
Modern Computer Architecture

Lecture6 Multithreading

Hongbin Sun
国家集成电路人才培养基地

Xi’an Jiaotong University

How to Exceed ILP Limits of this study?

• These are not laws of physics; just practical limits
for today, and perhaps overcome via research

• Compiler and ISA advances could change results
• WAR and WAW hazards through memory:

eliminated WAW and WAR hazards through register
renaming, but not in memory usage
– Can get conflicts via allocation of stack frames as a called

procedure reuses the memory addresses of a previous
frame on the stack

2

3

HW v. SW to increase ILP
• Memory disambiguation: HW best
• Speculation:

– HW best when dynamic branch prediction better than
compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to schedule better
• Compiler independence: HW does not require new

compiler, recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural parallelism in
some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data Level
Parallelism

• Thread: process with own instructions and data
– thread may be a process part of a parallel program of multiple

processes, or it may be an independent program
– Each thread has all the state (instructions, data, PC, register state,

and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical operations
on data, and lots of data

4

5

Thread Level Parallelism (TLP)
• ILP exploits implicit parallel operations within a

loop or straight-line code segment
• TLP explicitly represented by the use of multiple

threads of execution that are inherently parallel
• Goal: Use multiple instruction streams to

improve
1. Throughput of computers that run many programs
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to exploit than
ILP

6

Another Approach:
Multithreaded Execution

• Multithreading: multiple threads to share the
functional units of 1 processor via overlapping
– processor must duplicate independent state of each thread e.g., a

separate copy of register file, a separate PC, and for running
independent programs, a separate page table

– memory shared through the virtual memory mechanisms, which
already support multiple processes

– HW for fast thread switch; much faster than full process switch ≈ 100s
to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another thread

can be executed (coarse grain)

7

Fine-Grained Multithreading
• Switches between threads on each instruction, causing the

execution of multiples threads to be interleaved
• Usually done in a round-robin fashion, skipping any stalled

threads
• CPU must be able to switch threads every clock
• Advantage is it can hide both short and long stalls, since

instructions from other threads executed when one thread
stalls

• Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls will
be delayed by instructions from other threads

• Used on Sun’s Niagara (will see later)

8

Course-Grained Multithreading
• Switches threads only on costly stalls, such as L2

cache misses
• Advantages

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other threads issued

only when the thread encounters a costly stall
• Disadvantage is hard to overcome throughput

losses from shorter stalls, due to pipeline start-up
costs

– Since CPU issues instructions from 1 thread, when a stall occurs, the
pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can complete
• Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

9

For most apps:
most execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

10

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of parallel
structure in a program

• Could a processor oriented at ILP to exploit TLP?
– functional units are often idle in data path designed for ILP because

of either stalls or dependences in the code

• Could the TLP be used as a source of independent
instructions that might keep the processor busy
during stalls?

• Could TLP be used to employ the functional units
that would otherwise lie idle when insufficient ILP
exists?

3/2/2009 cs252-S09, Lecture 11 11

Simultaneous Multi-threading
...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CC Cycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CC Cycle
Two threads, 8 units

12

Simultaneous Multithreading (SMT)
• Simultaneous multithreading (SMT): insight that dynamically

scheduled processor already has many HW mechanisms to
support multithreading
– Large set of virtual registers that can be used to hold the register sets

of independent threads
– Register renaming provides unique register identifiers, so instructions

from multiple threads can be mixed in datapath without confusing
sources and destinations across threads

– Out-of-order completion allows the threads to execute out of order,
and get better utilization of the HW

• Just adding a per thread renaming table and keeping separate
PCs
– Independent commitment can be supported by logically keeping a

separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
 “Compaq Chooses SMT for Alpha”

13

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

14

Design Challenges in SMT
• Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling on
single thread performance?
– A preferred thread approach sacrifices neither throughput nor

single-thread performance?
– Unfortunately, with a preferred thread, the processor is likely to

sacrifice some throughput, when preferred thread stalls
• Larger register file needed to hold multiple contexts
• Clock cycle time, especially in:

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated by SMT do
not degrade performance

3/2/2009 cs252-S09, Lecture 11 15

Power 4
Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

3/2/2009 cs252-S09, Lecture 11 16

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

17

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared resources (physical registers,
cache, memory bandwidth) would be prone to bottleneck

18

Power 5 thread performance ...
Relative priority of each
thread controllable in
hardware.

For balanced operation,
both threads run slower
than if they “owned” the
machine.

19

Changes in Power 5 to support SMT

• Increased associativity of L1 instruction cache and the
instruction address translation buffers

• Added per thread load and store queues
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
• Added separate instruction prefetch and buffering per

thread
• Increased the number of virtual registers from 152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support

20

Initial Performance of SMT
• Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

• Power 5, 8 processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup between
0.89 and 1.41
– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

21

Processor Micro architecture Fetch /
Issue /

Execute

FU Clock
Rate
(GHz)

Transis
-tors

Die size

Power

Intel
Pentium

4
Extreme

Speculative
dynamically

scheduled; deeply
pipelined; SMT

 3/3/4 7 int.
1 FP

3.8 125 M
122
mm2

115
W

AMD
Athlon 64

FX-57

Speculative
dynamically
scheduled

3/3/4 6 int.
3 FP

2.8 114 M
115
mm2

104
W

IBM
Power5
(1 CPU
only)

Speculative
dynamically

scheduled; SMT;
2 CPU cores/chip

8/4/8 6 int.
2 FP

1.9 200 M
300
mm2
(est.)

80W
(est.)

Intel
Itanium 2

Statically
scheduled
VLIW-style

6/5/11 9 int.
2 FP

1.6 592 M
423
mm2

130
W

Head to Head ILP competition

22

Performance on SPECint2000

0

500

1000

1500

2000

2500

3000

3500

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

SP
EC

 R
at

io

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

3/2/2009 cs252-S09, Lecture 11 23

Performance on SPECfp2000

0

2000

4000

6000

8000

10000

12000

14000

w upw ise sw im mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

SP
EC

 R
at

io

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

24

Normalized Performance: Efficiency

0

5

10

15

20

25

30

35

SPECInt / M
Transistors

SPECFP / M
Transistors

SPECInt /
mm^2

SPECFP /
mm^2

SPECInt /
Watt

SPECFP /
Watt

Itanium 2 Pentium 4 AMD Athlon 64 POWER 5

Rank

I
t
a
n
i
u
m
2

P
e
n
t
I
u
m
4

A
t
h
l
o
n

P
o
w
e
r
5

Int/Trans 4 2 1 3
FP/Trans 4 2 1 3
Int/area 4 2 1 3
FP/area 4 2 1 3
Int/Watt 4 3 1 2
FP/Watt 2 4 3 1

25

No Silver Bullet for ILP
• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance

followed by the Pentium 4, Itanium 2, and Power5
• Itanium 2 and Power5, which perform similarly on

SPECFP, clearly dominate the Athlon and Pentium 4 on
SPECFP

• Itanium 2 is the most inefficient processor both for Fl.
Pt. and integer code for all but one efficiency measure
(SPECFP/Watt)

• Athlon and Pentium 4 both make good use of transistors
and area in terms of efficiency,

• IBM Power5 is the most effective user of energy on
SPECFP and essentially tied on SPECINT

26

Limits to ILP
• Doubling issue rates above today’s 3-6 instructions per

clock, say to 6 to 12 instructions, probably requires a
processor to
– issue 3 or 4 data memory accesses per cycle,
– resolve 2 or 3 branches per cycle,
– rename and access more than 20 registers per cycle, and
– fetch 12 to 24 instructions per cycle.

• The complexities of implementing these capabilities is
likely to mean sacrifices in the maximum clock rate
– E.g, widest issue processor is the Itanium 2, but it also has the

slowest clock rate, despite the fact that it consumes the most
power!

27

Limits to ILP
• Most techniques for increasing performance increase

power consumption
• The key question is whether a technique is energy

efficient: does it increase power consumption faster
than it increases performance?

• Multiple issue processors techniques all are energy
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that grows

faster than the issue rate grows
2. Growing gap between peak issue rates and sustained performance

• Number of transistors switching = f(peak issue rate),
and performance = f(sustained rate),
growing gap between peak and sustained
performance
 ⇒ increasing energy per unit of performance

28

• “Complexity-effective superscalar processors”, Subbarao Palacharla, Norman P.
Jouppi and J. E. Smith.

– Several data structures analyzed for complexity WRT issue width
• Rename: Roughly Linear in IW, steeper slope for smaller feature size
• Wakeup: Roughly Linear in IW, but quadratic in window size
• Bypass: Strongly quadratic in IW

– Overall results:
• Bypass significant at high window size/issue width
• Wakeup+Select delay dominates otherwise

– Proposed Complexity-effective design:
• Replace issue window with FIFOs/steer dependent Insts to same FIFO

Discussion of papers:
Complexity-effective superscalar processors

29

Commentary
• Itanium architecture does not represent a significant

breakthrough in scaling ILP or in avoiding the problems of
complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip multiprocessors

• In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which contains 2
Power3 processors and an integrated L2 cache
– Since then, Sun Microsystems, AMD, and Intel have switch to a focus

on single-chip multiprocessors rather than more aggressive
uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP,

may differ from desktop, where single-thread performance may
continue to be a primary requirement

30

And in conclusion …

• Limits to ILP (power efficiency, compilers, dependencies …)
seem to limit to 3 to 6 issue for practical options

• Explicitly parallel (Data level parallelism or Thread level
parallelism) is next step to performance

• Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained multithreading
based on OOO superscalar microarchitecture
– Instead of replicating registers, reuse rename registers

	Modern Computer Architecture��Lecture6 Multithreading
	How to Exceed ILP Limits of this study?
	HW v. SW to increase ILP
	Performance beyond single thread ILP
	Thread Level Parallelism (TLP)
	Another Approach: �Multithreaded Execution
	Fine-Grained Multithreading
	Course-Grained Multithreading
	For most apps:�most execution units lie idle
	Do both ILP and TLP?
	Simultaneous Multi-threading ...
	Simultaneous Multithreading (SMT)
	Multithreaded Categories
	Design Challenges in SMT
	Power 4
	幻灯片编号 16
	Power 5 data flow ...
	Power 5 thread performance ...
	Changes in Power 5 to support SMT
	Initial Performance of SMT
	幻灯片编号 21
	Performance on SPECint2000
	Performance on SPECfp2000
	Normalized Performance: Efficiency
	No Silver Bullet for ILP
	Limits to ILP
	Limits to ILP
	Discussion of papers: �Complexity-effective superscalar processors
	Commentary
	And in conclusion …

