <= gij_1(15 downto 14);
 g2(26 downto 25) <= gij_1(13 downto 12);
 g2(22 downto 21) <= gij_1(11 downto 10);
 g2(18 downto 17) <= gij_1(9 downto 8);
 g2(14 downto 13) <= gij_1(7 downto 6); g2(10 downto 9) <= gij_1(5 downto 4);
 g2(6 downto 5) <= gij_1(3 downto 2); g2(2 downto 1) <= gij_1(1 downto 0);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row3 is
 port(clk: in STD_LOGIC;

 p2, g2: in STD_LOGIC_VECTOR(30 downto 0);
 p3, g3: out STD_LOGIC_VECTOR(30 downto 0));

end;

architecture synth of row3 is
 component blackbox is
 port (clk: in STD_LOGIC;

 pik, pkj: in STD_LOGIC_VECTOR(15 downto 0);
 gik, gkj: in STD_LOGIC_VECTOR(15 downto 0);
 pij: out STD_LOGIC_VECTOR(15 downto 0);
 gij: out STD_LOGIC_VECTOR(15 downto 0));

 end component;
 component flop is generic(width: integer);
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

S O L U T I O N S 199
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;

 -- internal signals for calculating p, g
 signal pik_2, gik_2, pkj_2, gkj_2,

pij_2, gij_2: STD_LOGIC_VECTOR(15 downto 0);

 -- internal signals for pipeline registers
 signal pg2_in, pg3_out: STD_LOGIC_VECTOR(29 downto 0);

begin
 pg2_in <= (p2(26 downto 23)&p2(18 downto 15)&p2(10 downto 7)&

 p2(2 downto 0)&
g2(26 downto 23)&g2(18 downto 15)&g2(10 downto 7)&g2(2 downto 0));

 flop3_pg: flop generic map(30) port map (clk, pg2_in, pg3_out);
 p3(26 downto 23) <= pg3_out(29 downto 26);
 p3(18 downto 15) <= pg3_out(25 downto 22);
 p3(10 downto 7) <= pg3_out(21 downto 18);
 p3(2 downto 0) <= pg3_out(17 downto 15);
 g3(26 downto 23) <= pg3_out(14 downto 11);
 g3(18 downto 15) <= pg3_out(10 downto 7);
 g3(10 downto 7) <= pg3_out(6 downto 3);
 g3(2 downto 0) <= pg3_out(2 downto 0);

 -- pg calculations
 pik_2 <= (p2(30 downto 27)&p2(22 downto 19)&

p2(14 downto 11)&p2(6 downto 3));
 gik_2 <= (g2(30 downto 27)&g2(22 downto 19)&

g2(14 downto 11)&g2(6 downto 3));
 pkj_2 <= (p2(26)&p2(26)&p2(26)&p2(26)&

p2(18)&p2(18)&p2(18)&p2(18)&
p2(10)&p2(10)&p2(10)&p2(10)&
p2(2)&p2(2)&p2(2)&p2(2));

 gkj_2 <= (g2(26)&g2(26)&g2(26)&g2(26)&
g2(18)&g2(18)&g2(18)&g2(18)&
g2(10)&g2(10)&g2(10)&g2(10)&
g2(2)&g2(2)&g2(2)&g2(2));

 row3: blackbox
 port map(clk, pik_2, pkj_2, gik_2, gkj_2, pij_2, gij_2);

 p3(30 downto 27) <= pij_2(15 downto 12);
 p3(22 downto 19) <= pij_2(11 downto 8);
 p3(14 downto 11) <= pij_2(7 downto 4); p3(6 downto 3) <= pij_2(3 downto 0);
 g3(30 downto 27) <= gij_2(15 downto 12);
 g3(22 downto 19) <= gij_2(11 downto 8);
 g3(14 downto 11) <= gij_2(7 downto 4); g3(6 downto 3) <= gij_2(3 downto 0);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row4 is
 port(clk: in STD_LOGIC;

 p3, g3: in STD_LOGIC_VECTOR(30 downto 0);
 p4, g4: out STD_LOGIC_VECTOR(30 downto 0));

end;

architecture synth of row4 is
 component blackbox is

 port (clk: in STD_LOGIC;
pik, pkj: in STD_LOGIC_VECTOR(15 downto 0);
gik, gkj: in STD_LOGIC_VECTOR(15 downto 0);
pij: out STD_LOGIC_VECTOR(15 downto 0);
gij: out STD_LOGIC_VECTOR(15 downto 0));

 end component;

200 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 component flop is generic(width: integer);
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 -- internal signals for calculating p, g
 signal pik_3, gik_3, pkj_3, gkj_3,

 pij_3, gij_3: STD_LOGIC_VECTOR(15 downto 0);

 -- internal signals for pipeline registers
 signal pg3_in, pg4_out: STD_LOGIC_VECTOR(29 downto 0);

begin
 pg3_in <= (p3(22 downto 15)&p3(6 downto 0)&g3(22 downto 15)&g3(6 downto 0));
 flop4_pg: flop generic map(30) port map (clk, pg3_in, pg4_out);
 p4(22 downto 15) <= pg4_out(29 downto 22);
 p4(6 downto 0) <= pg4_out(21 downto 15);
 g4(22 downto 15) <= pg4_out(14 downto 7);
 g4(6 downto 0) <= pg4_out(6 downto 0);

 -- pg calculations
 pik_3 <= (p3(30 downto 23)&p3(14 downto 7));
 gik_3 <= (g3(30 downto 23)&g3(14 downto 7));
 pkj_3 <= (p3(22)&p3(22)&p3(22)&p3(22)&p3(22)&p3(22)&p3(22)&p3(22)&

 p3(6)&p3(6)&p3(6)&p3(6)&p3(6)&p3(6)&p3(6)&p3(6));
 gkj_3 <= (g3(22)&g3(22)&g3(22)&g3(22)&g3(22)&g3(22)&g3(22)&g3(22)&

 g3(6)&g3(6)&g3(6)&g3(6)&g3(6)&g3(6)&g3(6)&g3(6));

 row4: blackbox
 port map(clk, pik_3, pkj_3, gik_3, gkj_3, pij_3, gij_3);

 p4(30 downto 23) <= pij_3(15 downto 8);
 p4(14 downto 7) <= pij_3(7 downto 0);
 g4(30 downto 23) <= gij_3(15 downto 8);
 g4(14 downto 7) <= gij_3(7 downto 0);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity row5 is
 port(clk: in STD_LOGIC;

 p4, g4: in STD_LOGIC_VECTOR(30 downto 0);
 p5, g5: out STD_LOGIC_VECTOR(30 downto 0));

end;
architecture synth of row5 is
 component blackbox is
 port (clk: in STD_LOGIC;

 pik, pkj: in STD_LOGIC_VECTOR(15 downto 0);
 gik, gkj: in STD_LOGIC_VECTOR(15 downto 0);
 pij: out STD_LOGIC_VECTOR(15 downto 0);
 gij: out STD_LOGIC_VECTOR(15 downto 0));

 end component;
 component flop is generic(width: integer);
 port(clk: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 -- internal signals for calculating p, g
 signal pik_4, gik_4, pkj_4, gkj_4,

 pij_4, gij_4: STD_LOGIC_VECTOR(15 downto 0);

 -- internal signals for pipeline registers
 signal pg4_in, pg5_out: STD_LOGIC_VECTOR(29 downto 0);

S O L U T I O N S 201
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
begin

 pg4_in <= (p4(14 downto 0)&g4(14 downto 0));
 flop4_pg: flop generic map(30) port map (clk, pg4_in, pg5_out);
 p5(14 downto 0) <= pg5_out(29 downto 15); g5(14 downto 0) <= pg5_out(14

downto 0);

 -- pg calculations
 pik_4 <= p4(30 downto 15);
 gik_4 <= g4(30 downto 15);
 pkj_4 <= p4(14)&p4(14)&p4(14)&p4(14)&

p4(14)&p4(14)&p4(14)&p4(14)&
p4(14)&p4(14)&p4(14)&p4(14)&
p4(14)&p4(14)&p4(14)&p4(14);

 gkj_4 <= g4(14)&g4(14)&g4(14)&g4(14)&
g4(14)&g4(14)&g4(14)&g4(14)&
g4(14)&g4(14)&g4(14)&g4(14)&
g4(14)&g4(14)&g4(14)&g4(14);

 row5: blackbox
 port map(clk, pik_4, gik_4, pkj_4, gkj_4, pij_4, gij_4);

 p5(30 downto 15) <= pij_4; g5(30 downto 15) <= gij_4;

end;

Exercise 5.46

FIGURE 5.13 Incrementer built using half adders

Exercise 5.47

+

r

+ + + + + + +

[7]

Q7:0

[6] [5] [4] [3] [2] [1] [0]

CoutCoutCoutCoutCoutCoutCoutCout

[7] [6] [5] [4] [3] [2] [1] [0]

CLKReset

202 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
FIGURE 5.14 Up/Down counter

Exercise 5.48

FIGURE 5.15 32-bit counter that increments by 4 on each clock edge

Exercise 5.49

FIGURE 5.16 32-bit counter that increments by 4 or loads a new value, D

+

r

QN-1:0

Cin

CLKReset

01

UP

NN

N

N

N

+

r

QN-1:0

CLKReset

4
3232

32

32

+

r

QN-1:0

CLKReset

4
3232

32

32

01

D

PCSrc

S O L U T I O N S 203
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 5.50

(a)
0000
1000
1100
1110
1111
0111
0011
0001
(repeat)

(b)
2N. 1’s shift into the left-most bit for N cycles, then 0’s shift into the left bit

for N cycles. Then the process repeats.

204 S O L U T I O N S c h a p t e r 5

David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture, © 2007 by Elsevier Inc.
Exercise Solutions
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
5.50 (c)

FIGURE 5.17 10-bit decimal counter using a 5-bit Johnson counter

(d) The counter uses less hardware and could be faster because it has a short
critical path (a single inverter delay).

Exercise 5.51

CLK
Sin Sout

Q0 Q1 Q4Q2 Q3

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

S O L U T I O N S 205
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
Exercise 5.52

(a)

The first two pairs of bits in the bit encoding repeat the value. The last bit
is the XNOR of the two input values.

SystemVerilog

module scanflop4(input logic clk, test, sin,
 input logic [3:0] d,
 output logic [3:0] q,
 output logic sout);

 always_ff @(posedge clk)
 if (test)
 q <= d;
 else
 q <= {q[2:0], sin};

 assign sout = q[3];

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity scanflop4 is
 port(clk, test, sin: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: inout STD_LOGIC_VECTOR(3 downto 0);
 sout: out STD_LOGIC);

end;

architecture synth of scanflop4 is
begin
 process(clk, test) begin
 if rising_edge(clk) then
 if test then

q <= d;
 else

q <= q(2 downto 0) & sin;
 end if;
 end if;

 end process;

 sout <= q(3);

end;

v a l u e
a 1 : 0

e n c o d i n g
y 4 : 0

00 00001

01 01010

10 10100

11 11111

TABLE 5.2 Possible encodings

206 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
5.52 (b) This circuit can be built using a 16 × 2-bit memory array, with the
contents given in Table 5.3.

a d d r e s s
a 4 : 0

d a t a
d 1 : 0

00001 00

00000 00

00011 00

00101 00

01001 00

10001 00

01010 01

01011 01

01000 01

01110 01

00010 01

11010 01

10100 10

10101 10

10110 10

10000 10

11100 10

00100 10

11111 11

11110 11

11101 11

11011 11

10111 11

TABLE 5.3 Memory array values for Exercise 5.48

S O L U T I O N S 207
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
5.48 (c) The implementation shown in part (b) allows the encoding to
change easily. Each memory address corresponds to an encoding, so simply
store different data values at each memory address to change the encoding.

Exercise 5.53

http://www.intel.com/design/flash/articles/what.htm

Flash memory is a nonvolatile memory because it retains its contents after
power is turned off. Flash memory allows the user to electrically program and
erase information. Flash memory uses memory cells similar to an EEPROM,
but with a much thinner, precisely grown oxide between a floating gate and the
substrate (see Figure 5.18).

Flash programming occurs when electrons are placed on the floating gate.
This is done by forcing a large voltage (usually 10 to 12 volts) on the control
gate. Electrons quantum-mechanically tunnel from the source through the thin
oxide onto the control gate. Because the floating gate is completely insulated by
oxide, the charges are trapped on the floating gate during normal operation. If
electrons are stored on the floating gate, it blocks the effect of the control gate.
The electrons on the floating gate can be removed by reversing the procedure,
i.e., by placing a large negative voltage on the control gate.

The default state of a flash bitcell (when there are no electrons on the float-
ing gate) is ON, because the channel will conduct when the wordline is HIGH.
After the bitcell is programmed (i.e., when there are electrons on the floating
gate), the state of the bitcell is OFF, because the floating gate blocks the effect
of the control gate. Flash memory is a key element in thumb drives, cell phones,
digital cameras, Blackberries, and other low-power devices that must retain
their memory when turned off.

01111 11

others XX

a d d r e s s
a 4 : 0

d a t a
d 1 : 0

TABLE 5.3 Memory array values for Exercise 5.48

208 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
FIGURE 5.18 Flash EEPROM

Exercise 5.54

(a)

FIGURE 5.19 4 x 4 x 3 PLA implementing Exercise 5.44

n

p

wordline

bitline

substrate

floating
gate

n

GND

control
gate

source drain

thin
oxide

M V

SG

USG

UBS

B S G

AND ARRAY

OR ARRAY
U

J

UBS

S O L U T I O N S 209
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
5.54 (b)

FIGURE 5.20 16 x 3 ROM implementation of Exercise 5.44

Exercise 5.55

4:16
Decoder

U,B,S,G

VJM

4

0000

0010

0100

0110

1000

1010

1100

1110

0001

0011

0101

0111

1001

1011

1101

1111

 (c)

SystemVerilog

module ex5_44c(input logic u, b, s, g,
 output logic m, j, v);

 assign m = s&g | u&b&s;
 assign j = ~u&b&~s | s&g;
 assign v = u&b&s | ~u&~s&g;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity ex5_44c is
 port(u, b, s, g: in STD_LOGIC;
 m, j, v: out STD_LOGIC);

end;

architecture synth of ex5_44c is
begin
 m <= (s and g) or (u and b and s);
 j <= ((not u) and b and (not s)) or (s and g);
 v <= (u and b and s) or ((not u) and (not s) and g);
end;

210 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.56

4:16
Decoder

A,B,C,D

ZYX

4

0000

0010

0100

0110

1000

1010

1100

1110

0001

0011

0101

0111

1001

1011

1101

1111

S O L U T I O N S 211
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
FIGURE 5.21 4 x 8 x 3 PLA for Exercise 5.52

Exercise 5.57

(a) Number of inputs = 2  16 + 1 = 33
 Number of outputs = 16 + 1 = 17

 Thus, this would require a 233 x 17-bit ROM.

(b) Number of inputs = 16
 Number of outputs = 16

 Thus, this would require a 216 x 16-bit ROM.

(c) Number of inputs = 16
 Number of outputs = 4

X Y

AB

AB

BCD

B C D

AND ARRAY

OR ARRAY
A

Z

BD

C

B

D

A

212 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 Thus, this would require a 216 x 4-bit ROM.

All of these implementations are not good design choices. They could all
be implemented in a smaller amount of hardware using discrete gates.

Exercise 5.58

(a) Yes. Both circuits can compute any function of K inputs and K outputs.

(b) No. The second circuit can only represent 2K states. The first can rep-
resent more.

(c) Yes. Both circuits compute any function of 1 input, N outputs, and 2K

states.
(d) No. The second circuit forces the output to be the same as the state en-

coding, while the first one allows outputs to be independent of the state encod-
ing.

Exercise 5.59

(a) 1 LE

LUT output
0 0
0 1
1 0
1 1

1
1
1
1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1

data 1
(A) (B) (C) (Y)

data 4data 3

data 1

D

A
BC X

data 2
data 3
data 4

LUT

LE

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
1
1
0
0
1
0
1

(D)

S O L U T I O N S 213
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(b) 2 LEs

LUT output
0 0
0 1
1 0
1 1

1
1
1
1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
0
0
0

data 1
(B) (C) (D) (X)

data 4data 3

data 1

D

A
BC Xdata 2

data 3
data 4

LUT

LE 1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

1
0
0
0
1
0
0
0

(E)

LUT output
X X
X X
X X
X X

0
1
1
1

data 2
0

data 1
(A) (X) (Y)

data 4data 3
0

data 1A

0 Ydata 2
data 3
data 4

LUT

LE 2

0 1
1 0
1 1

0

214 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
(c) 2 LEs

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1
(A) (B) (C) (Y)

data 4data 3

data 1

D

A
BC Ydata 2

data 3
data 4

LUT

LE 1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

(D)

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1
(A) (B) (C) (Z)

data 4data 3

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

(D)

data 1A
BC Zdata 2

data 3
data 4

LUT

LE 2

D

0
1
0
1
0
1
0
1

1
1
1
0
1
0

0

1

0
0
0
0
0
1
0
1

1
0
0
0
1
0
1

0

S O L U T I O N S 215
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(d) 2 LEs

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1
(A3) (D)

data 4data 3

data 1A3

Ddata 2
data 3
data 4

LUT

LE 1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1
(P)

data 4data 3

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

data 1

Pdata 2
data 3
data 4

LUT

LE 2

(A2) (A1) (A0) (A3) (A2) (A1) (A0)

A2A1

A0

A3
A2A1

A0

0
0
0
1
0
0
1
0

1
0
0
1
0
0
1

0

0
0
1
1
0
1
0
1

0
0
1
0
1
0
0

0

216 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
(e) 2 LEs

Exercise 5.60

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1
(A3)

data 4data 3

data 1A3
data 2
data 3
data 4

LUT

LE 1

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

data 1
data 2
data 3
data 4

LUT

LE 2

(A2) (A1) (A0) (A3) (A2) (A1) (A0)

A2A1

A0

A3
A2A1

A0

(Y0) (Y1)

0
0
1
1
0
0
0
0

1
1
1
1
1
1
1

1

0
0
0
0
1
1
1
1

1
1
1
1
1
1
1

1

Y0 Y1

S O L U T I O N S 217
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(a) 8 LEs (see next page for figure)

218 S O L U T I O N S c h a p t e r 5

LUT output
0
1
0
1
0
1
0
1

data 4
0
0
0
0
0
1
0
0

(A0) (Y5)

LUT output
0
1
0
1
0
1
0
1

data 4
0
0
1
0
0
0
0
0

(A0) (Y3)

© 2015 Elsevier, Inc.
LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1)

0
0
0
0
1
0
0
0

LE 4 LE 5
(A0) (Y4)

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1)

0
0
0
1
0
0
0
0

(A0) (Y3)

0
0
1
1

data 2
0
0
0
0

0
0
1
1

1
1
1
1

data 1 data 3
X
X
X
X
X
X
X
X

(A2) (A1)
LE 6

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1)

0
0
0
0
0
0
0
1

LE 7 LE 8
(A0) (Y7)

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1)

0
0
0
0
0
0
1
0

(A0) (Y6)

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1)

0
1
0
0
0
0
0
0

LE 1 LE 2
(A0) (Y1)

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1)

1
0
0
0
0
0
0
0

(A0) (Y0)

0
0
1
1

data 2
0
0
0
0

0
0
1
1

1
1
1
1

data 1 data 3
X
X
X
X
X
X
X
X

(A2) (A1)

LE 3

data 1
data 2
data 3
data 4

LUT

LE 1

0
A2A1 Y0

A0

data 1
data 2
data 3
data 4

LUT

LE 2

0
A2A1 Y1

A0

data 1
data 2
data 3
data 4

LUT

LE 3

0
A2A1 Y2

A0

data 1
data 2
data 3
data 4

LUT

LE 4

0
A2A1 Y3

A0

data 1
data 2
data 3
data 4

LUT

LE 5

0
A2A1 Y4

A0

data 1
data 2
data 3
data 4

LUT

LE 6

0
A2A1 Y5

A0

data 1
data 2
data 3
data 4

LUT

0
A2A1 Y6

A0

data 1
data 2
data 3
data 4

LUT

0
A2A1 Y7

A0
LE 7 LE 8

S O L U T I O N S 219
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(b) 8 LEs (see next page for figure)

220 S O L U T I O N S c h a p t e r 5

LUT output
(Y5)

0
0
0
0
0
1
0
0

LUT output
(Y2)

0
0
1
0
0
0
0
0

 5

5

 2

2

© 2015 Elsevier, Inc.
LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0) (Y7)

0
0
0
0
0
0
0
1

LE 7

data 1
data 2
data 3
data 4

LUT

LE 6

0
A2A1 Y6

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0) (Y6)

0
0
0
0
0
0
1
0

LE 6

0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0)

LE 5

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0) (Y4)

0
0
0
0
1
0
0
0

LE 4

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0) (Y3)

0
0
0
1
0
0
0
0

LE 3

0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0)

LE 2

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0) (Y1)

0
1
0
0
0
0
0
0

LE 1

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (A1) (A0) (Y0)

1
0
0
0
0
0
0
0

LE 0

A0

data 1
data 2
data 3
data 4

LUT

LE 7

0
A2A1 Y7

A0

data 1
data 2
data 3
data 4

LUT

LE

0
A2A1 Y

A0

data 1
data 2
data 3
data 4

LUT

LE 3

0
A2A1 Y3

A0

data 1
data 2
data 3
data 4

LUT

LE 4

0
A2A1 Y4

A0

data 1
data 2
data 3
data 4

LUT

LE

0
A2A1 Y

A0

data 1
data 2
data 3
data 4

LUT

LE 0

0
A2A1 Y0

A0

data 1
data 2
data 3
data 4

LUT

LE 1

0
A2A1 Y1

A0

S O L U T I O N S 221
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(c) 6 LEs (see next page for figure)

222 S O L U T I O N S c h a p t e r 5

LUT output
0
0
0
1
0
0
0
1

0
0
1
0
1
1
1

0

(C1)

LUT output
0
1
1
0
1
0
0
1

(S3)

© 2015 Elsevier, Inc.
LUT output
0 0
0 1
1 0
1 1

data 2
X
X
X
X

data 1 data 4data 3

data 1
data 2
data 3
data 4

LUT

LE 1

X
X
X
X

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

(A0) (B0) (A0) (B0) (A1)

A0

B0

0
1
1
1

0
1
1
1
0
1
1
1

1
1
1
1
1
1
1

0

LE 1 LE 2

data 1
data 2
data 3
data 4

LUT

LE 2

B0A1 S1

(S0) (B1) (S1)

0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

(A0) (B0) (A1)

LE 3
(B1)

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
0
0
0
1
0
1
1
1

LE 5

0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3

LE 6

LUT output
0 0
0 1
1 0
1 1

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

data 1 data 4data 3
X
X
X
X
X
X
X
X

(A2) (B2)

0
1
1
0
1
0
0
1

LE 4
(C1) (S2) (A2) (B2) (C1) (C2) (A3) (B3) (C2)

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

0
0 S0

B1

data 1
data 2
data 3
data 4

LUT

LE 3

A0
B0A1 C1

B1

data 1
data 2
data 3
data 4

LUT

LE 4

0
A2B2 S2

data 1
data 2
data 3
data 4

LUT

LE 5

0
A2B2 C2

data 1
data 2
data 3
data 4

LUT

LE 6

A0
A3B3 S3

A0

S O L U T I O N S 223
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
(d) 2 LEs

(e) 3 LEs

LUT output
0
0
0
0

data 2
0
0
0
0

data 1 data 4data 3
X
X
X
X

(S0) (S0')(S1)

LUT output
0
0
0
1

data 2data 1 data 4data 3
(B) (S1')(S0)

0
1
0
1

0
0
1
1

X
X
X
X

X
X
X
X

0
1
0
1

0
0
1
1

data 10
A data 2

data 3
data 4

LUT

LE 1

S0

clk

ResetS1

data 10
0 data 2

data 3
data 4

LUT

LE 2

S1

clk

ResetS0

(A)

1
0
0
0

1
1
1
1

X
X
X
X

0
1
0
1

0
0
1
1

B
Q

LUT output
0
1
0
1

data 2
0
0
0
0

data 1 data 4data 3
X
X
X
X

(S2) (S2')(S1)

LUT output
1
0
0
1

data 2data 1 data 4data 3
(S0')(S2)

0
1
0
1

0
0
1
1

X
X
X
X

X
X
X
X

0
1
0
1

0
0
1
1

data 10
data 2
data 3
data 4

LUT

LE 1

S2

clk

Reset

data 10
data 2
data 3
data 4

LUT

LE 2

S1

clk

Reset

0
0
1
1

1
1
1
1

X
X
X
X

0
1
0
1

0
0
1
1

data 10
data 2
data 3
data 4

LUT

LE 3

S0

clk

Reset

LUT output
0
0
1
1

data 2
0
0
0
0

data 1 data 4data 3
X
X
X
X

(S1) (S1')(S2)

0
1
0
1

0
0
1
1

1
0
1
0

1
1
1
1

X
X
X
X

0
1
0
1

0
0
1
1

(S0)

(S0)

0

(S1)

S0 S2 S1

Q1

Q2

Q0

224 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
Exercise 5.61

(a) 5 LEs (2 for next state logic and state registers, 3 for output logic)
(b)
tpd = tpd_LE + twire

 = (381+246) ps
 = 627 ps

Tc  tpcq + tpd + tsetup

  [199 + 627 + 76] ps
 = 902 ps
f = 1 / 902 ps = 1.1 GHz
(c)
First, we check that there is no hold time violation with this amount of clock

skew.
tcd_LE = tpd_LE = 381 ps

tcd = tcd_LE + twire = 627 ps

 tskew < (tccq + tcd) - thold

 < [(199 + 627) - 0] ps
 < 826 ps

3 ns is less than 826 ps, so there is no hold time violation.
Now we find the fastest frequency at which it can run.
Tc  tpcq + tpd + tsetup + tskew

  [0.902 + 3] ns
 = 3.902 ns
f = 1 / 3.902 ns = 256 MHz

Exercise 5.62

(a) 2 LEs (1 for next state logic and state register, 1 for output logic)
(b) Same as answer for Exercise 5.57(b)
(c) Same as answer for Exercise 5.57(c)

Exercise 5.63

First, we find the cycle time:
Tc = 1/f = 1/100 MHz = 10 ns

Tc  tpcq + NtLE+wire + tsetup

10 ns  [0.199 + N(0.627) + 0.076] ns

Thus, N < 15.5
The maximum number of LEs on the critical path is 15.

S O L U T I O N S 225
Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition © 2015 Elsevier, Inc.
With at most one LE on the critical path and no clock skew, the fastest the
FSM will run is:

Tc  [0.199 + 0.627 + 0.076] ns

  0.902 ns
f = 1 / 0.902 ns = 1.1 GHz

Question 5.1

(2N-1)(2N-1) = 22N - 2N+1 +1

Question 5.2

A processor might use BCD representation so that decimal numbers, such
as 1.7, can be represented exactly.

Question 5.3

FIGURE 5.22 BCD adder: (a) 4-bit block, (b) underlying hardware, (c) 8-bit BCD adder

+

4 4

5

-

5

10

01 4 4

[3:0]

[4]

[3
:0

]

4

S3:0 Cout

Cin

BCD+
4

44

A3:0 B3:0

A3:0 B3:0

Cin

S3:0

Cout

(a) (b)

BCD+
4

44

A7:4 B7:4

S7:4

Cout

(c)

BCD+
4

44

A3:0 B3:0

Cin

S3:0

226 S O L U T I O N S c h a p t e r 5

© 2015 Elsevier, Inc.
 (continued from previous page)

SystemVerilog

module bcdadd_8(input logic [7:0] a, b,
 input logic cin,
 output logic [7:0] s,
 output logic cout);

 logic c0;

 bcdadd_4 bcd0(a[3:0], b[3:0], cin, s[3:0], c0);
 bcdadd_4 bcd1(a[7:4], b[7:4], c0, s[7:4], cout);

endmodule

module bcdadd_4(input logic [3:0] a, b,
 input logic cin,
 output logic [3:0] s,
 output logic cout);

 logic [4:0] result, sub10;

 assign result = a + b + cin;
 assign sub10 = result - 10;

 assign cout = ~sub10[4];
 assign s = sub10[4] ? result[3:0] : sub10[3:0];

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity bcdadd_8 is
 port(a, b: in STD_LOGIC_VECTOR(7 downto 0);

 cin: in STD_LOGIC;
 s: out STD_LOGIC_VECTOR(7 downto 0);
 cout: out STD_LOGIC);

end;

architecture synth of bcdadd_8 is
 component bcdadd_4
 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);

 cin: in STD_LOGIC;
 s: out STD_LOGIC_VECTOR(3 downto 0);
 cout: out STD_LOGIC);

 end component;
 signal c0: STD_LOGIC;
begin

 bcd0: bcdadd_4
 port map(a(3 downto 0), b(3 downto 0), cin, s(3
downto 0), c0);
 bcd1: bcdadd_4
 port map(a(7 downto 4), b(7 downto 4), c0, s(7
downto 4), cout);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity bcdadd_4 is
 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);

 cin: in STD_LOGIC;
 s: out STD_LOGIC_VECTOR(3 downto 0);
 cout: out STD_LOGIC);

end;

architecture synth of bcdadd_4 is
signal result, sub10, a5, b5: STD_LOGIC_VECTOR(4
downto 0);
begin
 a5 <= '0' & a;
 b5 <= '0' & b;
 result <= a5 + b5 + cin;
 sub10 <= result - "01010";

 cout <= not (sub10(4));
 s <= result(3 downto 0) when sub10(4) = '1'

 else sub10(3 downto 0);

end;

227 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CHAPTER 6

Exercise 6.1

(1) Regularity supports simplicity

• Each instruction has a 2-bit opcode.

• Each instruction has a 4-bit condition code.

• ARM has 3 instruction formats for the most common instructions (Data-processing

format, Memory format, and Branch format).

• The Data-processing and Memory instruction formats have a similar number and

order of operands.

• Each instruction is the same size, making decoding hardware simple.

(2) Make the common case fast

• Registers make the access to most recently accessed variables fast.

• The RISC (reduced instruction set computer) architecture, makes the common/simple

instructions fast because the computer must handle only a small number of simple

instructions.

• Most instructions require all 32 bits of an instruction, so all instructions are 32 bits

(even though some would have an advantage of a larger instruction size and others a

smaller instruction size). The instruction size is chosen to make the common

instructions fast.

(3) Smaller is faster

• The register file has only 16 registers.

• The ISA (instruction set architecture) includes only a small number of commonly

used instructions. This keeps the hardware small and, thus, fast.

• The instruction size is kept small to make instruction fetch fast.

(4) Good design demands good compromises

• ARM uses three instruction formats (instead of just one).

• Ideally all accesses would be as fast as a register access, but ARM architecture also

supports main memory accesses to allow for a compromise between fast access time

and a large amount of memory.

• Because ARM is a RISC architecture, it includes only a set of simple instructions, but

it provides pseudocode to the user and compiler for commonly used operations, like

NOP.

• ARM provides three formats to encode immediate values (and four if you count the 5-

bit immediate encoding for a shift, shamt5):

� {rot3:0, imm87:0} for data-processing instructions

� imm1211:0 for memory instructions

228 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

� imm2423:0 for branch instructions

Exercise 6.2

Yes, it is possible to design a computer architecture without a register set. For example, an

architecture could use memory as a very large register set. Each instruction would require a

memory access. For example, an add instruction might look like this:

ADD 0x10, 0x20, 0x24

This would add the values stored at memory addresses 0x20 and 0x24 and place the result in

memory address 0x10. Other instructions would follow the same pattern, accessing memory

instead of registers. Some advantages of the architecture are that it would require fewer

instructions. Load and store operations are now unnecessary. This would make the decoding

hardware simpler and faster. Some disadvantages of this architecture over the MIPS architecture

is that each operation would require a memory access. Thus, either the processor would need to

be slow or the memory small. Also, because the instructions must encode memory addresses

instead of register numbers, the instruction size would be large in order to access all memory

addresses. Or, alternatively, each instruction can only access a smaller number of memory

addresses. For example, the architecture might require that one of the source operands is also a

destination operand, reducing the number of memory addresses that must be encoded.

Exercise 6.3

(a) 42 × 4 = 42 × 22 = 1010102 << 2 = 101010002 = 0xA8

(b) 0xA8 through 0xAB

(c)

Exercise 6.4

(a) 15 × 4 = 42 × 22 = 11112 << 2 = 1111002 = 0x3C

(b) 0x3C through 0x3F

(c)

229 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 6.5

In big-endian format, the bytes are numbered from 100 to 103 from left to right. In little-endian

format, the bytes are numbered from 100 to 103 from right to left. Thus, the load byte instruction

(LDRB) returns a different value depending on the endianness of the machine. At the end of the

program R2 contains 0xBC on a big-endian machine and 0xD8 on a little-endian machine.

Exercise 6.6

(a) 0x53 4F 53 00

(b) 0x43 6F 6F 6C 21 00

(c) 0x41 6C 79 73 73 61 00 (depends on the person's name)

Exercise 6.7

(a) 0x68 6F 77 64 79 00

(b) 0x6C 69 6F 6E 73 00

(c) 0x54 6F 20 74 68 65 20 72 65 73 63 75 65 21 00

Exercise 6.8

230 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 6.9

Exercise 6.10

 0xE3A0AB3E

231 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 0xE1A09386

 0xE78B4008

 0xE1A06357

Exercise 6.11

 0xE0808001

 0xE593B004

 0xE2475058

 0xE1A03702

Exercise 6.12

(a) MOV R10, #63488

(b) rot = 11, imm8 = 0x3E (binary: 00111110), 32-bit immediate = 0x0000F800

Exercise 6.13

(a) SUB R5, R7, #0x58

(b) rot = 0, imm8 = 0x58

Exercise 6.14

ARM Assembly

MOV R2, #0

 MOV R3, R1

L1

CMP R1, R0

 BHI DONE

 ADD R2, R2, #1

 ADD R1, R1, R3

 B L1

DONE

 MOV R0, R2

C Code

// R0 = A (dividend) and quotient, R1 = B (divisor)

// R2 = i, R3 = temp

int i = 0;

int quotient;

int temp = divisor;

while (dividend >= temp) {

 i = i + 1;

 temp = temp + divisor;

232 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

}

quotient = i;

In words

This code performs integer division: quotient = A/B.

Exercise 6.15

ARM Assembly

; R0 = decimal number, R1 = base address of array,

; R2 = val, R3 = tmp

MOV R2, #31

L1 LSR R3, R0, R2

 AND R3, R3, #1

 STRB R3, [R1], #1

 SUBS R2, R2, #1

 BPL L1

L2 MOV PC, LR

C Code

void convert2bin(int num, char binarray[]){

 int i;

 char tmp, val = 31;

 for (i=0; i<32; i++) {

 tmp = (num >> val) & 1;

 binarray[i] = tmp;

 val--;

 }

}

In words

This program converts an unsigned integer (R0) from decimal to binary and stores it in an array

pointed to by R1.

Exercise 6.16

ORR R0, R1, R2

MVN R0, R0

Exercise 6.17

233 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

AND R0, R1, R2

MVN R0, R0

Exercise 6.18

(a)

(i)

CMP R0, R1 ; g >= h?

 BLT ELSE

 ADD R0, R0, R1 ; g = g + h

 B DONE

ELSE SUB R0, R0, R1 ; g = g – h

DONE

 (ii)

CMP R0, R1 ; g < h?

 BGE ELSE

 ADD R1, R1, #1 ; h = h + 1

 B DONE

ELSE LSL R1, R1, #1 ; h = h * 2

DONE

(b)

(i)

CMP R0, R1 ; g >= h?

 ADDGE R0, R0, R1 ; g = g + h

SUBLT R0, R0, R1 ; g = g – h

 (ii)

CMP R0, R1 ; g < h?

 ADDLT R1, R1, #1 ; h = h + 1

LSLGE R1, R1, #1 ; h = h * 2

(c) When conditional execution is available for all instructions, it takes 3 instructions,

compared to 5 instructions when conditional execution is allowed only for branch instructions.

So, in this case, allowing conditional execution for all instructions results in a 40% decrease in

the number of instructions.

Thus, the advantages of conditional execution are (1) 40% less memory required for instruction

storage, and (2) potentially decreased execution time. The execution time of the code in part (a)

234 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

is 3-4 instructions, whereas it is 3 instructions in part (b). As will be seen in Chapter 7, the

number of instructions fetched in part (a) can be even higher when using a pipelined processor.

A disadvantage of (b) over (a) is that all instructions require a condition code, which uses four

bits of encoding that could be used for something else. However, as shown, this cost in bits used

for encoding the condition is usually well worth it.

Exercise 6.19

(a)

(i)

CMP R0, R1 ; g > h?

 BLE ELSE

 ADD R0, R0, #1 ; g = g + 1

 B DONE

ELSE SUB R0, R1, #1 ; g = h - 1

DONE

 (ii)

CMP R0, R1 ; g <= h?

 BGT ELSE

 MOV R0, #0 ; g = 0

 B DONE

ELSE MOV R1, #0 ; h = 0

DONE

(b)

(i)

CMP R0, R1 ; g > h?

 ADDGT R0, R0, #1 ; g = g + 1

SUBLE R1, R1, #1 ; h = h – 1

 (ii)

CMP R0, R1 ; g <= h?

 MOVLE R0, #1 ; g = 0

MOVGT R1, #0 ; h = 0

(c) When conditional execution is available for all instructions, it takes 3 instructions,

compared to 5 instructions when conditional execution is allowed only for branch instructions.

So, in this case, allowing conditional execution for all instructions results in a 40% decrease in

the number of instructions.

235 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Thus, the advantages of conditional execution are (1) 40% less memory required for instruction

storage, and (2) potentially decreased execution time. The execution time of the code in part (a)

is 3-4 instructions, whereas it is 3 instructions in part (b). As will be seen in Chapter 7, the

number of instructions fetched in part (a) can be even higher when using a pipelined processor.

A disadvantage of (b) over (a) is that all instructions require a condition code, which uses four

bits of encoding that could be used for something else. However, as shown, this cost in bits used

for encoding the condition is usually well worth it.

Exercise 6.20

(a)

ADD R3, R1, #0x190 ; R3 = end of array1

FOR CMP R1, R3 ; reached end of array1?

BGE DONE

LDR R0, [R1] ; R0 = array1[i]

STR R0, [R2] ; array2[i] = array1[i]

ADD R1, R1, #4 ; R1 points to next array1 entry

ADD R2, R2, #4 ; R2 points to next array2 entry

B FOR

DONE

(b)

ADD R3, R1, #0x190 ; R3 = end of array1

FOR CMP R1, R3 ; reached end of array1?

BGE DONE

LDR R0, [R1], #4 ; R0 = array1[i] and R1 update

STR R0, [R2], #4 ; array2[i] = array1[i] and R2 update

B FOR

DONE

(c) part (a) has 8 instructions and part (b) has 6 instructions. The loop code particularly decreases

from 7 instructions to 5 instructions. This is a 25% decrease in the number of instructions and a

29% decrease in loop instructions. The advantages are: (1) 25% lower memory requirements for

code storage and (2) decreased execution time (approximately 29% decrease because most of the

execution time is spent in the loop). The disadvantage is the number of bits required for encoding

the indexing mode.

Exercise 6.21

(a)

236 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ADD R2, R3, #0x190 ; R2 = end of array

FOR CMP R3, R2 ; reached end of array?

BGE DONE

LDR R1, [R3] ; R1 = array[i]

LSL R1, R1, #5 ; R1 = array[i] * 32

STR R1, [R3] ; array[i] = array[i] * 32

ADD R3, R3, #4 ; R3 points to next array entry

B FOR

DONE

(b)

ADD R2, R3, #0x190 ; R2 = end of array

FOR CMP R3, R2 ; reached end of array?

BGE DONE

LDR R1, [R3] ; R1 = array[i]

LSL R1, R1, #7 ; R1 = array[i] * 128

STR R1, [R3], #4 ; array[i] = array[i] * 128

 ; R3 points to next array entry

B FOR

DONE

(c) part (a) has 8 instructions and part (b) has 7 instructions. The loop code particularly decreases

from 7 instructions to 6 instructions. This is a 12.5% decrease in the number of instructions and a

14% decrease in loop instructions. The advantages are: (1) 12.5% lower memory requirements

for code storage, and (2) decreased execution time (approximately 14% decrease because most of

the execution time is spent in the loop). The disadvantage is the number of bits required for

encoding the indexing mode.

Exercise 6.22

(a) Yes.

(b)

(i)

MOV R1, #0 ; i = 0

FOR CMP R1, #200 ; reached end of array?

BGE DONE

STR R1, [R0, R1, LSL #2] ; array[i] = i

ADD R1, R1, #1 ; i = i + 1

B FOR

(ii)

237 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

MOV R1, #199 ; i = 199

FOR STR R1, [R0, R1, LSL #2] ; array[i] = i

SUBS R1, R1, #1 ; i = i – 1 and set flags

BPL FOR

(c) The second code snippet (ii), the decremented loop, uses fewer instructions and is faster.

Each loop iteration in code snippet (ii) requires 3 instead of the 5 instructions required for code

snippet (i). Code snippet ii combines checking the loop condition with updating the loop

variable, i.

Exercise 6.23

(a) Yes.

(b)

(i)

MOV R1, #0 ; i = 0

FOR CMP R1, #10 ; reached end of array?

BGE DONE

LDR R2, [R0, R1, LSL #2] ; R2 = nums[i]

LSR R2, R2, #1 ; R2 = nums[i]/2

STR R2, [R0, R1, LSL #2] ; nums[i] = nums[i]/2

ADD R1, R1, #1 ; i = i + 1

B FOR

DONE

(ii)

MOV R1, #9 ; i = 9

FOR LDR R2, [R0, R1, LSL #2] ; R2 = nums[i]

LSR R2, R2, #1 ; R2 = nums[i]/2

STR R2, [R0, R1, LSL #2] ; nums[i] = nums[i]/2

SUBS R1, R1, #1 ; i = i – 1 and set flags

BPL FOR

(c) The second code snippet (ii), the decremented loop, uses fewer instructions and is faster.

Each loop iteration in code snippet (ii) requires 5 instead of the 7 instructions required for code

snippet (i). Code snippet ii combines checking the loop condition with updating the loop

variable, i.

Exercise 6.24

int find42(int array[], int size) {

 int i; // index into array

238 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 for (i = 0; i < size; i = i+1)

 if (array[i] == 42)

 return i;

 return -1;

}

Exercise 6.25

 (a)
; ARM assembly code

; base address of array dst = R0

; base address of array src = R1

; i = R4

STRCPY

PUSH {R4} ; save R4 on stack

MOV R4, #0 ; i = 0

LOOP

 LDRB R2, [R1, R4] ; R2 = src[i]

 STRB R2, [R0, R4] ; dst[i] = src[i]

 CMP R2, #0 ; array[i] == 0? (end of string?)

 ADD R4, R4, #1 ; i++

 BNE LOOP ; if not, repeat

DONE

 POP {R4} ; restore R4

 MOV PC, LR ; return

(b) The stack (i) before, (ii) during, and (iii) after the strcpy procedure.

Exercise 6.26

; ARM assembly

; R0 = base address of array

; R1 = number of elements in array

; R2 = i

 MOV R2, #0 ; i = 0

LOOP

 CMP R2, R1 ; i < size?

 BGE DONE

239 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 LDR R3, [R0, R2, LSL #2] ; R3 = array[i]

 CMP R3, #42 ; array[i] == 42?

 ADDNE R2, R2, #1 ; if not equal, increment i

 BNE LOOP ; and repeat loop

 MOV R0, R2 ; if EQ return i

 MOV PC, LR

DONE

 MOV R0, #0 ; return -1

 SUB R0, R0, #1

 MOV PC, LR ; return

Exercise 6.27

(a)

func1: 8 words (for R4-R10 and LR)

func2: 3 words (for R4-R5 and LR)

func3: 4 words (for R7-R9 and LR)

func4: 1 word (for R11)

(b)

240 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 6.28

(a)

fib(0) = 0

fib(-1) = 1

(b)
int fib(int n) {

 int result = 0; // fib(0)

 int prevresult = 1; // fib(-1)

 // Calculate Fibonacci numbers from 0 - n

 while (n != 0) {

 result = result + prevresult; // fib(n) = fib(n-1) + fib(n-2)

 prevresult = result - prevresult; // fib(n-1) = fib(n) - fib(n-2)

 n = n - 1;

 }

 return result;

}

241 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(c)

; fib.s

; The fib() function computes the nth Fibonacci number.

; n is passed to fib() in R0, and fib() returns the result in R0.

MAIN

MOV R0, #9 ; n = 9

BL FIB ; call Fibonacci function

...

; R1 = result; R2 = prevresult

FIB

 MOV R1, #1 ; R1 = result = fib(0)

 MOV R2, #0 ; R2 = prevresult = fib(-1)

 CMP R0, #0 ; n == 0?

 BEQ DONE

LOOP

 ADD R1, R1, R2 ; result = result + prevresult

 SUB R2, R1, R2 ; prevresult = result – prevresult

 SUBS R0, R0, #1 ; n = n - 1

 BPL LOOP

DONE

 MOV R0, R2 ; return result

 MOV PC, LR

Exercise 6.29

(a) 120

(b) (2)

(c) (i) (3) returned value is R1
4

 (ii) (3) returned value is R1
4

 (iii) (4)

Exercise 6.30

(a) 19. Yes, it correctly computes 2a + 3b.

(b) (2)

(c) (i) (3) R0 = 17

(ii) (4)

(iii) (4) But the calling function may have a problem because R4 doesn't hold the value it had

when it was called. Instead it holds the value 5.

(iv) (1)

(v) (2)

(vi) (3) R0 = 17

(vii) (1)

242 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 6.31

(a) 0xa0000001

(b) 0xaa00000e

(c) 0x8afff841

(d) 0xeb00391d

(e) 0xeaffe3fc

Exercise 6.32

 (a)

Machine Code Address/ARM Assembly
E1A04001

E0835125

E0404473

EBFFFFFF

E5902004

E7012002

E3530000

1A000000

E1A0F00E

E2433001

EAFFFFF8

0x000A0028 FUNC1 MOV R4, R1

0x000A002C ADD R5, R3, R5, LSR #2

0x000A0030 SUB R4, R0, R3, ROR R4

0x000A0034 BL FUNC2

0x000A0038 FUNC2 LDR R2, [R0, #4]

0x000A003C STR R2, [R1, -R2]

0x000A0040 CMP R3, #0

0x000A0044 BNE ELSE

0x000A0048 MOV PC, LR

0x000A004C ELSE SUB R3, R3, #1

0x000A0050 B FUNC2

...

(b)

Addressing Mode Address/ARM Assembly
Register (Register only)

Register (Immediate-shifted reg)

Register (Register-shifted reg)

PC-Relative

Base (Immediate offset)

Base (Register offset)

Immediate

PC-Relative

Register (Register only)

Immediate

PC-Relative

0x000A0028 FUNC1 MOV R4, R1

0x000A002C ADD R5, R3, R5, LSR #2

0x000A0030 SUB R4, R0, R3, ROR R4

0x000A0034 BL FUNC2

0x000A0038 FUNC2 LDR R2, [R0, #4]

0x000A003C STR R2, [R1, -R2]

0x000A0040 CMP R3, #0

0x000A0044 BNE ELSE

0x000A0048 MOV PC, LR

0x000A004C ELSE SUB R3, R3, #1

0x000A0050 B FUNC2

...

Exercise 6.33

(a)

; R4 = i, R5 = num

SETARRAY

 PUSH {R4, R5, LR} ; save R4, R5, and LR on the stack

 SUB SP, SP, #40 ; allocate space on stack for array

243 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 MOV R4, #0 ; i = 0

 MOV R5, R0 ; R5 = num

LOOP MOV R1, R4 ; set up input arguments

 BL COMPARE ; call compare function

 STR R0, [SP, R4, LSL #2] ; array[i] = return value

 ADD R4, R4, #1 ; increment i

 MOV R0, R5 ; arg0 = num

 CMP R4, #10 ; i < 10?

 BLT LOOP

 ADD SP, SP, #40 ; deallocate space on stack for array

 POP {R4, R5, LR} ; restore registers

 MOV PC, LR ; return to point of call

COMPARE

 PUSH {LR} ; save LR

 BL SUBFUNC ; call sub function

 CMP R0, #0 ; returned value >= 0?

 MOVGE R0, #1 ; if yes, R0 = 1

 MOVLT R0, #0 ; if no, R0 = 0

 POP {LR} ; restore LR

 MOV PC, LR ; return to point of call

SUBFUNC

 SUB R0, R0, R1 ; return a-b

 MOV PC, LR ; return to point of call

(b)

244 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Before setArray During compare/subDuring setArray

LR

SP

R4

array[9]

array[7]

array[6]

array[5]

array[4]

array[3]

array[2]

array[8]

array[1]

array[0]

LR

array[9]

array[7]

array[6]

array[5]

array[4]

array[3]

array[2]

array[8]

array[1]

array[0]

R4

LR

SP

SP

(c) The code would enter an infinite loop and eventually crash. When the compare function

returns (MOV PC, LR), instead of returning to its point of call in the setArray function, the

compare function would continue executing at the instruction just after the call to sub (BL

SUBFUNC). Because of the POP {LR} instruction, the program would eventually crash when it

went beyond the stack space available (i.e., the stack pointer was decremented past the allocated

dynamic data segment).

Exercise 6.34

(a)

;R4 = b

;Address ARM Assembly

245 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

0x8100 F PUSH {R4, LR} ; store R4 and LR on stack

0x8104 ADD R4, R1, #2 ; b = k + 2

0x8108 CMP R0, #0 ; n == 0?

0x810c BNE ELSE

0x8110 MOV R4, #10 ; if yes, b = 10

0x8114 B DONE ; branch to end of function

0x8118 ELSE PUSH {R0, R1} ; store n and k on stack

0x811c SUB R0, R0, #1 ; set up args: n = n-1

0x8120 ADD R1, R1, #1 ; k = k+1

0x8124 BL F ; recursively call F

0x8128 MOV R2, R0 ; move return value to R2

0x812c POP {R0, R1} ; restore values of n and k

0x8130 MUL R3, R0, R0 ; R3 = n*n

0x8134 ADD R2, R2, R3 ; R2 = (n*n)+f(n-1,k+1)

0x8138 ADD R4, R2, R4 ; b = b+(n*n)+f(n-1,k+1)

0x813c DONE MUL R0, R4, R1 ; R0 = b*k

0x8140 POP {R4, LR} ; restore R4 and LR

0x8144 MOV PC, LR ; return to point of call

(b) The stack (i) after the last recursive call, and (ii) after return. The final value of R0 is 1400.

Exercise 6.35

The largest address offset (imm24) a branch instruction (B or BL) can encode is 2
24

-1 =

16,777,215. Since the offset adds to the address 2 instructions ahead of the current instruction

(i.e., at PC + 8), a branch can branch forward at most (2
24

-1) + 2 = 16,777,217 instructions.

Because instructions are relative to PC + 4, it can branch forward between 0 and 16,777,217

instructions relative to the current instruction. So, if the current instruction address is 0x0. The

246 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

farthest it can branch forward is to instruction address 16,777,217 * 4 = 67,108,868 =

0x4000004.

Exercise 6.36

(a) Because branches in the ARM architecture are relative to PC + 8, the limitation on branch

range is independent of the current instruction address. The range of a forward branch is (2
24

-1)

+ 2 = 16,777,217 instructions. So a forward branch can branch from 0 to 16,777,217

instructions relative to the branch instruction. So, if the current instruction address is 0x0. The

farthest it can branch forward is to instruction address 16,777,217 * 4 = 67,108,868 =

0x4000004.

(b) Same as (a).

(c) Again, the limitation on branch range is independent of the current instruction address. The

range of a backward branch is (2
24

) - 2 = 16,777,214 instructions. So a backward branch can

branch from 0 to 16,777,214 instructions relative to the branch instruction. For example, a

branch at address 0x3ffffff8 (16,777,214 * 4) could branch back to instruction address 0x0.

(d) Same as (c).

Exercise 6.37

It is advantageous to have a large address field in the machine format for branch instructions to

increase the range of instruction addresses to which the instruction can branch.

Exercise 6.38

To branch to an instruction 2
20

 instructions from the branch instruction, the target address will be

at: 0x8000 + (2
20

*4) = 0x8000 + (2
22

) = 0x8000 + 0x400000 = 0x408000. (imm24 must have the

value 2
20

 – 8 = 0x00FFF8.)

;Address ;ARM Assembly

0x00008000 B DEST

...

0x00408000 DEST ...

Exercise 6.39

// High-Level Code

void little2big(int[] array) {

 int i;

 for (i = 0; i < 10; i = i + 1) {

 array[i] = ((array[i] << 24) |

 ((array[i] & 0xFF00) << 8) |

 ((array[i] & 0xFF0000) >> 8) |

247 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ((array[i] >> 24) & 0xFF));

 }

}

; ARM Assembly Code

; R0 = base address of array, R12 = i

little2BIG

MOV R12, #0 ; i = 0

LOOP

CMP R12, #10 ; i < 10?

BGE DONE

LDR R2, [R0, R12, LSL #2] ; R2 = array[i]

LSL R3, R2, #24 ; R3 = array[i] << 24

AND R4, R2, #0xFF00 ; R4 = (array[i] & 0xFF00)

 ORR R3, R3, R4, LSL #8 ; R3 = top two bytes

AND R4, R2, #0xFF0000 ; R4 = (array[i] & 0xFF0000)

 ORR R3, R3, R4, LSR #8 ; R3 = top three bytes

 ORR R3, R3, R2, LSR #24 ; R3 = all four bytes

 STR R3, [R0, R12, LSL #2] ; array[i] = R3

 ADD R12, R12, #1 ; increment i

 B LOOP

DONE

 MOV PC, LR

Exercise 6.40

(a)
void concat(char[] string1, char[] string2, char[] stringconcat) {

 int i, j;

 i = 0;

 j = 0;

 while (string1[i] != 0) {

 stringconcat[i] = string1[i];

 i = i + 1;

 }

 while (string2[j] != 0) {

 stringconcat[i] = string2[j];

 i = i + 1;

 j = j + 1;

 }

 stringconcat[i] = 0; // append null at end of string

}

(b)

CONCAT

248 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

LDRB R3, [R0], #1 ; R3 = string1[i]

 CMP R3, #0 ; string1[i] != 0?

 BEQ STR2

 STRB R3, [R2], #1 ; stringconcat[i] = string1[i]

 B CONCAT

STR2

LDRB R3, [R1], #1 ; R3 = string2[j]

 CMP R3, #0 ; string2[j] != 0?

 BEQ DONE

 STRB R3, [R2], #1 ; stringconcat[i] = string2[j]

 B STR2

 MOV R3, #0

 STRB R3, [R2] ; append null at end of string

 MOV PC, LR ; return to point of call

Exercise 6.41

; R4, R5 = mantissas of a, b, R6, R7 = exponents of a, b

FLPADD

 PUSH {R4, R5, R6, R7, R8} ; save registers that will be used

 LDR R2, =0x007fffff ; load mantissa mask

 LDR R3, =0x7f800000 ; load exponent mask

AND R4, R0, R2 ; extract mantissa from R0 (a)

AND R5, R1, R2 ; extract mantissa from R1 (b)

 ORR R4, R4, #0x800000 ; insert implicit leading 1

 ORR R5, R5, #0x800000 ; insert implicit leading 1

AND R6, R0, R3 ; extract exponent from R0 (a)

LSR R6, R6, #23 ; shift exponent right

AND R7, R1, R3 ; extract exponent from R1 (b)

LSR R7, R7, #23 ; shift exponent right

MATCH

 CMP R6, R7 ; compare exponents

 BEQ ADDMANTISSA ; if equal, skip to adding mantissas

 BHI SHIFTB ; if a's exponent is bigger, shift b

SHIFTA

 SUB R8, R7, R6 ; R8 = b's exponent – a's exponent

 ASR R4, R4, R8 ; right-shift a's mantissa

 ADD R6, R6, R8 ; update a's exponent

 B ADDMANTISSA ; now add the mantissas

SHIFTB

 SUB R8, R6, R7 ; R8 = a's exponent – b's exponent

 ASR R5, R5, R8 ; right-shift b's mantissa

ADDMANTISSA

 ADD R4, R4, R5 ; R4 = sum of mantissas

249 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

NORMALIZE

 ANDS R5, R4, #0x1000000 ; extract overflow bit

 BEQ DONE ; branch to DONE if bit 24 == 0

 LSR R4, R4, #1 ; right-shift mantissa by 1 bit

 ADD R6, R6, #1 ; increment exponent

DONE

 AND R4, R4, R2 ; mask fraction

 LSL R6, R6, #23 ; shift exponent into place

 ORR R0, R4, R6 ; combine mantissa and exponent

 POP {R4, R5, R6, R7, R8} ; restore registers

 MOV PC, LR ; return to caller

Exercise 6.42

(a)

; ARM Assembly Code

0x08400 MAIN PUSH {LR}

0x08404 LDR R2, =L1

0x0840c LDR R0, [R2]

0x08410 LDR R1, [R2, #4]

0x08414 BL DIFF

0x08418 POP {LR}

0x0841c MOV PC, LR

0x08420 DIFF SUB R0, R0, R1

0x08424 MOV PC, LR

...

0x9024 L1

(b)

Symbol Table

Address Label
0x8400 MAIN

0x8420 DIFF

0x9024 L1

(c)

; machine code ;address ARM assembly

e52de004 ;0x08400 MAIN PUSH {LR} ; STR R14,[R13,#-4]!

e59f2c18 ;0x08404 LDR R2, =L1

e5920000 ;0x08408 LDR R0, [R2]

e5921004 ;0x0840c LDR R1, [R2, #4]

eb000001 ;0x08410 BL DIFF

e49de004 ;0x08414 POP {LR} ; LDR R14,[R13],#4

e1a0f00e ;0x08418 MOV PC, LR

e0400001 ;0x0841c DIFF SUB R0, R0, R1

e1a0f00e ;0x08420 MOV PC, LR

...

;0x09024 L1 ; holds address of the data

250 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(d)

Text Segment: 10*4 = 40 bytes

Data segment: 4 bytes

Exercise 6.43

(a)

; ARM assembly code

0x8534 MAIN PUSH {R4,LR}

0x8538 MOV R4, #15

0x853c LDR R3, =L2

0x8540 STR R4, [R3]

0x8544 MOV R1, #27

0x8548 STR R1, [R3, #4]

0x854c LDR R0, [R3]

0x8550 BL GREATER

0x8554 POP {R4,LR}

0x8558 MOV PC, LR

0x855c GREATER CMP R0, R1

0x8560 MOV R0, #0

0x8564 MOVGT R0, #1

0x8568 MOV PC, LR

...

0x9305 L2

 (b)

Symbol Table

Address Label
0x8534 MAIN

0x8550 GREATER

0x9305 L2

(c)

; machine code ;address ARM assembly

E92D4010 ;0x8534 MAIN PUSH {R4,LR}

; STMDB R13!,{R4,R14}

E3A0400F ;0x8538 MOV R4, #15

E59F3DC1 ;0x853c LDR R3, =L2

E5834000 ;0x8540 STR R4, [R3]

E3A0101B ;0x8544 MOV R1, #27

E5831004 ;0x8548 STR R1, [R3, #4]

251 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

E5930000 ;0x854c LDR R0, [R3]

EB000001 ;0x8550 BL GREATER

E8BD4010 ;0x8554 POP {R4,LR}

 ; LDMIA R13!,{R4,R14}

E1A0F00E ;0x8558 MOV PC, LR

E1500001 ;0x855c GREATER CMP R0, R1

E3A00000 ;0x8560 MOV R0, #0

C3A00001 ;0x8564 MOVGT R0, #1

E1A0F00E ;0x8568 MOV PC, LR

...

;0x9305 L2

(d)

Text Segment: 15*4 = 60 bytes

Data segment: 4 bytes

Exercise 6.44

1. Scaled register offset for accessing memory:

Accessing an array of integers using an index in R3 starting at a base address in R0:

Without scaled register offset:

LSL R4, R3, #2 ; multiply index i by 4

LDR R5, [R0, R4] ; access array

With scaled register offset:

LDR R5, [R0, R3, LSL #2] ; access array

2. Pre-indexing or Post-indexing:

Accessing an array of characters at base address in R0:

Without pre-indexing:

REPEAT LDR R5, [R0, #1] ; access array

ADD R0, R0, #1

...

BLT REPEAT

Without pre-indexing:

REPEAT LDR R5, [R0, #1]! ; access array

...

BLT REPEAT

252 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

3. Conditional execution

Executing an if statement that sets R4 to 10 when R2 and R3 are equal

Without conditional execution:

 CMP R2, R3 ; R2 == R3?

 BNE L3

 MOV R4, #10 ; R4 = 10

 L3 ...

With conditional execution:

CMP R2, R3 ; R2 == R3?

MOVEQ R4, #10 ; R4 = 10 when R2 == R3

 L3 ...

Exercise 6.45

Advantages of conditional execution:

• Potentially decreased code size (increased code density)

• Potentially decreased execution time (improved performance)

Disadvantages:

• More complex hardware required to implement it

• Requires 4 instruction bits to encode

Question 6.1

EOR R0, R0, R1 ; R0 = R0 XOR R1

EOR R1, R0, R1 ; R1 = original value of R0

EOR R0, R0, R1 ; R0 = original value of R1

Question 6.2

C Code

// Find subset of array with largest sum

 int max = -2,147,483,648; // -2^31

 int start = 0;

 int end = 0;

 for (i=0; i<length; i++) {

 sum = 0;

 for (j=i; j<length; j++) {

 sum = sum + array[j];

 if (sum > max) {

253 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 max = sum;

 start = i;

 end = j;

 }

 }

 }

 count = 0;

 for (i = start; i <= end; i++) {

 array2[count] = array[i];

 count = count + 1;

 }

ARM Assembly Code

; R0 = base address of array, R1 = length of array

; R2 = base address of resulting array

; R3 = max, R4 = start, R5 = end

; R6 = i, R7 = j and count, R8 = sum

 PUSH {R4,R5,R6,R7,R8,R9} ; save registers

 MOV R3, #0x80000000 ; R3 = large negative number

 MOV R4, #0 ; start = 0

 MOV R5, #0 ; end = 0

 MOV R6, #0 ; i = 0

 LSL R1, R1, #2 ; length = length * 4

LOOPFORI

 CMP R6, R1 ; i < length?

 BGE ENDLOOP

 MOV R8, #0 ; reset sum

 MOV R7, R6 ; j = i

LOOPFORJ

 CMP R7, R1 ; j < length?

 BGE INCREMENTI

 LDR R9, [R0, R7] ; R9 = array[j]

 ADD R8, R8, R9 ; sum = sum + array[j]

 CMP R3, R8 ; max < sum?

 BGE INCREMENTJ

 MOV R3, R8 ; max = sum

 MOV R4, R6 ; start = i

 MOV R5, R7 ; end = j

INCREMENTJ

 ADD R7, R7, #4 ; j = j + 4

 B LOOPFORJ

INCREMENTI

 ADD R6, R6, #4 ; i = i + 4

 B LOOPFORI

ENDLOOP

254 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 MOV R6, R4 ; i = start

 MOV R7, #0 ; count = 0

LOOP3

 CMP R5, R6 ; end < i?

 BLT RETURN

 LDR R9, [R0, R6] ; R9 = array[i]

 STR R9, [R2, R7] ; array2[count] = array[i]

 ADD R7, R7, #4 ; count = count + 4

 ADD R6, R6, #4 ; i = i + 4

 B LOOP3

RETURN

 POP {R4,R5,R6,R7,R8,R9} ; restore registers

 MOV PC, LR

Question 6.3

C Code
void reversewords(char[] array) {

 int i, j, length;

 // find length of string

 for (i = 0; array[i] != 0; i = i + 1)

 ;

 length = i;

 // reverse characters in string

 reverse(array, length-1, 0);

 // reverse words in string

 i = 0; j = 0;

 // check for spaces or end of string

 while (i <= length) {

 if ((i != length) && (array[i] != 0x20)) {

 i = i + 1;

 }

 else {

 reverse(array, i-1, j);

 i = i + 1; // j and i at start of next word

 j = i;

 }

 }

}

void reverse(char[] array, int i, int j) {

 char tmp;

 while (i > j) {

 tmp = array[i];

255 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 array[i] = array[j];

 array[j] = tmp;

 i = i-1;

 j = j+1;

 }

}

ARM Assembly

; R4 = i, R5 = j, R6 = length

REVERSEWORDS

 PUSH {R4,R5,R6} ; save registers on stack

 MOV R4, #0 ; i = 0

GETLENGTH

 LDRB R1, [R0, R4] ; R1 = array[i]

 CMP R1, #0 ; end of string?

 ADDNE R4, R4, #1 ; i = i + 1

 BNE GETLENGTH

STRINGREVERSE

 MOV R6, R4 ; length = i

 SUB R1, R6, #1 ; arg1 = length-1

 MOV R2, #0 ; arg2 = 0

 BL REVERSE ; call reverse function

 MOV R4, #0 ; i = 0

 MOV R5, #0 ; j = 0

WHILE19

 CMP R4, R6 ; i <= length?

 BGT DONE19 ; if at end of string, return

 BEQ ELSE19 ; if (i == length), do else block

 LDRB R1, [R0, R4] ; R1 = array[i]

 CMP R1, #0x20 ; array[i] != 0x20?

 BEQ ELSE19 ; if (array[i] == 0x20), do else block

 ADD R4, R4, #1

 B WHILE19 ; repeat while loop

ELSE19

 SUB R1, R4, #1 ; arg1 = i-1

 MOV R2, R5 ; arg2 = j

 BL REVERSE ; call reverse function

 ADD R4, R4, #1 ; i = i+1

 MOV R5, R4 ; j = i

 B WHILE19 ; repeat while loop

DONE19

 POP {R4,R5,R6} ; restore registers from stack

 MOV PC, LR ; retrn to calling function

REVERSE

 CMP R1, R2 ; i > j?

 BLE RETURN19

 LDRB R3, [R0, R1] ; R3 = array[i]

 LDRB R12, [R0, R2] ; R12 = array[j]

 STRB R12, [R0, R1] ; array[i] = array[j]

256 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 STRB R3, [R0, R2] ; array[j] = tmp

 SUB R1, R1, #1 ; i = i – 1

 ADD R2, R2, #1 ; j = j + 1

 B REVERSE ; continue while loop

RETURN19

 MOV PC, LR

Question 6.4

C Code
int count = 0;

while (num != 0) {

 if (num & 1)

 count = count + 1;

 num = num >> 1;

}

ARM Assembly Code
; R0 = num, R1 = count

 LDR R3, =0x345

 MOV R1, #0 ; count = 0

 CMP R3, #0 ; num == 0?

 BEQ DONE

COUNTONES

 ANDS R2, R3, #1 ; R2 = num & 1, set flags

 BEQ SHIFT ; if result of AND is 0, shift only

 ADD R1, R1, #1 ; else increment count

SHIFT

 LSRS R3, R3, #1 ; shift num right by 1 bit, set flags

 BNE COUNTONES ; continue counting ones if num != 0

DONE

Question 6.5

C Code
num = swap(num, 1, 0x55555555); // swap bits

num = swap(num, 2, 0x33333333); // swap pairs

num = swap(num, 4, 0x0F0F0F0F); // swap nibbles

num = swap(num, 8, 0x00FF00FF); // swap bytes

num = swap(num, 16, 0xFFFFFFFF); // swap halves

// swap function swaps masked bits

int swap(int num, int shamt, unsigned int mask) {

return ((num >> shamt) & mask) | ((num & mask) << shamt);

ARM Assembly Code
 MOV R0, R3 ; arg0 = num

 MOV R1, #1 ; arg1 = 1

257 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

LDR R2, =0x55555555 ; arg2 = 0x55555555

BL SWAP ; call swap function

MOV R1, #2 ; arg1 = 1

LDR R2, =0x33333333 ; arg2 = 0x33333333

BL SWAP ; call swap function

MOV R1, #4 ; arg1 = 1

LDR R2, =0x0F0F0F0F ; arg2 = 0x0F0F0F0F

BL SWAP ; call swap function

MOV R1, #8 ; arg1 = 1

LDR R2, =0x00FF00FF ; arg2 = 0x00FF00FF

BL SWAP ; call swap function

MOV R1, #16 ; arg1 = 1

LDR R2, =0xFFFFFFFF ; arg2 = 0xFFFFFFFF

BL SWAP ; call swap function

MOV R3, R0 ; num = returned value

...

SWAP

LSR R3, R0, R1 ; R3 = num >> shamt

AND R3, R3, R2 ; R3 = (num >> shamt) & mask

AND R0, R0, R2 ; R0 = num & mask

LSL R0, R0, R1 ; R0 = (num & mask) << shamt

ORR R0, R3, R0 ; return val = R3 | R0

MOV PC, LR ; return to caller

Question 6.6

ADDS R0, R2, R3 ; R0 = R2 + R3, set flags

BVS OVERFLOW

NOOVERFLOW

...

OVERFLOW

...

Question 6.7

C Code
bool palindrome(char* array) {

 int i, j; // array indices

 // find length of string

 for (j = 0; array[j] != 0; j=j+1) ;

 j = j-1; // j is index of last char

 i = 0;

 while (j > i) {

 if (array[i] != array[j])

258 SOLUTIONS chapter 6 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 return false;

 j = j-1;

 i = i+1;

 }

 return true;

}

MIPS Assembly Code
; R1 = i, R2 = j, R0 = base address of string

PALINDROME

PUSH {R4} ; save R4 on stack

MOV R2, #0 ; j = 0

GETLENGTH

LDRB R3, [R0, R2] ; R3 = array[j]

CMP R3, #0 ; end of string?

ADDNE R2, R2, #1 ; j = j + 1

BNE GETLENGTH

SUB R2, R2, #1 ; j = j – 1

MOV R1, #0 ; i = 0

WHILE

CMP R2, R1 ; j > i?

BLE RETURNTRUE

LDRB R3, [R0, R1] ; R3 = array[i]

LDRB R4, [R0, R2] ; R4 = array[j]

CMP R3, R4 ; array[i] == array[j]?

BNE RETURNFALSE

SUB R2, R2, #1 ; j = j-1

ADD R1, R1, #1 ; i = i+1

B WHILE

RETURNTRUE

MOV R0, #1 ; return TRUE

B DONE

RETURNFALSE

MOV R0, #0 ; return FALSE

DONE

POP {R4} ; restore R4

MOV PC, LR ; return to caller

259 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CHAPTER 7

Exercise 7.1

(a) ADD, SUB, AND, ORR, LDR: the result never gets written to the register file.

(b) SUB, AND, ORR: the ALU only performs addition

(c) STR: the data memory never gets written

Exercise 7.2

(a) STR, B: these instructions write to the register file when they shouldn't.

(b) LDR, STR, B: the ALU looks at the cmd field to determine the operation to perform.

However, for these instructions, the ALU should always perform addition.

(b) ADD, SUB, AND, ORR, LDR, B: these instructions inadvertently write to the data

memory.

Exercise 7.3

(a) TST

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1 0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1000 1 TST 10 10 1

Control Unit Schematic

260 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

C
o
n
d
itio

n
a
l

L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

(b) LSL

Single-cycle datapath

261 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control unit

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 Shift

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1101 0 LSL XX 00 1

1 10 1

262 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(c) CMN

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1011 1 CMN 00 11 1

Control Unit schematic

263 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

MemtoReg

ALUSrc

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCSrc
PCS

Main

Decoder

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

Branch

ImmSrc1:0

MemtoReg

ALUSrc

RegSrc1:0

MemW

RegW

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

FlagWrite1:0

[1]

[0]

FlagW1:0

PCSrc

MemWrite

RegWrite

PCS

MemW

RegW

(c) Conditional Logic

4:0

CLK

(a) Control Unit

Decoder(b)

NoWrite

NoWrite

NoWrite

(d) ADC

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0

0 X X Not DP 000 00

1

0100 0 ADD 000 00

1 11

0010 0 SUB 001 00

1 11

0000 0 AND 010 00

1 10

1100 0 ORR 011 00

1 10

264 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

0101 0 ADC 100 00

 1 11

Single-cycle ARM processor ALU

Single-cycle ARM processor datapath

265 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Single-cycle ARM processor control unit

C
o
n
d
itio

n
a
l

L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

Exercise 7.4

(a) EOR

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0

0 X X Not DP 000 00

1

0100 0 ADD 000 00

1 11

0010 0 SUB 001 00

1 11

0000 0 AND 010 00

1 10

1100 0 ORR 011 00

1 10

0001 0 EOR 110 00

1 10

266 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALU

+

000

A B

Cout

Result

ALUControl

Sum

NN

N

N

N NNN

N

3

001010011

Zero

Result31

NegativeCarry

ALUControl0

A31

B31

Flags

4

ZN VC

Sum31

oVerflow

N

110

ALUControl1

Datapath

267 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control

268 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

C
o
n
d
itio

n
a
l

L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

(b) LSR (with immediate shift amount)

269 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control

ImmSrc1:0

MemW

MemtoReg

ALUSrc

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

C
o
n
d
itio

n
a
l

L
o
g
ic

PCSrc
PCS

Main

Decoder

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

Branch

ImmSrc1:0

MemtoReg

ALUSrc

RegSrc1:0

MemW

RegW

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

FlagWrite1:0

[1]

[0]

C
o
n
d
itio

n

C
h
e
c
k

FlagW1:0

PCSrc

MemWrite

RegWrite

C
o
n
d
E
x

PCS

MemW

RegW

(c) Conditional Logic

4:0

CLK

(a) Control Unit

Decoder(b)

Shift

Shift

270 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 Shift

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1101 0 LSR XX 00 1

1 10 1

(c) TEQ

Datapath

271 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control

C
o
n
d
itio

n
a
l

L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0 NoWrite

0 X X Not DP 000 00 0

1

0100 0 ADD 000 00 0

1 11 0

0010 0 SUB 001 00 0

1 11 0

0000 0 AND 010 00 0

1 10 0

1100 0 ORR 011 00 0

1 10 0

1001 1 TEQ 110 00 1

272 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALU

(d) RSB

Datapath

273 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control

ImmSrc1:0

MemW

MemtoReg

ALUSrc

ALUControl2:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCSrc
PCS

Main

Decoder

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl2:0

Branch

ImmSrc1:0

MemtoReg

ALUSrc

RegSrc1:0

MemW

RegW

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

FlagWrite1:0

[1]

[0]

FlagW1:0

PCSrc

MemWrite

RegWrite

PCS

MemW

RegW

(c) Conditional Logic

4:0

CLK

(a) Control Unit

Decoder(b)

274 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ALU

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0

0 X X Not DP 000 00

1

0100 0 ADD 000 00

1 11

0010 0 SUB 001 00

1 11

0000 0 AND 010 00

1 10

1100 0 ORR 011 00

1 10

0011 0 RSB 100 00

1 11

275 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.5

It is not possible to implement this instruction without either modifying the register file or

making the instruction take at least two cycles to execute. We modify the register file and

datapath as shown below.

• Add WE1 and WD1 signals to the register file.

• WE1 connects to the PostIndex signal (from control unit)

• WD1 connects to ALUResult, which is the sum of Rn + Rm (or Rn + Src2, more generally).

• Add multiplexer before Data Memory Address to choose between (Rn + Src2) and Rn.

With post-indexing, the Data Memory Address input connects to Rn.

ExtImm

CLK

A RD

Instruction

Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PC1

0

PC'

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

ALUFlags

CLK

ALUControl

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

4

15 RA1

RA2

0 1

Extend

0

1

0

1
WD1

WE1

1

0

PostIndex

PostIndex
PostIndex

We modified the Main Decoder truth table as shown below.

O
p

F
u

n
ct

5
:0

T
y

p
e

 B
ra

n
ch

M
e

m
to

R
e

g

M
e

m
W

A
LU

S
rc

Im
m

S
rc

R
e

g
W

R
e

g
S

rc

A
LU

O
p

P
o

st
In

d
e

x

00 0XXXXX DP Reg 0 0 0 0 XX 1 00 1 0

00 1XXXXX DP Imm 0 0 0 1 00 1 X0 1 0

01 X00000 STR 0 X 1 1 01 0 10 0 0

01 011001 LDR

(offset

indexing,

immediate

0 1 0 1 01 1 X0 0 0

276 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

offset)

01 111001 LDR

(offset

indexing,

register

offset)

0 1 0 0 01 1 00 0 0

01 001001 LDR

(post-

indexing,

immediate

offset)

0 1 0 1 01 1 X0 0 1

01 101001 LDR

(post-

indexing,

register

offset)

0 1 0 0 01 1 00 0 1

Exercise 7.6

It is not possible to implement this instruction without either modifying the register file or

making the instruction take at least two cycles to execute. We modify the register file and

datapath as shown below.

• Add WE1 and WD1 signals to the register file.

• WE1 connects to the PreIndex signal (from control unit)

• WD1 connects to ALUResult, which is the sum of Rn + Rm (or Rn + Src2, more generally).

277 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

We modified the Main Decoder truth table as shown below.

O
p

F
u

n
ct

5
:0

T
y

p
e

 B
ra

n
ch

M
e

m
to

R
e

g

M
e

m
W

A
LU

S
rc

Im
m

S
rc

R
e

g
W

R
e

g
S

rc

A
LU

O
p

P
re

In
d

e
x

00 0XXXXX DP Reg 0 0 0 0 XX 1 00 1 0

00 1XXXXX DP Imm 0 0 0 1 00 1 X0 1 0

01 X00000 STR 0 X 1 1 01 0 10 0 0

01 011001 LDR

(offset

indexing,

immediate

offset)

0 1 0 1 01 1 X0 0 0

01 111001 LDR

(offset

indexing,

register

offset)

0 1 0 0 01 1 00 0 0

01 011011 LDR

(pre-

indexing,

immediate

offset)

0 1 0 1 01 1 X0 0 1

278 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

01 111011 LDR

(pre-

indexing,

register

offset)

0 1 0 0 01 1 00 0 1

Exercise 7.7

She should work on the memory. tmem = (200/2) ps = 100 ps

From Equation 7.3, the new cycle time is:

Tc1 = 40 + 2(100) + 70 + 100 + 120 + 2(25) + 60 = 640 ps

Exercise 7.8

From Equation 7.3, the new cycle time is:

Tc1 = 40 + 2(200) + 70 + 100 + 100 + 2(25) + 60 = 820 ps

From Equation 7.1, Execution time is:

T1 = (100 × 10
9
 instruction) (1 cycle/instruction) (820 × 10

-12
 s/cycle) = 82 seconds.

Exercise 7.9

SystemVerilog
// ex7.9 solutions

//

// single-cycle ARM processor

// additional instructions: TST, LSL, CMN, ADC

module testbench();

 logic clk;

 logic reset;

 logic [31:0] WriteData, DataAdr;

 logic MemWrite;

 // instantiate device to be tested

 top dut(clk, reset, WriteData, DataAdr, MemWrite);

 // initialize test

 initial

 begin

 reset <= 1; # 22; reset <= 0;

 end

 // generate clock to sequence tests

279 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if(MemWrite) begin

 if(DataAdr === 20 & WriteData === 2) begin

 $display("Simulation succeeded");

 $stop;

 end else begin

 $display("Simulation failed");

 $stop;

 end

 end

 end

endmodule

module top(input logic clk, reset,

 output logic [31:0] WriteData, DataAdr,

 output logic MemWrite);

 logic [31:0] PC, Instr, ReadData;

 // instantiate processor and memories

 arm arm(clk, reset, PC, Instr, MemWrite, DataAdr,

 WriteData, ReadData);

 imem imem(PC, Instr);

 dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);

endmodule

module dmem(input logic clk, we,

 input logic [31:0] a, wd,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 assign rd = RAM[a[31:2]]; // word aligned

 always_ff @(posedge clk)

 if (we) RAM[a[31:2]] <= wd;

endmodule

module imem(input logic [31:0] a,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 initial

 $readmemh("ex7.9_memfile.dat",RAM);

 assign rd = RAM[a[31:2]]; // word aligned

280 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule

module arm(input logic clk, reset,

 output logic [31:0] PC,

 input logic [31:0] Instr,

 output logic MemWrite,

 output logic [31:0] ALUResult, WriteData,

 input logic [31:0] ReadData);

 logic [3:0] ALUFlags;

 logic RegWrite,

 ALUSrc, MemtoReg, PCSrc;

 logic [1:0] RegSrc, ImmSrc;

 logic [2:0] ALUControl; // ADC

 logic carry; // ADC

 logic Shift; // LSL

 controller c(clk, reset, Instr[31:12], ALUFlags,

 RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl,

 MemWrite, MemtoReg, PCSrc,

 carry, // ADC

 Shift); // LSL

 datapath dp(clk, reset,

 RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl,

 MemtoReg, PCSrc,

 ALUFlags, PC, Instr,

 ALUResult, WriteData, ReadData,

 carry, // ADC

 Shift); // LSL

endmodule

module controller(input logic clk, reset,

 input logic [31:12] Instr,

 input logic [3:0] ALUFlags,

 output logic [1:0] RegSrc,

 output logic RegWrite,

 output logic [1:0] ImmSrc,

 output logic ALUSrc,

 output logic [2:0] ALUControl, // ADC

 output logic MemWrite, MemtoReg,

 output logic PCSrc,

 output logic carry, // ADC

 output logic Shift); // LSL

 logic [1:0] FlagW;

 logic PCS, RegW, MemW;

 logic NoWrite; // TST, CMN

 decoder dec(Instr[27:26], Instr[25:20], Instr[15:12],

 FlagW, PCS, RegW, MemW,

 MemtoReg, ALUSrc, ImmSrc, RegSrc, ALUControl,

 NoWrite, // TST, CMN

281 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Shift); // LSL

 condlogic cl(clk, reset, Instr[31:28], ALUFlags,

 FlagW, PCS, RegW, MemW,

 PCSrc, RegWrite, MemWrite,

 carry, // ADC

 NoWrite); // TST, CMN

endmodule

module decoder(input logic [1:0] Op,

 input logic [5:0] Funct,

 input logic [3:0] Rd,

 output logic [1:0] FlagW,

 output logic PCS, RegW, MemW,

 output logic MemtoReg, ALUSrc,

 output logic [1:0] ImmSrc, RegSrc,

 output logic [2:0] ALUControl, // ADC

 output logic NoWrite, // TST, CMN

 output logic Shift); // LSL

 logic [9:0] controls;

 logic Branch, ALUOp;

 // Main Decoder

 always_comb

 case(Op)

 // Data processing immediate

 2'b00: if (Funct[5]) controls = 10'b0000101001;

 // Data processing register

 else controls = 10'b0000001001;

 // LDR

 2'b01: if (Funct[0]) controls = 10'b0001111000;

 // STR

 else controls = 10'b1001110100;

 // B

 2'b10: controls = 10'b0110100010;

 // Unimplemented

 default: controls = 10'bx;

 endcase

 assign {RegSrc, ImmSrc, ALUSrc, MemtoReg,

 RegW, MemW, Branch, ALUOp} = controls;

 // ALU Decoder

 always_comb

 if (ALUOp) begin // which DP Instr?

 case(Funct[4:1])

 4'b0100: begin // ADD

 ALUControl = 3'b000;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b0010: begin // SUB

 ALUControl = 3'b001;

 NoWrite = 1'b0;

282 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Shift = 1'b0;

 end

 4'b0000: begin // AND

 ALUControl = 3'b010;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b1100: begin // OR

 ALUControl = 3'b011;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b1000: begin // TST

 ALUControl = 3'b010;

 NoWrite = 1'b1;

 Shift = 1'b0;

 end

 4'b1101: begin // LSL

 ALUControl = 3'b000;

 NoWrite = 1'b0;

 Shift = 1'b1;

 end

 4'b1011: begin // CMN

 ALUControl = 3'b000;

 NoWrite = 1'b1;

 Shift = 1'b0;

 end

 4'b0101: begin // ADC

 ALUControl = 3'b100;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 default: begin // unimplemented

 ALUControl = 3'bx;

 NoWrite = 1'bx;

 Shift = 1'bx;

 end

 endcase

 // update flags if S bit is set

 // (C & V only updated for arith instructions)

 FlagW[1] = Funct[0]; // FlagW[1] = S-bit

 // FlagW[0] = S-bit & (ADD | SUB)

 FlagW[0] = Funct[0] &

 (ALUControl[1:0] == 2'b00 | ALUControl[1:0] == 2'b01);

 end else begin

 ALUControl = 3'b000; // add for non-DP instructions

 FlagW = 2'b00; // don't update Flags

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

283 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // PC Logic

 assign PCS = ((Rd == 4'b1111) & RegW) | Branch;

endmodule

module condlogic(input logic clk, reset,

 input logic [3:0] Cond,

 input logic [3:0] ALUFlags,

 input logic [1:0] FlagW,

 input logic PCS, RegW, MemW,

 output logic PCSrc, RegWrite, MemWrite,

 output logic carry, // ADC

 input logic NoWrite); // TST, CMN

 logic [1:0] FlagWrite;

 logic [3:0] Flags;

 logic CondEx;

 flopenr #(2)flagreg1(clk, reset, FlagWrite[1],

 ALUFlags[3:2], Flags[3:2]);

 flopenr #(2)flagreg0(clk, reset, FlagWrite[0],

 ALUFlags[1:0], Flags[1:0]);

 // write controls are conditional

 condcheck cc(Cond, Flags, CondEx);

 assign FlagWrite = FlagW & {2{CondEx}};

 assign RegWrite = RegW & CondEx & ~NoWrite; // TST, CMN

 assign MemWrite = MemW & CondEx;

 assign PCSrc = PCS & CondEx;

 assign carry = Flags[1]; // ADC

endmodule

module condcheck(input logic [3:0] Cond,

 input logic [3:0] Flags,

 output logic CondEx);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

 assign ge = (neg == overflow);

 always_comb

 case(Cond)

 4'b0000: CondEx = zero; // EQ

 4'b0001: CondEx = ~zero; // NE

 4'b0010: CondEx = carry; // CS

 4'b0011: CondEx = ~carry; // CC

 4'b0100: CondEx = neg; // MI

 4'b0101: CondEx = ~neg; // PL

 4'b0110: CondEx = overflow; // VS

 4'b0111: CondEx = ~overflow; // VC

 4'b1000: CondEx = carry & ~zero; // HI

 4'b1001: CondEx = ~(carry & ~zero); // LS

284 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 4'b1010: CondEx = ge; // GE

 4'b1011: CondEx = ~ge; // LT

 4'b1100: CondEx = ~zero & ge; // GT

 4'b1101: CondEx = ~(~zero & ge); // LE

 4'b1110: CondEx = 1'b1; // Always

 default: CondEx = 1'bx; // undefined

 endcase

endmodule

module datapath(input logic clk, reset,

 input logic [1:0] RegSrc,

 input logic RegWrite,

 input logic [1:0] ImmSrc,

 input logic ALUSrc,

 input logic [2:0] ALUControl, // ADC

 input logic MemtoReg,

 input logic PCSrc,

 output logic [3:0] ALUFlags,

 output logic [31:0] PC,

 input logic [31:0] Instr,

 output logic [31:0] ALUResultOut, // LSL

 output logic [31:0] WriteData,

 input logic [31:0] ReadData,

 input logic carry, // ADC

 input logic Shift); // LSL

 logic [31:0] PCNext, PCPlus4, PCPlus8;

 logic [31:0] ExtImm, SrcA, SrcB, Result;

 logic [3:0] RA1, RA2;

 logic [31:0] srcBshifted, ALUResult; // LSL

 // next PC logic

 mux2 #(32) pcmux(PCPlus4, Result, PCSrc, PCNext);

 flopr #(32) pcreg(clk, reset, PCNext, PC);

 adder #(32) pcadd1(PC, 32'b100, PCPlus4);

 adder #(32) pcadd2(PCPlus4, 32'b100, PCPlus8);

 // register file logic

 mux2 #(4) ra1mux(Instr[19:16], 4'b1111, RegSrc[0], RA1);

 mux2 #(4) ra2mux(Instr[3:0], Instr[15:12], RegSrc[1], RA2);

 regfile rf(clk, RegWrite, RA1, RA2,

 Instr[15:12], Result, PCPlus8,

 SrcA, WriteData);

 mux2 #(32) resmux(ALUResultOut, ReadData, MemtoReg, Result);

 extend ext(Instr[23:0], ImmSrc, ExtImm);

 // ALU logic

 shifter sh(WriteData, Instr[11:7], Instr[6:5], srcBshifted); // LSL

 mux2 #(32) srcbmux(srcBshifted, ExtImm, ALUSrc, SrcB); // LSL

 alu alu(SrcA, SrcB, ALUControl,

 ALUResult, ALUFlags,

 carry); // ADC

 mux2 #(32) aluresultmux(ALUResult, SrcB, Shift, ALUResultOut); // LSL

285 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule

module regfile(input logic clk,

 input logic we3,

 input logic [3:0] ra1, ra2, wa3,

 input logic [31:0] wd3, r15,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[14:0];

 // three ported register file

 // read two ports combinationally

 // write third port on rising edge of clock

 // register 15 reads PC+8 instead

 always_ff @(posedge clk)

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];

 assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

module extend(input logic [23:0] Instr,

 input logic [1:0] ImmSrc,

 output logic [31:0] ExtImm);

 always_comb

 case(ImmSrc)

 // 8-bit unsigned immediate

 2'b00: ExtImm = {24'b0, Instr[7:0]};

 // 12-bit unsigned immediate

 2'b01: ExtImm = {20'b0, Instr[11:0]};

 // 24-bit two's complement shifted branch

 2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};

 default: ExtImm = 32'bx; // undefined

 endcase

endmodule

module adder #(parameter WIDTH=8)

 (input logic [WIDTH-1:0] a, b,

 output logic [WIDTH-1:0] y);

 assign y = a + b;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic clk, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (en) q <= d;

endmodule

286 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

module flopr #(parameter WIDTH = 8)

 (input logic clk, reset,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;

endmodule

module alu(input logic [31:0] a, b,

 input logic [2:0] ALUControl, // ADC

 output logic [31:0] Result,

 output logic [3:0] ALUFlags,

 input logic carry); // ADC

 logic neg, zero, carryout, overflow;

 logic [31:0] condinvb;

 logic [32:0] sum;

 logic carryin; // ADC

 assign carryin = ALUControl[2] ? carry : ALUControl[0]; // ADC

 assign condinvb = ALUControl[0] ? ~b : b;

 assign sum = a + condinvb + carryin; // ADC

 always_comb

 casex (ALUControl[1:0])

 2'b0?: Result = sum;

 2'b10: Result = a & b;

 2'b11: Result = a | b;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carryout = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) &

 ~(a[31] ^ b[31] ^ ALUControl[0]) &

 (a[31] ^ sum[31]);

 assign ALUFlags = {neg, zero, carryout, overflow};

endmodule

// shifter needed for LSL

module shifter(input logic [31:0] a,

 input logic [4:0] shamt,

287 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 input logic [1:0] shtype,

 output logic [31:0] y);

 always_comb

 case (shtype)

 2'b00: y = a << shamt;

 default: y = a;

 endcase

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is

end;

architecture test of testbench is

 component top

 port(clk, reset: in STD_LOGIC;

 WriteData, DatAadr: out STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC);

 end component;

 signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);

 signal clk, reset, MemWrite: STD_LOGIC;

begin

 -- instantiate device to be tested

 dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

 -- Generate clock with 10 ns period

 process begin

 clk <= '1';

 wait for 5 ns;

 clk <= '0';

 wait for 5 ns;

 end process;

 -- Generate reset for first two clock cycles

 process begin

 reset <= '1';

 wait for 22 ns;

 reset <= '0';

 wait;

 end process;

 -- check that 0x80000001 gets written to address 20

 -- at end of program

 process (clk) begin

 if (clk'event and clk = '0' and MemWrite = '1') then

 if (to_integer(DataAdr) = 20 and

 to_integer(WriteData) = 2) then

 report "NO ERRORS: Simulation succeeded" severity failure;

 else

288 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 report "Simulation failed" severity failure;

 end if;

 end if;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is -- top-level design for testing

 port(clk, reset: in STD_LOGIC;

 WriteData, DataAdr: buffer STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: buffer STD_LOGIC);

end;

architecture test of top is

 component arm

 port(clk, reset: in STD_LOGIC;

 PC: out STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC;

 ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component imem

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component dmem

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal PC, Instr,

 ReadData: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- instantiate processor and memories

 i_arm: arm port map(clk, reset, PC, Instr, MemWrite, DataAdr,

 WriteData, ReadData);

 i_imem: imem port map(PC, Instr);

 i_dmem: dmem port map(clk, MemWrite, DataAdr,

 WriteData, ReadData);

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is -- data memory

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of dmem is

begin

289 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 process is

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable mem: ramtype;

 begin -- read or write memory

 loop

 if clk'event and clk = '1' then

 if (we = '1') then

 mem(to_integer(a(7 downto 2))) := wd;

 end if;

 end if;

 rd <= mem(to_integer(a(7 downto 2)));

 wait on clk, a;

 end loop;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity imem is -- instruction memory

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of imem is -- instruction memory

begin

 process is

 file mem_file: TEXT;

 variable L: line;

 variable ch: character;

 variable i, index, result: integer;

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable mem: ramtype;

 begin

 -- initialize memory from file

 for i in 0 to 63 loop -- set all contents low

 mem(i) := (others => '0');

 end loop;

 index := 0;

 FILE_OPEN(mem_file, "ex7.9_memfile.dat", READ_MODE);

 while not endfile(mem_file) loop

 readline(mem_file, L);

 result := 0;

 for i in 1 to 8 loop

 read(L, ch);

 if '0' <= ch and ch <= '9' then

 result := character'pos(ch) - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 result := character'pos(ch) - character'pos('a')+10;

 elsif 'A' <= ch and ch <= 'F' then

 result := character'pos(ch) - character'pos('A')+10;

 else report "Format error on line " & integer'image(index)

 severity error;

290 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end if;

 mem(index)(35-i*4 downto 32-i*4) :=

 to_std_logic_vector(result,4);

 end loop;

 index := index + 1;

 end loop;

 -- read memory

 loop

 rd <= mem(to_integer(a(7 downto 2)));

 wait on a;

 end loop;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is -- single cycle processor

 port(clk, reset: in STD_LOGIC;

 PC: out STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC;

 ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is

 component controller

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: out STD_LOGIC;

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: out STD_LOGIC;

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- ADC

 MemWrite: out STD_LOGIC;

 MemtoReg: out STD_LOGIC;

 PCSrc: out STD_LOGIC;

 carry: out STD_LOGIC; -- ADC

 Shift: out STD_LOGIC); -- LSL

 end component;

 component datapath

 port(clk, reset: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: in STD_LOGIC;

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: in STD_LOGIC;

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- ADC

 MemtoReg: in STD_LOGIC;

 PCSrc: in STD_LOGIC;

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PC: buffer STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 ALUResultOut: buffer STD_LOGIC_VECTOR(31 downto 0); -- LSL

291 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 WriteData: buffer STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 carry: in STD_LOGIC; -- ADC

 Shift: in STD_LOGIC); -- LSL

 end component;

 signal ALUFlags: STD_LOGIC_VECTOR(3 downto 0);

 signal RegWrite, ALUSrc, MemtoReg, PCSrc: STD_LOGIC;

 signal RegSrc, ImmSrc: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUControl: STD_LOGIC_VECTOR(2 downto 0); -- ADC

 signal carry: STD_LOGIC; -- ADC

 signal Shift: STD_LOGIC; -- LSL

begin

 cont: controller port map(clk, reset, Instr(31 downto 12),

 ALUFlags, RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl, MemWrite,

 MemtoReg, PCSrc,

 carry, -- ADC

 Shift); -- LSL

 dp: datapath port map(clk, reset, RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl, MemtoReg, PCSrc,

 ALUFlags, PC, Instr, ALUResult,

 WriteData, ReadData,

 carry, -- ADC

 Shift); -- LSL

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is -- single cycle control decoder

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: out STD_LOGIC;

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: out STD_LOGIC;

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- ADC

 MemWrite: out STD_LOGIC;

 MemtoReg: out STD_LOGIC;

 PCSrc: out STD_LOGIC;

 carry: out STD_LOGIC; -- ADC

 Shift: out STD_LOGIC); -- LSL

end;

architecture struct of controller is

 component decoder

 port(Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: out STD_LOGIC;

 MemtoReg, ALUSrc: out STD_LOGIC;

 ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- ADC

 NoWrite: out STD_LOGIC; -- TST, CMN

292 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Shift: out STD_LOGIC); -- LSL

 end component;

 component condlogic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: in STD_LOGIC;

 PCSrc, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 carry: out STD_LOGIC; -- ADC

 NoWrite: in STD_LOGIC); -- TST, CMN

 end component;

 signal FlagW: STD_LOGIC_VECTOR(1 downto 0);

 signal PCS, RegW, MemW: STD_LOGIC;

 signal NoWrite: STD_LOGIC; -- TST, CMN

begin

 dec: decoder port map(Instr(27 downto 26), Instr(25 downto 20),

 Instr(15 downto 12), FlagW, PCS,

 RegW, MemW, MemtoReg, ALUSrc, ImmSrc,

 RegSrc, ALUControl,

 NoWrite, -- TST, CMN

 Shift); -- LSL

 cl: condlogic port map(clk, reset, Instr(31 downto 28),

 ALUFlags, FlagW, PCS, RegW, MemW,

 PCSrc, RegWrite, MemWrite,

 carry, -- ADC

 NoWrite); -- TST, CMN

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder is -- main control decoder

 port(Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: out STD_LOGIC;

 MemtoReg, ALUSrc: out STD_LOGIC;

 ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- ADC

 NoWrite: out STD_LOGIC; -- TST, CMN

 Shift: out STD_LOGIC); -- LSL

end;

architecture behave of decoder is

 signal controls: STD_LOGIC_VECTOR(9 downto 0);

 signal ALUOp, Branch: STD_LOGIC;

 signal op2: STD_LOGIC_VECTOR(3 downto 0);

begin

 op2 <= (Op, Funct(5), Funct(0));

 process(all) begin -- Main Decoder

 case? (op2) is

 when "000-" => controls <= "0000001001";

 when "001-" => controls <= "0000101001";

293 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 when "01-0" => controls <= "1001110100";

 when "01-1" => controls <= "0001111000";

 when "10--" => controls <= "0110100010";

 when others => controls <= "----------";

 end case?;

 end process;

 (RegSrc, ImmSrc, ALUSrc, MemtoReg, RegW, MemW,

 Branch, ALUOp) <= controls;

 process(all) begin -- ALU Decoder

 if (ALUOp) then

 case Funct(4 downto 1) is

 when "0100" => ALUControl <= "000"; -- ADD

 NoWrite <= '0';

 Shift <= '0';

 when "0010" => ALUControl <= "001"; -- SUB

 NoWrite <= '0';

 Shift <= '0';

 when "0000" => ALUControl <= "010"; -- AND

 NoWrite <= '0';

 Shift <= '0';

 when "1100" => ALUControl <= "011"; -- ORR

 NoWrite <= '0';

 Shift <= '0';

 when "1000" => ALUControl <= "010"; -- TST

 NoWrite <= '1';

 Shift <= '0';

 when "1101" => ALUControl <= "000"; -- LSL

 NoWrite <= '0';

 Shift <= '1';

 when "1011" => ALUControl <= "000"; -- CMN

 NoWrite <= '1';

 Shift <= '0';

 when "0101" => ALUControl <= "100"; -- ADC

 NoWrite <= '0';

 Shift <= '0';

 when others => ALUControl <= "---"; -- unimplemented

 NoWrite <= '-';

 Shift <= '-';

 end case;

 FlagW(1) <= Funct(0);

 FlagW(0) <= Funct(0) and (not ALUControl(1));

 else

 ALUControl <= "000";

 NoWrite <= '0';

 Shift <= '0';

 FlagW <= "00";

 end if;

 end process;

 PCS <= ((and Rd) and RegW) or Branch;

end;

294 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is -- Conditional logic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: in STD_LOGIC;

 PCSrc, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 carry: out STD_LOGIC; -- ADC

 NoWrite: in STD_LOGIC); -- TST, CMN

end;

architecture behave of condlogic is

 component condcheck

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 signal FlagWrite: STD_LOGIC_VECTOR(1 downto 0);

 signal Flags: STD_LOGIC_VECTOR(3 downto 0);

 signal CondEx: STD_LOGIC;

begin

 flagreg1: flopenr generic map(2)

 port map(clk, reset, FlagWrite(1),

 ALUFlags(3 downto 2), Flags(3 downto 2));

 flagreg0: flopenr generic map(2)

 port map(clk, reset, FlagWrite(0),

 ALUFlags(1 downto 0), Flags(1 downto 0));

 cc: condcheck port map(Cond, Flags, CondEx);

 FlagWrite <= FlagW and (CondEx, CondEx);

 RegWrite <= RegW and CondEx and (not NoWrite); -- TST, CMN

 MemWrite <= MemW and CondEx;

 PCSrc <= PCS and CondEx;

 carry <= Flags(1); -- ADC

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condcheck is

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

end;

architecture behave of condcheck is

 signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin

295 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 (neg, zero, carry, overflow) <= Flags;

 ge <= (neg xnor overflow);

 process(all) begin -- Condition checking

 case Cond is

 when "0000" => CondEx <= zero;

 when "0001" => CondEx <= not zero;

 when "0010" => CondEx <= carry;

 when "0011" => CondEx <= not carry;

 when "0100" => CondEx <= neg;

 when "0101" => CondEx <= not neg;

 when "0110" => CondEx <= overflow;

 when "0111" => CondEx <= not overflow;

 when "1000" => CondEx <= carry and (not zero);

 when "1001" => CondEx <= not(carry and (not zero));

 when "1010" => CondEx <= ge;

 when "1011" => CondEx <= not ge;

 when "1100" => CondEx <= (not zero) and ge;

 when "1101" => CondEx <= not ((not zero) and ge);

 when "1110" => CondEx <= '1';

 when others => CondEx <= '-';

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity datapath is

 port(clk, reset: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: in STD_LOGIC;

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: in STD_LOGIC;

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- ADC

 MemtoReg: in STD_LOGIC;

 PCSrc: in STD_LOGIC;

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PC: buffer STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 ALUResultOut: buffer STD_LOGIC_VECTOR(31 downto 0); -- LSL

 WriteData: buffer STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 carry: in STD_LOGIC; -- ADC

 Shift: in STD_LOGIC); -- LSL

end;

architecture struct of datapath is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- ADC

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 carry: in STD_LOGIC); -- ADC

 end component;

 component regfile

296 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component extend

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux2 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component shifter -- LSL

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 shamt: in STD_LOGIC_VECTOR(4 downto 0);

 shtype: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal PCNext, PCPlus4, PCPlus8: STD_LOGIC_VECTOR(31 downto 0);

 signal ExtImm, Result: STD_LOGIC_VECTOR(31 downto 0);

 signal SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);

 signal RA1, RA2: STD_LOGIC_VECTOR(3 downto 0);

 signal srcBshifted, ALUResult: STD_LOGIC_VECTOR(31 downto 0); -- LSL

begin

 -- next PC logic

 pcmux: mux2 generic map(32)

 port map(PCPlus4, Result, PCSrc, PCNext);

 pcreg: flopr generic map(32) port map(clk, reset, PCNext, PC);

 pcadd1: adder port map(PC, X"00000004", PCPlus4);

 pcadd2: adder port map(PCPlus4, X"00000004", PCPlus8);

 -- register file logic

 ra1mux: mux2 generic map (4)

 port map(Instr(19 downto 16), "1111", RegSrc(0), RA1);

 ra2mux: mux2 generic map (4) port map(Instr(3 downto 0),

 Instr(15 downto 12), RegSrc(1), RA2);

 rf: regfile port map(clk, RegWrite, RA1, RA2,

 Instr(15 downto 12), Result,

 PCPlus8, SrcA, WriteData);

 resmux: mux2 generic map(32)

297 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 port map(ALUResult, ReadData, MemtoReg, Result);

 ext: extend port map(Instr(23 downto 0), ImmSrc, ExtImm);

 -- ALU logic

 sh: shifter port map(WriteData, Instr(11 downto 7), Instr(6 downto 5),

srcBshifted); -- LSL

 srcbmux: mux2 generic map(32)

 port map(srcBshifted, ExtImm, ALUSrc, SrcB); -- LSL

 i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags,

 carry); -- ADC

 aluresultmux: mux2 generic map(32)

 port map(ALUResult, SrcB, Shift, ALUResultOut); -- LSL

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is -- three-port register file

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is

 type ramtype is array (31 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 signal mem: ramtype;

begin

 process(clk) begin

 if rising_edge(clk) then

 if we3 = '1' then mem(to_integer(wa3)) <= wd3;

 end if;

 end if;

 end process;

 process(all) begin

 if (to_integer(ra1) = 15) then rd1 <= r15;

 else rd1 <= mem(to_integer(ra1));

 end if;

 if (to_integer(ra2) = 15) then rd2 <= r15;

 else rd2 <= mem(to_integer(ra2));

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is -- adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is

begin

298 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 y <= a + b;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity extend is

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is

begin

 process(all) begin

 case ImmSrc is

 when "00" => ExtImm <= (X"000000", Instr(7 downto 0));

 when "01" => ExtImm <= (X"00000", Instr(11 downto 0));

 when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

 Instr(23), Instr(23), Instr(23), Instr(23 downto 0), "00");

 when others => ExtImm <= X"--------";

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is -- flip-flop with enable and asynchronous reset

 generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is -- flip-flop with asynchronous reset

 generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is

begin

 process(clk, reset) begin

299 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 q <= d;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is -- two-input multiplexer

 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is

begin

 y <= d1 when s else d0;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- ADC

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 carry: in STD_LOGIC); -- ADC

end;

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal neg, zero, carryout, overflow: STD_LOGIC;

 signal carryin: STD_LOGIC; -- ADC

begin

 carryin <= carry when ALUControl(2) else ALUControl(0); -- ADC

 condinvb <= not b when ALUControl(0) else b;

 sum <= ('0', a) + ('0', condinvb) + carryin; -- ADC

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and b;

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carryout <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

300 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carryout, overflow);

end;

-- shifter needed for LSL

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity shifter is

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 shamt: in STD_LOGIC_VECTOR(4 downto 0);

 shtype: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of shifter is

begin

 process (all) begin

 case shtype is

 when "00" => y <= TO_STDLOGICVECTOR(TO_BITVECTOR(a) sll

TO_INTEGER(shamt));

 when others => y <= a;

 end case;

 end process;

end;

Test ARM assembly code:
; If successful, it should write the value 2 to address 20

MAIN

 SUB R3, PC, PC ; R3 = 0

 ADD R3, R3, #1 ; R3 = 0x1

 LSL R3, R3, #30 ; R3 = 0x80000000

 ADD R4, R3, #1 ; R4 = 0x80000001

 CMN R3, R4 ; set flags according to R3+R4: NZCV=0011

 ADC R3, R3, #5 ; R3 = 0x80000006

 TST R3, R4 ; set NZ flags according to R3&R4: NZCV=1011

 LSL R3, R3, #1 ; R3 = 0x0000000c

 LSL R4, R4, #1 ; R4 = 0x00000002

 STRVC R4, [R3, #4] ; mem[16]<=0x2 if V=0:

 ; shouldn't happen

 STRVS R4, [R3, #8] ; mem[20]<=0x2 if V=1: should happen

; E04F300F SUB R3,PC,PC

; E2833001 ADD R3,R3,#0x00000001

; E1A03F83 LSL R3,R3,#31

; E2834001 ADD R4,R3,#0x00000001

; E1730004 CMN R3,R4

; E2A33005 ADC R3,R3,#0x00000005

; E1130004 TST R3,R4

; E1A03083 LSL R3,R3,#1

; E1A04084 LSL R4,R4,#1

301 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

; 75834004 STRVC R4,[R3,#0x0004]

; 65834008 STRVS R4,[R3,#0x0008]

ex7.9_memfile.dat
E04F300F

E2833001

E1A03F83

E2834001

E1730004

E2A33005

E1130004

E1A03083

E1A04084

75834004

65834008

Exercise 7.10

SystemVerilog
// ex7.10 solutions

//

// single-cycle ARM processor

// additional instructions: EOR, LSR, TEQ, RSB

module testbench();

 logic clk;

 logic reset;

 logic [31:0] WriteData, DataAdr;

 logic MemWrite;

 // instantiate device to be tested

 top dut(clk, reset, WriteData, DataAdr, MemWrite);

 // initialize test

 initial

 begin

 reset <= 1; # 22; reset <= 0;

 end

 // generate clock to sequence tests

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if(MemWrite) begin

 if(DataAdr === 12 & WriteData === 32'h7a) begin

302 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 $display("Simulation succeeded");

 $stop;

 end else if (DataAdr !== 16) begin

 $display("Simulation failed");

 $stop;

 end

 end

 end

endmodule

module top(input logic clk, reset,

 output logic [31:0] WriteData, DataAdr,

 output logic MemWrite);

 logic [31:0] PC, Instr, ReadData;

 // instantiate processor and memories

 arm arm(clk, reset, PC, Instr, MemWrite, DataAdr,

 WriteData, ReadData);

 imem imem(PC, Instr);

 dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);

endmodule

module dmem(input logic clk, we,

 input logic [31:0] a, wd,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 assign rd = RAM[a[31:2]]; // word aligned

 always_ff @(posedge clk)

 if (we) RAM[a[31:2]] <= wd;

endmodule

module imem(input logic [31:0] a,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 initial

 $readmemh("ex7.10_memfile.dat",RAM);

 assign rd = RAM[a[31:2]]; // word aligned

endmodule

module arm(input logic clk, reset,

 output logic [31:0] PC,

 input logic [31:0] Instr,

 output logic MemWrite,

 output logic [31:0] ALUResult, WriteData,

 input logic [31:0] ReadData);

 logic [3:0] ALUFlags;

303 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 logic RegWrite,

 ALUSrc, MemtoReg, PCSrc;

 logic [1:0] RegSrc, ImmSrc;

 logic [2:0] ALUControl; // EOR, RSB

 logic Shift; // LSR

 controller c(clk, reset, Instr[31:12], ALUFlags,

 RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl,

 MemWrite, MemtoReg, PCSrc,

 Shift); // LSR

 datapath dp(clk, reset,

 RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl,

 MemtoReg, PCSrc,

 ALUFlags, PC, Instr,

 ALUResult, WriteData, ReadData,

 Shift); // LSR

endmodule

module controller(input logic clk, reset,

 input logic [31:12] Instr,

 input logic [3:0] ALUFlags,

 output logic [1:0] RegSrc,

 output logic RegWrite,

 output logic [1:0] ImmSrc,

 output logic ALUSrc,

 output logic [2:0] ALUControl, // EOR, RSB

 output logic MemWrite, MemtoReg,

 output logic PCSrc,

 output logic Shift); // LSR

 logic [1:0] FlagW;

 logic PCS, RegW, MemW;

 logic NoWrite; // TEQ

 decoder dec(Instr[27:26], Instr[25:20], Instr[15:12],

 FlagW, PCS, RegW, MemW,

 MemtoReg, ALUSrc, ImmSrc, RegSrc, ALUControl,

 NoWrite, // TEQ

 Shift); // LSR

 condlogic cl(clk, reset, Instr[31:28], ALUFlags,

 FlagW, PCS, RegW, MemW,

 PCSrc, RegWrite, MemWrite,

 NoWrite); // TEQ

endmodule

module decoder(input logic [1:0] Op,

 input logic [5:0] Funct,

 input logic [3:0] Rd,

 output logic [1:0] FlagW,

 output logic PCS, RegW, MemW,

 output logic MemtoReg, ALUSrc,

 output logic [1:0] ImmSrc, RegSrc,

304 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 output logic [2:0] ALUControl, // EOR, RSB

 output logic NoWrite, // TEQ

 output logic Shift); // LSR

 logic [9:0] controls;

 logic Branch, ALUOp;

 // Main Decoder

 always_comb

 case(Op)

 // Data processing immediate

 2'b00: if (Funct[5]) controls = 10'b0000101001;

 // Data processing register

 else controls = 10'b0000001001;

 // LDR

 2'b01: if (Funct[0]) controls = 10'b0001111000;

 // STR

 else controls = 10'b1001110100;

 // B

 2'b10: controls = 10'b0110100010;

 // Unimplemented

 default: controls = 10'bx;

 endcase

 assign {RegSrc, ImmSrc, ALUSrc, MemtoReg,

 RegW, MemW, Branch, ALUOp} = controls;

 // ALU Decoder

 always_comb

 if (ALUOp) begin // which DP Instr?

 case(Funct[4:1])

 4'b0100: begin // ADD

 ALUControl = 3'b000;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b0010: begin // SUB

 ALUControl = 3'b001;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b0000: begin // AND

 ALUControl = 3'b010;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b1100: begin // OR

 ALUControl = 3'b011;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 4'b0001: begin // EOR

 ALUControl = 3'b110;

 NoWrite = 1'b0;

305 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Shift = 1'b0;

 end

 4'b1001: begin // TEQ

 ALUControl = 3'b110;

 NoWrite = 1'b1;

 Shift = 1'b0;

 end

 4'b1101: begin // LSR

 ALUControl = 3'b000;

 NoWrite = 1'b0;

 Shift = 1'b1;

 end

 4'b0011: begin // RSB

 ALUControl = 3'b100;

 NoWrite = 1'b0;

 Shift = 1'b0;

 end

 default: begin // unimplemented

 ALUControl = 3'bx;

 NoWrite = 1'bx;

 Shift = 1'bx;

 end

 endcase

 // update flags if S bit is set

 // (C & V only updated for arith instructions)

 FlagW[1] = Funct[0]; // FlagW[1] = S-bit

 // FlagW[0] = S-bit & (ADD | SUB)

 FlagW[0] = Funct[0] &

 (ALUControl[1:0] == 2'b00 | ALUControl[1:0] == 2'b01);

 end else begin

 ALUControl = 3'b000; // add for non-DP instructions

 FlagW = 2'b00; // don't update Flags

 end

 // PC Logic

 assign PCS = ((Rd == 4'b1111) & RegW) | Branch;

endmodule

module condlogic(input logic clk, reset,

 input logic [3:0] Cond,

 input logic [3:0] ALUFlags,

 input logic [1:0] FlagW,

 input logic PCS, RegW, MemW,

 output logic PCSrc, RegWrite, MemWrite,

 input logic NoWrite); // TEQ

 logic [1:0] FlagWrite;

 logic [3:0] Flags;

 logic CondEx;

306 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 flopenr #(2)flagreg1(clk, reset, FlagWrite[1],

 ALUFlags[3:2], Flags[3:2]);

 flopenr #(2)flagreg0(clk, reset, FlagWrite[0],

 ALUFlags[1:0], Flags[1:0]);

 // write controls are conditional

 condcheck cc(Cond, Flags, CondEx);

 assign FlagWrite = FlagW & {2{CondEx}};

 assign RegWrite = RegW & CondEx & ~NoWrite; // TEQ

 assign MemWrite = MemW & CondEx;

 assign PCSrc = PCS & CondEx;

endmodule

module condcheck(input logic [3:0] Cond,

 input logic [3:0] Flags,

 output logic CondEx);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

 assign ge = (neg == overflow);

 always_comb

 case(Cond)

 4'b0000: CondEx = zero; // EQ

 4'b0001: CondEx = ~zero; // NE

 4'b0010: CondEx = carry; // CS

 4'b0011: CondEx = ~carry; // CC

 4'b0100: CondEx = neg; // MI

 4'b0101: CondEx = ~neg; // PL

 4'b0110: CondEx = overflow; // VS

 4'b0111: CondEx = ~overflow; // VC

 4'b1000: CondEx = carry & ~zero; // HI

 4'b1001: CondEx = ~(carry & ~zero); // LS

 4'b1010: CondEx = ge; // GE

 4'b1011: CondEx = ~ge; // LT

 4'b1100: CondEx = ~zero & ge; // GT

 4'b1101: CondEx = ~(~zero & ge); // LE

 4'b1110: CondEx = 1'b1; // Always

 default: CondEx = 1'bx; // undefined

 endcase

endmodule

module datapath(input logic clk, reset,

 input logic [1:0] RegSrc,

 input logic RegWrite,

 input logic [1:0] ImmSrc,

 input logic ALUSrc,

 input logic [2:0] ALUControl, // EOR, RSB

 input logic MemtoReg,

 input logic PCSrc,

 output logic [3:0] ALUFlags,

 output logic [31:0] PC,

307 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 input logic [31:0] Instr,

 output logic [31:0] ALUResultOut, WriteData, // LSR

 input logic [31:0] ReadData,

 input logic Shift); // LSR

 logic [31:0] PCNext, PCPlus4, PCPlus8;

 logic [31:0] ExtImm, SrcA, SrcB, Result;

 logic [3:0] RA1, RA2;

 logic [31:0] srcBshifted, ALUResult; // LSR

 // next PC logic

 mux2 #(32) pcmux(PCPlus4, Result, PCSrc, PCNext);

 flopr #(32) pcreg(clk, reset, PCNext, PC);

 adder #(32) pcadd1(PC, 32'b100, PCPlus4);

 adder #(32) pcadd2(PCPlus4, 32'b100, PCPlus8);

 // register file logic

 mux2 #(4) ra1mux(Instr[19:16], 4'b1111, RegSrc[0], RA1);

 mux2 #(4) ra2mux(Instr[3:0], Instr[15:12], RegSrc[1], RA2);

 regfile rf(clk, RegWrite, RA1, RA2,

 Instr[15:12], Result, PCPlus8,

 SrcA, WriteData);

 mux2 #(32) resmux(ALUResultOut, ReadData, MemtoReg, Result);

 extend ext(Instr[23:0], ImmSrc, ExtImm);

 // ALU logic

 shifter sh(WriteData, Instr[11:7], Instr[6:5], srcBshifted); // LSR

 mux2 #(32) srcbmux(srcBshifted, ExtImm, ALUSrc, SrcB); // LSR

 alu alu(SrcA, SrcB, ALUControl,

 ALUResult, ALUFlags);

 mux2 #(32) aluresultmux(ALUResult, SrcB, Shift, ALUResultOut); // LSR

endmodule

module regfile(input logic clk,

 input logic we3,

 input logic [3:0] ra1, ra2, wa3,

 input logic [31:0] wd3, r15,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[14:0];

 // three ported register file

 // read two ports combinationally

 // write third port on rising edge of clock

 // register 15 reads PC+8 instead

 always_ff @(posedge clk)

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];

 assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

308 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

module extend(input logic [23:0] Instr,

 input logic [1:0] ImmSrc,

 output logic [31:0] ExtImm);

 always_comb

 case(ImmSrc)

 // 8-bit unsigned immediate

 2'b00: ExtImm = {24'b0, Instr[7:0]};

 // 12-bit unsigned immediate

 2'b01: ExtImm = {20'b0, Instr[11:0]};

 // 24-bit two's complement shifted branch

 2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};

 default: ExtImm = 32'bx; // undefined

 endcase

endmodule

module adder #(parameter WIDTH=8)

 (input logic [WIDTH-1:0] a, b,

 output logic [WIDTH-1:0] y);

 assign y = a + b;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic clk, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (en) q <= d;

endmodule

module flopr #(parameter WIDTH = 8)

 (input logic clk, reset,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;

endmodule

module alu(input logic [31:0] a, b,

 input logic [2:0] ALUControl, // EOR, RSB

 output logic [31:0] Result,

309 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 output logic [3:0] ALUFlags);

 logic neg, zero, carry, overflow;

 logic [31:0] condinvb;

 logic [31:0] condinva; // RSB

 logic [32:0] sum;

 logic carryin; // RSB

 assign carryin = ALUControl[2] | ALUControl[0]; // RSB

 assign condinvb = ALUControl[0] ? ~b : b;

 assign condinva = ALUControl[2] ? ~a : a; // RSB

 assign sum = condinva + condinvb + carryin; // RSB

 always_comb

 casex (ALUControl)

 3'b00?: Result = sum;

 3'b010: Result = a & b;

 3'b011: Result = a | b;

 3'b110: Result = a ^ b;

 default: Result = 32'bx;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carry = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) &

 ~(a[31] ^ b[31] ^ ALUControl[0]) &

 (a[31] ^ sum[31]);

 assign ALUFlags = {neg, zero, carry, overflow};

endmodule

// shifter needed for LSR

module shifter(input logic [31:0] a,

 input logic [4:0] shamt,

 input logic [1:0] shtype,

 output logic [31:0] y);

 always_comb

 case (shtype)

 2'b01: y = a >> shamt;

 default: y = a;

 endcase

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is

end;

architecture test of testbench is

 component top

310 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 port(clk, reset: in STD_LOGIC;

 WriteData, DatAadr: out STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC);

 end component;

 signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);

 signal clk, reset, MemWrite: STD_LOGIC;

begin

 -- instantiate device to be tested

 dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

 -- Generate clock with 10 ns period

 process begin

 clk <= '1';

 wait for 5 ns;

 clk <= '0';

 wait for 5 ns;

 end process;

 -- Generate reset for first two clock cycles

 process begin

 reset <= '1';

 wait for 22 ns;

 reset <= '0';

 wait;

 end process;

 -- check that 122 gets written to address 12

 -- at end of program

 process (clk) begin

 if (clk'event and clk = '0' and MemWrite = '1') then

 if (to_integer(DataAdr) = 12 and

 to_integer(WriteData) = 122) then

 report "NO ERRORS: Simulation succeeded" severity failure;

 else

 report "Simulation failed" severity failure;

 end if;

 end if;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is -- top-level design for testing

 port(clk, reset: in STD_LOGIC;

 WriteData, DataAdr: buffer STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: buffer STD_LOGIC);

end;

architecture test of top is

 component arm

 port(clk, reset: in STD_LOGIC;

 PC: out STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

311 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 MemWrite: out STD_LOGIC;

 ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component imem

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component dmem

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal PC, Instr,

 ReadData: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- instantiate processor and memories

 i_arm: arm port map(clk, reset, PC, Instr, MemWrite, DataAdr,

 WriteData, ReadData);

 i_imem: imem port map(PC, Instr);

 i_dmem: dmem port map(clk, MemWrite, DataAdr,

 WriteData, ReadData);

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is -- data memory

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of dmem is

begin

 process is

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable mem: ramtype;

 begin -- read or write memory

 loop

 if clk'event and clk = '1' then

 if (we = '1') then

 mem(to_integer(a(7 downto 2))) := wd;

 end if;

 end if;

 rd <= mem(to_integer(a(7 downto 2)));

 wait on clk, a;

 end loop;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

312 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity imem is -- instruction memory

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of imem is -- instruction memory

begin

 process is

 file mem_file: TEXT;

 variable L: line;

 variable ch: character;

 variable i, index, result: integer;

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable mem: ramtype;

 begin

 -- initialize memory from file

 for i in 0 to 63 loop -- set all contents low

 mem(i) := (others => '0');

 end loop;

 index := 0;

 FILE_OPEN(mem_file, "ex7.10_memfile.dat", READ_MODE);

 while not endfile(mem_file) loop

 readline(mem_file, L);

 result := 0;

 for i in 1 to 8 loop

 read(L, ch);

 if '0' <= ch and ch <= '9' then

 result := character'pos(ch) - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 result := character'pos(ch) - character'pos('a')+10;

 elsif 'A' <= ch and ch <= 'F' then

 result := character'pos(ch) - character'pos('A')+10;

 else report "Format error on line " & integer'image(index)

 severity error;

 end if;

 mem(index)(35-i*4 downto 32-i*4) :=

 to_std_logic_vector(result,4);

 end loop;

 index := index + 1;

 end loop;

 -- read memory

 loop

 rd <= mem(to_integer(a(7 downto 2)));

 wait on a;

 end loop;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is -- single cycle processor

 port(clk, reset: in STD_LOGIC;

 PC: out STD_LOGIC_VECTOR(31 downto 0);

313 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC;

 ALUResult, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is

 component controller

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: out STD_LOGIC;

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: out STD_LOGIC;

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 MemWrite: out STD_LOGIC;

 MemtoReg: out STD_LOGIC;

 PCSrc: out STD_LOGIC;

 Shift: out STD_LOGIC);

 end component;

 component datapath

 port(clk, reset: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: in STD_LOGIC;

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: in STD_LOGIC;

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 MemtoReg: in STD_LOGIC;

 PCSrc: in STD_LOGIC;

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PC: buffer STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 ALUResultOut: buffer STD_LOGIC_VECTOR(31 downto 0); -- LSR

 WriteData: buffer STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Shift: in STD_LOGIC); -- LSR

 end component;

 signal ALUFlags: STD_LOGIC_VECTOR(3 downto 0);

 signal RegWrite, ALUSrc, MemtoReg, PCSrc: STD_LOGIC;

 signal RegSrc, ImmSrc: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUControl: STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 signal Shift: STD_LOGIC; -- LSR

begin

 cont: controller port map(clk, reset, Instr(31 downto 12),

 ALUFlags, RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl, MemWrite,

 MemtoReg, PCSrc,

 Shift); -- LSR

 dp: datapath port map(clk, reset, RegSrc, RegWrite, ImmSrc,

 ALUSrc, ALUControl, MemtoReg, PCSrc,

 ALUFlags, PC, Instr, ALUResult,

 WriteData, ReadData,

 Shift); -- LSR

314 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is -- single cycle control decoder

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegWrite: out STD_LOGIC;

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: out STD_LOGIC;

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 MemWrite: out STD_LOGIC;

 MemtoReg: out STD_LOGIC;

 PCSrc: out STD_LOGIC;

 Shift: out STD_LOGIC); -- LSR

end;

architecture struct of controller is

 component decoder

 port(Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: out STD_LOGIC;

 MemtoReg, ALUSrc: out STD_LOGIC;

 ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 NoWrite: out STD_LOGIC; -- TEQ

 Shift: out STD_LOGIC); -- LSR end

component;

 end component;

 component condlogic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: in STD_LOGIC;

 PCSrc, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 NoWrite: in STD_LOGIC); -- TEQ

 end component;

 signal FlagW: STD_LOGIC_VECTOR(1 downto 0);

 signal PCS, RegW, MemW: STD_LOGIC;

 signal NoWrite: STD_LOGIC; -- TEQ

begin

 dec: decoder port map(Instr(27 downto 26), Instr(25 downto 20),

 Instr(15 downto 12), FlagW, PCS,

 RegW, MemW, MemtoReg, ALUSrc, ImmSrc,

 RegSrc, ALUControl,

 NoWrite, -- TEQ

 Shift); -- LSR

 cl: condlogic port map(clk, reset, Instr(31 downto 28),

 ALUFlags, FlagW, PCS, RegW, MemW,

315 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 PCSrc, RegWrite, MemWrite,

 NoWrite); -- TEQ

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder is -- main control decoder

 port(Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: out STD_LOGIC;

 MemtoReg, ALUSrc: out STD_LOGIC;

 ImmSrc, RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 NoWrite: out STD_LOGIC; -- TEQ

 Shift: out STD_LOGIC); -- LSR

end;

architecture behave of decoder is

 signal controls: STD_LOGIC_VECTOR(9 downto 0);

 signal ALUOp, Branch: STD_LOGIC;

 signal op2: STD_LOGIC_VECTOR(3 downto 0);

begin

 op2 <= (Op, Funct(5), Funct(0));

 process(all) begin -- Main Decoder

 case? (op2) is

 when "000-" => controls <= "0000001001";

 when "001-" => controls <= "0000101001";

 when "01-0" => controls <= "1001110100";

 when "01-1" => controls <= "0001111000";

 when "10--" => controls <= "0110100010";

 when others => controls <= "----------";

 end case?;

 end process;

 (RegSrc, ImmSrc, ALUSrc, MemtoReg, RegW, MemW,

 Branch, ALUOp) <= controls;

 process(all) begin -- ALU Decoder

 if (ALUOp) then

 case Funct(4 downto 1) is

 when "0100" => ALUControl <= "000"; -- ADD

 NoWrite <= '0';

 Shift <= '0';

 when "0010" => ALUControl <= "001"; -- SUB

 NoWrite <= '0';

 Shift <= '0';

 when "0000" => ALUControl <= "010"; -- AND

 NoWrite <= '0';

 Shift <= '0';

 when "1100" => ALUControl <= "011"; -- ORR

 NoWrite <= '0';

 Shift <= '0';

 when "0001" => ALUControl <= "110"; -- EOR

316 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 NoWrite <= '0';

 Shift <= '0';

 when "1001" => ALUControl <= "110"; -- TEQ

 NoWrite <= '1';

 Shift <= '0';

 when "1101" => ALUControl <= "000"; -- LSR

 NoWrite <= '0';

 Shift <= '1';

 when "1011" => ALUControl <= "100"; -- RSB

 NoWrite <= '0';

 Shift <= '0';

 when others => ALUControl <= "---"; -- unimplemented

 NoWrite <= '-';

 Shift <= '-';

 end case;

 FlagW(1) <= Funct(0);

 FlagW(0) <= Funct(0) and (not ALUControl(1));

 else

 ALUControl <= "000";

 NoWrite <= '0';

 Shift <= '0';

 FlagW <= "00";

 end if;

 end process;

 PCS <= ((and Rd) and RegW) or Branch;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is -- Conditional logic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, RegW, MemW: in STD_LOGIC;

 PCSrc, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 NoWrite: in STD_LOGIC); -- TEQ

end;

architecture behave of condlogic is

 component condcheck

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 signal FlagWrite: STD_LOGIC_VECTOR(1 downto 0);

 signal Flags: STD_LOGIC_VECTOR(3 downto 0);

 signal CondEx: STD_LOGIC;

317 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

begin

 flagreg1: flopenr generic map(2)

 port map(clk, reset, FlagWrite(1),

 ALUFlags(3 downto 2), Flags(3 downto 2));

 flagreg0: flopenr generic map(2)

 port map(clk, reset, FlagWrite(0),

 ALUFlags(1 downto 0), Flags(1 downto 0));

 cc: condcheck port map(Cond, Flags, CondEx);

 FlagWrite <= FlagW and (CondEx, CondEx);

 RegWrite <= RegW and CondEx and (not NoWrite); -- TEQ

 MemWrite <= MemW and CondEx;

 PCSrc <= PCS and CondEx;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condcheck is

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

end;

architecture behave of condcheck is

 signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin

 (neg, zero, carry, overflow) <= Flags;

 ge <= (neg xnor overflow);

 process(all) begin -- Condition checking

 case Cond is

 when "0000" => CondEx <= zero;

 when "0001" => CondEx <= not zero;

 when "0010" => CondEx <= carry;

 when "0011" => CondEx <= not carry;

 when "0100" => CondEx <= neg;

 when "0101" => CondEx <= not neg;

 when "0110" => CondEx <= overflow;

 when "0111" => CondEx <= not overflow;

 when "1000" => CondEx <= carry and (not zero);

 when "1001" => CondEx <= not(carry and (not zero));

 when "1010" => CondEx <= ge;

 when "1011" => CondEx <= not ge;

 when "1100" => CondEx <= (not zero) and ge;

 when "1101" => CondEx <= not ((not zero) and ge);

 when "1110" => CondEx <= '1';

 when others => CondEx <= '-';

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity datapath is

 port(clk, reset: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

318 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 RegWrite: in STD_LOGIC;

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrc: in STD_LOGIC;

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 MemtoReg: in STD_LOGIC;

 PCSrc: in STD_LOGIC;

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PC: buffer STD_LOGIC_VECTOR(31 downto 0);

 Instr: in STD_LOGIC_VECTOR(31 downto 0);

 ALUResultOut: out STD_LOGIC_VECTOR(31 downto 0); -- LSR

 WriteData: buffer STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Shift: in STD_LOGIC); -- LSR

end;

architecture struct of datapath is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

 end component;

 component regfile

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component extend

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux2 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component shifter -- LSL

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 shamt: in STD_LOGIC_VECTOR(4 downto 0);

 shtype: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

319 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

signal PCNext, PCPlus4, PCPlus8: STD_LOGIC_VECTOR(31 downto 0);

 signal ExtImm, Result: STD_LOGIC_VECTOR(31 downto 0);

 signal SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);

 signal RA1, RA2: STD_LOGIC_VECTOR(3 downto 0);

 signal srcBshifted, ALUResult: STD_LOGIC_VECTOR(31 downto 0); -- LSR

begin

 -- next PC logic

 pcmux: mux2 generic map(32)

 port map(PCPlus4, Result, PCSrc, PCNext);

 pcreg: flopr generic map(32) port map(clk, reset, PCNext, PC);

 pcadd1: adder port map(PC, X"00000004", PCPlus4);

 pcadd2: adder port map(PCPlus4, X"00000004", PCPlus8);

 -- register file logic

 ra1mux: mux2 generic map (4)

 port map(Instr(19 downto 16), "1111", RegSrc(0), RA1);

 ra2mux: mux2 generic map (4) port map(Instr(3 downto 0),

 Instr(15 downto 12), RegSrc(1), RA2);

 rf: regfile port map(clk, RegWrite, RA1, RA2,

 Instr(15 downto 12), Result,

 PCPlus8, SrcA, WriteData);

 resmux: mux2 generic map(32)

 port map(ALUResultOut, ReadData, MemtoReg, Result); -- LSR

 ext: extend port map(Instr(23 downto 0), ImmSrc, ExtImm);

 -- ALU logic

 sh: shifter port map(WriteData, Instr(11 downto 7), Instr(6 downto 5),

srcBshifted); -- LSR

 srcbmux: mux2 generic map(32)

 port map(srcBshifted, ExtImm, ALUSrc, SrcB); -- LSR

 i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

 aluresultmux: mux2 generic map(32)

 port map(ALUResult, SrcB, Shift, ALUResultOut); -- LSR

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is -- three-port register file

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is

 type ramtype is array (31 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 signal mem: ramtype;

begin

 process(clk) begin

 if rising_edge(clk) then

 if we3 = '1' then mem(to_integer(wa3)) <= wd3;

320 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end if;

 end if;

 end process;

 process(all) begin

 if (to_integer(ra1) = 15) then rd1 <= r15;

 else rd1 <= mem(to_integer(ra1));

 end if;

 if (to_integer(ra2) = 15) then rd2 <= r15;

 else rd2 <= mem(to_integer(ra2));

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is -- adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is

begin

 y <= a + b;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity extend is

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is

begin

 process(all) begin

 case ImmSrc is

 when "00" => ExtImm <= (X"000000", Instr(7 downto 0));

 when "01" => ExtImm <= (X"00000", Instr(11 downto 0));

 when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

 Instr(23), Instr(23), Instr(23), Instr(23 downto 0), "00");

 when others => ExtImm <= X"--------";

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is -- flip-flop with enable and asynchronous reset

 generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is

321 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is -- flip-flop with asynchronous reset

 generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 q <= d;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is -- two-input multiplexer

 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is

begin

 y <= d1 when s else d0;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- EOR, RSB

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of alu is

 signal neg, zero, carry, overflow: STD_LOGIC;

322 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal condinva: STD_LOGIC_VECTOR(31 downto 0); -- RSB

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal carryin: STD_LOGIC; -- RSB

begin

 carryin <= ALUControl(2) or ALUControl(0); -- RSB

 condinvb <= not b when ALUControl(0) else b;

 condinva <= not a when ALUControl(2) else a; -- RSB

 sum <= ('0', condinva) + ('0', condinvb) + carryin; -- RSB

 process(all) begin

 case ALUControl is

 when "000" => result <= sum(31 downto 0);

 when "001" => result <= sum(31 downto 0);

 when "010" => result <= a and b;

 when "011" => result <= a or b;

 when "110" => result <= a xor b;

 when others => result <= (others => '-');

 end case;

 end process;

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carry <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carry, overflow);

end;

-- shifter needed for LSR

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity shifter is

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 shamt: in STD_LOGIC_VECTOR(4 downto 0);

 shtype: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of shifter is

begin

 process (all) begin

 case shtype is

 when "01" => y <= TO_STDLOGICVECTOR(TO_BITVECTOR(a) srl

TO_INTEGER(shamt));

 when others => y <= a;

 end case;

 end process;

end;

Test assembly code
; If successful, it should write the value 0x7A to address 12

MAIN

323 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 SUB R3, PC, PC ; R3 = 0

 ADD R4, R3, #0x7A ; R4 = 0x7A

 ADD R5, R3, #0x6C ; R5 = 0x6C

 EOR R6, R4, R5 ; R6 = R4 ^ R5 = 0x16

 LSR R6, R6, #2 ; R6 = R6 >> 2 = 5

 TEQ R4, R6 ; set flags according to 0x7a ^ 5: NZCV = 0000

 STREQ R4, [R6, #3] ; mem[8]<=0x7A if Z=1: shouldn't happen

 TEQ R6, R6 ; set flags according to 5 ^ 5: NZCV = 0100

 STREQ R4, [R6, #7] ; mem[12]<=0x7A if Z=1: should happen

; E04F300F SUB R3,PC,PC

; E283407A ADD R4,R3,#0x0000007A

; E283506C ADD R5,R3,#0x0000006C

; E0246005 EOR R6,R4,R5

; E1A06126 MOV R6,R6,LSR #2

; E1340006 TEQ R4,R6

; 05864003 STREQ R4,[R6,#0x0003]

; E1360006 TEQ R6,R6

; 05864007 STREQ R4,[R6,#0x0007]

ex7.9_memfile.dat
E04F300F

E283407A

E283506C

E0246005

E1A06126

E1340006

05864003

E1360006

05864007

Exercise 7.11

 (a) STR: it stores the value in the register specified by bits 3:0 (Rm) instead of bits 15:12

(Rd).

(b) LDR, STR: the memory always reads the value at the address specified by the PC,

instead of a data memory address.

(c) All instructions. PC+4 is never written to the PC register.

Exercise 7.12

(a) ADD, SUB, AND, ORR with register Src2: the second source is the value in the register

specified by bits 15:12 (Rm) instead of bits 3:0 (Rd).

(b) All instructions. PC is not connected to the memory address port, so instructions are

never fetched from memory.

(c) All instructions. PC is updated with bogus values.

Exercise 7.13

324 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(a) ASR

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 Shift

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1101 0 ASR XX 00 1

 1 ASR XX 10 1

Datapath

Control

325 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWrite
PCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
o
n
d
itio

n
a
l L
o
g
ic

Main

FSM

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr

Decoder
Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o
n
d
itio

n

C
h
e
c
k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o
n
d
E
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register

Enables

Multiplexer

Selects

C
L
K

F
la
g
W
rite

1
:0

Shift

Shift

(b) TST

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1000 1 TST 10 10 1

326 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Control

C
o
n
d
itio

n
a
l L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

C
L
K

F
la
g
W
rite

1
:0

(c) SBC

ALU

327 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

+

00

A B

Cout

Result

01

ALUControl0

ALUControl1:0

Sum

NN

N

N

N NNN

N

2

011011

Zero

ALUControl1

Result31

NegativeCarry

ALUControl0

A31

B31

ALUFlags

4

ZN VC

Sum31

oVerflow

0

1
ALUControl0

ALUControl2

Carry

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0

0 X X Not DP 000 00

1

0100 0 ADD 000 00

1 11

0010 0 SUB 001 00

1 11

0000 0 AND 010 00

1 10

1100 0 ORR 011 00

1 10

0110 0 SBC 101 00

 1 11

Datapath

328 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ExtImm

CLK

A
RD

Instr / Data

Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl2:0

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

R15

0 1

0

1

19:16

15:12

23:0

3:0

15

00

01

10

00

01

10

Result

25:20

27:26
Op

Funct

Cond

Flags

15:12 Rd

Control

Unit

ImmSrc

Extend

31:28

RA1

RA2

1

0
0

1

Carry

Control

329 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl2:0

Decode

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWrite
PCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
o
n
d
itio

n
a
l L
o
g
ic

Main

FSM

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl2:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr

Decoder
Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o
n
d
itio

n

C
h
e
c
k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o
n
d
E
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decode(b) (c) Conditional Logic

Register

Enables

Multiplexer

Selects

C
L
K

F
la
g
W
rite

1
:0

[1]
Carry

Carry

330 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(d) ROR

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 Shift

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1101 0 ROR XX 00 1

1 XX 10 1

Datapath

ExtImm

CLK

A
RD

Instr / Data

Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

R15

0 1

0

1

19:16

15:12

23:0

3:0

15

00

01

10

00

01

10

Result

25:20

27:26
Op

Funct

Cond

Flags

15:12 Rd

Control

Unit

ImmSrc

Extend

31:28

RA1

RA2

1

0
0

1

Shift

11:5

1

0

SrcB

Shift

Exercise 7.14

(a) BL

331 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Datapath

ExtImm

CLK

A
RD

Instr / Data

Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

R15

0 1

0

1

19:16

15:12

23:0

3:0

15

00

01

10

00

01

10

Result

25:20

27:26
Op

Funct

Cond

Flags

15:12 Rd

Control

Unit

ImmSrc

Extend

31:28

RA1

RA2

1

0
0

1

14

0

0

1

0

1

332 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Instr Decoder logic for RegSrc1:0 and ImmSrc1:0

Instruction Op Funct5 Funct4 Funct0 RegSrc2:0 ImmSrc1:0

LDR 01 X X 1 X0 01

STR 01 X X 0 10 01

DP imm 00 1 X X X0 00

DP reg 00 0 X X 00 00

B 10 X 0 X X1 10

BL 10 X 1 X X1 10

FSM

333 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

S0: Fetch

AdrSrc = 0

AluSrcA = 1

ALUSrcB = 10

ALUOp = 0

ResultSrc = 10

IRWrite

NextPC

S1: Decode

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 0

ResultSrc = 10

S2: MemAdr

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 0

S3: MemRead

ResultSrc = 00

AdrSrc = 1

S8: ALUWB

ResultSrc = 00

RegW

S5: MemWrite

ResultSrc = 00

AdrSrc = 1

MemW

S7: ExecuteI

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 1

S9: Branch

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 0

ResultSrc = 10

Branch

Reset

Memory

Op = 01

Data Reg

Op = 00

Funct5 = 0

Branch

Op = 10

Funct4 = 0

LDR
STR

S4: MemWB

ResultSrc = 01

RegW

State Datapath Op

Fetch Instr ←Mem[PC]; PC ← PC+4

Decode ALUOut ← PC+4

MemAdr ALUOut ← Rn + Imm

MemRead Data ← Mem[ALUOut]

MemWB Rd ← Data

MemWrite Mem[ALUOut] ← Rd

ExecuteR ALUOut ← Rn op Rm

ExecuteI ALUOut ← Rn op Imm

ALUWB Rd ← ALUOut

Branch PC ← R15 + offset

BL PC ← R15 + offset, LR ← PC+4

S6: ExecuteR

ALUSrcA = 0

ALUSrcB = 00

ALUOp = 1

Data Imm

Op = 00

Funct5 = 1

Funct0 = 1
Funct0 = 0

S10: BL

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 0

ResultSrc = 10

Branch

RegW

BL

Op = 10

Funct4 = 1

(b) LDR (with addition or subtraction of imm12)

Control

334 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWrite
PCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
o
n
d
itio

n
a
l L
o
g
ic

Main

FSM

ALUOp1:0

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr

Decoder
Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o
n
d
itio

n

C
h
e
c
k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o
n
d
E
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register

Enables

Multiplexer

Selects

C
L
K

F
la
g
W
rite

1
:0

335 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

FSM

ALU Decoder truth table

ALUOp1:0 Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0

00 X X Not DP: add 00 00

01 X X Not DP: sub 01 00

10 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

336 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

(c) LDRB (with positive immediate offset only)

Datapath

Control

337 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

338 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

FSM

339 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(d) BIC

ALU

01

Control Unit

340 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl2:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWrite
PCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

Main

FSM

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl2:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr

Decoder
Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

FlagW1:0

PCWrite

MemWrite

RegWrite

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register

Enables

Multiplexer

Selects

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0

0 X X Not DP 000 00

1

0100 0 ADD 000 00

1 11

0010 0 SUB 101 00

1 11

0000 0 AND 010 00

1 10

1100 0 ORR 011 00

1 10

1110 0 BIC 110 00

 1 110 10

341 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.15

Yes, it is possible to add this instruction without modifying the register file. First we show the

modifications to the datapath.

Because two different registers will be written (first Rd with the loaded value, then Rn with Rn +

Src2), the select signal for the A3 multiplexer (WriteReg) must be an output of the FSM. Here

are the control unit schematic and the Main FSM state transition diagram.

342 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

C
o
n
d
itio

n
a
l L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

C
L
K

F
la
g
W
rite

1
:0

343 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

S0: Fetch

AdrSrc = 0

AluSrcA = 1

ALUSrcB = 10

ALUOp = 0

ResultSrc = 10

IRWrite

NextPC

S1: Decode

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 0

ResultSrc = 10

S2: MemAdr

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 0

S3: MemRead

ResultSrc = 00

AdrSrc = 1

S8: ALUWB

ResultSrc = 00

RegW

WriteReg = 0

S5: MemWrite

ResultSrc = 00

AdrSrc = 1

MemW

S7: ExecuteI

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 1

S9: Branch

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 0

ResultSrc = 10

Branch

Reset

Memory

Op = 01
Data Reg

Op = 00

Funct5 = 0

Branch

Op = 10

LDR
STR

S4: MemWB

ResultSrc = 01

RegW

WriteReg = 0

State Datapath Op

Fetch Instr ←Mem[PC]; PC ← PC+4

Decode ALUOut ← PC+4

MemAdr ALUOut ← Rn + Imm

MemAdrPostIndex ALUOut ← Rn

MemRead Data ← Mem[ALUOut]

MemWB Rd ← Data

BaseRegWB Rn ← Rn + Rm

MemWrite Mem[ALUOut] ← Rd

ExecuteR ALUOut ← Rn op Rm

ExecuteI ALUOut ← Rn op Imm

ALUWB Rd ← ALUOut

Branch PC ← R15 + offset

S6: ExecuteR

ALUSrcA = 0

ALUSrcB = 00

ALUOp = 1

Data Imm

Op = 00

Funct5 = 1

Funct0 = 1
Funct0 = 0

S4a:

BaseRegWB

ALUSrcA = 0

ALUSrcB = 00

ALUOp = 0

ResultSrc = 10

WriteReg = 1

RegW

S2a:

MemAdrPostIndex

PostIndex = 1

Memory

Op = 01

Funct4 = 0

LDR

Funct0 = 1

Funct4 = 0

Funct4 = 1

Funct0 = 1

Funct0 = 0 | Funct4 = 1

344 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Now we modify the Instr Decoder logic for RegSrc1:0 and ImmSrc1:0 (similar to Table 7.6 in the

text).

Instruction Op Funct5:0 RegSrc1:0 ImmSrc1:0

LDR

(offset indexing, imm offset)

01 011001 X0 01

LDR

(post-indexing, reg offset)

01 1010X1 00 XX

STR 01 XXXXXX 10 01

DP imm 00 1XXXXX X0 00

DP reg 00 0XXXXX 00 00

B 10 XXXXXX X1 10

Exercise 7.16

Yes, it is possible to add this instruction without modifying the register file. First we show the

modifications to the datapath.

ExtImm

CLK

A
RD

Instr / Data

Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register

File

R15

0 1

0

1

19:16

15:12

23:0

3:0

15

00

01

10

00

01

10

Result

25:20

27:26
Op

Funct

Cond

Flags

15:12 Rd

Control

Unit

ImmSrc

Extend

31:28

RA1

RA2

1

0

0

1

15:12

19:16

0

1

WriteReg

Because two different registers will be written (first Rd with the loaded value, then Rn with Rn +

Src2), the select signal for the A3 multiplexer (WriteReg) must be an output of the FSM. Here

are the control unit schematic and the Main FSM state transition diagram.

345 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWrite
PCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
o
n
d
itio

n
a
l L
o
g
ic

Main

FSM

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr

Decoder
Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

C
o
n
d
itio

n

C
h
e
c
k

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o
n
d
E
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register

Enables

Multiplexer

Selects

C
L
K

F
la
g
W
rite

1
:0

WriteReg

WriteReg

346 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

347 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Now we modify the Instr Decoder logic for RegSrc1:0 and ImmSrc1:0 (similar to Table 7.6 in the

text).

Instruction Op Funct5:0 RegSrc1:0 ImmSrc1:0

LDR

(offset indexing, imm offset)

01 011001 X0 01

LDR

(pre-indexing, reg offset)

01 111011 00 XX

STR 01 XXXXXX 10 01

DP imm 00 1XXXXX X0 00

DP reg 00 0XXXXX 00 00

B 10 XXXXXX X1 10

Exercise 7.17

From Equation 7.4, Tc2 = tpcq +2tmux + max[tALU + tmux, tmem] + tsetup

She should choose to decrease the delay of the memory.

tmem = (200/2) ps = 100 ps

With this new memory delay, the ALU is on the critical path instead of the memory.

Tc2 = [40 + 2(25) + max[120 +25, 100] + 50] ps

 = [40 + 2(25) + 145 + 50] ps

 = 285 ps

Exercise 7.18

The ALU is not on the critical path, so decreasing its delay does not affect performance. Thus,

the results are the same as Example 7.6

Tc2 = 340 ps

T2 = (100 × 10
9
 instructions)(4.12 cycles/instruction) (340 × 10

−12
 s/cycle) = 140 seconds

Exercise 7.19

She should choose the memory. The new delay should be 145 ps. Making it less than that does

not improve performance.

tmem = 15 ps

With this new memory delay, the ALU is on the critical path instead of the memory.

Tc2 = [40 + 2(25) + max[120 +25, 145] + 50] ps

 = [40 + 2(25) + 145 + 50] ps

348 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 = 285 ps

Exercise 7.20

Datapath

ExtImm

CLK

A
RD

Instr / Data

Memory

PC
0

1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc

PCWrite

A

WD

RD
WE

CLK

Register

File

R15

15:12

23:0

3:0

15
00

01

10

00

01

10

Result

25:20

27:26
Op

Funct

Cond

Flags

15:12 Rd

Control

Unit

ImmSrc

Extend

31:28

1

0
00

01

10

11

RA

CLK

WA

WB

WA

WB

19:16

Control

349 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite

RegWrite

PCWrite
PCS

NextPC

IRWrite

ALUSrcB1:0

AdrSrc

Main

FSM

ALUOp

ALU

Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW

RegW

4:0

NextPC

IRWrite

AdrSrc

ResultSrc1:0

ALUSrcB1:0

Instr

Decoder
Op1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

FlagW1:0

PCWrite

MemWrite

RegWrite

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register

Enables

Multiplexer

Selects

WB

WA

WB
WA

350 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

351 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.21

Yes, Alyssa should switch to the slower but lower power register file for her multicycle

processor design.

Doubling the delay of the register file does not put it on the critical path. The setup time

constraint affected by the register file delay (i.e., between the instruction register and the A

and B registers) is:

Tc = tpcq + tmux + tRFread + tsetup

 = (40 + 25 + 200 + 50) ps = 315 ps

This is still less than the 340 ps of the critical path (see Example 7.6), so increasing the delay of

the register file does not affect the cycle time.

Exercise 7.22

The CPI is not affected by changes in component delays, so it is the same as was calculated in

Example 7.5: CPI = 4.12.

Exercise 7.23

The program executes 2 data-processing instructions before the loop. It executes the entire

loop 5 times and then executes the CMP and BEQ only on the sixth iteration, for a total of: 2 DP

instructions + 5 (2 DP + 2 Branch) + (1 DP + 1 B) = 13 DP + 11 B. Each data-processing instruction

takes 4 cycles and each branch instruction takes 3 cycles, so the total number of cycles required

to execute the program is:

13(4) + 11(3) = 85 cycles

Exercise 7.24

The program executes 3 data-processing instructions before the loop. It executes the entire

loop 10 times and then executes the CMP and BEQ only on the eleventh iteration, for a total of:

3 DP instructions + 10 (3 DP + 2 Branch) + (1 DP + 1 B) = 34 DP + 21 B. Each data-processing

instruction takes 4 cycles and each branch instruction takes 3 cycles, so the total number of

cycles required to execute the program is:

34(4) + 21(3) = 199 cycles

352 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.25

SystemVerilog
// ARM multicycle processor

module testbench();

 logic clk;

 logic reset;

 logic [31:0] WriteData, DataAdr;

 logic MemWrite;

 // instantiate device to be tested

 top dut(clk, reset, WriteData, DataAdr, MemWrite);

 // initialize test

 initial

 begin

 reset <= 1; # 22; reset <= 0;

 end

 // generate clock to sequence tests

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if(MemWrite) begin

 if(DataAdr === 100 & WriteData === 7) begin

 $display("Simulation succeeded");

 $stop;

 end else if (DataAdr !== 96) begin

 $display("Simulation failed");

 $stop;

 end

 end

 end

endmodule

module top(input logic clk, reset,

 output logic [31:0] WriteData, Adr,

 output logic MemWrite);

 logic [31:0] ReadData;

 // instantiate processor and shared memory

 arm arm(clk, reset, MemWrite, Adr,

 WriteData, ReadData);

 mem mem(clk, MemWrite, Adr, WriteData, ReadData);

353 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule

module mem(input logic clk, we,

 input logic [31:0] a, wd,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 initial

 $readmemh("memfile.dat",RAM);

 assign rd = RAM[a[31:2]]; // word aligned

 always_ff @(posedge clk)

 if (we) RAM[a[31:2]] <= wd;

endmodule

module arm(input logic clk, reset,

 output logic MemWrite,

 output logic [31:0] Adr, WriteData,

 input logic [31:0] ReadData);

 logic [31:0] Instr;

 logic [3:0] ALUFlags;

 logic PCWrite, RegWrite, IRWrite;

 logic AdrSrc, ALUSrcA;

 logic [1:0] RegSrc, ALUSrcB, ImmSrc, ALUControl, ResultSrc;

 controller c(clk, reset, Instr[31:12], ALUFlags,

 PCWrite, MemWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl);

 datapath dp(clk, reset, Adr, WriteData, ReadData, Instr, ALUFlags,

 PCWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl);

endmodule

module controller(input logic clk,

 input logic reset,

 input logic [31:12] Instr,

 input logic [3:0] ALUFlags,

 output logic PCWrite,

 output logic MemWrite,

 output logic RegWrite,

 output logic IRWrite,

 output logic AdrSrc,

 output logic [1:0] RegSrc,

 output logic ALUSrcA,

 output logic [1:0] ALUSrcB,

 output logic [1:0] ResultSrc,

 output logic [1:0] ImmSrc,

 output logic [1:0] ALUControl);

354 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 logic [1:0] FlagW;

 logic PCS, NextPC, RegW, MemW;

 decoder dec(clk, reset, Instr[27:26], Instr[25:20], Instr[15:12],

 FlagW, PCS, NextPC, RegW, MemW,

 IRWrite, AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl);

 condlogic cl(clk, reset, Instr[31:28], ALUFlags,

 FlagW, PCS, NextPC, RegW, MemW,

 PCWrite, RegWrite, MemWrite);

endmodule

module decoder(input logic clk, reset,

 input logic [1:0] Op,

 input logic [5:0] Funct,

 input logic [3:0] Rd,

 output logic [1:0] FlagW,

 output logic PCS, NextPC, RegW, MemW,

 output logic IRWrite, AdrSrc,

 output logic [1:0] ResultSrc,

 output logic ALUSrcA,

 output logic [1:0] ALUSrcB, ImmSrc, RegSrc, ALUControl);

 logic Branch, ALUOp;

 // Main FSM

 mainfsm fsm(clk, reset, Op, Funct,

 IRWrite, AdrSrc,

 ALUSrcA, ALUSrcB, ResultSrc,

 NextPC, RegW, MemW, Branch, ALUOp);

 always_comb

 if (ALUOp) begin // which Data-processing Instr?

 case(Funct[4:1])

 4'b0100: ALUControl = 2'b00; // ADD

 4'b0010: ALUControl = 2'b01; // SUB

 4'b0000: ALUControl = 2'b10; // AND

 4'b1100: ALUControl = 2'b11; // ORR

 default: ALUControl = 2'bx; // unimplemented

 endcase

 FlagW[1] = Funct[0]; // update N & Z flags if S bit is set

 FlagW[0] = Funct[0] & (ALUControl == 2'b00 | ALUControl ==

2'b01);

 end else begin

 ALUControl = 2'b00; // add for non data-processing instructions

 FlagW = 2'b00; // don't update Flags

 end

 // PC Logic

 assign PCS = ((Rd == 4'b1111) & RegW) | Branch;

 // Instr Decoder

 assign ImmSrc = Op;

 assign RegSrc[0] = (Op == 2'b10); // read PC on Branch

355 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 assign RegSrc[1] = (Op == 2'b01); // read Rd on STR

endmodule

module mainfsm(input logic clk,

 input logic reset,

 input logic [1:0] Op,

 input logic [5:0] Funct,

 output logic IRWrite,

 output logic AdrSrc, ALUSrcA,

 output logic [1:0] ALUSrcB, ResultSrc,

 output logic NextPC, RegW, MemW, Branch, ALUOp);

 typedef enum logic [3:0] {FETCH, DECODE, MEMADR, MEMRD, MEMWB,

 MEMWR, EXECUTER, EXECUTEI, ALUWB, BRANCH,

 UNKNOWN}

statetype;

 statetype state, nextstate;

 logic [11:0] controls;

 // state register

 always @(posedge clk or posedge reset)

 if (reset) state <= FETCH;

 else state <= nextstate;

 // next state logic

 always_comb

 case(state)

 FETCH: nextstate = DECODE;

 DECODE: case(Op)

 2'b00:

 if (Funct[5]) nextstate = EXECUTEI;

 else nextstate = EXECUTER;

 2'b01: nextstate = MEMADR;

 2'b10: nextstate = BRANCH;

 default: nextstate = UNKNOWN;

 endcase

 EXECUTER: nextstate = ALUWB;

 EXECUTEI: nextstate = ALUWB;

 MEMADR:

 if (Funct[0]) nextstate = MEMRD;

 else nextstate = MEMWR;

 MEMRD: nextstate = MEMWB;

 default: nextstate = FETCH;

 endcase

 // state-dependent output logic

 always_comb

 case(state)

 FETCH: controls = 12'b10001_010_1100;

 DECODE: controls = 12'b00000_010_1100;

 EXECUTER: controls = 12'b00000_000_0001;

 EXECUTEI: controls = 12'b00000_000_0011;

 ALUWB: controls = 12'b00010_000_0000;

356 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 MEMADR: controls = 12'b00000_000_0010;

 MEMWR: controls = 12'b00100_100_0000;

 MEMRD: controls = 12'b00000_100_0000;

 MEMWB: controls = 12'b00010_001_0000;

 BRANCH: controls = 12'b01000_010_0010;

 default: controls = 12'bxxxxx_xxx_xxxx;

 endcase

 assign {NextPC, Branch, MemW, RegW, IRWrite,

 AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ALUOp} = controls;

endmodule

module condlogic(input logic clk, reset,

 input logic [3:0] Cond,

 input logic [3:0] ALUFlags,

 input logic [1:0] FlagW,

 input logic PCS, NextPC, RegW, MemW,

 output logic PCWrite, RegWrite, MemWrite);

 logic [1:0] FlagWrite;

 logic [3:0] Flags;

 logic CondEx, CondExDelayed;

 flopenr #(2)flagreg1(clk, reset, FlagWrite[1], ALUFlags[3:2],

Flags[3:2]);

 flopenr #(2)flagreg0(clk, reset, FlagWrite[0], ALUFlags[1:0],

Flags[1:0]);

 // write controls are conditional

 condcheck cc(Cond, Flags, CondEx);

 flopr #(1)condreg(clk, reset, CondEx, CondExDelayed);

 assign FlagWrite = FlagW & {2{CondEx}};

 assign RegWrite = RegW & CondExDelayed;

 assign MemWrite = MemW & CondExDelayed;

 assign PCWrite = (PCS & CondExDelayed) | NextPC;

endmodule

module condcheck(input logic [3:0] Cond,

 input logic [3:0] Flags,

 output logic CondEx);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

 assign ge = (neg == overflow);

 always_comb

 case(Cond)

 4'b0000: CondEx = zero; // EQ

 4'b0001: CondEx = ~zero; // NE

 4'b0010: CondEx = carry; // CS

 4'b0011: CondEx = ~carry; // CC

 4'b0100: CondEx = neg; // MI

357 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 4'b0101: CondEx = ~neg; // PL

 4'b0110: CondEx = overflow; // VS

 4'b0111: CondEx = ~overflow; // VC

 4'b1000: CondEx = carry & ~zero; // HI

 4'b1001: CondEx = ~(carry & ~zero); // LS

 4'b1010: CondEx = ge; // GE

 4'b1011: CondEx = ~ge; // LT

 4'b1100: CondEx = ~zero & ge; // GT

 4'b1101: CondEx = ~(~zero & ge); // LE

 4'b1110: CondEx = 1'b1; // Always

 default: CondEx = 1'bx; // undefined

 endcase

endmodule

module datapath(input logic clk, reset,

 output logic [31:0] Adr, WriteData,

 input logic [31:0] ReadData,

 output logic [31:0] Instr,

 output logic [3:0] ALUFlags,

 input logic PCWrite, RegWrite,

 input logic IRWrite,

 input logic AdrSrc,

 input logic [1:0] RegSrc,

 input logic ALUSrcA,

 input logic [1:0] ALUSrcB, ResultSrc,

 input logic [1:0] ImmSrc, ALUControl);

 logic [31:0] PCNext, PC;

 logic [31:0] ExtImm, SrcA, SrcB, Result;

 logic [31:0] Data, RD1, RD2, A, ALUResult, ALUOut;

 logic [3:0] RA1, RA2;

 // next PC logic

 flopenr #(32) pcreg(clk, reset, PCWrite, Result, PC);

 // memory logic

 mux2 #(32) adrmux(PC, ALUOut, AdrSrc, Adr);

 flopenr #(32) ir(clk, reset, IRWrite, ReadData, Instr);

 flopr #(32) datareg(clk, reset, ReadData, Data);

 // register file logic

 mux2 #(4) ra1mux(Instr[19:16], 4'b1111, RegSrc[0], RA1);

 mux2 #(4) ra2mux(Instr[3:0], Instr[15:12], RegSrc[1], RA2);

 regfile rf(clk, RegWrite, RA1, RA2,

 Instr[15:12], Result, Result,

 RD1, RD2);

 flopr #(32) srcareg(clk, reset, RD1, A);

 flopr #(32) wdreg(clk, reset, RD2, WriteData);

 extend ext(Instr[23:0], ImmSrc, ExtImm);

 // ALU logic

 mux2 #(32) srcamux(A, PC, ALUSrcA, SrcA);

 mux3 #(32) srcbmux(WriteData, ExtImm, 32'd4, ALUSrcB, SrcB);

 alu alu(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

358 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 flopr #(32) aluoutreg(clk, reset, ALUResult, ALUOut);

 mux3 #(32) resmux(ALUOut, Data, ALUResult, ResultSrc, Result);

endmodule

module regfile(input logic clk,

 input logic we3,

 input logic [3:0] ra1, ra2, wa3,

 input logic [31:0] wd3, r15,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[14:0];

 // three ported register file

 // read two ports combinationally

 // write third port on rising edge of clock

 // register 15 reads PC+8 instead

 always_ff @(posedge clk)

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];

 assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

module extend(input logic [23:0] Instr,

 input logic [1:0] ImmSrc,

 output logic [31:0] ExtImm);

 always_comb

 case(ImmSrc)

 // 8-bit unsigned immediate

 2'b00: ExtImm = {24'b0, Instr[7:0]};

 // 12-bit unsigned immediate

 2'b01: ExtImm = {20'b0, Instr[11:0]};

 // 24-bit two's complement shifted branch

 2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};

 default: ExtImm = 32'bx; // undefined

 endcase

endmodule

module adder #(parameter WIDTH=8)

 (input logic [WIDTH-1:0] a, b,

 output logic [WIDTH-1:0] y);

 assign y = a + b;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic clk, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

359 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 else if (en) q <= d;

endmodule

module flopr #(parameter WIDTH = 8)

 (input logic clk, reset,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;

endmodule

module mux3 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1, d2,

 input logic [1:0] s,

 output logic [WIDTH-1:0] y);

 assign y = s[1] ? d2 : (s[0] ? d1 : d0);

endmodule

module alu(input logic [31:0] a, b,

 input logic [1:0] ALUControl,

 output logic [31:0] Result,

 output logic [3:0] ALUFlags);

 logic neg, zero, carry, overflow;

 logic [31:0] condinvb;

 logic [32:0] sum;

 assign condinvb = ALUControl[0] ? ~b : b;

 assign sum = a + condinvb + ALUControl[0];

 always_comb

 casex (ALUControl[1:0])

 2'b0?: Result = sum;

 2'b10: Result = a & b;

 2'b11: Result = a | b;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carry = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) & ~(a[31] ^ b[31] ^

 ALUControl[0]) & (a[31] ^ sum[31]);

 assign ALUFlags = {neg, zero, carry, overflow};

360 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is

end;

architecture test of testbench is

 component top

 port(clk, reset: in STD_LOGIC;

 WriteData, Adr: out STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC);

 end component;

 signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);

 signal clk, reset, MemWrite: STD_LOGIC;

begin

 -- instantiate device to be tested

 dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

 -- Generate clock with 10 ns period

 process begin

 clk <= '1';

 wait for 5 ns;

 clk <= '0';

 wait for 5 ns;

 end process;

 -- Generate reset for first two clock cycles

 process begin

 reset <= '1';

 wait for 22 ns;

 reset <= '0';

 wait;

 end process;

 -- check that 7 gets written to address 84

 -- at end of program

 process (clk) begin

 if (clk'event and clk = '0' and MemWrite = '1') then

 if (to_integer(DataAdr) = 100 and

 to_integer(WriteData) = 7) then

 report "NO ERRORS: Simulation succeeded" severity failure;

 elsif (DataAdr /= 96) then

 report "Simulation failed" severity failure;

 end if;

 end if;

 end process;

end;

library IEEE;

361 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is -- top-level design for testing

 port(clk, reset: in STD_LOGIC;

 WriteData, Adr: buffer STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: buffer STD_LOGIC);

end;

architecture test of top is

 component arm

 port(clk, reset: in STD_LOGIC;

 MemWrite: out STD_LOGIC;

 Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component mem

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal ReadData: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- instantiate processor and memories

 i_arm: arm port map(clk, reset, MemWrite, Adr,

 WriteData, ReadData);

 i_mem: mem port map(clk, MemWrite, Adr,

 WriteData, ReadData);

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mem is -- memory

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of mem is -- instruction and data memory

begin

 process is

 file mem_file: TEXT;

 variable L: line;

 variable ch: character;

 variable i, index, result: integer;

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable ram: ramtype;

 begin

 -- initialize memory from file

 for i in 0 to 63 loop -- set all contents low

 ram(i) := (others => '0');

 end loop;

 index := 0;

362 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 FILE_OPEN(mem_file, "memfile.dat", READ_MODE);

 while not endfile(mem_file) loop

 readline(mem_file, L);

 result := 0;

 for i in 1 to 8 loop

 read(L, ch);

 if '0' <= ch and ch <= '9' then

 result := character'pos(ch) - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 result := character'pos(ch) - character'pos('a')+10;

 elsif 'A' <= ch and ch <= 'F' then

 result := character'pos(ch) - character'pos('A')+10;

 else report "Format error on line " & integer'image(index)

 severity error;

 end if;

 ram(index)(35-i*4 downto 32-i*4) :=

 to_std_logic_vector(result,4);

 end loop;

 index := index + 1;

 end loop;

 -- read or write memory

 loop

 if clk'event and clk = '1' then

 if (we = '1') then

 ram(to_integer(a(7 downto 2))) := wd;

 end if;

 end if;

 rd <= ram(to_integer(a(7 downto 2)));

 wait on clk, a;

 end loop;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is -- multicycle processor

 port(clk, reset: in STD_LOGIC;

 MemWrite: out STD_LOGIC;

 Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is

 component controller

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 RegWrite: out STD_LOGIC;

 IRWrite: out STD_LOGIC;

 AdrSrc: out STD_LOGIC;

363 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

 end component;

 component datapath

 port(clk, reset: in STD_LOGIC;

 Adr: out STD_LOGIC_VECTOR(31 downto 0);

 WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Instr: out STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: in STD_LOGIC;

 RegWrite: in STD_LOGIC;

 IRWrite: in STD_LOGIC;

 AdrSrc: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: in STD_LOGIC;

 ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0));

 end component;

 signal Instr: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUFlags: STD_LOGIC_VECTOR(3 downto 0);

 signal PCWrite, RegWrite, IRWrite: STD_LOGIC;

 signal AdrSrc, ALUSrcA: STD_LOGIC;

 signal RegSrc, ALUSrcB: STD_LOGIC_VECTOR(1 downto 0);

 signal ImmSrc, ALUControl, ResultSrc: STD_LOGIC_VECTOR(1 downto 0);

begin

 cont: controller port map(clk, reset, Instr(31 downto 12),

 ALUFlags, PCWrite, MemWrite, RegWrite,

 IRWrite, AdrSrc, RegSrc, ALUSrcA,

 ALUSrcB, ResultSrc, ImmSrc, ALUControl);

 dp: datapath port map(clk, reset, Adr, WriteData, ReadData,

 Instr, ALUFlags,

 PCWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is -- single cycle control decoder

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 RegWrite: out STD_LOGIC;

364 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 IRWrite: out STD_LOGIC;

 AdrSrc: out STD_LOGIC;

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

end;

architecture struct of controller is

 component decoder

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: out STD_LOGIC;

 RegW, MemW: out STD_LOGIC;

 IRWrite, AdrSrc: out STD_LOGIC;

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

 end component;

 component condlogic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: in STD_LOGIC;

 RegW, MemW: in STD_LOGIC;

 PCWrite, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC);

 end component;

 signal FlagW: STD_LOGIC_VECTOR(1 downto 0);

 signal PCS, NextPC, RegW, MemW: STD_LOGIC;

begin

 dec: decoder port map(clk, reset, Instr(27 downto 26), Instr(25 downto

20),

 Instr(15 downto 12), FlagW, PCS,

 NextPC, RegW, MemW,

 IRWrite, AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl);

 cl: condlogic port map(clk, reset, Instr(31 downto 28),

 ALUFlags, FlagW, PCS, NextPC, RegW, MemW,

 PCWrite, RegWrite, MemWrite);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder is -- main control decoder

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

365 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: out STD_LOGIC;

 RegW, MemW: out STD_LOGIC;

 IRWrite, AdrSrc: out STD_LOGIC;

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(1 downto 0));

end;

architecture behave of decoder is

 component mainfsm

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 IRWrite: out STD_LOGIC;

 AdrSrc, ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 NextPC, RegW: out STD_LOGIC;

 MemW, Branch: out STD_LOGIC;

 ALUOp: out STD_LOGIC);

 end component;

 signal Branch, ALUOp: STD_LOGIC;

begin

 -- Main FSM

 fsm: mainfsm port map(clk, reset, Op, Funct,

 IRWrite, AdrSrc,

 ALUSrcA, ALUSrcB, ResultSrc,

 NextPC, RegW, MemW, Branch, ALUOp);

 process(all) begin -- ALU Decoder

 if (ALUOp) then

 case Funct(4 downto 1) is

 when "0100" => ALUControl <= "00"; -- ADD

 when "0010" => ALUControl <= "01"; -- SUB

 when "0000" => ALUControl <= "10"; -- AND

 when "1100" => ALUControl <= "11"; -- ORR

 when others => ALUControl <= "--"; -- unimplemented

 end case;

 FlagW(1) <= Funct(0);

 FlagW(0) <= Funct(0) and (not ALUControl(1));

 else

 ALUControl <= "00";

 FlagW <= "00";

 end if;

 end process;

 -- PC Logic

 PCS <= ((and Rd) and RegW) or Branch;

 -- Instr Decoder

366 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ImmSrc <= Op;

 RegSrc(0) <= '1' when (Op = 2B"10") else '0';

 RegSrc(1) <= '1' when (Op = 2B"01") else '0';

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mainfsm is

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 IRWrite: out STD_LOGIC;

 AdrSrc, ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 NextPC, RegW: out STD_LOGIC;

 MemW, Branch: out STD_LOGIC;

 ALUOp: out STD_LOGIC);

end;

architecture synth of mainfsm is

 type statetype is (FETCH, DECODE, MEMADR, MEMRD, MEMWB, MEMWR,

 EXECUTER, EXECUTEI, ALUWB, BR, UNKNOWN);

 signal state, nextstate: statetype;

 signal controls: STD_LOGIC_VECTOR(11 downto 0);

begin

 --state register

 process(clk, reset) begin

 if reset then state <= FETCH;

 elsif rising_edge(clk) then

 state <= nextstate;

 end if;

 end process;

 -- next state logic

 process(all) begin

 case state is

 when FETCH => nextstate <= DECODE;

 when DECODE =>

 case Op is

 when "00" => nextstate <= ExecuteI when (Funct(5) = '1')

 else EXECUTER;

 when "01" => nextstate <= MEMADR;

 when "10" => nextstate <= BR;

 when others => nextstate <= UNKNOWN;

 end case;

 when EXECUTER => nextstate <= ALUWB;

 when EXECUTEI => nextstate <= ALUWB;

 when MEMADR => nextstate <= MEMRD when (Funct(0) = '1')

 else MEMWR;

 when MEMRD => nextstate <= MEMWB;

 when others => nextstate <= FETCH;

 end case;

 end process;

367 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 -- state-dependent output logic

 process(all) begin

 case state is

 when FETCH => controls <= 12B"100010101100";

 when DECODE => controls <= 12B"000000101100";

 when EXECUTER => controls <= 12B"000000000001";

 when EXECUTEI => controls <= 12B"000000000011";

 when ALUWB => controls <= 12B"000100000000";

 when MEMADR => controls <= 12B"000000000010";

 when MEMWR => controls <= 12B"001001000000";

 when MEMRD => controls <= 12B"000001000000";

 when MEMWB => controls <= 12B"000100010000";

 when BR => controls <= 12B"010000100010";

 when others => controls <= "XXXXXXXXXXXX";

 end case;

 end process;

 (NextPC, Branch, MemW, RegW, IRWrite,

 AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ALUOp) <= controls;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is -- Conditional logic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: in STD_LOGIC;

 RegW, MemW: in STD_LOGIC;

 PCWrite, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC);

end;

architecture behave of condlogic is

 component condcheck

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 signal FlagWrite: STD_LOGIC_VECTOR(1 downto 0);

 signal Flags: STD_LOGIC_VECTOR(3 downto 0);

368 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 signal CondEx: STD_LOGIC_VECTOR(0 downto 0);

 signal CondExDelayed: STD_LOGIC_VECTOR(0 downto 0);

begin

 flagreg1: flopenr generic map(2)

 port map(clk, reset, FlagWrite(1),

 ALUFlags(3 downto 2), Flags(3 downto 2));

 flagreg0: flopenr generic map(2)

 port map(clk, reset, FlagWrite(0),

 ALUFlags(1 downto 0), Flags(1 downto 0));

 cc: condcheck port map(Cond, Flags, CondEx(0));

 condreg: flopr generic map(1)

 port map(clk, reset, CondEx, CondExDelayed);

 FlagWrite <= FlagW and (CondEx(0), CondEx(0));

 RegWrite <= RegW and CondExDelayed(0);

 MemWrite <= MemW and CondExDelayed(0);

 PCWrite <= (PCS and CondExDelayed(0)) or NextPC;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condcheck is

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

end;

architecture behave of condcheck is

 signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin

 (neg, zero, carry, overflow) <= Flags;

 ge <= (neg xnor overflow);

 process(all) begin -- Condition checking

 case Cond is

 when "0000" => CondEx <= zero;

 when "0001" => CondEx <= not zero;

 when "0010" => CondEx <= carry;

 when "0011" => CondEx <= not carry;

 when "0100" => CondEx <= neg;

 when "0101" => CondEx <= not neg;

 when "0110" => CondEx <= overflow;

 when "0111" => CondEx <= not overflow;

 when "1000" => CondEx <= carry and (not zero);

 when "1001" => CondEx <= not(carry and (not zero));

 when "1010" => CondEx <= ge;

 when "1011" => CondEx <= not ge;

 when "1100" => CondEx <= (not zero) and ge;

 when "1101" => CondEx <= not ((not zero) and ge);

 when "1110" => CondEx <= '1';

 when others => CondEx <= '-';

 end case;

 end process;

end;

369 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity datapath is

 port(clk, reset: in STD_LOGIC;

 Adr: out STD_LOGIC_VECTOR(31 downto 0);

 WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Instr: out STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: in STD_LOGIC;

 RegWrite: in STD_LOGIC;

 IRWrite: in STD_LOGIC;

 AdrSrc: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: in STD_LOGIC;

 ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0));

end;

architecture struct of datapath is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

 end component;

 component regfile

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component extend

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

370 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 component mux2 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux3 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component; signal PCNext, PC: STD_LOGIC_VECTOR(31 downto 0);

 signal ExtImm, SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);

 signal Result: STD_LOGIC_VECTOR(31 downto 0);

 signal Data, RD1, RD2, A: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUResult, ALUOut: STD_LOGIC_VECTOR(31 downto 0);

 signal RA1, RA2: STD_LOGIC_VECTOR(3 downto 0);

begin

 -- next PC logic

 pcreg: flopenr generic map(32)

 port map(clk, reset, PCWrite, Result, PC);

 -- memory logic

 adrmux: mux2 generic map(32)

 port map(PC, ALUOut, AdrSrc, Adr);

 ir: flopenr generic map(32)

 port map(clk, reset, IRWrite, ReadData, Instr);

 datareg: flopr generic map(32)

 port map(clk, reset, ReadData, Data);

 -- register file logic

 ra1mux: mux2 generic map (4)

 port map(Instr(19 downto 16), "1111", RegSrc(0), RA1);

 ra2mux: mux2 generic map (4) port map(Instr(3 downto 0),

 Instr(15 downto 12), RegSrc(1), RA2);

 rf: regfile port map(clk, RegWrite, RA1, RA2,

 Instr(15 downto 12), Result, Result,

 RD1, RD2);

 srcareg: flopr generic map(32)

 port map(clk, reset, RD1, A);

 wdreg: flopr generic map(32)

 port map(clk, reset, RD2, WriteData);

 ext: extend port map(Instr(23 downto 0), ImmSrc, ExtImm);

 -- ALU logic

 srcamux: mux2 generic map(32)

 port map(A, PC, ALUSrcA, SrcA);

 srcbmux: mux3 generic map(32)

 port map(WriteData, ExtImm, 32D"4", ALUSrcB, SrcB);

 i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

 aluoutreg: flopr generic map(32)

 port map(clk, reset, ALUResult, ALUOut);

 resmux: mux3 generic map(32)

 port map(ALUOut, Data, ALUResult, ResultSrc, Result);

end;

371 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is -- three-port register file

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is

 type ramtype is array (31 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 signal mem: ramtype;

begin

 process(clk) begin

 if rising_edge(clk) then

 if we3 = '1' then mem(to_integer(wa3)) <= wd3;

 end if;

 end if;

 end process;

 process(all) begin

 if (to_integer(ra1) = 15) then rd1 <= r15;

 else rd1 <= mem(to_integer(ra1));

 end if;

 if (to_integer(ra2) = 15) then rd2 <= r15;

 else rd2 <= mem(to_integer(ra2));

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is -- adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is

begin

 y <= a + b;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity extend is

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is

begin

 process(all) begin

 case ImmSrc is

372 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 when "00" => ExtImm <= (X"000000", Instr(7 downto 0));

 when "01" => ExtImm <= (X"00000", Instr(11 downto 0));

 when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

 Instr(23), Instr(23), Instr(23), Instr(23 downto 0), "00");

 when others => ExtImm <= X"--------";

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is -- flip-flop with enable and asynchronous reset

 generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is -- flip-flop with asynchronous reset

 generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 q <= d;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is -- two-input multiplexer

 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

373 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture behave of mux2 is

begin

 y <= d1 when s else d0;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux3 is -- three-input multiplexer

 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux3 is

begin

 process(all) begin

 case s is

 when "00" => y <= d0;

 when "01" => y <= d1;

 when "10" => y <= d2;

 when others => y <= d0;

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal neg, zero, carry, overflow: STD_LOGIC;

begin

 condinvb <= not b when ALUControl(0) else b;

 sum <= ('0', a) + ('0', condinvb) + ALUControl(0);

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and b;

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

374 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carry <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carry, overflow);

end;

Test ARM assembly code
// If successful, it should write the value 7 to address 100

MAIN SUB R0, R15, R15 ; R0 = 0

 ADD R2, R0, #5 ; R2 = 5

 ADD R3, R0, #12 ; R3 = 12

 SUB R7, R3, #9 ; R7 = 3

 ORR R4, R7, R2 ; R4 = 3 OR 5 = 7

 AND R5, R3, R4 ; R5 = 12 AND 7 = 4

 ADD R5, R5, R4 ; R5 = 4 + 7 = 11

 SUBS R8, R5, R7 ; R8 <= 11 - 3 = 8, set Flags

 BEQ END ; shouldn't be taken

 SUBS R8, R3, R4 ; R8 = 12 - 7 = 5

 BGE AROUND ; should be taken

 ADD R5, R0, #0 ; should be skipped

AROUND

 SUBS R8, R7, R2 ; R8 = 3 - 5 = -2, set Flags

 ADDLT R7, R5, #1 ; R7 = 11 + 1 = 12

 SUB R7, R7, R2 ; R7 = 12 - 5 = 7

 STR R7, [R3, #84] ; mem[12+84] = 7

 LDR R2, [R0, #96] ; R2 = mem[96] = 7

 ADD R15, R15, R0 ; PC <- PC + 8 (skips next)

 ADD R2, R0, #14 ; shouldn't happen

 B END ; always taken

 ADD R2, R0, #13 ; shouldn't happen

 ADD R2, R0, #10 ; shouldn't happen

END STR R2, [R0, #100] ; mem[100] = 7

memfile.dat

E04F000F

E2802005

E280300C

E2437009

E1874002

E0035004

E0855004

E0558007

0A00000C

E0538004

AA000000

E2805000

E0578002

B2857001

375 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

E0477002

E5837054

E5902060

E08FF000

E280200E

EA000001

E280200D

E280200A

E5802064

Exercise 7.26

SystemVerilog
// Added instructions:

// BL, LDR, LDRB, BIC

module testbench();

 logic clk;

 logic reset;

 logic [31:0] WriteData, DataAdr;

 logic MemWrite;

 // instantiate device to be tested

 top dut(clk, reset, WriteData, DataAdr, MemWrite);

 // initialize test

 initial

 begin

 reset <= 1; # 22; reset <= 0;

 end

 // generate clock to sequence tests

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if(MemWrite) begin

 if(DataAdr === 208 & WriteData === 57) begin

 $display("Simulation succeeded");

 $stop;

 end else if (DataAdr !== 200) begin

 $display("Simulation failed");

 $stop;

 end

 end

 end

endmodule

376 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

module top(input logic clk, reset,

 output logic [31:0] WriteData, Adr,

 output logic MemWrite);

 logic [31:0] ReadData;

 // instantiate processor and shared memory

 arm arm(clk, reset, MemWrite, Adr,

 WriteData, ReadData);

 mem mem(clk, MemWrite, Adr, WriteData, ReadData);

endmodule

module mem(input logic clk, we,

 input logic [31:0] a, wd,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 initial

 $readmemh("ex7.26_memfile.dat",RAM);

 assign rd = RAM[a[31:2]]; // word aligned

 always_ff @(posedge clk)

 if (we) RAM[a[31:2]] <= wd;

endmodule

module arm(input logic clk, reset,

 output logic MemWrite,

 output logic [31:0] Adr, WriteData,

 input logic [31:0] ReadData);

 logic [31:0] Instr;

 logic [3:0] ALUFlags;

 logic PCWrite, RegWrite, IRWrite;

 logic AdrSrc, ALUSrcA;

 logic [1:0] ALUSrcB, ImmSrc, ResultSrc;

 logic [2:0] ALUControl; // BIC

 logic [2:0] RegSrc; // BL

 logic LDRB; // LDRB

 controller c(clk, reset, Instr[31:12], ALUFlags,

 PCWrite, MemWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl, LDRB);

 datapath dp(clk, reset, Adr, WriteData, ReadData, Instr, ALUFlags,

 PCWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl, LDRB);

endmodule

module controller(input logic clk,

377 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 input logic reset,

 input logic [31:12] Instr,

 input logic [3:0] ALUFlags,

 output logic PCWrite,

 output logic MemWrite,

 output logic RegWrite,

 output logic IRWrite,

 output logic AdrSrc,

 output logic [2:0] RegSrc, // BL

 output logic ALUSrcA,

 output logic [1:0] ALUSrcB,

 output logic [1:0] ResultSrc,

 output logic [1:0] ImmSrc,

 output logic [2:0] ALUControl, // BIC

 output logic LDRB); // LDRB

 logic [1:0] FlagW;

 logic PCS, NextPC, RegW, MemW;

 decoder dec(clk, reset, Instr[27:26], Instr[25:20], Instr[15:12],

 FlagW, PCS, NextPC, RegW, MemW,

 IRWrite, AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,

 LDRB); // LDRB

 condlogic cl(clk, reset, Instr[31:28], ALUFlags,

 FlagW, PCS, NextPC, RegW, MemW,

 PCWrite, RegWrite, MemWrite);

endmodule

module decoder(input logic clk, reset,

 input logic [1:0] Op,

 input logic [5:0] Funct,

 input logic [3:0] Rd,

 output logic [1:0] FlagW,

 output logic PCS, NextPC, RegW, MemW,

 output logic IRWrite, AdrSrc,

 output logic [1:0] ResultSrc,

 output logic ALUSrcA,

 output logic [1:0] ALUSrcB, ImmSrc,

 output logic [2:0] RegSrc, // BL

 output logic [2:0] ALUControl, // BIC

 output logic LDRB); // LDRB

 logic Branch;

 logic [1:0] ALUOp; // LDR (with +- imm12)

 // Main FSM

 mainfsm fsm(clk, reset, Op, Funct,

 IRWrite, AdrSrc,

 ALUSrcA, ALUSrcB, ResultSrc,

 NextPC, RegW, MemW, Branch, ALUOp,

 LDRB); // LDRB

 always_comb

 case (ALUOp)

378 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 2'b00: // not DP: add

 begin

 ALUControl = 3'b000; // add

 FlagW = 2'b00; // don’t update Flags

 end

 2'b01: // not DP: subtract

 begin

 ALUControl = 3'b101; // subtract

 FlagW = 2'b00; // don’t update Flags

 end

 2'b10: // which Data-processing Instr?

 begin

 case(Funct[4:1])

 4'b0100: ALUControl = 3'b000; // ADD

 4'b0010: ALUControl = 3'b101; // SUB

 4'b0000: ALUControl = 3'b010; // AND

 4'b1100: ALUControl = 3'b011; // ORR

 4'b1110: ALUControl = 3'b110; // BIC

 default: ALUControl = 3'bx; // unimplemented

 endcase

 FlagW[1] = Funct[0]; // update N & Z flags if S bit is set

 FlagW[0] = Funct[0] &

 (ALUControl == 3'b000 | ALUControl == 3'b101);

 end

 default:

 begin

 ALUControl = 3'bx;

 FlagW = 2'bx;

 end

 endcase

 // PC Logic

 assign PCS = ((Rd == 4'b1111) & RegW) | Branch;

 // Instr Decoder

 assign ImmSrc = Op;

 assign RegSrc[0] = (Op == 2'b10); // read PC on Branch

 assign RegSrc[1] = (Op == 2'b01); // read Rd on STR

 // write PC+4 to LR on BL

 assign RegSrc[2] = ((Op == 2'b10) & (Funct[4]==1));

endmodule

module mainfsm(input logic clk,

 input logic reset,

 input logic [1:0] Op,

 input logic [5:0] Funct,

 output logic IRWrite,

 output logic AdrSrc, ALUSrcA,

 output logic [1:0] ALUSrcB, ResultSrc,

 output logic NextPC, RegW, MemW, Branch,

 output logic [1:0] ALUOp, // LDR (with +- imm12)

 output logic LDRB); // LDRB

379 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 typedef enum logic [3:0] {FETCH, DECODE, MEMRD, MEMWB,

 MEMWR, EXECUTER, EXECUTEI, ALUWB, BRANCH,

 BL, // BL

 MEMADRADD, MEMADRSUB, // LDR +- imm12

 MEMREADBYTE, // LDRB

 UNKNOWN}

statetype;

 statetype state, nextstate;

 logic [13:0] controls; // LDRB, LDR +- imm12

 // state register

 always @(posedge clk or posedge reset)

 if (reset) state <= FETCH;

 else state <= nextstate;

 // next state logic

 always_comb

 case(state)

 FETCH: nextstate = DECODE;

 DECODE: case(Op)

 2'b00:

 if (Funct[5]) nextstate = EXECUTEI;

 else nextstate = EXECUTER;

 2'b01:

 if (Funct[3]) nextstate = MEMADRADD;//LDR +- imm12

 else nextstate = MEMADRSUB;

 2'b10:

 if (Funct[4]) nextstate = BL; //BL

 else nextstate = BRANCH;

 default: nextstate = UNKNOWN;

 endcase

 EXECUTER: nextstate = ALUWB;

 EXECUTEI: nextstate = ALUWB;

 MEMADRADD: //LDR +- imm12

 if (Funct[0]&Funct[2]) nextstate = MEMREADBYTE;

 else if (Funct[0]&~Funct[2]) nextstate = MEMRD;

 else nextstate = MEMWR;

 MEMADRSUB: //LDR +- imm12

 if (Funct[0]&Funct[2]) nextstate = MEMREADBYTE;

 else if (Funct[0]&~Funct[2]) nextstate = MEMRD;

 else nextstate = MEMWR;

 MEMRD: nextstate = MEMWB;

 MEMREADBYTE: nextstate = MEMWB;

 default: nextstate = FETCH;

 endcase

 // state-dependent output logic

 always_comb

 case(state)

 FETCH: controls = 14'b10001_010_11000_0;

 DECODE: controls = 14'b00000_010_11000_0;

 EXECUTER: controls = 14'b00000_000_00010_0;

380 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 EXECUTEI: controls = 14'b00000_000_00110_0;

 ALUWB: controls = 14'b00010_000_00000_0;

 MEMWR: controls = 14'b00100_100_00000_0;

 MEMRD: controls = 14'b00000_100_00000_0;

 MEMWB: controls = 14'b00010_001_00000_0;

 BRANCH: controls = 14'b01000_010_00100_0;

 BL: controls = 14'b01010_010_00100_0; // BL

 MEMADRADD: controls = 14'b00000_000_00100_0; // LDR +- imm12

 MEMADRSUB: controls = 14'b00000_000_00101_0; // LDR +- imm12

 MEMREADBYTE: controls = 14'b00000_100_00000_1; // LDRB

 default: controls = 14'bxxxxx_xxx_xxxxx_x;

 endcase

 assign {NextPC, Branch, MemW, RegW, IRWrite,

 AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ALUOp,

 LDRB} = controls;

endmodule

module condlogic(input logic clk, reset,

 input logic [3:0] Cond,

 input logic [3:0] ALUFlags,

 input logic [1:0] FlagW,

 input logic PCS, NextPC, RegW, MemW,

 output logic PCWrite, RegWrite, MemWrite);

 logic [1:0] FlagWrite;

 logic [3:0] Flags;

 logic CondEx, CondExDelayed;

 flopenr #(2)flagreg1(clk, reset, FlagWrite[1], ALUFlags[3:2],

Flags[3:2]);

 flopenr #(2)flagreg0(clk, reset, FlagWrite[0], ALUFlags[1:0],

Flags[1:0]);

 // write controls are conditional

 condcheck cc(Cond, Flags, CondEx);

 flopr #(1)condreg(clk, reset, CondEx, CondExDelayed);

 assign FlagWrite = FlagW & {2{CondEx}};

 assign RegWrite = RegW & CondExDelayed;

 assign MemWrite = MemW & CondExDelayed;

 assign PCWrite = (PCS & CondExDelayed) | NextPC;

endmodule

module condcheck(input logic [3:0] Cond,

 input logic [3:0] Flags,

 output logic CondEx);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

 assign ge = (neg == overflow);

 always_comb

381 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 case(Cond)

 4'b0000: CondEx = zero; // EQ

 4'b0001: CondEx = ~zero; // NE

 4'b0010: CondEx = carry; // CS

 4'b0011: CondEx = ~carry; // CC

 4'b0100: CondEx = neg; // MI

 4'b0101: CondEx = ~neg; // PL

 4'b0110: CondEx = overflow; // VS

 4'b0111: CondEx = ~overflow; // VC

 4'b1000: CondEx = carry & ~zero; // HI

 4'b1001: CondEx = ~(carry & ~zero); // LS

 4'b1010: CondEx = ge; // GE

 4'b1011: CondEx = ~ge; // LT

 4'b1100: CondEx = ~zero & ge; // GT

 4'b1101: CondEx = ~(~zero & ge); // LE

 4'b1110: CondEx = 1'b1; // Always

 default: CondEx = 1'bx; // undefined

 endcase

endmodule

module datapath(input logic clk, reset,

 output logic [31:0] Adr, WriteData,

 input logic [31:0] ReadData,

 output logic [31:0] Instr,

 output logic [3:0] ALUFlags,

 input logic PCWrite, RegWrite,

 input logic IRWrite,

 input logic AdrSrc,

 input logic [2:0] RegSrc, // BL

 input logic ALUSrcA,

 input logic [1:0] ALUSrcB, ResultSrc,

 input logic [1:0] ImmSrc,

 input logic [2:0] ALUControl, // BIC

 input logic LDRB); // LDRB

 logic [31:0] PCNext, PC;

 logic [31:0] ExtImm, SrcA, SrcB, Result;

 logic [31:0] Data, RD1, RD2, A, ALUResult, ALUOut;

 logic [3:0] RA1, RA2;

 logic [3:0] RA3; // BL

 logic [31:0] WD3; // BL

 logic [7:0] DataByte; // LDRB

 logic [31:0] MemData, DataByteExt; // LDRB

 // next PC logic

 flopenr #(32) pcreg(clk, reset, PCWrite, Result, PC);

 // memory logic

 mux2 #(32) adrmux(PC, ALUOut, AdrSrc, Adr);

 flopenr #(32) ir(clk, reset, IRWrite, ReadData, Instr);

 // LDRB

 mux4 #(8) ldrbmux(ReadData[7:0], ReadData[15:8], ReadData[23:16],

 ReadData[31:24], Adr[1:0], DataByte);

 zeroextend ze(DataByte, DataByteExt);

382 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 mux2 #(32) datamux(ReadData, DataByteExt, LDRB, MemData);

 flopr #(32) datareg(clk, reset, MemData, Data);

 // register file logic

 mux2 #(4) ra1mux(Instr[19:16], 4'b1111, RegSrc[0], RA1);

 mux2 #(4) ra2mux(Instr[3:0], Instr[15:12], RegSrc[1], RA2);

 mux2 #(4) ra3mux(Instr[15:12], 4'b1110, RegSrc[2], RA3); // BL

 mux2 #(32) rwd3mux(Result, PC, RegSrc[2], WD3); // BL

 regfile rf(clk, RegWrite, RA1, RA2,

 RA3, WD3, Result, // BL

 RD1, RD2);

 flopr #(32) srcareg(clk, reset, RD1, A);

 flopr #(32) wdreg(clk, reset, RD2, WriteData);

 extend ext(Instr[23:0], ImmSrc, ExtImm);

 // ALU logic

 mux2 #(32) srcamux(A, PC, ALUSrcA, SrcA);

 mux3 #(32) srcbmux(WriteData, ExtImm, 32'd4, ALUSrcB, SrcB);

 alu alu(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

 flopr #(32) aluoutreg(clk, reset, ALUResult, ALUOut);

 mux3 #(32) resmux(ALUOut, Data, ALUResult, ResultSrc, Result);

endmodule

module regfile(input logic clk,

 input logic we3,

 input logic [3:0] ra1, ra2, wa3,

 input logic [31:0] wd3, r15,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[14:0];

 // three ported register file

 // read two ports combinationally

 // write third port on rising edge of clock

 // register 15 reads PC+8 instead

 always_ff @(posedge clk)

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];

 assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

module extend(input logic [23:0] Instr,

 input logic [1:0] ImmSrc,

 output logic [31:0] ExtImm);

 always_comb

 case(ImmSrc)

 // 8-bit unsigned immediate

 2'b00: ExtImm = {24'b0, Instr[7:0]};

 // 12-bit unsigned immediate

 2'b01: ExtImm = {20'b0, Instr[11:0]};

383 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // 24-bit two's complement shifted branch

 2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};

 default: ExtImm = 32'bx; // undefined

 endcase

endmodule

module adder #(parameter WIDTH=8)

 (input logic [WIDTH-1:0] a, b,

 output logic [WIDTH-1:0] y);

 assign y = a + b;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic clk, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (en) q <= d;

endmodule

module flopr #(parameter WIDTH = 8)

 (input logic clk, reset,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;

endmodule

module mux3 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1, d2,

 input logic [1:0] s,

 output logic [WIDTH-1:0] y);

 assign y = s[1] ? d2 : (s[0] ? d1 : d0);

endmodule

module alu(input logic [31:0] a, b,

 input logic [2:0] ALUControl, // BIC

 output logic [31:0] Result,

 output logic [3:0] ALUFlags);

384 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 logic neg, zero, carry, overflow;

 logic [31:0] condinvb;

 logic [32:0] sum;

 assign condinvb = ALUControl[2] ? ~b : b;

 assign sum = a + condinvb + ALUControl[2]; // BIC

 always_comb

 casex (ALUControl[1:0])

 2'b0?: Result = sum;

 2'b10: Result = a & condinvb; // BIC

 2'b11: Result = a | b;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carry = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) & ~(a[31] ^ b[31] ^

 ALUControl[0]) & (a[31] ^ sum[31]);

 assign ALUFlags = {neg, zero, carry, overflow};

endmodule

// zeroextend needed for LDRB

module zeroextend (input [7:0] a,

 output [31:0] y);

 assign y = {24'b0, a};

endmodule

// mux4 needed for LDRB

module mux4 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1, d2, d3,

 input logic [1:0] s,

 output logic [WIDTH-1:0] y);

 always_comb

 case (s)

 2'b00: y = d0;

 2'b01: y = d1;

 2'b10: y = d2;

 2'b11: y = d3;

 default: y = d0;

 endcase

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is

end;

architecture test of testbench is

 component top

385 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 port(clk, reset: in STD_LOGIC;

 WriteData, Adr: out STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC);

 end component;

 signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);

 signal clk, reset, MemWrite: STD_LOGIC;

begin

 -- instantiate device to be tested

 dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

 -- Generate clock with 10 ns period

 process begin

 clk <= '1';

 wait for 5 ns;

 clk <= '0';

 wait for 5 ns;

 end process;

 -- Generate reset for first two clock cycles

 process begin

 reset <= '1';

 wait for 22 ns;

 reset <= '0';

 wait;

 end process;

 -- check that 7 gets written to address 84

 -- at end of program

 process (clk) begin

 if (clk'event and clk = '0' and MemWrite = '1') then

 if (to_integer(DataAdr) = 208 and

 to_integer(WriteData) = 57) then

 report "NO ERRORS: Simulation succeeded" severity failure;

 elsif (DataAdr /= 200) then

 report "Simulation failed" severity failure;

 end if;

 end if;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is -- top-level design for testing

 port(clk, reset: in STD_LOGIC;

 WriteData, Adr: buffer STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: buffer STD_LOGIC);

end;

architecture test of top is

 component arm

 port(clk, reset: in STD_LOGIC;

 MemWrite: out STD_LOGIC;

386 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component mem

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal ReadData: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- instantiate processor and memories

 i_arm: arm port map(clk, reset, MemWrite, Adr,

 WriteData, ReadData);

 i_mem: mem port map(clk, MemWrite, Adr,

 WriteData, ReadData);

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mem is -- memory

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of mem is -- instruction and data memory

begin

 process is

 file mem_file: TEXT;

 variable L: line;

 variable ch: character;

 variable i, index, result: integer;

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable ram: ramtype;

 begin

 -- initialize memory from file

 for i in 0 to 63 loop -- set all contents low

 ram(i) := (others => '0');

 end loop;

 index := 0;

 FILE_OPEN(mem_file, "ex7.26_memfile.dat", READ_MODE);

 while not endfile(mem_file) loop

 readline(mem_file, L);

 result := 0;

 for i in 1 to 8 loop

 read(L, ch);

 if '0' <= ch and ch <= '9' then

 result := character'pos(ch) - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 result := character'pos(ch) - character'pos('a')+10;

 elsif 'A' <= ch and ch <= 'F' then

387 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 result := character'pos(ch) - character'pos('A')+10;

 else report "Format error on line " & integer'image(index)

 severity error;

 end if;

 ram(index)(35-i*4 downto 32-i*4) :=

 to_std_logic_vector(result,4);

 end loop;

 index := index + 1;

 end loop;

 -- read or write memory

 loop

 if clk'event and clk = '1' then

 if (we = '1') then

 ram(to_integer(a(7 downto 2))) := wd;

 end if;

 end if;

 rd <= ram(to_integer(a(7 downto 2)));

 wait on clk, a;

 end loop;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is -- multicycle processor

 port(clk, reset: in STD_LOGIC;

 MemWrite: out STD_LOGIC;

 Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is

 component controller

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 RegWrite: out STD_LOGIC;

 IRWrite: out STD_LOGIC;

 AdrSrc: out STD_LOGIC;

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- BIC

 LDRB: out STD_LOGIC); -- LDRB

 end component;

 component datapath

 port(clk, reset: in STD_LOGIC;

 Adr: out STD_LOGIC_VECTOR(31 downto 0);

388 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Instr: out STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: in STD_LOGIC;

 RegWrite: in STD_LOGIC;

 IRWrite: in STD_LOGIC;

 AdrSrc: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: in STD_LOGIC;

 ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- BIC

 LDRB: in STD_LOGIC); -- LDRB

 end component;

 signal Instr: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUFlags: STD_LOGIC_VECTOR(3 downto 0);

 signal PCWrite, RegWrite, IRWrite: STD_LOGIC;

 signal AdrSrc, ALUSrcA: STD_LOGIC;

 signal RegSrc, ALUSrcB: STD_LOGIC_VECTOR(1 downto 0);

 signal ImmSrc, ResultSrc: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUControl: STD_LOGIC_VECTOR(2 downto 0); -- BIC

 signal LDRB: STD_LOGIC; -- LDRB

begin

 cont: controller port map(clk, reset, Instr(31 downto 12),

 ALUFlags, PCWrite, MemWrite, RegWrite,

 IRWrite, AdrSrc, RegSrc, ALUSrcA,

 ALUSrcB, ResultSrc, ImmSrc, ALUControl,

 LDRB); -- LDRB

 dp: datapath port map(clk, reset, Adr, WriteData, ReadData,

 Instr, ALUFlags,

 PCWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl,

 LDRB); -- LDRB

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is -- single cycle control decoder

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 RegWrite: out STD_LOGIC;

 IRWrite: out STD_LOGIC;

 AdrSrc: out STD_LOGIC;

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

389 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- BIC

 LDRB: out STD_LOGIC); -- LDRB

end;

architecture struct of controller is

 component decoder

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: out STD_LOGIC;

 RegW, MemW: out STD_LOGIC;

 IRWrite, AdrSrc: out STD_LOGIC;

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- BIC

 LDRB: out STD_LOGIC); -- LDRB

 end component;

 component condlogic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: in STD_LOGIC;

 RegW, MemW: in STD_LOGIC;

 PCWrite, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC);

 end component;

 signal FlagW: STD_LOGIC_VECTOR(1 downto 0);

 signal PCS, NextPC, RegW, MemW: STD_LOGIC;

begin

 dec: decoder port map(clk, reset, Instr(27 downto 26), Instr(25 downto

20),

 Instr(15 downto 12), FlagW, PCS,

 NextPC, RegW, MemW,

 IRWrite, AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,

 LDRB); -- LDRB

 cl: condlogic port map(clk, reset, Instr(31 downto 28),

 ALUFlags, FlagW, PCS, NextPC, RegW, MemW,

 PCWrite, RegWrite, MemWrite);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder is -- main control decoder

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: out STD_LOGIC;

390 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 RegW, MemW: out STD_LOGIC;

 IRWrite, AdrSrc: out STD_LOGIC;

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- BIC

 LDRB: out STD_LOGIC); -- LDRB

end;

architecture behave of decoder is

 component mainfsm

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 IRWrite: out STD_LOGIC;

 AdrSrc, ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 NextPC, RegW: out STD_LOGIC;

 MemW, Branch: out STD_LOGIC;

 ALUOp: out STD_LOGIC_VECTOR(1 downto 0); -- LDR +-

imm12

 LDRB: out STD_LOGIC); -- LDRB

 end component;

 signal Branch: STD_LOGIC;

 signal ALUOp: STD_LOGIC_VECTOR(1 downto 0); -- LDR +- imm12

begin

 -- Main FSM

 fsm: mainfsm port map(clk, reset, Op, Funct,

 IRWrite, AdrSrc,

 ALUSrcA, ALUSrcB, ResultSrc,

 NextPC, RegW, MemW, Branch, ALUOp,

 LDRB); -- LDRB

 process(all) begin -- ALU Decoder

 if (ALUOp = "10") then

 case Funct(4 downto 1) is

 when "0100" => ALUControl <= "000"; -- ADD

 when "0010" => ALUControl <= "101"; -- SUB

 when "0000" => ALUControl <= "010"; -- AND

 when "1100" => ALUControl <= "011"; -- ORR

 when "1110" => ALUControl <= "110"; -- BIC

 when others => ALUControl <= "---"; -- unimplemented

 end case;

 FlagW(1) <= Funct(0);

 FlagW(0) <= Funct(0) and (not ALUControl(1));

 elsif (ALUOP = "01") then

 ALUControl <= "101";

 FlagW <= "00";

 else

 ALUControl <= "000";

 FlagW <= "00";

 end if;

391 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end process;

 -- PC Logic

 PCS <= ((and Rd) and RegW) or Branch;

 -- Instr Decoder

 ImmSrc <= Op;

 RegSrc(0) <= '1' when (Op = 2B"10") else '0';

 RegSrc(1) <= '1' when (Op = 2B"01") else '0';

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mainfsm is

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 IRWrite: out STD_LOGIC;

 AdrSrc, ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 NextPC, RegW: out STD_LOGIC;

 MemW, Branch: out STD_LOGIC;

 ALUOp: out STD_LOGIC_VECTOR(1 downto 0); -- LDR +- imm12

 LDRB: out STD_LOGIC); -- LDRB

end;

architecture synth of mainfsm is

 type statetype is (FETCH, DECODE, MEMADRADD, MEMADRSUB, MEMRD,

 MEMRDBYTE, -- LDRB

 MEMWB, MEMWR,

 EXECUTER, EXECUTEI, ALUWB, BR,

 BL, -- BL

 UNKNOWN);

 signal state, nextstate: statetype;

 signal controls: STD_LOGIC_VECTOR(13 downto 0);

begin

 --state register

 process(clk, reset) begin

 if reset then state <= FETCH;

 elsif rising_edge(clk) then

 state <= nextstate;

 end if;

 end process;

 -- next state logic

 process(all) begin

 case state is

 when FETCH => nextstate <= DECODE;

 when DECODE =>

 case Op is

 when "00" => nextstate <= ExecuteI when (Funct(5) = '1')

 else EXECUTER;

 when "01" => nextstate <= MEMADRADD when (Funct(3) = '1')

392 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 else MEMADRSUB; -- LDR +- imm

 when "10" => nextstate <= BL when (Funct(4) = '1')

 else BR;

 when others => nextstate <= UNKNOWN;

 end case;

 when EXECUTER => nextstate <= ALUWB;

 when EXECUTEI => nextstate <= ALUWB;

 when MEMADRADD => nextstate <= MEMRDBYTE when ((Funct(0) = '1')

and (Funct(2)='1')) -- LDRB

 else MEMRD when ((Funct(0) = '1') and

(Funct(2)='0'))

 else MEMWR;

 when MEMADRSUB => nextstate <= MEMRD when (Funct(0) = '1')

 else MEMWR;

 when MEMRD => nextstate <= MEMWB;

 when MEMRDBYTE => nextstate <= MEMWB; -- LDRB

 when others => nextstate <= FETCH;

 end case;

 end process;

 -- state-dependent output logic

 process(all) begin

 case state is

 when FETCH => controls <= 14B"10001010110000";

 when DECODE => controls <= 14B"00000010110000";

 when EXECUTER => controls <= 14B"00000000000100";

 when EXECUTEI => controls <= 14B"00000000001100";

 when ALUWB => controls <= 14B"00010000000000";

 when MEMADRADD => controls <= 14B"00000000001000";

 when MEMADRSUB => controls <= 14B"00000000001010";

 when MEMWR => controls <= 14B"00100100000000";

 when MEMRD => controls <= 14B"00000100000000";

 when MEMRDBYTE => controls <= 14B"00000100000001";

 when MEMWB => controls <= 14B"00010001000000";

 when BR => controls <= 14B"01000010001000";

 when BL => controls <= 14B"01010010001000";

 when others => controls <= "XXXXXXXXXXXXXX";

 end case;

 end process;

 (NextPC, Branch, MemW, RegW, IRWrite,

 AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ALUOp, LDRB) <= controls;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is -- Conditional logic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: in STD_LOGIC;

 RegW, MemW: in STD_LOGIC;

 PCWrite, RegWrite: out STD_LOGIC;

393 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 MemWrite: out STD_LOGIC);

end;

architecture behave of condlogic is

 component condcheck

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 signal FlagWrite: STD_LOGIC_VECTOR(1 downto 0);

 signal Flags: STD_LOGIC_VECTOR(3 downto 0);

 signal CondEx: STD_LOGIC_VECTOR(0 downto 0);

 signal CondExDelayed: STD_LOGIC_VECTOR(0 downto 0);

begin

 flagreg1: flopenr generic map(2)

 port map(clk, reset, FlagWrite(1),

 ALUFlags(3 downto 2), Flags(3 downto 2));

 flagreg0: flopenr generic map(2)

 port map(clk, reset, FlagWrite(0),

 ALUFlags(1 downto 0), Flags(1 downto 0));

 cc: condcheck port map(Cond, Flags, CondEx(0));

 condreg: flopr generic map(1)

 port map(clk, reset, CondEx, CondExDelayed);

 FlagWrite <= FlagW and (CondEx(0), CondEx(0));

 RegWrite <= RegW and CondExDelayed(0);

 MemWrite <= MemW and CondExDelayed(0);

 PCWrite <= (PCS and CondExDelayed(0)) or NextPC;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condcheck is

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

end;

architecture behave of condcheck is

 signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin

 (neg, zero, carry, overflow) <= Flags;

 ge <= (neg xnor overflow);

394 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 process(all) begin -- Condition checking

 case Cond is

 when "0000" => CondEx <= zero;

 when "0001" => CondEx <= not zero;

 when "0010" => CondEx <= carry;

 when "0011" => CondEx <= not carry;

 when "0100" => CondEx <= neg;

 when "0101" => CondEx <= not neg;

 when "0110" => CondEx <= overflow;

 when "0111" => CondEx <= not overflow;

 when "1000" => CondEx <= carry and (not zero);

 when "1001" => CondEx <= not(carry and (not zero));

 when "1010" => CondEx <= ge;

 when "1011" => CondEx <= not ge;

 when "1100" => CondEx <= (not zero) and ge;

 when "1101" => CondEx <= not ((not zero) and ge);

 when "1110" => CondEx <= '1';

 when others => CondEx <= '-';

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity datapath is

 port(clk, reset: in STD_LOGIC;

 Adr: out STD_LOGIC_VECTOR(31 downto 0);

 WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Instr: out STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: in STD_LOGIC;

 RegWrite: in STD_LOGIC;

 IRWrite: in STD_LOGIC;

 AdrSrc: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: in STD_LOGIC;

 ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- BIC

 LDRB: in STD_LOGIC); -- LDRB

end;

architecture struct of datapath is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- BIC

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

 end component;

 component regfile

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

395 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component extend

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux2 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux3 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux4 generic(width: integer);

 port(d0, d1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component zeroextend

 port(a: in STD_LOGIC_VECTOR(7 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal PCNext, PC: STD_LOGIC_VECTOR(31 downto 0);

 signal ExtImm, SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);

 signal Result: STD_LOGIC_VECTOR(31 downto 0);

 signal Data, RD1, RD2, A: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUResult, ALUOut: STD_LOGIC_VECTOR(31 downto 0);

 signal RA1, RA2: STD_LOGIC_VECTOR(3 downto 0);

 signal DataByte: STD_LOGIC_VECTOR(7 downto 0); -- LDRB

 signal MemData, DataByteExt: STD_LOGIC_VECTOR(31 downto 0); -- LDRB

 signal WA3: STD_LOGIC_VECTOR(3 downto 0); -- BL

 signal WD3: STD_LOGIC_VECTOR(31 downto 0); -- BL

begin

396 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 -- next PC logic

 pcreg: flopenr generic map(32)

 port map(clk, reset, PCWrite, Result, PC);

 -- memory logic

 adrmux: mux2 generic map(32)

 port map(PC, ALUOut, AdrSrc, Adr);

 ir: flopenr generic map(32)

 port map(clk, reset, IRWrite, ReadData, Instr);

 ldrbmux: mux4 generic map(8)

 port map(Instr(31 downto 24), Instr(23 downto 16), Instr(15 downto 8),

Instr(7 downto 0),

 Adr(1 downto 0), DataByte);

 ze: zeroextend port map(DataByte, DataByteExt);

 datamaux: mux2 generic map (32)

 port map(ReadData, DataByteExt, LDRB, MemData);

 datareg: flopr generic map(32)

 port map(clk, reset, MemData, Data);

 -- register file logic

 ra1mux: mux2 generic map (4)

 port map(Instr(19 downto 16), "1111", RegSrc(0), RA1);

 ra2mux: mux2 generic map (4) port map(Instr(3 downto 0),

 Instr(15 downto 12), RegSrc(1), RA2);

 wa3mux: mux2 generic map (4) port map(Instr(15 downto 12), -- BL

 "1110", RegSrc(0), WA3);

 wd3mux: mux2 generic map (32) port map(Result, -- BL

 PC, RegSrc(0), WD3);

 rf: regfile port map(clk, RegWrite, RA1, RA2,

 WA3, WD3, -- BL

 Result, RD1, RD2);

 srcareg: flopr generic map(32)

 port map(clk, reset, RD1, A);

 wdreg: flopr generic map(32)

 port map(clk, reset, RD2, WriteData);

 ext: extend port map(Instr(23 downto 0), ImmSrc, ExtImm);

 -- ALU logic

 srcamux: mux2 generic map(32)

 port map(A, PC, ALUSrcA, SrcA);

 srcbmux: mux3 generic map(32)

 port map(WriteData, ExtImm, 32D"4", ALUSrcB, SrcB);

 i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags);

 aluoutreg: flopr generic map(32)

 port map(clk, reset, ALUResult, ALUOut);

 resmux: mux3 generic map(32)

 port map(ALUOut, Data, ALUResult, ResultSrc, Result);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is -- three-port register file

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

397 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is

 type ramtype is array (31 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 signal mem: ramtype;

begin

 process(clk) begin

 if rising_edge(clk) then

 if we3 = '1' then mem(to_integer(wa3)) <= wd3;

 end if;

 end if;

 end process;

 process(all) begin

 if (to_integer(ra1) = 15) then rd1 <= r15;

 else rd1 <= mem(to_integer(ra1));

 end if;

 if (to_integer(ra2) = 15) then rd2 <= r15;

 else rd2 <= mem(to_integer(ra2));

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is -- adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is

begin

 y <= a + b;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity extend is

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is

begin

 process(all) begin

 case ImmSrc is

 when "00" => ExtImm <= (X"000000", Instr(7 downto 0));

 when "01" => ExtImm <= (X"00000", Instr(11 downto 0));

 when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

 Instr(23), Instr(23), Instr(23), Instr(23 downto 0), "00");

 when others => ExtImm <= X"--------";

398 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is -- flip-flop with enable and asynchronous reset

 generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is -- flip-flop with asynchronous reset

 generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 q <= d;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is -- two-input multiplexer

 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is

begin

 y <= d1 when s else d0;

end;

399 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux3 is -- three-input multiplexer

 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux3 is

begin

 process(all) begin

 case s is

 when "00" => y <= d0;

 when "01" => y <= d1;

 when "10" => y <= d2;

 when others => y <= d0;

 end case;

 end process;

end;

-- mux4 needed for LDRB

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is -- four-input multiplexer

 generic(width: integer);

 port(d0, d1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux4 is

begin

 process(all) begin

 case s is

 when "00" => y <= d0;

 when "01" => y <= d1;

 when "10" => y <= d2;

 when "11" => y <= d3;

 when others => y <= d0;

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- BIC

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

400 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal neg, zero, carry, overflow: STD_LOGIC;

begin

 condinvb <= not b when ALUControl(2) else b; -- BIC

 sum <= ('0', a) + ('0', condinvb) + ALUControl(2); -- BIC

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and condinvb; -- BIC

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carry <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carry, overflow);

end;

-- zeroextend needed for LDRB

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity zeroextend is -- zero-extension unit

 port(a: in STD_LOGIC_VECTOR(7 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of zeroextend is

begin

 y <= ("000000000000000000000000", a);

end;

Test ARM assembly
MAIN

 BL TEST ; call TEST

 SUB R3, PC, PC ; R3 = 0

 ADD R4, R3, #0xC7 ; R4 = 0xC7

 ADD R5, R3, #0xDF ; R5 = 0xDF

 ADD R5, R5, #0xFF ; R5 = 0x1DE

 STR R5, [R4, #1] ; mem[0xC8] <= 0x1DE

 LDRB R6, [R3, #0xC9] ; R6 <= mem[0xC9]7:0 = 1

 LDRB R7, [R3, #0xC8] ; R7 <= mem[0xC8]7:0 = 0xDE

 LDR R8, [R7, #-0x16] ; R8 <= mem[0xc8] = 0x1DE

 ADD R3, R3, #57 ; R3 = 0x39

 STR R3, [R4, #9] ; mem[0xD0] <= 0x39

TEST

 ADD PC, LR, #0 ; PC = LR (return to point of call)

401 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

; 0x00 EB000009 BL TEST

; 0x04 E04F300F SUB R3,PC,PC

; 0x08 E28340C7 ADD R4,R3,#0xC7

; 0x0c E28350DF ADD R5,R3,#0xDF

; 0x20 E28550FF ADD R5,R5,#0xFF

; 0x24 E5845001 STR R5,[R4,#0x1]

; 0x28 E5D360C9 LDRB R6,[R3,#0xC9]

; 0x2c E5D370C8 LDRB R7,[R3,#0xC8]

; 0x30 E5178016 LDR R8,[R7,#-0x16]

; 0x34 E2833039 ADD R3,R3,#0x39

; 0x38 E5843009 STR R3,[R4,#0x9]

; 0x3c E28EF000 ADD PC, R14, #0

ex7.26_memfile.dat
EB000009

E04F300F

E28340C7

E28350DF

E28550FF

E5845001

E5D360C9

E5D370C8

E5178016

E2833039

E5843009

E28EF000

Exercise 7.27

SystemVerilog
// Multi-cycle implementation of a subset of ARMv4

// Added instructions:

// ASR, TST, SBC, ROR

module testbench();

 logic clk;

 logic reset;

 logic [31:0] WriteData, DataAdr;

 logic MemWrite;

 // instantiate device to be tested

 top dut(clk, reset, WriteData, DataAdr, MemWrite);

 // initialize test

 initial

 begin

 reset <= 1; # 22; reset <= 0;

 end

402 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // generate clock to sequence tests

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if(MemWrite) begin

 if(DataAdr === 88 & WriteData === 32'h2ffffffe) begin

 $display("Simulation succeeded");

 $stop;

 end else begin

 $display("Simulation failed");

 $stop;

 end

 end

 end

endmodule

module top(input logic clk, reset,

 output logic [31:0] WriteData, Adr,

 output logic MemWrite);

 logic [31:0] ReadData;

 // instantiate processor and shared memory

 arm arm(clk, reset, MemWrite, Adr,

 WriteData, ReadData);

 mem mem(clk, MemWrite, Adr, WriteData, ReadData);

endmodule

module mem(input logic clk, we,

 input logic [31:0] a, wd,

 output logic [31:0] rd);

 logic [31:0] RAM[63:0];

 initial

 $readmemh("ex7.27_memfile.dat",RAM);

 assign rd = RAM[a[31:2]]; // word aligned

 always_ff @(posedge clk)

 if (we) RAM[a[31:2]] <= wd;

endmodule

module arm(input logic clk, reset,

 output logic MemWrite,

 output logic [31:0] Adr, WriteData,

 input logic [31:0] ReadData);

403 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 logic [31:0] Instr;

 logic [3:0] ALUFlags;

 logic PCWrite, RegWrite, IRWrite;

 logic AdrSrc, ALUSrcA;

 logic [1:0] RegSrc, ALUSrcB, ImmSrc, ResultSrc;

 logic [2:0] ALUControl; // SBC

 logic carry; // SBC

 logic Shift; // ASR, ROR

 controller c(clk, reset, Instr[31:12], ALUFlags,

 PCWrite, MemWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl, carry, Shift);

 datapath dp(clk, reset, Adr, WriteData, ReadData, Instr, ALUFlags,

 PCWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl, carry, Shift);

endmodule

module controller(input logic clk,

 input logic reset,

 input logic [31:12] Instr,

 input logic [3:0] ALUFlags,

 output logic PCWrite,

 output logic MemWrite,

 output logic RegWrite,

 output logic IRWrite,

 output logic AdrSrc,

 output logic [1:0] RegSrc,

 output logic ALUSrcA,

 output logic [1:0] ALUSrcB,

 output logic [1:0] ResultSrc,

 output logic [1:0] ImmSrc,

 output logic [2:0] ALUControl, // SBC

 output logic carry, // SBC

 output logic Shift // ASR, ROR

);

 logic [1:0] FlagW;

 logic PCS, NextPC, RegW, MemW;

 logic NoWrite; // TST

 decode dec(clk, reset, Instr[27:26], Instr[25:20], Instr[15:12],

 FlagW, PCS, NextPC, RegW, MemW,

 IRWrite, AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,

 NoWrite, // TST

 Shift); // ASR, ROR

 condlogic cl(clk, reset, Instr[31:28], ALUFlags,

 FlagW, PCS, NextPC, RegW, MemW,

 PCWrite, RegWrite, MemWrite,

 carry, // SBC

 NoWrite); // TST

endmodule

404 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

module decode(input logic clk, reset,

 input logic [1:0] Op,

 input logic [5:0] Funct,

 input logic [3:0] Rd,

 output logic [1:0] FlagW,

 output logic PCS, NextPC, RegW, MemW,

 output logic IRWrite, AdrSrc,

 output logic [1:0] ResultSrc,

 output logic ALUSrcA,

 output logic [1:0] ALUSrcB, ImmSrc, RegSrc,

 output logic [2:0] ALUControl, // SBC

 output logic NoWrite, // TST

 output logic Shift); // ASR, ROR

 logic Branch, ALUOp;

 // Main FSM

 mainfsm fsm(clk, reset, Op, Funct,

 IRWrite, AdrSrc,

 ALUSrcA, ALUSrcB, ResultSrc,

 NextPC, RegW, MemW, Branch, ALUOp);

 always_comb

 if (ALUOp) begin // which Data-processing Instr?

 case(Funct[4:1])

 4'b0100: begin ALUControl = 3'b000; // ADD

 Shift = 1'b0;

 NoWrite = 1'b0;

 end

 4'b0010: begin ALUControl = 3'b001; // SUB

 Shift = 1'b0;

 NoWrite = 1'b0;

 end

 4'b0000: begin ALUControl = 3'b010; // AND

 Shift = 1'b0;

 NoWrite = 1'b0;

 end

 4'b1100: begin ALUControl = 3'b011; // ORR

 Shift = 1'b0;

 NoWrite = 1'b0;

 end

 4'b1101: begin ALUControl = 3'b000; // ASR, ROR

 Shift = 1'b1;

 NoWrite = 1'b0;

 end

 4'b1000: begin ALUControl = 3'b010; // TST

 Shift = 1'b0;

 NoWrite = 1'b1;

 end

 4'b0110: begin ALUControl = 3'b101; // SBC

 Shift = 1'b0;

 NoWrite = 1'b0;

 end

405 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 default: begin ALUControl = 3'bx;

 Shift = 1'bx;

 NoWrite = 1'bx;

 end

 endcase

 FlagW[1] = Funct[0]; // update N & Z flags if S bit is set

 FlagW[0] = Funct[0] & (ALUControl[1:0] == 2'b00 |

 ALUControl[1:0] == 2'b01);

 end else begin

 ALUControl = 3'b000; // add for non data-processing instructions

 FlagW = 2'b00; // don't update Flags

 Shift = 1'b0; // don’t shift

 NoWrite = 1'b0; // write result

 end

 // PC Logic

 assign PCS = ((Rd == 4'b1111) & RegW) | Branch;

 // Instr Decoder

 assign ImmSrc = Op;

 assign RegSrc[0] = (Op == 2'b10); // read PC on Branch

 assign RegSrc[1] = (Op == 2'b01); // read Rd on STR

endmodule

module mainfsm(input logic clk,

 input logic reset,

 input logic [1:0] Op,

 input logic [5:0] Funct,

 output logic IRWrite,

 output logic AdrSrc, ALUSrcA,

 output logic [1:0] ALUSrcB, ResultSrc,

 output logic NextPC, RegW, MemW, Branch, ALUOp);

 typedef enum logic [3:0] {FETCH, DECODE, MEMADR, MEMRD, MEMWB,

 MEMWR, EXECUTER, EXECUTEI, ALUWB, BRANCH,

 UNKNOWN}

statetype;

 statetype state, nextstate;

 logic [11:0] controls;

 // state register

 always @(posedge clk or posedge reset)

 if (reset) state <= FETCH;

 else state <= nextstate;

 // next state logic

 always_comb

 casex(state)

 FETCH: nextstate = DECODE;

 DECODE: case(Op)

 2'b00:

 if (Funct[5]) nextstate = EXECUTEI;

406 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 else nextstate = EXECUTER;

 2'b01: nextstate = MEMADR;

 2'b10: nextstate = BRANCH;

 default: nextstate = UNKNOWN;

 endcase

 EXECUTER: nextstate = ALUWB;

 EXECUTEI: nextstate = ALUWB;

 MEMADR:

 if (Funct[0]) nextstate = MEMRD;

 else nextstate = MEMWR;

 MEMRD: nextstate = MEMWB;

 default: nextstate = FETCH;

 endcase

 // state-dependent output logic

 always_comb

 case(state)

 FETCH: controls = 12'b10001_010_1100;

 DECODE: controls = 12'b00000_010_1100;

 EXECUTER: controls = 12'b00000_000_0001;

 EXECUTEI: controls = 12'b00000_000_0011;

 ALUWB: controls = 12'b00010_000_0000;

 MEMADR: controls = 12'b00000_000_0010;

 MEMWR: controls = 12'b00100_100_0000;

 MEMRD: controls = 12'b00000_100_0000;

 MEMWB: controls = 12'b00010_001_0000;

 BRANCH: controls = 12'b01000_010_0010;

 default: controls = 12'bxxxxx_xxx_xxxx;

 endcase

 assign {NextPC, Branch, MemW, RegW, IRWrite,

 AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ALUOp} = controls;

endmodule

module condlogic(input logic clk, reset,

 input logic [3:0] Cond,

 input logic [3:0] ALUFlags,

 input logic [1:0] FlagW,

 input logic PCS, NextPC, RegW, MemW,

 output logic PCWrite, RegWrite, MemWrite,

 output logic carry, // SBC

 input logic NoWrite); // TST

 logic [1:0] FlagWrite;

 logic [3:0] Flags;

 logic CondEx, CondExDelayed;

 logic NoWriteDelayed; // TST

 flopenr #(2)flagreg1(clk, reset, FlagWrite[1], ALUFlags[3:2],

Flags[3:2]);

 flopenr #(2)flagreg0(clk, reset, FlagWrite[0], ALUFlags[1:0],

Flags[1:0]);

407 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // write controls are conditional

 condcheck cc(Cond, Flags, CondEx);

 flopr #(1)nowritereg(clk, reset, NoWrite, NoWriteDelayed);

 flopr #(1)condreg(clk, reset, CondEx, CondExDelayed);

 assign FlagWrite = FlagW & {2{CondEx}};

 assign RegWrite = RegW & CondExDelayed & ~NoWriteDelayed; // TST

 assign MemWrite = MemW & CondExDelayed;

 assign PCWrite = (PCS & CondExDelayed) | NextPC;

 assign carry = Flags[1]; // SBC

endmodule

module condcheck(input logic [3:0] Cond,

 input logic [3:0] Flags,

 output logic CondEx);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

 assign ge = (neg == overflow);

 always_comb

 case(Cond)

 4'b0000: CondEx = zero; // EQ

 4'b0001: CondEx = ~zero; // NE

 4'b0010: CondEx = carry; // CS

 4'b0011: CondEx = ~carry; // CC

 4'b0100: CondEx = neg; // MI

 4'b0101: CondEx = ~neg; // PL

 4'b0110: CondEx = overflow; // VS

 4'b0111: CondEx = ~overflow; // VC

 4'b1000: CondEx = carry & ~zero; // HI

 4'b1001: CondEx = ~(carry & ~zero); // LS

 4'b1010: CondEx = ge; // GE

 4'b1011: CondEx = ~ge; // LT

 4'b1100: CondEx = ~zero & ge; // GT

 4'b1101: CondEx = ~(~zero & ge); // LE

 4'b1110: CondEx = 1'b1; // Always

 default: CondEx = 1'bx; // undefined

 endcase

endmodule

module datapath(input logic clk, reset,

 output logic [31:0] Adr, WriteData,

 input logic [31:0] ReadData,

 output logic [31:0] Instr,

 output logic [3:0] ALUFlags,

 input logic PCWrite, RegWrite,

 input logic IRWrite,

 input logic AdrSrc,

 input logic [1:0] RegSrc,

 input logic ALUSrcA,

 input logic [1:0] ALUSrcB, ResultSrc,

 input logic [1:0] ImmSrc,

408 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 input logic [2:0] ALUControl, // SBC

 input logic carry, // SBC

 input logic Shift); // ASR, ROR

 logic [31:0] PCNext, PC;

 logic [31:0] ExtImm, SrcA, SrcB, Result;

 logic [31:0] Data, RD1, RD2, A, ALUResult, ALUOut;

 logic [3:0] RA1, RA2;

 logic [31:0] srcBshifted, ALUResultOut; // ASR, ROR

 // next PC logic

 flopenr #(32) pcreg(clk, reset, PCWrite, Result, PC);

 // memory logic

 mux2 #(32) adrmux(PC, ALUOut, AdrSrc, Adr);

 flopenr #(32) ir(clk, reset, IRWrite, ReadData, Instr);

 flopr #(32) datareg(clk, reset, ReadData, Data);

 // register file logic

 mux2 #(4) ra1mux(Instr[19:16], 4'b1111, RegSrc[0], RA1);

 mux2 #(4) ra2mux(Instr[3:0], Instr[15:12], RegSrc[1], RA2);

 regfile rf(clk, RegWrite, RA1, RA2,

 Instr[15:12], Result, Result,

 RD1, RD2);

 flopr #(32) srcareg(clk, reset, RD1, A);

 flopr #(32) wdreg(clk, reset, RD2, WriteData);

 extend ext(Instr[23:0], ImmSrc, ExtImm);

 // ALU logic

 mux2 #(32) srcamux(A, PC, ALUSrcA, SrcA);

 // ASR, ROR

 mux3 #(32) srcbmux(srcBshifted, ExtImm, 32'd4, ALUSrcB, SrcB);

 shifter sh(WriteData, Instr[11:7], Instr[6:5], srcBshifted);

 alu alu(SrcA, SrcB, ALUControl, ALUResult, ALUFlags, carry);

 mux2 #(32) aluresultmux(ALUResult, SrcB, Shift, ALUResultOut);

 flopr #(32) aluoutreg(clk, reset, ALUResultOut, ALUOut);

 mux3 #(32) resmux(ALUOut, Data, ALUResultOut, ResultSrc, Result);

endmodule

module regfile(input logic clk,

 input logic we3,

 input logic [3:0] ra1, ra2, wa3,

 input logic [31:0] wd3, r15,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[14:0];

 // three ported register file

 // read two ports combinationally

 // write third port on rising edge of clock

 // register 15 reads PC+8 instead

 always_ff @(posedge clk)

409 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];

 assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

module extend(input logic [23:0] Instr,

 input logic [1:0] ImmSrc,

 output logic [31:0] ExtImm);

 always_comb

 case(ImmSrc)

 // 8-bit unsigned immediate

 2'b00: ExtImm = {24'b0, Instr[7:0]};

 // 12-bit unsigned immediate

 2'b01: ExtImm = {20'b0, Instr[11:0]};

 // 24-bit two's complement shifted branch

 2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00};

 default: ExtImm = 32'bx; // undefined

 endcase

endmodule

module adder #(parameter WIDTH=8)

 (input logic [WIDTH-1:0] a, b,

 output logic [WIDTH-1:0] y);

 assign y = a + b;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic clk, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (en) q <= d;

endmodule

module flopr #(parameter WIDTH = 8)

 (input logic clk, reset,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

410 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 assign y = s ? d1 : d0;

endmodule

module mux3 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1, d2,

 input logic [1:0] s,

 output logic [WIDTH-1:0] y);

 assign y = s[1] ? d2 : (s[0] ? d1 : d0);

endmodule

module alu(input logic [31:0] a, b,

 input logic [2:0] ALUControl, // SBC

 output logic [31:0] Result,

 output logic [3:0] ALUFlags,

 input logic carry); // SBC

 logic neg, zero, carryout, overflow;

 logic [31:0] condinvb;

 logic [32:0] sum;

 logic carryin; // SBC // SBC

 assign carryin = ALUControl[2] ? carry : ALUControl[0]; // SBC

 assign condinvb = ALUControl[0] ? ~b : b;

 assign sum = a + condinvb + carryin; // SBC

 always_comb

 casex (ALUControl[1:0])

 2'b0?: Result = sum;

 2'b10: Result = a & b;

 2'b11: Result = a | b;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carryout = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) & ~(a[31] ^ b[31] ^

 ALUControl[0]) & (a[31] ^ sum[31]);

 assign ALUFlags = {neg, zero, carryout, overflow};

endmodule

// shifter needed for ASR, ROR

module shifter(input logic signed [31:0] a,

 input logic [4:0] shamt,

 input logic [1:0] shtype,

 output logic signed [31:0] y);

 always_comb

 case (shtype)

 2'b10: y = a >>> shamt;

 2'b11: y = (a >> shamt) | (a << (32-shamt));

411 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 default: y = a;

 endcase

endmodule

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is

end;

architecture test of testbench is

 component top

 port(clk, reset: in STD_LOGIC;

 WriteData, Adr: out STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: out STD_LOGIC);

 end component;

 signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);

 signal clk, reset, MemWrite: STD_LOGIC;

begin

 -- instantiate device to be tested

 dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

 -- Generate clock with 10 ns period

 process begin

 clk <= '1';

 wait for 5 ns;

 clk <= '0';

 wait for 5 ns;

 end process;

 -- Generate reset for first two clock cycles

 process begin

 reset <= '1';

 wait for 22 ns;

 reset <= '0';

 wait;

 end process;

 -- check that 7 gets written to address 84

 -- at end of program

 process (clk) begin

 if (clk'event and clk = '0' and MemWrite = '1') then

 if (to_integer(DataAdr) = 88 and

 to_integer(WriteData) = 32X"2FFFFFFE") then

 report "NO ERRORS: Simulation succeeded" severity failure;

 else

 report "Simulation failed" severity failure;

 end if;

 end if;

 end process;

end;

412 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity top is -- top-level design for testing

 port(clk, reset: in STD_LOGIC;

 WriteData, Adr: buffer STD_LOGIC_VECTOR(31 downto 0);

 MemWrite: buffer STD_LOGIC);

end;

architecture test of top is

 component arm

 port(clk, reset: in STD_LOGIC;

 MemWrite: out STD_LOGIC;

 Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component mem

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal ReadData: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- instantiate processor and memories

 i_arm: arm port map(clk, reset, MemWrite, Adr,

 WriteData, ReadData);

 i_mem: mem port map(clk, MemWrite, Adr,

 WriteData, ReadData);

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity mem is -- memory

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of mem is -- instruction and data memory

begin

 process is

 file mem_file: TEXT;

 variable L: line;

 variable ch: character;

 variable i, index, result: integer;

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable ram: ramtype;

 begin

 -- initialize memory from file

 for i in 0 to 63 loop -- set all contents low

 ram(i) := (others => '0');

 end loop;

413 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 index := 0;

 FILE_OPEN(mem_file, "ex7.27_memfile.dat", READ_MODE);

 while not endfile(mem_file) loop

 readline(mem_file, L);

 result := 0;

 for i in 1 to 8 loop

 read(L, ch);

 if '0' <= ch and ch <= '9' then

 result := character'pos(ch) - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 result := character'pos(ch) - character'pos('a')+10;

 elsif 'A' <= ch and ch <= 'F' then

 result := character'pos(ch) - character'pos('A')+10;

 else report "Format error on line " & integer'image(index)

 severity error;

 end if;

 ram(index)(35-i*4 downto 32-i*4) :=

 to_std_logic_vector(result,4);

 end loop;

 index := index + 1;

 end loop;

 -- read or write memory

 loop

 if clk'event and clk = '1' then

 if (we = '1') then

 ram(to_integer(a(7 downto 2))) := wd;

 end if;

 end if;

 rd <= ram(to_integer(a(7 downto 2)));

 wait on clk, a;

 end loop;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is -- multicycle processor

 port(clk, reset: in STD_LOGIC;

 MemWrite: out STD_LOGIC;

 Adr, WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is

 component controller

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 RegWrite: out STD_LOGIC;

 IRWrite: out STD_LOGIC;

414 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 AdrSrc: out STD_LOGIC;

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- SBC

 carry, Shift: out STD_LOGIC); -- SBC, ASR, ROR

 end component;

 component datapath

 port(clk, reset: in STD_LOGIC;

 Adr: out STD_LOGIC_VECTOR(31 downto 0);

 WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Instr: out STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: in STD_LOGIC;

 RegWrite: in STD_LOGIC;

 IRWrite: in STD_LOGIC;

 AdrSrc: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: in STD_LOGIC;

 ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- SBC

 carry, Shift: in STD_LOGIC); -- SBC, ASR, ROR

 end component;

 signal Instr: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUFlags: STD_LOGIC_VECTOR(3 downto 0);

 signal PCWrite, RegWrite, IRWrite: STD_LOGIC;

 signal AdrSrc, ALUSrcA: STD_LOGIC;

 signal RegSrc, ALUSrcB: STD_LOGIC_VECTOR(1 downto 0);

 signal ImmSrc, ResultSrc: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUControl: STD_LOGIC_VECTOR(2 downto 0); -- SBC

 signal carry: STD_LOGIC; -- SBC

 signal Shift: STD_LOGIC; -- ASR, ROR

begin

 cont: controller port map(clk, reset, Instr(31 downto 12),

 ALUFlags, PCWrite, MemWrite, RegWrite,

 IRWrite, AdrSrc, RegSrc, ALUSrcA,

 ALUSrcB, ResultSrc, ImmSrc, ALUControl,

 carry, Shift); -- SBC, ASR, ROR

 dp: datapath port map(clk, reset, Adr, WriteData, ReadData,

 Instr, ALUFlags,

 PCWrite, RegWrite, IRWrite,

 AdrSrc, RegSrc, ALUSrcA, ALUSrcB, ResultSrc,

 ImmSrc, ALUControl,

 carry, Shift); -- SBC, ASR, ROR

end;

415 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is -- single cycle control decoder

 port(clk, reset: in STD_LOGIC;

 Instr: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 RegWrite: out STD_LOGIC;

 IRWrite: out STD_LOGIC;

 AdrSrc: out STD_LOGIC;

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- SBC

 carry, Shift: out STD_LOGIC); -- SBC, ASR, ROR

end;

architecture struct of controller is

 component decoder

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: out STD_LOGIC;

 RegW, MemW: out STD_LOGIC;

 IRWrite, AdrSrc: out STD_LOGIC;

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- SBC

 NoWrite: out STD_LOGIC; -- TST

 Shift: out STD_LOGIC); -- ASR, ROR

 end component;

 component condlogic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: in STD_LOGIC;

 RegW, MemW: in STD_LOGIC;

 PCWrite, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 carry: out STD_LOGIC; -- SBC

 NoWrite: in STD_LOGIC); -- TST

 end component;

 signal FlagW: STD_LOGIC_VECTOR(1 downto 0);

 signal PCS, NextPC, RegW, MemW: STD_LOGIC;

 signal NoWrite: STD_LOGIC; -- TST

begin

 dec: decoder port map(clk, reset, Instr(27 downto 26), Instr(25 downto

416 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

20),

 Instr(15 downto 12), FlagW, PCS,

 NextPC, RegW, MemW,

 IRWrite, AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ImmSrc, RegSrc, ALUControl,

 NoWrite, -- TST

 Shift); -- ASR, ROR

 cl: condlogic port map(clk, reset, Instr(31 downto 28),

 ALUFlags, FlagW, PCS, NextPC, RegW, MemW,

 PCWrite, RegWrite, MemWrite,

 carry, -- SBC

 NoWrite); -- TST

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder is -- main control decoder

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 Rd: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: out STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: out STD_LOGIC;

 RegW, MemW: out STD_LOGIC;

 IRWrite, AdrSrc: out STD_LOGIC;

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: out STD_LOGIC;

 ALUSrcB, ImmSrc: out STD_LOGIC_VECTOR(1 downto 0);

 RegSrc: out STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: out STD_LOGIC_VECTOR(2 downto 0); -- SBC

 NoWrite: out STD_LOGIC; -- TST

 Shift: out STD_LOGIC); -- ASR, ROR

end;

architecture behave of decoder is

 component mainfsm

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 IRWrite: out STD_LOGIC;

 AdrSrc, ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 NextPC, RegW: out STD_LOGIC;

 MemW, Branch: out STD_LOGIC;

 ALUOp: out STD_LOGIC);

 end component;

 signal Branch, ALUOp: STD_LOGIC;

begin

 -- Main FSM

 fsm: mainfsm port map(clk, reset, Op, Funct,

 IRWrite, AdrSrc,

 ALUSrcA, ALUSrcB, ResultSrc,

 NextPC, RegW, MemW, Branch, ALUOp);

417 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 process(all) begin -- ALU Decoder

 if (ALUOp) then

 case Funct(4 downto 1) is

 when "0100" => ALUControl <= "000"; -- ADD

 NoWrite <= '0';

 Shift <= '0';

 when "0010" => ALUControl <= "001"; -- SUB

 NoWrite <= '0';

 Shift <= '0';

 when "0000" => ALUControl <= "010"; -- AND

 NoWrite <= '0';

 Shift <= '0';

 when "1100" => ALUControl <= "011"; -- ORR

 NoWrite <= '0';

 Shift <= '0';

 when "1101" => ALUControl <= "010"; -- ASR, ROR

 NoWrite <= '0';

 Shift <= '1';

 when "1000" => ALUControl <= "010"; -- TST

 NoWrite <= '1';

 Shift <= '0';

 when "0110" => ALUControl <= "101"; -- SBC

 NoWrite <= '0';

 Shift <= '0';

 when others => ALUControl <= "---"; -- unimplemented

 NoWrite <= '-';

 Shift <= '-';

 end case;

 FlagW(1) <= Funct(0);

 FlagW(0) <= Funct(0) and (not ALUControl(1));

 else

 ALUControl <= "000";

 FlagW <= "00";

 Shift <= '0';

 NoWrite <= '0';

 end if;

 end process;

 -- PC Logic

 PCS <= ((and Rd) and RegW) or Branch;

 -- Instr Decoder

 ImmSrc <= Op;

 RegSrc(0) <= '1' when (Op = 2B"10") else '0';

 RegSrc(1) <= '1' when (Op = 2B"01") else '0';

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mainfsm is

 port(clk, reset: in STD_LOGIC;

 Op: in STD_LOGIC_VECTOR(1 downto 0);

 Funct: in STD_LOGIC_VECTOR(5 downto 0);

 IRWrite: out STD_LOGIC;

418 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 AdrSrc, ALUSrcA: out STD_LOGIC;

 ALUSrcB: out STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: out STD_LOGIC_VECTOR(1 downto 0);

 NextPC, RegW: out STD_LOGIC;

 MemW, Branch: out STD_LOGIC;

 ALUOp: out STD_LOGIC);

end;

architecture synth of mainfsm is

 type statetype is (FETCH, DECODE, MEMADR, MEMRD, MEMWB, MEMWR,

 EXECUTER, EXECUTEI, ALUWB, BR, UNKNOWN);

 signal state, nextstate: statetype;

 signal controls: STD_LOGIC_VECTOR(11 downto 0);

begin

 --state register

 process(clk, reset) begin

 if reset then state <= FETCH;

 elsif rising_edge(clk) then

 state <= nextstate;

 end if;

 end process;

 -- next state logic

 process(all) begin

 case state is

 when FETCH => nextstate <= DECODE;

 when DECODE =>

 case Op is

 when "00" => nextstate <= ExecuteI when (Funct(5) = '1')

 else EXECUTER;

 when "01" => nextstate <= MEMADR;

 when "10" => nextstate <= BR;

 when others => nextstate <= UNKNOWN;

 end case;

 when EXECUTER => nextstate <= ALUWB;

 when EXECUTEI => nextstate <= ALUWB;

 when MEMADR => nextstate <= MEMRD when (Funct(0) = '1')

 else MEMWR;

 when MEMRD => nextstate <= MEMWB;

 when others => nextstate <= FETCH;

 end case;

 end process;

 -- state-dependent output logic

 process(all) begin

 case state is

 when FETCH => controls <= 12B"100010101100";

 when DECODE => controls <= 12B"000000101100";

 when EXECUTER => controls <= 12B"000000000001";

 when EXECUTEI => controls <= 12B"000000000011";

 when ALUWB => controls <= 12B"000100000000";

 when MEMADR => controls <= 12B"000000000010";

 when MEMWR => controls <= 12B"001001000000";

 when MEMRD => controls <= 12B"000001000000";

419 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 when MEMWB => controls <= 12B"000100010000";

 when BR => controls <= 12B"010000100010";

 when others => controls <= "XXXXXXXXXXXX";

 end case;

 end process;

 (NextPC, Branch, MemW, RegW, IRWrite,

 AdrSrc, ResultSrc,

 ALUSrcA, ALUSrcB, ALUOp) <= controls;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condlogic is -- Conditional logic

 port(clk, reset: in STD_LOGIC;

 Cond: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagW: in STD_LOGIC_VECTOR(1 downto 0);

 PCS, NextPC: in STD_LOGIC;

 RegW, MemW: in STD_LOGIC;

 PCWrite, RegWrite: out STD_LOGIC;

 MemWrite: out STD_LOGIC;

 carry: out STD_LOGIC; -- SBC

 NoWrite: in STD_LOGIC); -- TST

end;

architecture behave of condlogic is

 component condcheck

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 signal FlagWrite: STD_LOGIC_VECTOR(1 downto 0);

 signal Flags: STD_LOGIC_VECTOR(3 downto 0);

 signal CondEx: STD_LOGIC_VECTOR(0 downto 0);

 signal CondExDelayed: STD_LOGIC_VECTOR(0 downto 0);

 signal NoWritevect: STD_LOGIC_VECTOR(0 downto 0); -- TST

 signal NoWriteDelayed: STD_LOGIC_VECTOR(0 downto 0); -- TST

begin

 NoWritevect(0) <= NoWrite;

 flagreg1: flopenr generic map(2)

 port map(clk, reset, FlagWrite(1),

 ALUFlags(3 downto 2), Flags(3 downto 2));

420 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 flagreg0: flopenr generic map(2)

 port map(clk, reset, FlagWrite(0),

 ALUFlags(1 downto 0), Flags(1 downto 0));

 cc: condcheck port map(Cond, Flags, CondEx(0));

 condreg: flopr generic map(1)

 port map(clk, reset, CondEx, CondExDelayed);

 nowritereg: flopr generic map(1)

 port map(clk, reset, NoWritevect, NoWriteDelayed);

 FlagWrite <= FlagW and (CondEx(0), CondEx(0));

 RegWrite <= RegW and CondExDelayed(0) and (not NoWriteDelayed(0)); --

TST

 MemWrite <= MemW and CondExDelayed(0);

 PCWrite <= (PCS and CondExDelayed(0)) or NextPC;

 carry <= Flags(1); -- SBC

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity condcheck is

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 CondEx: out STD_LOGIC);

end;

architecture behave of condcheck is

 signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin

 (neg, zero, carry, overflow) <= Flags;

 ge <= (neg xnor overflow);

 process(all) begin -- Condition checking

 case Cond is

 when "0000" => CondEx <= zero;

 when "0001" => CondEx <= not zero;

 when "0010" => CondEx <= carry;

 when "0011" => CondEx <= not carry;

 when "0100" => CondEx <= neg;

 when "0101" => CondEx <= not neg;

 when "0110" => CondEx <= overflow;

 when "0111" => CondEx <= not overflow;

 when "1000" => CondEx <= carry and (not zero);

 when "1001" => CondEx <= not(carry and (not zero));

 when "1010" => CondEx <= ge;

 when "1011" => CondEx <= not ge;

 when "1100" => CondEx <= (not zero) and ge;

 when "1101" => CondEx <= not ((not zero) and ge);

 when "1110" => CondEx <= '1';

 when others => CondEx <= '-';

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

421 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

entity datapath is

 port(clk, reset: in STD_LOGIC;

 Adr: out STD_LOGIC_VECTOR(31 downto 0);

 WriteData: out STD_LOGIC_VECTOR(31 downto 0);

 ReadData: in STD_LOGIC_VECTOR(31 downto 0);

 Instr: out STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 PCWrite: in STD_LOGIC;

 RegWrite: in STD_LOGIC;

 IRWrite: in STD_LOGIC;

 AdrSrc: in STD_LOGIC;

 RegSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcA: in STD_LOGIC;

 ALUSrcB: in STD_LOGIC_VECTOR(1 downto 0);

 ResultSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- SBC

 carry, Shift: in STD_LOGIC); -- SBC, ASR, ROR

end;

architecture struct of datapath is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- SBC

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 carry: in STD_LOGIC); -- SBC

 end component;

 component regfile

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component extend

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

422 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end component;

 component mux2 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux3 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component shifter -- LSL

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 shamt: in STD_LOGIC_VECTOR(4 downto 0);

 shtype: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal PCNext, PC: STD_LOGIC_VECTOR(31 downto 0);

 signal ExtImm, SrcA, SrcB: STD_LOGIC_VECTOR(31 downto 0);

 signal Result: STD_LOGIC_VECTOR(31 downto 0);

 signal Data, RD1, RD2, A: STD_LOGIC_VECTOR(31 downto 0);

 signal ALUResult, ALUOut: STD_LOGIC_VECTOR(31 downto 0);

 signal RA1, RA2: STD_LOGIC_VECTOR(3 downto 0);

 signal srcBshifted, ALUResultOut:STD_LOGIC_VECTOR(31 downto 0); -- ASR,

ROR

begin

 -- next PC logic

 pcreg: flopenr generic map(32)

 port map(clk, reset, PCWrite, Result, PC);

 -- memory logic

 adrmux: mux2 generic map(32)

 port map(PC, ALUOut, AdrSrc, Adr);

 ir: flopenr generic map(32)

 port map(clk, reset, IRWrite, ReadData, Instr);

 datareg: flopr generic map(32)

 port map(clk, reset, ReadData, Data);

 -- register file logic

 ra1mux: mux2 generic map (4)

 port map(Instr(19 downto 16), "1111", RegSrc(0), RA1);

 ra2mux: mux2 generic map (4) port map(Instr(3 downto 0),

 Instr(15 downto 12), RegSrc(1), RA2);

 rf: regfile port map(clk, RegWrite, RA1, RA2,

 Instr(15 downto 12), Result, Result,

 RD1, RD2);

 srcareg: flopr generic map(32)

 port map(clk, reset, RD1, A);

 wdreg: flopr generic map(32)

 port map(clk, reset, RD2, WriteData);

 ext: extend port map(Instr(23 downto 0), ImmSrc, ExtImm);

 -- ALU logic

423 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 srcamux: mux2 generic map(32)

 port map(A, PC, ALUSrcA, SrcA);

 -- ASR, ROR

 srcbmux: mux3 generic map (32)

 port map(srcBshifted, ExtImm, 32X"00000004", ALUSrcB, SrcB);

 sh: shifter port map(WriteData, Instr(11 downto 7), Instr(6 downto 5),

srcBshifted);

 i_alu: alu port map(SrcA, SrcB, ALUControl, ALUResult, ALUFlags, carry);

 aluresultmux: mux2 generic map(32)

 port map(ALUResult, SrcB, Shift, ALUResultOut);

 aluoutreg: flopr generic map (32)

 port map(clk, reset, ALUResultOut, ALUOut);

 resmux: mux3 generic map(32)

 port map(ALUOut, Data, ALUResultOut, ResultSrc, Result);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is -- three-port register file

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is

 type ramtype is array (31 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 signal mem: ramtype;

begin

 process(clk) begin

 if rising_edge(clk) then

 if we3 = '1' then mem(to_integer(wa3)) <= wd3;

 end if;

 end if;

 end process;

 process(all) begin

 if (to_integer(ra1) = 15) then rd1 <= r15;

 else rd1 <= mem(to_integer(ra1));

 end if;

 if (to_integer(ra2) = 15) then rd2 <= r15;

 else rd2 <= mem(to_integer(ra2));

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is -- adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

424 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture behave of adder is

begin

 y <= a + b;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity extend is

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is

begin

 process(all) begin

 case ImmSrc is

 when "00" => ExtImm <= (X"000000", Instr(7 downto 0));

 when "01" => ExtImm <= (X"00000", Instr(11 downto 0));

 when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

 Instr(23), Instr(23), Instr(23), Instr(23 downto 0), "00");

 when others => ExtImm <= X"--------";

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is -- flip-flop with enable and asynchronous reset

 generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is -- flip-flop with asynchronous reset

 generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

425 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture asynchronous of flopr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 q <= d;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is -- two-input multiplexer

 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is

begin

 y <= d1 when s else d0;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux3 is -- three-input multiplexer

 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux3 is

begin

 process(all) begin

 case s is

 when "00" => y <= d0;

 when "01" => y <= d1;

 when "10" => y <= d2;

 when others => y <= d0;

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(2 downto 0); -- SBC

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0);

 carry: in STD_LOGIC); -- SBC

426 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end;

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal neg, zero, carryout, overflow: STD_LOGIC;

 signal carryin: STD_LOGIC; -- SBC

begin

 carryin <= carry when ALUControl(2) else ALUControl(0);

 condinvb <= not b when ALUControl(0) else b;

 sum <= ('0', a) + ('0', condinvb) + carryin;

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and b;

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carryout <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carryout, overflow);

end;

-- shifter needed for ASR, ROR

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity shifter is

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 shamt: in STD_LOGIC_VECTOR(4 downto 0);

 shtype: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of shifter is

begin

 process (all) begin

 case shtype is

 when "10" => y <= TO_STDLOGICVECTOR(TO_BITVECTOR(a) sra

TO_INTEGER(shamt));

 when "11" => y <= ((TO_STDLOGICVECTOR(TO_BITVECTOR(a) srl

TO_INTEGER(shamt))) or (TO_STDLOGICVECTOR(TO_BITVECTOR(a) sll (32-

TO_INTEGER(shamt)))));

 when others => y <= a;

 end case;

 end process;

end;

427 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Test ARM assembly
// If successful, it should write the value 0x2FFFFFFE to address 0x58

MAIN

 SUB R3, PC, PC ; R3 = 0

 SUB R4, R3, #30 ; R4 = -30 (0xFFFFFFE2)

 ASR R5, R4, #1 ; R5 = -15 (0xFFFFFFF1)

 TST R4, R5 ; set flags based on R4 & R5: NZCV=1000

 ADDMIS R6, R4, R5 ; R6 = -30 + (-15)=-45 (0xFFFFFFD3) if N = 1

(should happen)

 ; also set flags: NZCV=1010

 SBCS R7, R5, R6 ; R7 = -15 - (-45) - 0 = 30 (0x1E)

 ; also set flags: NZCV = 0010

 ADDS R3, R3, #25 ; R3 = 25, set flags: NZCV = 0000

 SBC R8, R7, R5 ; R8 = 30 - (-15) - 1 = 44 (0x2c)

 ROR R9, R4, #4 ; R9 = 0xFFFFFFE2 ROR 4 = 0x2FFFFFFE

 STR R9, [R8, #0x2c] ; mem[0x30] <= 0x2FFFFFFE

;0x00 E04F300F SUB R3,PC,PC

;0x04 E243401E SUB R4,R3,#0x1E

;0x08 E1A050C4 ASR R5,R4,#1

;0x0C E1140005 TST R4,R5

;0x10 40946005 ADDMIS R6,R4,R5

;0x14 E0D57006 SBCS R7,R5,R6

;0x18 E2933019 ADDS R3,R3,#0x19

;0x1C E0C78005 SBC R8,R7,R5

;0x20 E1A09264 ROR R9,R4,#4

;0x24 E588902C STR R9,[R8,#0x2C

ex7.27_memfile.dat

E04F300F

E243401E

E1A050C4

E1140005

40946005

E0D57006

E2933019

E0C78005

E1A09264

E588902C

Exercise 7.28

In cycle 5, R1 is being both read and written. R1 is written by the MOV instruction and read (in

the second half of the cycle) by the STR instruction.

428 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.29

In cycle 5, R0 is being written (by ADD) and registers R2 and R5 are being read (by ORR).

Exercise 7.30

Exercise 7.31

Exercise 7.32

34 cycles are required for the pipelined ARM processor to issue all of the instructions: 2 cycles

for the first two MOV instructions, 6 cycles for each of the 5 loop iterations (4 for fetching

instructions and 2 for the branch delay penalty), and 2 for the final CMP and BEQ that branches

out of the loop.

429 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

The number of instructions fetched is 2 + 5*4 + 2 = 24 instructions. Thus, CPI is 34 c.c./24 instr =

1.42.

Exercise 7.33

75 cycles are required for the pipelined ARM processor to issue all of the instructions: 3 cycles

for the first three MOV instructions, 7 cycles for each of the 10 loop iterations (5 for fetching

instructions and 2 for the branch delay penalty), and 2 for the final CMP and BEQ that branches

out of the loop.

The number of instructions fetched is 3 + 10*5 + 2 = 55 instructions. Thus, CPI is 75 c.c./55 instr

= 1.36.

Exercise 7.34

Changes to the pipelined processor for the EOR instruction.

ALU Decoder truth table:

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl2:0 FlagW1:0

0 X X Not DP 000 00

1

0100 0 ADD 000 00

1 11

0010 0 SUB 001 00

1 11

0000 0 AND 010 00

1 10

1100 0 ORR 011 00

1 10

0001 0 EOR 100 00

1 10

ALU

430 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Datapath

431 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

E
x
tIm

m
E+

In
s
trD

A
LU

R
e
g
S
rc
D

In
s
trF

C
o
n
d
E
x
E

S
ta
llF

S
ta
llD

F
lu
s
h
E

F
o
rw

a
rd
A
E

F
o
rw

a
rd
B
E

E
N

C
L
R

C
L
R

E
N

F
lu
s
h
D

F
la
g
s
'

R
e
g
W
rite

M

M
a
tc
h

R
e
g
W
rite

W

M
e
m
to
R
e
g
E

Control

432 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

C
o
n
d
itio

n
a
l

L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

Exercise 7.35

Changes to the pipelined processor for the CMN instruction.

ALU Decoder truth table

ALUOp Funct4:1 (cmd) Funct0 (S) Notes ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1

0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

433 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

1100 0 ORR 11 00 0

1 10 0

1011 1 CMN 00 11 1

Datapath

E
x
tIm

m
E+

In
s
trD

A
LU

R
e
g
S
rc
D

In
s
trF

C
o
n
d
E
x
E

S
ta
llF

S
ta
llD

F
lu
s
h
E

F
o
rw

a
rd
A
E

F
o
rw

a
rd
B
E

E
N

C
L
R

C
L
R

E
N

F
lu
s
h
D

F
la
g
s
'

R
e
g
W
rite

M

M
a
tc
h

R
e
g
W
rite

W

M
e
m
to
R
e
g
E

Control

434 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

C
o
n
d
itio

n
a
l

L
o
g
ic

C
o
n
d
itio

n

C
h
e
c
k

C
o
n
d
E
x

Exercise 7.36

435 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Flushing hardware changes to:

FlushE = LDRstall

FlushD = PCWrPendingF + PCSrcW + BranchTakenD

Exercise 7.37

She should work on the register file because it is the unit that's in the critical path (Decode

stage) causing the cycle time (Tc3) to be 300 ps. The next longest paths are 290 ps (for the Fetch

stage and for the Memory stage). Reducing the register file read delay by 5 ps (to 95 ps)

reduces the cycle time to 290 ps (see Equation 7.5). Reducing the delay any more would not

improve performance any further. Thus, tRFread should be reduced to 95 ps, and the resulting

cycle time, Tc3, is 2(tRFread + tsetup) = 2(95 + 50) ps = 290 ps.

Exercise 7.38

No, the cycle time would not change if the ALU were 20% faster, because the ALU is not in the

critical path.

No, the cycle time would not change if the ALU were 20% slower. With a 20% slowdown, the

ALU's delay would be (120 ps)*1.2 = 144 ps. This would make the delay of the execute stage (40

+ 2(25) + 144 + 50) ps = 284 ps (see Equation 7.5). This still isn't longer than the current critical

path (the Decode stage) which results in a cycle time of 300 ps.

436 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 7.39

Suppose the ARM pipelined processor is divided into 10 stages of 400 ps each, including

sequencing overhead. Assume the instruction mix of Example 7.7. Also assume that 50% of the

loads are immediately followed by an instruction that uses the result, requiring six stalls, and

that 30% of the branches are mispredicted. The target address of a branch instruction is not

computed until the end of the second stage. Calculate the average CPI and execution time of

computing 100 billion instructions from the SPECINT2000 benchmark for this 10-stage pipelined

processor.

CPI = 0.25(1+0.5*6) + 0.1(1) + 0.13(1+0.3*1)+0.52(1) = 1.789 ≈ 1.8

Execution Time = (100 x 10
9
 instructions)(1.789 cycles/instruction)(400 x10

-12
 s/cycle) = 71.56 s

≈ 72 s

Exercise 7.40

SystemVerilog
// ARM pipelined processor

module testbench();

 logic clk;

 logic reset;

 logic [31:0] WriteData, DataAdr;

 logic MemWrite;

 // instantiate device to be tested

 top dut(clk, reset, WriteData, DataAdr, MemWrite);

 // initialize test

 initial

 begin

 reset <= 1; # 22; reset <= 0;

 end

 // generate clock to sequence tests

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if(MemWrite) begin

 if(DataAdr === 100 & WriteData === 7) begin

 $display("Simulation succeeded");

437 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 $stop;

 end else if (DataAdr !== 96) begin

 $display("Simulation failed");

 $stop;

 end

 end

 end

endmodule

module top(input logic clk, reset,

 output logic [31:0] WriteDataM, DataAdrM,

 output logic MemWriteM);

 logic [31:0] PCF, InstrF, ReadDataM;

 // instantiate processor and memories

 arm arm(clk, reset, PCF, InstrF, MemWriteM, DataAdrM,

 WriteDataM, ReadDataM);

 imem imem(PCF, InstrF);

 dmem dmem(clk, MemWriteM, DataAdrM, WriteDataM, ReadDataM);

endmodule

module dmem(input logic clk, we,

 input logic [31:0] a, wd,

 output logic [31:0] rd);

 logic [31:0] RAM[2097151:0];

 initial

 $readmemh("memfile.dat",RAM);

 assign rd = RAM[a[22:2]]; // word aligned

 always_ff @(posedge clk)

 if (we) RAM[a[22:2]] <= wd;

endmodule

module imem(input logic [31:0] a,

 output logic [31:0] rd);

 logic [31:0] RAM[2097151:0];

 initial

 $readmemh("memfile.dat",RAM);

 assign rd = RAM[a[22:2]]; // word aligned

endmodule

module arm(input logic clk, reset,

 output logic [31:0] PCF,

 input logic [31:0] InstrF,

 output logic MemWriteM,

 output logic [31:0] ALUOutM, WriteDataM,

 input logic [31:0] ReadDataM);

438 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 logic [1:0] RegSrcD, ImmSrcD, ALUControlE;

 logic ALUSrcE, BranchTakenE, MemtoRegW, PCSrcW, RegWriteW;

 logic [3:0] ALUFlagsE;

 logic [31:0] InstrD;

 logic RegWriteM, MemtoRegE, PCWrPendingF;

 logic [1:0] ForwardAE, ForwardBE;

 logic StallF, StallD, FlushD, FlushE;

 logic Match_1E_M, Match_1E_W, Match_2E_M, Match_2E_W,

Match_12D_E;

 controller c(clk, reset, InstrD[31:12], ALUFlagsE,

 RegSrcD, ImmSrcD,

 ALUSrcE, BranchTakenE, ALUControlE,

 MemWriteM,

 MemtoRegW, PCSrcW, RegWriteW,

 RegWriteM, MemtoRegE, PCWrPendingF,

 FlushE);

 datapath dp(clk, reset,

 RegSrcD, ImmSrcD,

 ALUSrcE, BranchTakenE, ALUControlE,

 MemtoRegW, PCSrcW, RegWriteW,

 PCF, InstrF, InstrD,

 ALUOutM, WriteDataM, ReadDataM,

 ALUFlagsE,

 Match_1E_M, Match_1E_W, Match_2E_M, Match_2E_W,

Match_12D_E,

 ForwardAE, ForwardBE, StallF, StallD, FlushD);

 hazard h(clk, reset, Match_1E_M, Match_1E_W, Match_2E_M, Match_2E_W,

Match_12D_E,

 RegWriteM, RegWriteW, BranchTakenE, MemtoRegE,

 PCWrPendingF, PCSrcW,

 ForwardAE, ForwardBE,

 StallF, StallD, FlushD, FlushE);

endmodule

module controller(input logic clk, reset,

 input logic [31:12] InstrD,

 input logic [3:0] ALUFlagsE,

 output logic [1:0] RegSrcD, ImmSrcD,

 output logic ALUSrcE, BranchTakenE,

 output logic [1:0] ALUControlE,

 output logic MemWriteM,

 output logic MemtoRegW, PCSrcW, RegWriteW,

 // hazard interface

 output logic RegWriteM, MemtoRegE,

 output logic PCWrPendingF,

 input logic FlushE);

 logic [9:0] controlsD;

 logic CondExE, ALUOpD;

 logic [1:0] ALUControlD;

 logic ALUSrcD;

439 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 logic MemtoRegD, MemtoRegM;

 logic RegWriteD, RegWriteE, RegWriteGatedE;

 logic MemWriteD, MemWriteE, MemWriteGatedE;

 logic BranchD, BranchE;

 logic [1:0] FlagWriteD, FlagWriteE;

 logic PCSrcD, PCSrcE, PCSrcM;

 logic [3:0] FlagsE, FlagsNextE, CondE;

 // Decode stage

 always_comb

 casex(InstrD[27:26])

 2'b00: if (InstrD[25]) controlsD = 10'b0000101001; // DP imm

 else controlsD = 10'b0000001001; // DP reg

 2'b01: if (InstrD[20]) controlsD = 10'b0001111000; // LDR

 else controlsD = 10'b1001110100; // STR

 2'b10: controlsD = 10'b0110100010; // B

 default: controlsD = 10'bx; //

unimplemented

 endcase

 assign {RegSrcD, ImmSrcD, ALUSrcD, MemtoRegD,

 RegWriteD, MemWriteD, BranchD, ALUOpD} = controlsD;

 always_comb

 if (ALUOpD) begin // which Data-processing Instr?

 case(InstrD[24:21])

 4'b0100: ALUControlD = 2'b00; // ADD

 4'b0010: ALUControlD = 2'b01; // SUB

 4'b0000: ALUControlD = 2'b10; // AND

 4'b1100: ALUControlD = 2'b11; // ORR

 default: ALUControlD = 2'bx; // unimplemented

 endcase

 FlagWriteD[1] = InstrD[20]; // update N and Z Flags if S bit is

set

 FlagWriteD[0] = InstrD[20] & (ALUControlD == 2'b00 | ALUControlD

== 2'b01);

 end else begin

 ALUControlD = 2'b00; // perform addition for non-

dataprocessing instr

 FlagWriteD = 2'b00; // don't update Flags

 end

 assign PCSrcD = (((InstrD[15:12] == 4'b1111) & RegWriteD) |

BranchD);

 // Execute stage

 floprc #(7) flushedregsE(clk, reset, FlushE,

 {FlagWriteD, BranchD, MemWriteD, RegWriteD,

PCSrcD, MemtoRegD},

 {FlagWriteE, BranchE, MemWriteE, RegWriteE,

PCSrcE, MemtoRegE});

 flopr #(3) regsE(clk, reset,

 {ALUSrcD, ALUControlD},

440 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 {ALUSrcE, ALUControlE});

 flopr #(4) condregE(clk, reset, InstrD[31:28], CondE);

 flopr #(4) flagsreg(clk, reset, FlagsNextE, FlagsE);

 // write and Branch controls are conditional

 conditional Cond(CondE, FlagsE, ALUFlagsE, FlagWriteE, CondExE,

FlagsNextE);

 assign BranchTakenE = BranchE & CondExE;

 assign RegWriteGatedE = RegWriteE & CondExE;

 assign MemWriteGatedE = MemWriteE & CondExE;

 assign PCSrcGatedE = PCSrcE & CondExE;

 // Memory stage

 flopr #(4) regsM(clk, reset,

 {MemWriteGatedE, MemtoRegE, RegWriteGatedE,

PCSrcGatedE},

 {MemWriteM, MemtoRegM, RegWriteM, PCSrcM});

 // Writeback stage

 flopr #(3) regsW(clk, reset,

 {MemtoRegM, RegWriteM, PCSrcM},

 {MemtoRegW, RegWriteW, PCSrcW});

 // Hazard Prediction

 assign PCWrPendingF = PCSrcD | PCSrcE | PCSrcM;

endmodule

module conditional(input logic [3:0] Cond,

 input logic [3:0] Flags,

 input logic [3:0] ALUFlags,

 input logic [1:0] FlagsWrite,

 output logic CondEx,

 output logic [3:0] FlagsNext);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

 assign ge = (neg == overflow);

 always_comb

 case(Cond)

 4'b0000: CondEx = zero; // EQ

 4'b0001: CondEx = ~zero; // NE

 4'b0010: CondEx = carry; // CS

 4'b0011: CondEx = ~carry; // CC

 4'b0100: CondEx = neg; // MI

 4'b0101: CondEx = ~neg; // PL

 4'b0110: CondEx = overflow; // VS

 4'b0111: CondEx = ~overflow; // VC

 4'b1000: CondEx = carry & ~zero; // HI

 4'b1001: CondEx = ~(carry & ~zero); // LS

 4'b1010: CondEx = ge; // GE

441 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 4'b1011: CondEx = ~ge; // LT

 4'b1100: CondEx = ~zero & ge; // GT

 4'b1101: CondEx = ~(~zero & ge); // LE

 4'b1110: CondEx = 1'b1; // Always

 default: CondEx = 1'bx; // undefined

 endcase

 assign FlagsNext[3:2] = (FlagsWrite[1] & CondEx) ? ALUFlags[3:2] :

Flags[3:2];

 assign FlagsNext[1:0] = (FlagsWrite[0] & CondEx) ? ALUFlags[1:0] :

Flags[1:0];

endmodule

module datapath(input logic clk, reset,

 input logic [1:0] RegSrcD, ImmSrcD,

 input logic ALUSrcE, BranchTakenE,

 input logic [1:0] ALUControlE,

 input logic MemtoRegW, PCSrcW, RegWriteW,

 output logic [31:0] PCF,

 input logic [31:0] InstrF,

 output logic [31:0] InstrD,

 output logic [31:0] ALUOutM, WriteDataM,

 input logic [31:0] ReadDataM,

 output logic [3:0] ALUFlagsE,

 // hazard logic

 output logic Match_1E_M, Match_1E_W, Match_2E_M,

Match_2E_W, Match_12D_E,

 input logic [1:0] ForwardAE, ForwardBE,

 input logic StallF, StallD, FlushD);

 logic [31:0] PCPlus4F, PCnext1F, PCnextF;

 logic [31:0] ExtImmD, rd1D, rd2D, PCPlus8D;

 logic [31:0] rd1E, rd2E, ExtImmE, SrcAE, SrcBE, WriteDataE, ALUResultE;

 logic [31:0] ReadDataW, ALUOutW, ResultW;

 logic [3:0] RA1D, RA2D, RA1E, RA2E, WA3E, WA3M, WA3W;

 logic Match_1D_E, Match_2D_E;

 // Fetch stage

 mux2 #(32) pcnextmux(PCPlus4F, ResultW, PCSrcW, PCnext1F);

 mux2 #(32) branchmux(PCnext1F, ALUResultE, BranchTakenE, PCnextF);

 flopenr #(32) pcreg(clk, reset, ~StallF, PCnextF, PCF);

 adder #(32) pcadd(PCF, 32'h4, PCPlus4F);

 // Decode Stage

 assign PCPlus8D = PCPlus4F; // skip register

 flopenrc #(32) instrreg(clk, reset, ~StallD, FlushD, InstrF, InstrD);

 mux2 #(4) ra1mux(InstrD[19:16], 4'b1111, RegSrcD[0], RA1D);

 mux2 #(4) ra2mux(InstrD[3:0], InstrD[15:12], RegSrcD[1], RA2D);

 regfile rf(clk, RegWriteW, RA1D, RA2D,

 WA3W, ResultW, PCPlus8D,

 rd1D, rd2D);

 extend ext(InstrD[23:0], ImmSrcD, ExtImmD);

442 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // Execute Stage

 flopr #(32) rd1reg(clk, reset, rd1D, rd1E);

 flopr #(32) rd2reg(clk, reset, rd2D, rd2E);

 flopr #(32) immreg(clk, reset, ExtImmD, ExtImmE);

 flopr #(4) wa3ereg(clk, reset, InstrD[15:12], WA3E);

 flopr #(4) ra1reg(clk, reset, RA1D, RA1E);

 flopr #(4) ra2reg(clk, reset, RA2D, RA2E);

 mux3 #(32) byp1mux(rd1E, ResultW, ALUOutM, ForwardAE, SrcAE);

 mux3 #(32) byp2mux(rd2E, ResultW, ALUOutM, ForwardBE, WriteDataE);

 mux2 #(32) srcbmux(WriteDataE, ExtImmE, ALUSrcE, SrcBE);

 alu alu(SrcAE, SrcBE, ALUControlE, ALUResultE, ALUFlagsE);

 // Memory Stage

 flopr #(32) aluresreg(clk, reset, ALUResultE, ALUOutM);

 flopr #(32) wdreg(clk, reset, WriteDataE, WriteDataM);

 flopr #(4) wa3mreg(clk, reset, WA3E, WA3M);

 // Writeback Stage

 flopr #(32) aluoutreg(clk, reset, ALUOutM, ALUOutW);

 flopr #(32) rdreg(clk, reset, ReadDataM, ReadDataW);

 flopr #(4) wa3wreg(clk, reset, WA3M, WA3W);

 mux2 #(32) resmux(ALUOutW, ReadDataW, MemtoRegW, ResultW);

 // hazard comparison

 eqcmp #(4) m0(WA3M, RA1E, Match_1E_M);

 eqcmp #(4) m1(WA3W, RA1E, Match_1E_W);

 eqcmp #(4) m2(WA3M, RA2E, Match_2E_M);

 eqcmp #(4) m3(WA3W, RA2E, Match_2E_W);

 eqcmp #(4) m4a(WA3E, RA1D, Match_1D_E);

 eqcmp #(4) m4b(WA3E, RA2D, Match_2D_E);

 assign Match_12D_E = Match_1D_E | Match_2D_E;

endmodule

module hazard(input logic clk, reset,

 input logic Match_1E_M, Match_1E_W, Match_2E_M,

Match_2E_W, Match_12D_E,

 input logic RegWriteM, RegWriteW,

 input logic BranchTakenE, MemtoRegE,

 input logic PCWrPendingF, PCSrcW,

 output logic [1:0] ForwardAE, ForwardBE,

 output logic StallF, StallD,

 output logic FlushD, FlushE);

 logic ldrStallD;

 // forwarding logic

 always_comb begin

 if (Match_1E_M & RegWriteM) ForwardAE = 2'b10;

 else if (Match_1E_W & RegWriteW) ForwardAE = 2'b01;

 else ForwardAE = 2'b00;

 if (Match_2E_M & RegWriteM) ForwardBE = 2'b10;

 else if (Match_2E_W & RegWriteW) ForwardBE = 2'b01;

443 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 else ForwardBE = 2'b00;

 end

 // stalls and flushes

 // Load RAW

 // when an instruction reads a register loaded by the previous,

 // stall in the decode stage until it is ready

 // Branch hazard

 // When a branch is taken, flush the incorrectly fetched instrs

 // from decode and execute stages

 // PC Write Hazard

 // When the PC might be written, stall all following instructions

 // by stalling the fetch and flushing the decode stage

 // when a stage stalls, stall all previous and flush next

 assign ldrStallD = Match_12D_E & MemtoRegE;

 assign StallD = ldrStallD;

 assign StallF = ldrStallD | PCWrPendingF;

 assign FlushE = ldrStallD | BranchTakenE;

 assign FlushD = PCWrPendingF | PCSrcW | BranchTakenE;

endmodule

module regfile(input logic clk,

 input logic we3,

 input logic [3:0] ra1, ra2, wa3,

 input logic [31:0] wd3, r15,

 output logic [31:0] rd1, rd2);

 logic [31:0] rf[14:0];

 // three ported register file

 // read two ports combinationally

 // write third port on falling edge of clock (midcycle)

 // so that writes can be read on same cycle

 // register 15 reads PC+8 instead

 always_ff @(negedge clk)

 if (we3) rf[wa3] <= wd3;

 assign rd1 = (ra1 == 4'b1111) ? r15 : rf[ra1];

 assign rd2 = (ra2 == 4'b1111) ? r15 : rf[ra2];

endmodule

module extend(input logic [23:0] Instr,

 input logic [1:0] ImmSrc,

 output logic [31:0] ExtImm);

 always_comb

 case(ImmSrc)

 2'b00: ExtImm = {24'b0, Instr[7:0]}; // 8-bit unsigned immediate

 2'b01: ExtImm = {20'b0, Instr[11:0]}; // 12-bit unsigned immediate

 2'b10: ExtImm = {{6{Instr[23]}}, Instr[23:0], 2'b00}; // Branch

444 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 default: ExtImm = 32'bx; // undefined

 endcase

endmodule

module alu(input logic [31:0] a, b,

 input logic [1:0] ALUControl,

 output logic [31:0] Result,

 output logic [3:0] Flags);

 logic neg, zero, carry, overflow;

 logic [31:0] condinvb;

 logic [32:0] sum;

 assign condinvb = ALUControl[0] ? ~b : b;

 assign sum = a + condinvb + ALUControl[0];

 always_comb

 casex (ALUControl[1:0])

 2'b0?: Result = sum;

 2'b10: Result = a & b;

 2'b11: Result = a | b;

 endcase

 assign neg = Result[31];

 assign zero = (Result == 32'b0);

 assign carry = (ALUControl[1] == 1'b0) & sum[32];

 assign overflow = (ALUControl[1] == 1'b0) & ~(a[31] ^ b[31] ^

ALUControl[0]) &

 (a[31] ^ sum[31]);

 assign Flags = {neg, zero, carry, overflow};

endmodule

module adder #(parameter WIDTH=8)

 (input logic [WIDTH-1:0] a, b,

 output logic [WIDTH-1:0] y);

 assign y = a + b;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic clk, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (en) q <= d;

endmodule

module flopr #(parameter WIDTH = 8)

 (input logic clk, reset,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

445 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else q <= d;

endmodule

module flopenrc #(parameter WIDTH = 8)

 (input logic clk, reset, en, clear,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else if (en)

 if (clear) q <= 0;

 else q <= d;

endmodule

module floprc #(parameter WIDTH = 8)

 (input logic clk, reset, clear,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk, posedge reset)

 if (reset) q <= 0;

 else

 if (clear) q <= 0;

 else q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;

endmodule

module mux3 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1, d2,

 input logic [1:0] s,

 output logic [WIDTH-1:0] y);

 assign y = s[1] ? d2 : (s[0] ? d1 : d0);

endmodule

module eqcmp #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] a, b,

 output logic y);

 assign y = (a == b);

endmodule

446 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

VHDL
library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

entity testbench is

end;

architecture test of testbench is

 component top

 port(clk, reset: in STD_LOGIC;

 WriteDataM, DataAdrM: out STD_LOGIC_VECTOR(31 downto 0);

 MemWriteM: out STD_LOGIC);

 end component;

 signal WriteData, DataAdr: STD_LOGIC_VECTOR(31 downto 0);

 signal clk, reset, MemWrite: STD_LOGIC;

begin

 -- instantiate device to be tested

 dut: top port map(clk, reset, WriteData, DataAdr, MemWrite);

 -- Generate clock with 10 ns period

 process begin

 clk <= '1';

 wait for 5 ns;

 clk <= '0';

 wait for 5 ns;

 end process;

 -- Generate reset for first two clock cycles

 process begin

 reset <= '1';

 wait for 22 ns;

 reset <= '0';

 wait;

 end process;

 -- check that 7 gets written to address 84

 -- at end of program

 process (clk) begin

 if (clk'event and clk = '0' and MemWrite = '1') then

 if (to_integer(DataAdr) = 100 and

 to_integer(WriteData) = 7) then

 report "NO ERRORS: Simulation succeeded" severity failure;

 elsif (DataAdr /= 96) then

 report "Simulation failed" severity failure;

 end if;

 end if;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD_UNSIGNED.all;

447 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

entity top is -- top-level design for testing

 port(clk, reset: in STD_LOGIC;

 WriteDataM, DataAdrM: buffer STD_LOGIC_VECTOR(31 downto 0);

 MemWriteM: buffer STD_LOGIC);

end;

architecture test of top is

 component arm

 port(clk, reset: in STD_LOGIC;

 PCF: out STD_LOGIC_VECTOR(31 downto 0);

 InstrF: in STD_LOGIC_VECTOR(31 downto 0);

 MemWriteM: out STD_LOGIC;

 ALUOutM, WriteDataM: out STD_LOGIC_VECTOR(31 downto 0);

 ReadDataM: in STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component imem

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component dmem

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 signal PCF, InstrF, ReadDataM: STD_LOGIC_VECTOR(31 downto 0);

begin

 -- instantiate processor and memories

 i_arm: arm port map(clk, reset, PCF, InstrF, MemWriteM, DataAdrM,

 WriteDataM, ReadDataM);

 i_imem: imem port map(PCF, InstrF);

 i_dmem: dmem port map(clk, MemWriteM, DataAdrM, WriteDataM, ReadDataM);

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity imem is -- instruction memory

 port(a: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of imem is -- instruction memory

begin

 process is

 file mem_file: TEXT;

 variable L: line;

 variable ch: character;

 variable i, index, result: integer;

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable mem: ramtype;

 begin

 -- initialize memory from file

 for i in 0 to 63 loop -- set all contents low

 mem(i) := (others => '0');

448 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 end loop;

 index := 0;

 FILE_OPEN(mem_file, "memfile.dat", READ_MODE);

 while not endfile(mem_file) loop

 readline(mem_file, L);

 result := 0;

 for i in 1 to 8 loop

 read(L, ch);

 if '0' <= ch and ch <= '9' then

 result := character'pos(ch) - character'pos('0');

 elsif 'a' <= ch and ch <= 'f' then

 result := character'pos(ch) - character'pos('a')+10;

 elsif 'A' <= ch and ch <= 'F' then

 result := character'pos(ch) - character'pos('A')+10;

 else report "Format error on line " & integer'image(index)

 severity error;

 end if;

 mem(index)(35-i*4 downto 32-i*4) :=

 to_std_logic_vector(result,4);

 end loop;

 index := index + 1;

 end loop;

 -- read memory

 loop

 rd <= mem(to_integer(a(7 downto 2)));

 wait on a;

 end loop;

 end process;

end;

library IEEE;

use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity dmem is -- data memory

 port(clk, we: in STD_LOGIC;

 a, wd: in STD_LOGIC_VECTOR(31 downto 0);

 rd: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of dmem is

begin

 process is

 type ramtype is array (63 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 variable mem: ramtype;

 begin -- read or write memory

 loop

 if clk'event and clk = '1' then

 if (we = '1') then

 mem(to_integer(a(7 downto 2))) := wd;

 end if;

 end if;

 rd <= mem(to_integer(a(7 downto 2)));

449 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 wait on clk, a;

 end loop;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity arm is -- pipelined processor

 port(clk, reset: in STD_LOGIC;

 PCF: out STD_LOGIC_VECTOR(31 downto 0);

 InstrF: in STD_LOGIC_VECTOR(31 downto 0);

 MemWriteM: out STD_LOGIC;

 ALUOutM, WriteDataM: out STD_LOGIC_VECTOR(31 downto 0);

 ReadDataM: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of arm is

 component controller

 port(clk, reset: in STD_LOGIC;

 InstrD: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlagsE: in STD_LOGIC_VECTOR(3 downto 0);

 RegSrcD, ImmSrcD: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcE: out STD_LOGIC;

 BranchTakenE: out STD_LOGIC;

 ALUControlE: out STD_LOGIC_VECTOR(1 downto 0);

 MemWriteM: out STD_LOGIC;

 MemtoRegW: out STD_LOGIC;

 PCSrcW: out STD_LOGIC;

 RegWriteW: out STD_LOGIC;

 -- hazard interface

 RegWriteM: out STD_LOGIC;

 MemtoRegE: out STD_LOGIC;

 PCWrPendingF: out STD_LOGIC;

 FlushE: in STD_LOGIC);

 end component;

 component datapath

 port(clk, reset: in STD_LOGIC;

 RegSrcD, ImmSrcD: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcE: in STD_LOGIC;

 BranchTakenE: in STD_LOGIC;

 ALUControlE: in STD_LOGIC_VECTOR(1 downto 0);

 MemtoRegW: in STD_LOGIC;

 PCSrcW: in STD_LOGIC;

 RegWriteW: in STD_LOGIC;

 PCF: out STD_LOGIC_VECTOR(31 downto 0);

 InstrF: in STD_LOGIC_VECTOR(31 downto 0);

 InstrD: out STD_LOGIC_VECTOR(31 downto 0);

 ALUOutM: out STD_LOGIC_VECTOR(31 downto 0);

 WriteDataM: out STD_LOGIC_VECTOR(31 downto 0);

 ReadDataM: in STD_LOGIC_VECTOR(31 downto 0);

 ALUFlagsE: out STD_LOGIC_VECTOR(3 downto 0);

 -- hazard logic

 Match_1E_M: out STD_LOGIC;

 Match_1E_W: out STD_LOGIC;

 Match_2E_M: out STD_LOGIC;

450 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 Match_2E_W: out STD_LOGIC;

 Match_12D_E: out STD_LOGIC;

 ForwardAE: in STD_LOGIC_VECTOR(1 downto 0);

 ForwardBE: in STD_LOGIC_VECTOR(1 downto 0);

 StallF: in STD_LOGIC;

 StallD: in STD_LOGIC;

 FlushD: in STD_LOGIC);

 end component;

 component hazard

 port(clk, reset: in STD_LOGIC;

 Match_1E_M: in STD_LOGIC;

 Match_1E_W: in STD_LOGIC;

 Match_2E_M: in STD_LOGIC;

 Match_2E_W: in STD_LOGIC;

 Match_12D_E: in STD_LOGIC;

 RegWriteM: in STD_LOGIC;

 RegWriteW: in STD_LOGIC;

 BranchTakenE: in STD_LOGIC;

 MemtoRegE: in STD_LOGIC;

 PCWrPendingF: in STD_LOGIC;

 PCSrcW: in STD_LOGIC;

 ForwardAE: out STD_LOGIC_VECTOR(1 downto 0);

 ForwardBE: out STD_LOGIC_VECTOR(1 downto 0);

 StallF, StallD: out STD_LOGIC;

 FlushD, FlushE: out STD_LOGIC);

 end component;

 signal RegSrcD, ImmSrcD, ALUControlE: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUSrcE, BranchTakenE, MemtoRegW, PCSrcW, RegWriteW: STD_LOGIC;

 signal ALUFlagsE: STD_LOGIC_VECTOR(3 downto 0);

 signal InstrD: STD_LOGIC_VECTOR(31 downto 0);

 signal RegWriteM, MemtoRegE, PCWrPendingF: STD_LOGIC;

 signal ForwardAE, ForwardBE: STD_LOGIC_VECTOR(1 downto 0);

 signal StallF, StallD, FlushD, FlushE: STD_LOGIC;

 signal Match_1E_M, Match_1E_W, Match_2E_M, Match_2E_W, Match_12D_E:

STD_LOGIC;

begin

 c: controller port map(clk, reset, InstrD(31 downto 12), ALUFlagsE,

 RegSrcD, ImmSrcD,

 ALUSrcE, BranchTakenE, ALUControlE,

 MemWriteM,

 MemtoRegW, PCSrcW, RegWriteW,

 RegWriteM, MemtoRegE, PCWrPendingF,

 FlushE);

 dp: datapath port map(clk, reset,

 RegSrcD, ImmSrcD,

 ALUSrcE, BranchTakenE, ALUControlE,

 MemtoRegW, PCSrcW, RegWriteW,

 PCF, InstrF, InstrD,

 ALUOutM, WriteDataM, ReadDataM,

 ALUFlagsE,

 Match_1E_M, Match_1E_W, Match_2E_M,

 Match_2E_W, Match_12D_E,

451 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ForwardAE, ForwardBE, StallF, StallD, FlushD);

 h: hazard port map(clk, reset, Match_1E_M, Match_1E_W,

 Match_2E_M, Match_2E_W, Match_12D_E,

 RegWriteM, RegWriteW, BranchTakenE, MemtoRegE,

 PCWrPendingF, PCSrcW,

 ForwardAE, ForwardBE,

 StallF, StallD, FlushD, FlushE);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity controller is -- pipelined control decoder

 port(clk, reset: in STD_LOGIC;

 InstrD: in STD_LOGIC_VECTOR(31 downto 12);

 ALUFlagsE: in STD_LOGIC_VECTOR(3 downto 0);

 RegSrcD, ImmSrcD: out STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcE: out STD_LOGIC;

 BranchTakenE: out STD_LOGIC;

 ALUControlE: out STD_LOGIC_VECTOR(1 downto 0);

 MemWriteM: out STD_LOGIC;

 MemtoRegW: out STD_LOGIC;

 PCSrcW: out STD_LOGIC;

 RegWriteW: out STD_LOGIC;

 -- hazard interface

 RegWriteM: out STD_LOGIC;

 MemtoRegE: out STD_LOGIC;

 PCWrPendingF: out STD_LOGIC;

 FlushE: in STD_LOGIC);

end;

architecture synth of controller is

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component floprc generic(width: integer);

 port(clk, reset, clear: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component conditional

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagsWrite: in STD_LOGIC_VECTOR(1 downto 0);

 CondEx: out STD_LOGIC;

 FlagsNext: out STD_LOGIC_VECTOR(3 downto 0));

 end component;

 signal controlsD: STD_LOGIC_VECTOR(9 downto 0);

 signal CondExE, ALUOpD: STD_LOGIC;

 signal ALUControlD: STD_LOGIC_VECTOR(1 downto 0);

 signal ALUSrcD: STD_LOGIC;

 signal MemtoRegD, MemtoRegM: STD_LOGIC;

 signal RegWriteD, RegWriteE, RegWriteGatedE: STD_LOGIC;

 signal MemWriteD, MemWriteE, MemWriteGatedE: STD_LOGIC;

452 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 signal BranchD, BranchE: STD_LOGIC;

 signal FlagWriteD, FlagWriteE: STD_LOGIC_VECTOR(1 downto 0);

 signal PCSrcD, PCSrcE, PCSrcM: STD_LOGIC;

 signal FlagsE, FlagsNextE, CondE: STD_LOGIC_VECTOR(3 downto 0);

 signal Funct: STD_LOGIC_VECTOR(5 downto 0);

 signal Rd: STD_LOGIC_VECTOR(3 downto 0);

 signal PCSrcGatedE: STD_LOGIC;

 signal FlushedValsEnext, FlushedValsE: STD_LOGIC_VECTOR(6 downto 0);

 signal ValsEnext, ValsE: STD_LOGIC_VECTOR(2 downto 0);

 signal ValsMnext, ValsM: STD_LOGIC_VECTOR(3 downto 0);

 signal ValsWnext, ValsW: STD_LOGIC_VECTOR(2 downto 0);

begin

 -- Decode stage

 -- Main Decoder

 process(all) begin

 case InstrD(27 downto 26) is

 when "00" => controlsD <= "0000101001" when InstrD(25) -- DP imm

 else "0000001001"; -- DP reg

 when "01" => controlsD <= "0001111000" when InstrD(20) -- LDR

 else "1001110100"; -- STR

 when "10" => controlsD <= "0110100010"; -- B

 when others => controlsD <= "----------"; --

unimplemented

 end case;

 end process;

 (RegSrcD, ImmSrcD, ALUSrcD, MemtoRegD,

 RegWriteD, MemWriteD, BranchD, ALUOpD) <= controlsD;

 -- ALU Decoder

 Funct <= InstrD(25 downto 20);

 Rd <= InstrD(15 downto 12);

 process(all) begin

 if (ALUOpD) then

 case Funct(4 downto 1) is

 when "0100" => ALUControlD <= "00"; -- ADD

 when "0010" => ALUControlD <= "01"; -- SUB

 when "0000" => ALUControlD <= "10"; -- AND

 when "1100" => ALUControlD <= "11"; -- ORR

 when others => ALUControlD <= "--"; -- unimplemented

 end case;

 FlagWriteD(1) <= Funct(0);

 FlagWriteD(0) <= Funct(0) and (not ALUControlD(1));

 else

 ALUControlD <= "00";

 FlagWriteD <= "00";

 end if;

 end process;

 PCSrcD <= ((and Rd) and RegWriteD) or BranchD;

-- Execute stage

 FlushedValsEnext <= (FlagWriteD, BranchD, MemWriteD, RegWriteD,

 PCSrcD, MemtoRegD);

453 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ValsEnext <= (ALUSrcD, ALUControlD);

 flushedregsE: floprc generic map (7)

 port map(clk, reset, FlushE, FlushedValsEnext, FlushedValsE);

 regsE: flopr generic map (3)

 port map(clk, reset, ValsEnext, ValsE);

 condregE: flopr generic map (4)

 port map(clk, reset, InstrD(31 downto 28), CondE);

 flagsreg: flopr generic map (4)

 port map(clk, reset, FlagsNextE, FlagsE);

 (FlagWriteE, BranchE, MemWriteE, RegWriteE, PCSrcE, MemtoRegE) <=

FlushedValsE;

 (ALUSrcE, ALUControlE) <= ValsE;

 -- write and Branch controls are conditional

 Cond: conditional port map(CondE, FlagsE, ALUFlagsE, FlagWriteE,

CondExE, FlagsNextE);

 BranchTakenE <= BranchE and CondExE;

 RegWriteGatedE <= RegWriteE and CondExE;

 MemWriteGatedE <= MemWriteE and CondExE;

 PCSrcGatedE <= PCSrcE and CondExE;

 -- Memory stage

 ValsMnext <= (MemWriteGatedE, MemtoRegE, RegWriteGatedE, PCSrcGatedE);

 regsM: flopr generic map (4)

 port map(clk, reset, ValsMnext, ValsM);

 (MemWriteM, MemtoRegM, RegWriteM, PCSrcM) <= ValsM;

 -- Writeback stage

 ValsWnext <= (MemtoRegM, RegWriteM, PCSrcM);

 regsW: flopr generic map (3)

 port map(clk, reset, ValsWnext, ValsW);

 (MemtoRegW, RegWriteW, PCSrcW) <= ValsW;

 -- Hazard Prediction

 PCWrPendingF <= PCSrcD or PCSrcE or PCSrcM;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity conditional is

 port(Cond: in STD_LOGIC_VECTOR(3 downto 0);

 Flags: in STD_LOGIC_VECTOR(3 downto 0);

 ALUFlags: in STD_LOGIC_VECTOR(3 downto 0);

 FlagsWrite: in STD_LOGIC_VECTOR(1 downto 0);

 CondEx: out STD_LOGIC;

 FlagsNext: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of conditional is

 signal neg, zero, carry, overflow, ge: STD_LOGIC;

begin

 (neg, zero, carry, overflow) <= Flags;

 ge <= (neg xnor overflow);

454 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 process(all) begin -- Condition checking

 case Cond is

 when "0000" => CondEx <= zero;

 when "0001" => CondEx <= not zero;

 when "0010" => CondEx <= carry;

 when "0011" => CondEx <= not carry;

 when "0100" => CondEx <= neg;

 when "0101" => CondEx <= not neg;

 when "0110" => CondEx <= overflow;

 when "0111" => CondEx <= not overflow;

 when "1000" => CondEx <= carry and (not zero);

 when "1001" => CondEx <= not(carry and (not zero));

 when "1010" => CondEx <= ge;

 when "1011" => CondEx <= not ge;

 when "1100" => CondEx <= (not zero) and ge;

 when "1101" => CondEx <= not ((not zero) and ge);

 when "1110" => CondEx <= '1';

 when others => CondEx <= '-';

 end case;

 end process;

 FlagsNext(3 downto 2) <= ALUFlags(3 downto 2) when (FlagsWrite(1) and

CondEx) else Flags(3 downto 2);

 FlagsNext(1 downto 0) <= ALUFlags(1 downto 0) when (FlagsWrite(0) and

CondEx) else Flags(1 downto 0);

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity datapath is

 port(clk, reset: in STD_LOGIC;

 RegSrcD, ImmSrcD: in STD_LOGIC_VECTOR(1 downto 0);

 ALUSrcE: in STD_LOGIC;

 BranchTakenE: in STD_LOGIC;

 ALUControlE: in STD_LOGIC_VECTOR(1 downto 0);

 MemtoRegW: in STD_LOGIC;

 PCSrcW: in STD_LOGIC;

 RegWriteW: in STD_LOGIC;

 PCF: out STD_LOGIC_VECTOR(31 downto 0);

 InstrF: in STD_LOGIC_VECTOR(31 downto 0);

 InstrD: out STD_LOGIC_VECTOR(31 downto 0);

 ALUOutM: out STD_LOGIC_VECTOR(31 downto 0);

 WriteDataM: out STD_LOGIC_VECTOR(31 downto 0);

 ReadDataM: in STD_LOGIC_VECTOR(31 downto 0);

 ALUFlagsE: out STD_LOGIC_VECTOR(3 downto 0);

 -- hazard logic

 Match_1E_M: out STD_LOGIC;

 Match_1E_W: out STD_LOGIC;

 Match_2E_M: out STD_LOGIC;

 Match_2E_W: out STD_LOGIC;

 Match_12D_E: out STD_LOGIC;

 ForwardAE: in STD_LOGIC_VECTOR(1 downto 0);

 ForwardBE: in STD_LOGIC_VECTOR(1 downto 0);

 StallF: in STD_LOGIC;

 StallD: in STD_LOGIC;

455 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 FlushD: in STD_LOGIC);

end;

architecture struct of datapath is

 component alu

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

 end component;

 component regfile

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component extend

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

 end component;

 component flopr generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopenrc generic(width: integer);

 port(clk, reset, en, clear: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component flopenr generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux2 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component mux3 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;

 component eqcmp generic(width: integer);

 port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);

 y: out STD_LOGIC);

 end component;

456 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 signal PCPlus4F, PCnext1F, PCnextF: STD_LOGIC_VECTOR(31 downto 0);

 signal ExtImmD, rd1D, rd2D, PCPlus8D: STD_LOGIC_VECTOR(31 downto 0);

 signal rd1E, rd2E, ExtImmE, SrcAE: STD_LOGIC_VECTOR(31 downto 0);

 signal SrcBE, WriteDataE, ALUResultE: STD_LOGIC_VECTOR(31 downto 0);

 signal ReadDataW, ALUOutW, ResultW: STD_LOGIC_VECTOR(31 downto 0);

 signal RA1D, RA2D, RA1E, RA2E: STD_LOGIC_VECTOR(3 downto 0);

 signal WA3E, WA3M, WA3W: STD_LOGIC_VECTOR(3 downto 0);

 signal Match_1D_E, Match_2D_E: STD_LOGIC;

 signal notStallF: STD_LOGIC;

begin

 -- Fetch stage

 notStallF <= (not StallF);

 pcnextmux: mux2 generic map (32)

 port map(PCPlus4F, ResultW, PCSrcW, PCnext1F);

 branchmux: mux2 generic map (32)

 port map(PCnext1F, ALUResultE, BranchTakenE, PCnextF);

 pcreg: flopenr generic map (32)

 port map(clk, reset, notStallF, PCnextF, PCF);

 pcadd: adder generic map (32)

 port map(PCF, 32D"4", PCPlus4F);

 -- Decode Stage

 PCPlus8D <= PCPlus4F; -- skip register

 instrreg: flopenrc generic map (32)

 port map(clk, reset, (not StallD), FlushD, InstrF, InstrD);

 ra1mux: mux2 generic map (4)

 port map(InstrD(19 downto 16), 4D"15", RegSrcD(0), RA1D);

 ra2mux: mux2 generic map (4)

 port map(InstrD(3 downto 0), InstrD(15 downto 12), RegSrcD(1), RA2D);

 rf: regfile

 port map(clk, RegWriteW, RA1D, RA2D,

 WA3W, ResultW, PCPlus8D,

 rd1D, rd2D);

 ext: extend

 port map(InstrD(23 downto 0), ImmSrcD, ExtImmD);

 -- Execute Stage

 rd1reg: flopr generic map (32)

 port map(clk, reset, rd1D, rd1E);

 rd2reg: flopr generic map (32)

 port map(clk, reset, rd2D, rd2E);

 immreg: flopr generic map (32)

 port map(clk, reset, ExtImmD, ExtImmE);

 wa3ereg: flopr generic map (4)

 port map(clk, reset, InstrD(15 downto 12), WA3E);

 ra1reg: flopr generic map (4)

 port map(clk, reset, RA1D, RA1E);

 ra2reg: flopr generic map (4)

 port map(clk, reset, RA2D, RA2E);

 byp1mux: mux3 generic map (32)

 port map(rd1E, ResultW, ALUOutM, ForwardAE, SrcAE);

 byp2mux: mux3 generic map (32)

 port map(rd2E, ResultW, ALUOutM, ForwardBE, WriteDataE);

457 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 srcbmux: mux2 generic map (32)

 port map(WriteDataE, ExtImmE, ALUSrcE, SrcBE);

 i_alu: alu

 port map(SrcAE, SrcBE, ALUControlE, ALUResultE, ALUFlagsE);

 -- Memory Stage

 aluresreg: flopr generic map (32)

 port map(clk, reset, ALUResultE, ALUOutM);

 wdreg: flopr generic map (32)

 port map(clk, reset, WriteDataE, WriteDataM);

 wa3mreg: flopr generic map (4)

 port map(clk, reset, WA3E, WA3M);

 -- Writeback Stage

 aluoutreg: flopr generic map (32)

 port map(clk, reset, ALUOutM, ALUOutW);

 rdreg: flopr generic map (32)

 port map(clk, reset, ReadDataM, ReadDataW);

 wa3wreg: flopr generic map (4)

 port map(clk, reset, WA3M, WA3W);

 resmux: mux2 generic map (32)

 port map(ALUOutW, ReadDataW, MemtoRegW, ResultW);

 -- hazard comparison

 m0: eqcmp generic map (4)

 port map(WA3M, RA1E, Match_1E_M);

 m1: eqcmp generic map (4)

 port map(WA3W, RA1E, Match_1E_W);

 m2: eqcmp generic map (4)

 port map(WA3M, RA2E, Match_2E_M);

 m3: eqcmp generic map (4)

 port map(WA3W, RA2E, Match_2E_W);

 m4a: eqcmp generic map (4)

 port map(WA3E, RA1D, Match_1D_E);

 m4b: eqcmp generic map (4)

 port map(WA3E, RA2D, Match_2D_E);

 Match_12D_E <= Match_1D_E or Match_2D_E;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity hazard is

 port(clk, reset: in STD_LOGIC;

 Match_1E_M: in STD_LOGIC;

 Match_1E_W: in STD_LOGIC;

 Match_2E_M: in STD_LOGIC;

 Match_2E_W: in STD_LOGIC;

 Match_12D_E: in STD_LOGIC;

 RegWriteM: in STD_LOGIC;

 RegWriteW: in STD_LOGIC;

 BranchTakenE: in STD_LOGIC;

 MemtoRegE: in STD_LOGIC;

 PCWrPendingF: in STD_LOGIC;

 PCSrcW: in STD_LOGIC;

 ForwardAE: out STD_LOGIC_VECTOR(1 downto 0);

458 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 ForwardBE: out STD_LOGIC_VECTOR(1 downto 0);

 StallF, StallD: out STD_LOGIC;

 FlushD, FlushE: out STD_LOGIC);

end;

architecture behave of hazard is

 signal ldrStallD: STD_LOGIC;

begin

 ForwardAE(1) <= '1' when (Match_1E_M and RegWriteM) else '0';

 ForwardAE(0) <= '1' when (Match_1E_W and RegWriteW and (not

ForwardAE(1))) else '0';

 ForwardBE(1) <= '1' when (Match_2E_M and RegWriteM) else '0';

 ForwardBE(0) <= '1' when (Match_2E_W and RegWriteW and (not

ForwardBE(1))) else '0';

 ldrStallD <= Match_12D_E and MemtoRegE;

 StallD <= ldrStallD;

 StallF <= ldrStallD or PCWrPendingF;

 FlushE <= ldrStallD or BranchTakenE;

 FlushD <= PCWrPendingF or PCSrcW or BranchTakenE;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity regfile is -- three-port register file

 port(clk: in STD_LOGIC;

 we3: in STD_LOGIC;

 ra1, ra2, wa3: in STD_LOGIC_VECTOR(3 downto 0);

 wd3, r15: in STD_LOGIC_VECTOR(31 downto 0);

 rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is

 type ramtype is array (31 downto 0) of

 STD_LOGIC_VECTOR(31 downto 0);

 signal mem: ramtype;

begin

 process(clk) begin

 if falling_edge(clk) then -- write rf on negative edge of clock

 if we3 = '1' then mem(to_integer(wa3)) <= wd3;

 end if;

 end if;

 end process;

 process(all) begin

 if (to_integer(ra1) = 15) then rd1 <= r15;

 else rd1 <= mem(to_integer(ra1));

 end if;

 if (to_integer(ra2) = 15) then rd2 <= r15;

 else rd2 <= mem(to_integer(ra2));

 end if;

 end process;

end;

459 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity adder is -- adder

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is

begin

 y <= a + b;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity extend is

 port(Instr: in STD_LOGIC_VECTOR(23 downto 0);

 ImmSrc: in STD_LOGIC_VECTOR(1 downto 0);

 ExtImm: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of extend is

begin

 process(all) begin

 case ImmSrc is

 when "00" => ExtImm <= (X"000000", Instr(7 downto 0));

 when "01" => ExtImm <= (X"00000", Instr(11 downto 0));

 when "10" => ExtImm <= (Instr(23), Instr(23), Instr(23),

 Instr(23), Instr(23), Instr(23), Instr(23 downto 0), "00");

 when others => ExtImm <= X"--------";

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is -- flip-flop with enable and asynchronous reset

 generic(width: integer);

 port(clk, reset, en: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

460 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

entity flopr is -- flip-flop with asynchronous reset

 generic(width: integer);

 port(clk, reset: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 q <= d;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity floprc is -- flip-flop with asynchronous reset

 -- and synchronous clear

 generic(width: integer);

 port(clk, reset, clear: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of floprc is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if clear then q <= (others => '0');

 else q <= d;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenrc is -- flip-flop with enable and asynchronous reset,

synchronous clear

 generic(width: integer);

 port(clk, reset, en, clear: in STD_LOGIC;

 d: in STD_LOGIC_VECTOR(width-1 downto 0);

 q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopenrc is

begin

 process(clk, reset) begin

 if reset then q <= (others => '0');

 elsif rising_edge(clk) then

 if en then

 if clear then

461 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 q <= (others => '0');

 else

 q <= d;

 end if;

 end if;

 end if;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is -- two-input multiplexer

 generic(width: integer);

 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is

begin

 y <= d1 when s else d0;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux3 is -- three-input multiplexer

 generic(width: integer);

 port(d0, d1, d2: in STD_LOGIC_VECTOR(width-1 downto 0);

 s: in STD_LOGIC_VECTOR(1 downto 0);

 y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux3 is

begin

 process(all) begin

 case s is

 when "00" => y <= d0;

 when "01" => y <= d1;

 when "10" => y <= d2;

 when others => y <= d0;

 end case;

 end process;

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity eqcmp is -- equality comparator

 generic(width: integer);

 port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);

 y: out STD_LOGIC);

end;

architecture behave of eqcmp is

begin

 y <= '1'when a = b else '0';

462 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

end;

library IEEE; use IEEE.STD_LOGIC_1164.all;

use IEEE.NUMERIC_STD_UNSIGNED.all;

entity alu is

 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 ALUControl: in STD_LOGIC_VECTOR(1 downto 0);

 Result: buffer STD_LOGIC_VECTOR(31 downto 0);

 ALUFlags: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture behave of alu is

 signal condinvb: STD_LOGIC_VECTOR(31 downto 0);

 signal sum: STD_LOGIC_VECTOR(32 downto 0);

 signal neg, zero, carry, overflow: STD_LOGIC;

begin

 condinvb <= not b when ALUControl(0) else b;

 sum <= ('0', a) + ('0', condinvb) + ALUControl(0);

 process(all) begin

 case? ALUControl(1 downto 0) is

 when "0-" => result <= sum(31 downto 0);

 when "10" => result <= a and b;

 when "11" => result <= a or b;

 when others => result <= (others => '-');

 end case?;

 end process;

 neg <= Result(31);

 zero <= '1' when (Result = 0) else '0';

 carry <= (not ALUControl(1)) and sum(32);

 overflow <= (not ALUControl(1)) and

 (not (a(31) xor b(31) xor ALUControl(0))) and

 (a(31) xor sum(31));

 ALUFlags <= (neg, zero, carry, overflow);

end;

Exercise 7.41

SystemVerilog
module hazard(input logic clk, reset,

 input logic Match_1E_M, Match_1E_W, Match_2E_M,

 input logic Match_2E_W, Match_12D_E,

 input logic RegWriteM, RegWriteW,

 input logic BranchTakenE, MemtoRegE,

 input logic PCWrPendingF, PCSrcW,

 output logic [1:0] ForwardAE, ForwardBE,

 output logic StallF, StallD,

 output logic FlushD, FlushE);

 logic ldrStallD;

463 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

 // forwarding logic

 always_comb begin

 if (Match_1E_M & RegWriteM) ForwardAE = 2'b10;

 else if (Match_1E_W & RegWriteW) ForwardAE = 2'b01;

 else ForwardAE = 2'b00;

 if (Match_2E_M & RegWriteM) ForwardBE = 2'b10;

 else if (Match_2E_W & RegWriteW) ForwardBE = 2'b01;

 else ForwardBE = 2'b00;

 end

 // stalls and flushes

 // Load RAW

 // when an instruction reads a register loaded by the previous,

 // stall in the decode stage until it is ready

 // Branch hazard

 // When a branch is taken, flush the incorrectly fetched instrs

 // from decode and execute stages

 // PC Write Hazard

 // When the PC might be written, stall all following instructions

 // by stalling the fetch and flushing the decode stage

 // when a stage stalls, stall all previous and flush next

 assign ldrStallD = Match_12D_E & MemtoRegE;

 assign StallD = ldrStallD;

 assign StallF = ldrStallD | PCWrPendingF;

 assign FlushE = ldrStallD | BranchTakenE;

 assign FlushD = PCWrPendingF | PCSrcW | BranchTakenE;

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity hazard is

 port(clk, reset: in STD_LOGIC;

 Match_1E_M: in STD_LOGIC;

 Match_1E_W: in STD_LOGIC;

 Match_2E_M: in STD_LOGIC;

 Match_2E_W: in STD_LOGIC;

 Match_12D_E: in STD_LOGIC;

 RegWriteM: in STD_LOGIC;

 RegWriteW: in STD_LOGIC;

 BranchTakenE: in STD_LOGIC;

 MemtoRegE: in STD_LOGIC;

 PCWrPendingF: in STD_LOGIC;

 PCSrcW: in STD_LOGIC;

 ForwardAE: out STD_LOGIC_VECTOR(1 downto 0);

 ForwardBE: out STD_LOGIC_VECTOR(1 downto 0);

 StallF, StallD: out STD_LOGIC;

 FlushD, FlushE: out STD_LOGIC);

end;

464 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

architecture behave of hazard is

 signal ldrStallD: STD_LOGIC;

begin

 ForwardAE(1) <= '1' when (Match_1E_M and RegWriteM) else '0';

 ForwardAE(0) <= '1' when (Match_1E_W and RegWriteW and (not

ForwardAE(1))) else '0';

 ForwardBE(1) <= '1' when (Match_2E_M and RegWriteM) else '0';

 ForwardBE(0) <= '1' when (Match_2E_W and RegWriteW and (not

ForwardBE(1))) else '0';

 ldrStallD <= Match_12D_E and MemtoRegE;

 StallD <= ldrStallD;

 StallF <= ldrStallD or PCWrPendingF;

 FlushE <= ldrStallD or BranchTakenE;

 FlushD <= PCWrPendingF or PCSrcW or BranchTakenE;

end;

Hazard Unit Schematic

465 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

M
a

tc
h

_
1

E
_

M

M
a

tc
h

_
1

E
_

W
M

a
tc

h
_

2
E

_
M

M
a

tc
h

_
2

E
_

W

M
a

tc
h

_
1

2
D

_
E

R
e

g
W

ri
te

M
R

e
g

W
ri

te
W

B
ra

n
ch

T
a

k
e

n
E

M
e

m
to

R
e

g
E

P
C

W
rP

e
n

d
in

g
F

P
C

S
rc

W

Question 7.1

A pipelined microprocessors with N stages offers an ideal speedup of N over nonpipelined

microprocessor. This speedup comes at the cost of little extra hardware: pipeline registers and

possibly a hazard unit. The disadvantage of a pipelined processor is added complexity,

especially in dealing with data and control hazards.

Question 7.2

While pipelining offers speedup, it still has its costs. The speedup of an N stage processor is not

N because of (1) sequencing overhead (tpcq + tsetup, the delay of inserting a register), (2) unequal

delays of pipeline stages, (3) time to fill up the pipeline (at the beginning of a program), (4) time

466 SOLUTIONS chapter 7 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

to drain the pipeline (at the end of a program), and (5) dependencies stalling or flushing the

pipeline.

Question 7.3

A hazard in a pipelined microprocessor occurs when the execution of an instruction depends on

the result of a previously issued instruction that has not completed executing. Some options for

dealing with hazards are:

(1) to have the compiler insert nops to prevent dependencies,

(2) to have the compiler reorder the code to eliminate dependencies (inserting nops when this

is impossible),

(3) to have the hardware stall (or flush) the pipeline when there is a dependency,

(4) to have the hardware forward results to earlier stages in the pipeline or stall when that is

impossible.

Options 1 and 2: Advantages of the first two methods are that no added hardware is required,

so area and, thus, cost and power is minimized. However, performance is not maximized in

cases where nops are inserted.

Option 3: The advantage of having the hardware flush or stall the pipeline as needed is that the

compiler can be simpler and, thus, likely faster to run and develop. Also, because there is no

forwarding hardware, the added hardware is minimal. However, again, performance is not

maximized in cases where forwarding could have been used instead of stalling.

Option 4: This option offers the greatest performance advantage but also costs the most

hardware for forwarding, stalling, and flushing the pipeline as necessary because of

dependencies.

A combination of options 2 and 4 offers the greatest performance advantage at the cost of

more hardware and a more sophisticated compiler.

Question 7.4

A superscalar processor duplicates the datapath hardware to execute multiple instructions (in

the same stage of a pipelined processor) at once. Ideally, the fetch stage can fetch multiple

instructions per clock cycle. However, due to dependencies, this may be impossible. Thus, the

costs of implementing a superscalar processor are (1) more hardware (additional register file

and memory ports, additional functional units, more hazard detection and forwarding

hardware, etc.), and (2) more complex fetch and commit (execution completion) algorithms.

Also, because of dependencies, superscalar processors are often underutilized. Thus, for

programs with a large amount of dependencies, superscalar processors can consume more

area, power and cost (because of the additional hardware) without providing any speedup.

467 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

CHAPTER 8

Exercise 8.1

Answers will vary.

Temporal locality: (1) making phone calls (if you called someone recently, you’re likely to call

them again soon). (2) using a textbook (if you used a textbook recently, you will likely use it

again soon).

Spatial locality: (1) reading a magazine (if you looked at one page of the magazine, you’re likely

to look at next page soon). (2) walking to locations on campus - if a student is visiting a

professor in the engineering department, she or he is likely to visit another professor in the

engineering department soon.

Exercise 8.2

Answers will vary.

Spatial locality: One program that exhibits spatial locality is an mp3 player. Suppose a song is

stored in a file as a long string of bits. If the computer is playing one part of the song, it will

need to fetch the bits immediately adjacent to the ones currently being read (played).

Temporal locality: An application that exhibits temporal locality is a Web browser. If a user

recently visited a Web site, the user is likely to peruse that Web site again soon.

Exercise 8.3

Repeat data accesses to the following addresses:

0x0 0x10 0x20 0x30 0x40

The miss rate for the fully associative cache is: 100%. Miss rate for the direct-mapped cache is

2/5 = 40%.

Exercise 8.4

Repeat data accesses to the following addresses:

468 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

0x0 0x40 0x80 0xC0

They all map to set 0 of the direct-mapped cache, but they fit in the fully associative cache.

After many repetitions, the miss rate for the fully associative cache approaches 0%. The miss

rate for the direct-mapped cache is 100%.

Exercise 8.5

(a) Increasing block size will increase the cache’s ability to take advantage of spatial locality.

This will reduce the miss rate for applications with spatial locality. However, it also decreases

the number of locations to map an address, possibly increasing conflict misses. Also, the miss

penalty (the amount of time it takes to fetch the cache block from memory) increases.

(b) Increasing the associativity increases the amount of necessary hardware but in most cases

decreases the miss rate. Associativities above 8 usually show only incremental decreases in

miss rate.

(c) Increasing the cache size will decrease capacity misses and could decrease conflict misses. It

could also, however, increase access time.

Exercise 8.6

Usually. Associative caches usually have better miss rates than direct-mapped caches of the

same capacity and block size because they have fewer conflict misses. However, pathological

cases exist where thrashing can occur, causing the set associative cache to have a worse miss

rate.

Exercise 8.7

(a) False.

Counterexample: A 2-word cache with block size of 1 word and access pattern:

0 4 8

This has a 50% miss rate with a direct-mapped cache, and a100% miss rate with a 2-way set

associative cache.

(b) True.

The 16KB cache is a superset of the 8KB cache. (Note: it’s possible that they have the same miss

rate.)

(c) Usually true.

Instruction memory accesses display great spatial locality, so a large block size reduces the miss

rate.

469 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 8.8

(a) b × S × N × 4 bytes

(b) [A - (log2(S) + log2(b) + 2)] × S × N

(c) S = 1, N = C/b

(d) S = C/b

Exercise 8.9

The figure below shows where each address maps for each cache configuration.

(a) 80% miss rate. Addresses 70-7C and 20 use unique cache blocks and are not removed once

placed into the cache. Miss rate is 20/25 = 80%.

(b) 100% miss rate. A repeated sequence of length greater than the cache size produces no hits

for a fully-associative cache using LRU.

(c) 100% miss rate. The repeated sequence makes at least three accesses to each set during

each pass. Using LRU replacement, each value must be replaced each pass through.

(d) 40% miss rate. Data words from consecutive locations are stored in each cache block. The

larger block size is advantageous since accesses in the given sequence are made primarily to

consecutive word addresses. A block size of two cuts the number of block fetches in half since

two words are obtained per block fetch. The address of the second word in the block will

always hit in this type of scheme (e.g. address 44 of the 40-44 address pair). Thus, the second

470 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

consecutive word accesses always hit: 44, 4C, 74, 7C, 84, 8C, 94, 9C, 4, C, 14, 1C. Tracing block

accesses (see Figure 8.1) shows that three of the eight blocks (70-74, 78-7C, 20-24) also remain

in memory. Thus, the hit rate is: 15/25 = 60% and miss rate is 40%.

Exercise 8.10

(a) 11/14 = 79% miss rate

(b) 12/14 = 86% miss rate

(c) 6/14 = 43% miss rate

(d) 7/14 = 50% miss rate

Exercise 8.11

(a) 128

(b) 100%

(c) ii

Exercise 8.12

(a - b)

(c) Each tag is 32 - (c+2-n) bits = (30 - (c-n)) bits

(d) # tag bits × # blocks = (30 - (c-n)) × 2 c+2 - b'

471 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 8.13

(a)

(b) Each tag is 16 bits. There are 32Kwords / (2 words / block) = 16K blocks and each block

needs a tag: 16 × 16K = 218 = 256 Kbits of tags.

(c) Each cache block requires: 2 status bits, 16 bits of tag, and 64 data bits, thus each set is 2 ×

82 bits = 164 bits.

(d) See figure below. The design must use enough RAM chips to handle both the total capacity

and the number of bits that must be read on each cycle. For the data, the SRAM must provide a

capacity of 128 KB and must read 64 bits per cycle (one 32-bit word from each way). Thus the

design needs at least 128KB / (8KB/RAM) = 16 RAMs to hold the data and 64 bits / (4 pins/RAM)

= 16 RAMs to supply the number of bits. These are equal, so the design needs exactly 16 RAMs

for the data.

For the tags, the total capacity is 32 KB, from which 32 bits (two 16-bit tags) must be read each

cycle. Therefore, only 4 RAMs are necessary to meet the capacity, but 8 RAMs are needed to

supply 32 bits per cycle. Therefore, the design will need 8 RAMs, each of which is being used at

half capacity.

With 8K sets, the status bits require another 8K × 4-bit RAM. We use a 16K × 4-bit RAM, using

only half of the entries.

472 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Bits 15:2 of the address select the word within a set and block. Bits 15-3 select the set. Bits

31:16 of the address are matched against the tags to find a hit in one (or none) of the two

blocks with each set.

Exercise 8.14

(a) The word in memory might be found in two locations, one in the on-chip cache, and one in

the off-chip cache.

(b) For the first-level cache, the number of sets, S = 512 / 4 = 128 sets. Thus, 7 bits of the

address are set bits. The block size is 16 bytes / 4 bytes/word = 4 words, so there are 2 block

offset bits. Thus, the number of tag bits for the first-level cache is 32 - (7+2+2) = 21 bits.

For the second-level cache, the number of sets is equal to the number of blocks, S = 256 Ksets.

Thus, 18 bits of the address are set bits. The block size is 16 bytes / 4 bytes/word = 4 words, so

there are 2 block offset bits. Thus, the number of tag bits for the second-level cache is 32 -

(18+2+2) = 10 bits.

(c) From Equation 8.2, AMAT = tcache + MRcache(tMM + MRMM tVM). In this case, there is no virtual

memory but there is an L2 cache. Thus,

AMAT = tcache + MRcache(tL2cache + MRL2cache tMM)

where, MR is the miss rate. In terms of hit rate, MRcache = 1 - HRcache, and MRL2cache = 1- HRL2cache.

Using the values given in Table 8.6,

473 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

AMAT = ta + (1 - A)(tb + (1 - B) tm)

(d) When the first-level cache is enabled, the second-level cache receives only the “hard”

accesses, ones that don’t show enough temporal and spatial locality to hit in the first-level

cache. The “easy” accesses (ones with good temporal and spatial locality) hit in the first-level

cache, even though they would have also hit in the second-level cache. When the first-level

cache is disabled, the hit rate goes up because the second-level cache supplies both the “easy”

accesses and some of the “hard” accesses.

Exercise 8.15

(a) FIFO: FIFO replacement approximates LRU replacement by discarding data that has been in

the cache longest (and is thus least likely to be used again). A FIFO cache can be stored as a

queue, so the cache need not keep track of the least recently used way in an N-way set-

associative cache. It simply loads a new cache block into the next way upon a new access. FIFO

replacement doesn’t work well when the least recently used data is not also the data fetched

longest ago.

Random: Random replacement requires less overhead (storage and hardware to update status

bits). However, a random replacement policy might randomly evict recently used data. In

practice random replacement works quite well.

(b) FIFO replacement would work well for an application that accesses a first set of data, then

the second set, then the first set again. It then accesses a third set of data and finally goes back

to access the second set of data. In this case, FIFO would replace the first set with the third set,

but LRU would replace the second set. The LRU replacement would require the cache to pull in

the second set of data twice.

Exercise 8.16

(a) AMAT = tcache + MRcache tMM

With a cycle time of 1/1 GHz = 1 ns,

AMAT = 1 ns + 0.05(60 ns) = 4 ns

(b) CPI = 4 + 4 = 8 cycles (for a load)

CPI = 4 + 3 = 7 cyles (for a store)

(c) Average CPI = (0.11 + 0.02)(3) + (0.52)(4) + (0.1)(7) + (0.25)(8) = 5.17

474 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

(d) Average CPI = 5.17 + 0.07(60) = 9.37

Exercise 8.17

(a) AMAT = tcache + MRcache tMM

With a cycle time of 1/1 GHz = 1 ns,

AMAT = 1 ns + 0.15(200 ns) = 31 ns

(b) CPI = 31 + 4 = 35 cycles (for a load)

CPI = 31 + 3 = 34 cyles (for a store)

(c) Average CPI = (0.11 + 0.02)(3) + (0.52)(4) + (0.1)(34) + (0.25)(35) = 14.6

(d) Average CPI = 14.6 + 0.1(200) = 34.6

Exercise 8.18

264 bytes = 24 exabytes = 16 exabytes

Exercise 8.19

From Figure 8.4, $1 million will buy about ($1 million / ($0.05/GB)) = 20 million GB of hard disk:

 20 million GB ≈ 225 × 230 bytes = 255 bytes = 25 petabytes = 32 petabytes

$1 million will buy about ($1,000,000 / ($7/GB)) ≈143,000 GB of DRAM.

 143,000 GB ≈ 27 × 210 × 230 = 247 bytes= 27 terabytes = 128 terabytes

Thus, the system would need 47 bits for the physical address and 55 bits for the virtual address.

Exercise 8.20

(a) 23 bits

(b) 232/212 = 220
 virtual pages

(c) 8 MB / 4 KB = 223/212 = 211
 physical pages

(d) virtual page number: 20 bits; physical page number = 11 bits

(e) # virtual pages / # physical pages = 29 virtual pages mapped to each physical page.

475 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Imagine a program around memory address 0x01000000 operating on data around address

0x00000000. Physical page 0 would constantly be swapped between these two virtual pages,

causing severe thrashing.

(f) 220
 page table entries (one for each virtual page).

(g) Each entry uses 11 bits of physical page number and 2 bits of status information.

Thus, 2 bytes are needed for each entry (rounding 13 bits up to the nearest number of bytes).

(h) The total table size is 221
 bytes.

Exercise 8.21

(a) 31 bits

(b) 250/212 = 238
 virtual pages

(c) 2 GB / 4 KB = 231/212 = 219
 physical pages

(d) virtual page number: 38 bits; physical page number = 19 bits

(e) 238
 page table entries (one for each virtual page).

(f) Each entry uses 19 bits of physical page number and 2 bits of status information. Thus, 3

bytes are needed for each entry (rounding 21 bits up to thevnearest number of bytes).

(h)The total table size is 3 x 2
38

 bytes.

Exercise 8.22

(a) From Equation 8.2, AMAT = tcache + MRcache (tMM + MRMM tVM).

However, each data access now requires an address translation (page table or TLB lookup).

Thus,

Without the TLB:

AMAT = tMM + [tcache + MRcache (tMM + MRMM tVM)]

AMAT = 100 + [1 + 0.02(100 + 0.000003(1,000,000))] cycles = 103.06 cycles

476 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

With the TLB:

AMAT = [tTLB + MRTLB(tMM)] + [tcache + MRcache (tMM + MRMM tVM)]

AMAT = [1 + 0.0005(100)] + [1 + 0.02(100 + 0.000003 × 1,000,000)] cycles

= 4.11 cycles

(b) # bits per entry = valid bit + tag bits + physical page number

1 valid bit

tag bits = virtual page number = 20 bits

physical page number = 11 bits

Thus, # bits per entry = 1 + 20 + 11 = 32 bits

Total size of the TLB = 64 × 32 bits = 2048 bits

(c)

(d) 1 × 2048 bit SRAM

Exercise 8.23

(a) 1 valid bit + 19 data bits (PPN) + 38 tag bits (VPN) x 128 entries = 58 × 128 bits = 7424 bits

(b)

(c) 128 × 58-bit SRAM

Exercise 8.24

(a)

477 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

A
LU

W
rite
D
a
ta

R
e
a
d
D
a
ta

R
e
g
S
rc

P
A
d
r

T
L
B

V
a
li
d

(b) Each instruction and data access now takes at least one additional clock cycle. On each

access, the virtual address (VAdr in Figure 8.3) needs to be translated to a physical address

(PAdr). Upon a TLB miss, the page table in main memory must be accessed.

Exercise 8.25

(a) Each entry in the page table has 2 status bits (V and D), and a physical page number (22-16 =

6 bits). The page table has 225 - 16 = 29 entries.

Thus, the total page table size is 29 × 8 bits = 4096 bits

(b) This would increase the virtual page number to 25 - 14 = 11 bits, and the physical page

number to 22 - 14 = 8 bits. This would increase the page table size to:

211 × 10 bits = 20480 bits

This increases the page table by 5 times, wasted valuable hardware to store the extra page

table bits.

(c) Yes, this is possible. In order for concurrent access to take place, the number of set + block

offset + byte offset bits must be less than the page offset bits.

(d) It is impossible to perform the tag comparison in the on-chip cache concurrently with the

page table access because the upper (most significant) bits of the physical address are unknown

until after the page table lookup (address translation) completes.

478 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

Exercise 8.26

An application that accesses large amounts of data might be written to localize data accesses to

a small number of virtual pages. Particularly, data accesses can be localized to the number of

pages that fit in physical memory. If the virtual memory has a TLB that has fewer entries than

the number of physical pages, accesses could be localized to the number of entries in the TLB,

to avoid the need of accessing the page table to perform address translation.

Exercise 8.27

(a) 232 bytes = 4 gigabytes

(b) The amount of the hard disk devoted to virtual memory determines how many applications

can run and how much virtual memory can be devoted to each application.

(c) The amount of physical memory affects how many physical pages can be accessed at once.

With a small main memory, if many applications run at once or a single application accesses

addresses from many different pages, thrashing can occur. This can make the applications

dreadfully slow.

Question 8.1

Caches are categorized based on the number of blocks (B) in a set. In a direct-mapped cache,

each set contains exactly one block, so the cache has S = B sets. Thus a particular main memory

address maps to a unique block in the cache. In an N-way set associative cache, each set

contains N blocks. The address still maps to a unique set, with S = B / N sets. But the data from

that address can go in any of the N blocks in the set. A fully associative cache has only S = 1 set.

Data can go in any of the B blocks in the set. Hence, a fully associative cache is another name

for a B-way set associative cache.

A direct mapped cache performs better than the other two when the data access pattern is to

sequential cache blocks in memory with a repeat length one greater than the number of blocks

in the cache.

An N-way set-associative cache performs better than the other two when N sequential block

accesses map to the same set in the set-associative and direct-mapped caches. The last set has

N+1 blocks that map to it. This access pattern then repeats.

479 SOLUTIONS chapter 8 S. Harris and D.M. Harris, DDCA: ARM® Edition © 2015 Elsevier, Inc.

In the direct-mapped cache, the accesses to the same set conflict, causing a 100% miss rate. But

in the set-associative cache all accesses (except the last one) don’t conflict. Because the

number of block accesses in the repeated pattern is one more than the number of blocks in the

cache, the fully associative cache also has a 100% miss rate.

A fully associative cache performs better than the other two when the direct- mapped and set-

associative accesses conflict and the fully associative accesses don’t. Thus, the repeated pattern

must access at most B blocks that map to conflicting sets in the direct and set-associative

caches.

Question 8.2

Virtual memory systems use a hard disk to provide an illusion of more capacity than actually

exists in the main (physical) memory. The main memory can be viewed as a cache for the most

commonly used pages from the hard disk. Pages in virtual memory may or may not be resident

in physical memory. The processor detects which pages are in virtual memory by reading the

page table, that tells where a page is resident in physical memory or that it is resident on the

hard disk only. The page table is usually so large that it is resident in physical memory. Thus,

each data access requires potentially two main memory accesses instead of one. A translation

lookaside buffer (TLB) holds a subset of the most recently accessed TLB entries to speedup the

translation from virtual to physical addresses.

Question 8.3

The advantages of using a virtual memory system are the illusion of a larger memory without

the expense of expanding the physical memory, easy relocation of programs and data, and

protection between concurrently running processes. The disadvantages are a more complex

memory system and the sacrifice of some physical and possibly virtual memory to store the

page table.

Question 8.4

If the virtual page size is large, a single cache miss could have a large miss penalty. However, if

the application has a large amount of spatial locality, that page will likely be accessed again,

thus amortizing the penalty over many accesses. On the other hand, if the virtual page size is

small, cache accesses might require frequent accesses to the hard disk.

	Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

