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How to Exceed ILP Limits of this study? 

• These are not laws of physics; just practical limits 
for today, and perhaps overcome via research 

• Compiler and ISA advances could change results 
• WAR and WAW hazards through memory: 

eliminated WAW and WAR hazards through register 
renaming, but not in memory usage 
– Can get conflicts via allocation of stack frames as a called 

procedure reuses the memory addresses of a previous 
frame on the stack 
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HW v. SW to increase ILP 
• Memory disambiguation: HW best 
• Speculation:  

– HW best when dynamic branch prediction better than 
compile time prediction 

– Exceptions easier for HW 
– HW doesn’t need bookkeeping code or compensation code 
– Very complicated to get right 

• Scheduling: SW can look ahead to schedule better 
• Compiler independence: HW does not require new 

compiler, recompilation to run well 
 

 



Performance beyond single thread ILP 

• There can be much higher natural parallelism in 
some applications  
(e.g., Database or Scientific codes) 

• Explicit Thread Level Parallelism or Data Level 
Parallelism 

• Thread: process with own instructions and data 
– thread may be a process part of a parallel program of multiple 

processes, or it may be an independent program 
– Each thread has all the state (instructions, data, PC, register state, 

and so on) necessary to allow it to execute 

• Data Level Parallelism: Perform identical operations 
on data, and lots of data 
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Thread Level Parallelism (TLP) 
• ILP exploits implicit parallel operations within a 

loop or straight-line code segment 
• TLP explicitly represented by the use of multiple 

threads of execution that are inherently parallel 
• Goal: Use multiple instruction streams to 

improve  
1. Throughput of computers that run many programs  
2. Execution time of multi-threaded programs 

• TLP could be more cost-effective to exploit than 
ILP 
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Another Approach:  
Multithreaded Execution 

• Multithreading: multiple threads to share the 
functional units of 1 processor via overlapping 
– processor must duplicate independent state of each thread e.g., a 

separate copy of register file, a separate PC, and for running 
independent programs, a separate page table 

– memory shared through the virtual memory mechanisms, which 
already support multiple processes 

– HW for fast thread switch; much faster than full process switch ≈ 100s 
to 1000s of clocks 

• When switch? 
– Alternate instruction per thread (fine grain) 
– When a thread is stalled, perhaps for a cache miss, another thread 

can be executed (coarse grain) 
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Fine-Grained Multithreading 
• Switches between threads on each instruction, causing the 

execution of multiples threads to be interleaved  
• Usually done in a round-robin fashion, skipping any stalled 

threads 
• CPU must be able to switch threads every clock 
• Advantage is it can hide both short and long stalls, since 

instructions from other threads executed when one thread 
stalls  

• Disadvantage is it slows down execution of individual 
threads, since a thread ready to execute without stalls will 
be delayed by instructions from other threads 

• Used on Sun’s Niagara (will see later) 
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Course-Grained Multithreading 
• Switches threads only on costly stalls, such as L2 

cache misses 
• Advantages  

– Relieves need to have very fast thread-switching 
– Doesn’t slow down thread, since instructions from other threads issued 

only when the thread encounters a costly stall  
• Disadvantage is hard to overcome throughput 

losses from shorter stalls, due to pipeline start-up 
costs 

– Since CPU issues instructions from 1 thread, when a stall occurs, the 
pipeline must be emptied or frozen  

– New thread must fill pipeline before instructions can complete  
• Because of this start-up overhead, coarse-grained 

multithreading is better for reducing penalty of 
high cost stalls, where pipeline refill << stall time 

• Used in IBM AS/400 
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For most apps: 
most execution units lie idle 

From: Tullsen, 
Eggers, and Levy, 
“Simultaneous 
Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995. 

For an 8-way 
superscalar. 
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Do both ILP and TLP? 

• TLP and ILP exploit two different kinds of parallel 
structure in a program  

• Could a processor oriented at ILP to exploit TLP? 
– functional units are often idle in data path designed for ILP because 

of either stalls or dependences in the code  

• Could the TLP be used as a source of independent 
instructions that might keep the processor busy 
during stalls?  

• Could TLP be used to employ the functional units 
that would otherwise lie idle when insufficient ILP 
exists?  
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Simultaneous Multi-threading 
... 

1 

2 

3 

4 

5 

6 

7 

8 

9 

M M FX FX FP FP BR CC Cycle 
One thread, 8 units 

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes 
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M M FX FX FP FP BR CC Cycle 
Two threads, 8 units 
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Simultaneous Multithreading (SMT) 
• Simultaneous multithreading (SMT): insight that dynamically 

scheduled processor already has many HW mechanisms to 
support multithreading 
– Large set of virtual registers that can be used to hold the register sets 

of independent threads  
– Register renaming provides unique register identifiers, so instructions 

from multiple threads can be mixed in datapath without confusing 
sources and destinations across threads 

– Out-of-order completion allows the threads to execute out of order, 
and get better utilization of the HW  

• Just adding a per thread renaming table and keeping separate 
PCs 
– Independent commitment can be supported by logically keeping a 

separate reorder buffer for each thread 

Source: Micrprocessor Report, December 6, 1999 
 “Compaq Chooses SMT for Alpha” 
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Multithreaded Categories 
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Design Challenges in SMT 
• Since SMT makes sense only with fine-grained 

implementation, impact of fine-grained scheduling on 
single thread performance? 
– A preferred thread approach sacrifices neither throughput nor 

single-thread performance?  
– Unfortunately, with a preferred thread, the processor is likely to 

sacrifice some throughput, when preferred thread stalls 
• Larger register file needed to hold multiple contexts 
• Clock cycle time, especially in: 

– Instruction issue - more candidate instructions need to be 
considered 

– Instruction completion - choosing which instructions to commit 
may be challenging 

• Ensuring that cache and TLB conflicts generated by SMT do 
not degrade performance 
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Power 4 
Single-threaded predecessor to 
Power 5.  8 execution units in 
out-of-order engine, each may 
issue an instruction each cycle. 
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Power 4 

Power 5 

2 fetch (PC), 
2 initial decodes 

2 commits 
(architected 
register sets) 
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Power 5 data flow ... 

Why only 2 threads? With 4, one of the shared resources (physical registers, 
cache, memory bandwidth) would be prone to bottleneck  
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Power 5 thread performance ... 
Relative priority of each 
thread controllable in 
hardware. 
 

For balanced operation, 
both threads run slower 
than if they “owned” the 
machine. 
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Changes in  Power 5 to support SMT 

• Increased associativity of L1 instruction cache and the 
instruction address translation buffers  

• Added per thread load and store queues  
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches 
• Added separate instruction prefetch and buffering per 

thread 
• Increased the number of virtual registers from 152 to 240 
• Increased the size of several issue queues 
• The Power5 core is about 24% larger than the Power4 core 

because of the addition of SMT support 
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Initial Performance of SMT 
• Pentium 4 Extreme SMT yields 1.01 speedup for 

SPECint_rate benchmark and 1.07 for SPECfp_rate 
– Pentium 4 is dual threaded SMT 
– SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark 

• Running on Pentium 4 each of 26 SPEC benchmarks paired 
with every other (262 runs) speed-ups from 0.90 to 1.58; 
average was 1.20 

• Power 5, 8 processor server 1.23 faster for SPECint_rate 
with SMT, 1.16 faster for SPECfp_rate 

• Power 5 running 2 copies of each app speedup between 
0.89 and 1.41 
– Most gained some 
– Fl.Pt. apps had most cache conflicts and least gains 
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Processor Micro architecture Fetch / 
Issue / 

Execute 

FU Clock 
Rate 
(GHz) 

Transis
-tors  

Die size 

Power 

Intel 
Pentium 

4 
Extreme 

Speculative 
dynamically 

scheduled; deeply 
pipelined; SMT  

 3/3/4 7 int. 
1 FP 

3.8 125 M    
122 
mm2 

115 
W 

AMD 
Athlon 64 

FX-57 

Speculative 
dynamically 
scheduled 

3/3/4 6 int. 
3 FP 

2.8 114 M 
115 
mm2 

104 
W 

IBM 
Power5  
(1 CPU 
only) 

Speculative 
dynamically 

scheduled; SMT;  
2 CPU cores/chip 

8/4/8 6 int. 
2 FP 

1.9 200 M 
300 
mm2 
(est.) 

80W 
(est.) 

Intel 
Itanium 2 

Statically 
scheduled  
VLIW-style 

6/5/11 9 int. 
2 FP 

1.6 592 M 
423 
mm2 

130 
W 

Head to Head ILP competition 
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Performance on SPECint2000 
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Performance on SPECfp2000 
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Normalized Performance: Efficiency 
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No Silver Bullet for ILP  
• No obvious over all leader in performance 
• The AMD Athlon leads on SPECInt performance 

followed by the Pentium 4, Itanium 2, and Power5 
• Itanium 2 and Power5, which perform similarly on 

SPECFP, clearly dominate the Athlon and Pentium 4 on 
SPECFP 

• Itanium 2 is the most inefficient processor both for Fl. 
Pt. and integer code for all but one efficiency measure 
(SPECFP/Watt) 

• Athlon and Pentium 4 both make good use of transistors 
and area in terms of efficiency,  

• IBM Power5 is the most effective user of energy on 
SPECFP and essentially tied on SPECINT 
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Limits to ILP 
• Doubling issue rates above today’s 3-6 instructions per 

clock, say to 6 to 12 instructions, probably requires a 
processor to  
– issue 3 or 4 data memory accesses per cycle,  
– resolve 2 or 3 branches per cycle,  
– rename and access more than 20 registers per cycle, and  
– fetch 12 to 24 instructions per cycle.  

• The complexities of implementing these capabilities is 
likely to mean sacrifices in the maximum clock rate  
– E.g,  widest issue processor is the Itanium 2, but it also has the 

slowest clock rate, despite the fact that it consumes the most 
power! 
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Limits to ILP 
• Most techniques for increasing performance increase 

power consumption  
• The key question is whether a technique is energy 

efficient: does it increase power consumption faster 
than it increases performance?  

• Multiple issue processors techniques all are energy 
inefficient: 
1. Issuing multiple instructions incurs some overhead in logic that grows 

faster than the issue rate grows 
2. Growing gap between peak issue rates and sustained performance 

• Number of transistors switching = f(peak issue rate), 
and performance = f( sustained rate),  
growing gap between peak and sustained 
performance  
 ⇒ increasing energy per unit of performance 
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• “Complexity-effective superscalar processors”, Subbarao Palacharla, Norman P. 
Jouppi and J. E. Smith. 

– Several data structures analyzed for complexity WRT issue width 
• Rename: Roughly Linear in IW, steeper slope for smaller feature size 
• Wakeup: Roughly Linear in IW, but quadratic in window size 
• Bypass: Strongly quadratic in IW 

 
 
 
 
 
 
 
 

– Overall results:  
• Bypass significant at high window size/issue width 
• Wakeup+Select delay dominates otherwise 

– Proposed Complexity-effective design: 
• Replace issue window with FIFOs/steer dependent Insts to same FIFO 

Discussion of papers:  
Complexity-effective superscalar processors 
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Commentary 
• Itanium architecture does not represent a significant 

breakthrough in scaling ILP or in avoiding the problems of 
complexity and power consumption 

• Instead of pursuing more ILP, architects are increasingly 
focusing on TLP implemented with single-chip multiprocessors  

• In 2000, IBM announced the 1st commercial single-chip, 
general-purpose multiprocessor, the Power4, which contains 2 
Power3 processors and an integrated L2 cache  
– Since then, Sun Microsystems, AMD, and Intel have switch to a focus 

on single-chip multiprocessors rather than more aggressive 
uniprocessors. 

• Right balance of ILP and TLP is unclear today 
– Perhaps right choice for server market, which can exploit more TLP, 

may differ from desktop, where single-thread performance may 
continue to be a primary requirement 
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And in conclusion … 

• Limits to ILP (power efficiency, compilers, dependencies …) 
seem to limit to 3 to 6 issue for practical options 

• Explicitly parallel (Data level parallelism or Thread level 
parallelism) is next step to performance 

• Coarse grain vs. Fine grained multihreading 
– Only on big stall vs. every clock cycle 

• Simultaneous Multithreading if fine grained multithreading 
based on OOO superscalar microarchitecture 
– Instead of replicating registers, reuse rename registers 
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