@ FEXAA]

XIAN JIAOTONG UNIVERSITY

Modern Computer Architecture

Lecture6 Multithreading

Hongbin Sun
T 2K SR R L BE A\ B SR

Xi’an Jiaotong University

How to Exceed ILP Limits of this study?

e These are not laws of physics; just practical limits
for today, and perhaps overcome via research

e Compiler and ISA advances could change results

e WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through register
renaming, but not in memory usage

— Can get conflicts via allocation of stack frames as a called

procedure reuses the memory addresses of a previous
frame on the stack

HW v. SW to increase ILP

Memory disambiguation: HW best

Speculation:

— HW best when dynamic branch prediction better than
compile time prediction

— Exceptions easier for HW
— HW doesn’t need bookkeeping code or compensation code
— Very complicated to get right

Scheduling: SW can look ahead to schedule better

Compiler independence: HW does not require new
compiler, recompilation to run well

Performance beyond single thread ILP

There can be much higher natural parallelism in
some applications
(e.g., Database or Scientific codes)

Explicit Thread Level Parallelism or Data Level
Parallelism

Thread: process with own instructions and data

— thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC, register state,
and so on) necessary to allow it to execute

Data Level Parallelism: Perform identical operations
on data, and lots of data

Thread Level Parallelism (TLP)

ILP exploits implicit parallel operations within a
loop or straight-line code segment

TLP explicitly represented by the use of multiple
threads of execution that are inherently parallel

Goal: Use multiple instruction streams to
improve

1. Throughput of computers that run many programs
2. Execution time of multi-threaded programs

TLP could be more cost-effective to exploit than
ILP

Another Approach:
Multithreaded Execution

e Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

— processor must duplicate independent state of each thread e.g., a
separate copy of register file, a separate PC, and for running
independent programs, a separate page table

— memory shared through the virtual memory mechanisms, which
already support multiple processes

— HW for fast thread switch; much faster than full process switch = 100s
to 1000s of clocks

e When switch?

— Alternate instruction per thread (fine grain)

— When a thread is stalled, perhaps for a cache miss, another thread
can be executed (coarse grain)

Fine-Grained Multithreading

Switches between threads on each instruction, causing the
execution of multiples threads to be interleaved

Usually done in a round-robin fashion, skipping any stalled
threads

CPU must be able to switch threads every clock

Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one thread
stalls

Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls will
be delayed by instructions from other threads

Used on Sun’s Niagara (will see later)

Course-Grained Multithreading

* Switches threads only on costly stalls, such as L2
cache misses

e Advantages

— Relieves need to have very fast thread-switching
— Doesn’t slow down thread, since instructions from other threads issued
only when the thread encounters a costly stall

e Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

— Since CPU issues instructions from 1 thread, when a stall occurs, the
pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can complete

e Because of this start-up overhead, coarse- Frained
multithreading is better for reducmF penalty of
high cost stalls, where pipeline refill << stall time

e Usedin IBM AS/400

For most apps:
mosT execuflon UanS lie idle

r —
Eé f_’.

100 For an 8-way

7]
-1 superscalar.

0

E memory conflict

E-h"\‘"{‘{'\‘"{‘{'\‘&

su Elnng fp
” E] short ip
.% 70 lung integer
o .
)) E short integer
% 60 N\ E=] 1oad delays
E 15 ;““ Dcnnlmlh&.cards
g so 21N 5 branch misprediction
o Q B deache miss
= N : :
= 40 N m]lcach:: [TI55
% m 21N E dub miss
A 30 S1EIN B iuib miss
f : :: .pmcussnrhus}'
20 R Q i
ZIN From: Tullsen,
10 N S E Eggers, and Levy,
“Simultaneous
0 Multithreading:
g8 8¢ %% "5 %% E § E 2 £ Maximizing On-chip
- = = = ¢ o .
27 g %* 2 FF° 3°E EPparallelism, ISCA
8 1995.

Arnlications

Do both ILP and TLP?

TLP and ILP exploit two different kinds of parallel
structure in a program

Could a processor oriented at ILP to exploit TLP?

— functional units are often idle in data path designed for ILP because
of either stalls or dependences in the code

Could the TLP be used as a source of independent
instructions that might keep the processor busy
during stalls?

Could TLP be used to employ the functional units
that would otherwise lie idle when insufficient ILP

exists?

10

Simultaneous Multi-threading

One thread, 8 units **- Two threads, 8 units
Cycle M M FX FX FP FP BR CC Cycle M M FX FX FP FP BR CC

3/R280%ad/Store, FX = Fixed Point$2pP2=SAR&&alMediht, BR = Branch, CC = Condition &bdes

Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT): insight that dynamically
scheduled processor already has many HW mechanisms to
support multithreading

— Large set of virtual registers that can be used to hold the register sets
of independent threads

— Register renaming provides unique register identifiers, so instructions
from multiple threads can be mixed in datapath without confusing
sources and destinations across threads

— Out-of-order completion allows the threads to execute out of order,
and get better utilization of the HW
e Just adding a per thread renaming table and keeping separate
PCs

— Independent commitment can be supported by logically keeping a
separate reorder buffer for each thread

Source: Micrprocessor Report, Decembelg, 1999
“Compaq Chooses SMT for Alpha”

Multithreaded Categories

Simultaneous

o Superscalar Fine-Grained Coarse-Grained ~ Multiprogessing yitithreading
O NN N
) NN NN
= IN N
D IN N[|
. NN N, N
|

S NN R NN
— NN NN N
GE) N N
= I NWIN
' N

N J::Q‘ N K

Thread 1 Thread 3 Thread 5

N Thread 2 Thread 4 |dle slot

13

Design Challenges in SMT

Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling on
single thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

Larger register file needed to hold multiple contexts

Clock cycle time, especially in:

— Instruction issue - more candidate instructions need to be
considered

— Instruction completion - choosing which instructions to commit
may be challenging

Ensuring that cache and TLB conflicts generated by SMT do
not degrade performance

14

Power 4

Single-threaded predecessor to
Power 5. 8 execution units In
out-of-order engine, each may
ISsue an instruction each cycle.

Branch redirects \l"“f.mhpmuﬂll

: Instruction fetch :

. I

BR

:L J — MP H 1SS (H RF H EX WB —{ Xfer
'—+| IF ~| IC - BP LD/ST -
"~ —w—xss—nf—m—nc—|1=m:—w3—xfe: CP
1 |
: : FX !
] DO (= DI (H D2 — D3 —{Xfer— GD 1 MP [ISS [RF [EX WB | Xfer [~ :
1
i Instruction crack and :
: group formation —| MP [T] IS5 | RF _% FP |

1
1
| F6 WH |—}(fer|— :

: Interrupts and flushes

Power 4

Branch redirects

: Instruction fetch
1 —
1
'-E IF H 1¢ o BP
CT [I CP I
] i
: DO [H D1 [H D2 [H D3 [Xfer(H GD H- E
: Instruction crack and 1
: group formation . :
! :
' :
: Interrupts and flushes :
2 commits
_____ sanchrearess POWEI S | Oudroderprocessing(architacted
s TEQIStEr SEtS)
l pipeline
~| MP 1SS H RF [EX [— WB —{Xfer
Load/store
pipeline
~|MP 1SS H RF - EA [—{DC —||=rnt—wa—xfsr CP =
—
| D2 || D3 H{Xfer|GD [T |MP [1ISS | AF] EX Fixed-point WB [—Xfer[— i
Group formation and pipeline |
2 fetch (PC) C i L i il = |
' 2 initial decodes P8 Fioating L2 pter

i point pipeline

e e e e e e e o e e e e e e e A G S S A N S e S e e

Power 5 data flow

i Cwnamic
Branch prediction instruction
selection
Shared Share:d
Program Return| | Target el execution
counter stack | | cache queues Lo
LSUD Data Data
~—ll FXUO Translation Cache
oufier 6 -
Instructior r Group formation - - = EXU1 - G —
ache Instruction decode [—= * i = — s =
Dispatch FPUO mip Queue
Instruction
translation il
| BXU |
Thread CRL Data Data
priority Shared- Read Write translation | |cache
register shared- shared- [
MEppers register files register files Lo
cache

| I shared by two threads [Thread 0 resources [Thread 1 resources |

Why only 2 threads? With 4, one of the shared resources (physical registers,
cache, memory bandwidth) would be prone to bottleneck

17

Power 5 thread performance ...

Relative priority of each Single-thread mode
thread controllable in []
hardware.

For balanced operation,
both threads run slower

Instruction§ per cycle (IPC)

than if they “owned” the I

machine. = =

07 27 47 67 77 76 74 72 70 1,1

16 36 56 66 65 63 6,1 0,1

25 45 55 54 52 1,0

1,4 34 44 43 41 =
23 33 3.2 B
21 22 21 Tt

Thread O priority, thread 1 priority

|DThread 0 IPC B Thread 1 IPC |

Changes in Power 5 to support SMT

Increased associativity of L1 instruction cache and the
instruction address translation buffers

Added per thread load and store queues
Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

Added separate instruction prefetch and buffering per
thread

Increased the number of virtual registers from 152 to 240
Increased the size of several issue queues

The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

19

Initial Performance of SMT

Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark

Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

Power 5, 8 processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

Power 5 running 2 copies of each app speedup between
0.89 and 1.41

— Most gained some

— FL.Pt. apps had most cache conflicts and least gains 20

Head to Head ILP competition

Processor Micro architecture Fetch / FU Clock | Transis | Power
Issue / Rate -tors
Execute (GHz) | Die size
Intel Speculative 3/3/14 | 7int. | 3.8 |125M | 115
Pentium dynamically 1FP 122 W
4 scheduled; deeply mm?
Extreme pipelined; SMT
AMD Speculative 3/3/4 6int. | 28 |114M | 104
Athlon 64 dynamically 3FP 115 W
FX-57 scheduled mm?

IBM Speculative 8/4/8 6int. | 1.9 | 200 M | 80W
Power5 dynamically 2 FP 300 | (est.)
(1 CPU scheduled; SMT; mm?

only) 2 CPU cores/chip (est.)
Intel Statically 6/5/11 | 9int. | 1.6 [592M | 130
ltanium 2 scheduled 2 FP 423 W
VLIW-style mm?

21

SPEC Ratio

3500

3000

2500

2000

1500

1000 A

500

Performance on SPECint2000

O ltanium 2 B Pentium 4 O AMD Athlon 64 O Power 5

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

22

Performance on SPECfp2000

14000

12000 {

10000 -

SPEC Ratio

4000 - -

2000 +

8000+ -

6000 {

O ltanium 2 W@ Pentium 4 O AMD Athlon 64 OPower 5

1L

0+ w w w ‘ ‘ ‘ ‘ ‘ ;
3/2/2009 wupwise swim mgrid applu mesa @SQ52-6809F426€U£H°€911 ammp lucas fma3d sixtrack apsi

23

35

30 -

25

20

Normalized Performance: Efficiency

O Itanium 2 B Pentium 4 O AMD Athlon 64 OPOWER 5

Rank

S0 —5 ~ >

Int/Trans

FP/Trans

Int/area

FP/area

Int/Watt

FP/Watt

N~ |BlBR | |M3ETFD =

DI WINIDNDINDIND|[ASBSec—=50 T

Wk |(FP|FP|FP|F

RIN|Wlw|lw|w|o-osoT

SPECINnt / M SPECFP /M SPECInt / SPECFP / SPECInt /
Transistors Transistors mm~N2 mm~N2 Watt

SPECFP /
Watt

No Silver Bullet for ILP

No obvious over all leader in performance

The AMD Athlon leads on SPECInt performance
followed by the Pentium 4, Itanium 2, and Power5

Itanium 2 and Power5, which perform similarly on
SPECFP, clearly dominate the Athlon and Pentium 4 on
SPECFP

Itanium 2 is the most inefficient processor both for Fl.
Pt. and integer code for all but one efficiency measure
(SPECFP/Watt)

Athlon and Pentium 4 both make good use of transistors
and area in terms of efficiency,

IBM Power5 is the most effective user of energy on
SPECFP and essentially tied on SPECINT

25

Limits to ILP

* Doubling issue rates above today’s 3-6 instructions per
clock, say to 6 to 12 instructions, probably requires a
processor to

— issue 3 or 4 data memory accesses per cycle,

— resolve 2 or 3 branches per cycle,

— rename and access more than 20 registers per cycle, and
— fetch 12 to 24 instructions per cycle.

e The complexities of implementing these capabilities is
likely to mean sacrifices in the maximum clock rate

— E.g, widest issue processor is the Itanium 2, but it also has the
slowest clock rate, despite the fact that it consumes the most
power!

Limits to ILP

Most techniques for increasing performance increase
power consumption

The key question is whether a technique is energy
efficient: does it increase power consumption faster
than it increases performance?

Multiple issue processors techniques all are energy
inefficient:

1. Issuing multiple instructions incurs some overhead in logic that grows
faster than the issue rate grows

2. Growing gap between peak issue rates and sustained performance

Number of transistors switching = f(peak issue rate),
and performance = f(sustained rate),

growing gap between peak and sustained
performance

=> increasing energy per unit of performance ”7

Discussion of papers:
Complexity-effective superscalar processors

e “Complexity-effective superscalar processors”, Subbarao Palacharla, Norman P.
Jouppi and J. E. Smith.
— Several data structures analyzed for complexity WRT issue width
 Rename: Roughly Linear in IW, steeper slope for smaller feature size
« Wakeup: Roughly Linear in IW, but quadratic in window size
» Bypass: Strongly quadratic in IW

Issue | Window | Rename | Wakeup+Select | Bypass
width size delay (ps) | delay (ps) delay (ps)
0.8um technology
4 32 1577.9 2003.7 184.9
8 64 17105 | 3369.4 1056.4
0.35um technology
4 32 627.2 1248.4 184.9
8 64 T26.6 1484.8 1056.4
0.18um technology
4 32 351.0 578.0 184.9
8 64 4279 724.0 1056.4

— Overall results:

« Wakeup+Select delay dominates otherwise

o Tﬂble,- 2: Overall delay resnlts, _
 Bypass significant at high window size/issue width

— Proposed Complexity-effective design:

* Replace issue window with FIFOs/steer dependent Insts to same FIFO

28

Commentary

Itanium architecture does not represent a significant
breakthrough in scaling ILP or in avoiding the problems of
complexity and power consumption

Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip multiprocessors

In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which contains 2
Power3 processors and an integrated L2 cache

— Since then, Sun Microsystems, AMD, and Intel have switch to a focus
on single-chip multiprocessors rather than more aggressive
uniprocessors.

Right balance of ILP and TLP is unclear today

— Perhaps right choice for server market, which can exploit more TLP,
may differ from desktop, where single-thread performance may
continue to be a primary requirement

29

And in conclusion ...

Limits to ILP (power efficiency, compilers, dependencies ...)
seem to limit to 3 to 6 issue for practical options

Explicitly parallel (Data level parallelism or Thread level
parallelism) is next step to performance

Coarse grain vs. Fine grained multihreading
— Only on big stall vs. every clock cycle

Simultaneous Multithreading if fine grained multithreading
based on OO0 superscalar microarchitecture
— Instead of replicating registers, reuse rename registers

30

	Modern Computer Architecture��Lecture6 Multithreading
	How to Exceed ILP Limits of this study?
	HW v. SW to increase ILP
	Performance beyond single thread ILP
	Thread Level Parallelism (TLP)
	Another Approach: �Multithreaded Execution
	Fine-Grained Multithreading
	Course-Grained Multithreading
	For most apps:�most execution units lie idle
	Do both ILP and TLP?
	Simultaneous Multi-threading ...
	Simultaneous Multithreading (SMT)
	Multithreaded Categories
	Design Challenges in SMT
	Power 4
	幻灯片编号 16
	Power 5 data flow ...
	Power 5 thread performance ...
	Changes in Power 5 to support SMT
	Initial Performance of SMT
	幻灯片编号 21
	Performance on SPECint2000
	Performance on SPECfp2000
	Normalized Performance: Efficiency
	No Silver Bullet for ILP
	Limits to ILP
	Limits to ILP
	Discussion of papers: �Complexity-effective superscalar processors
	Commentary
	And in conclusion …

