
www.Micrium.com

µC/OS-II, The Real-Time Kernels
and the ARM7 / ARM9

Jean J. Labrosse

µC/OS-II, The Real-Time Kernels
and the ARM7 / ARM9

Jean J. Labrosse

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

My BackgroundMy Background

 Master’s Degree in Electrical Engineering
 Wrote two books (µC/OS-II and ESBB)
 Wrote many papers for magazines

– Embedded Systems Programming
– Electronic Design
– C/C++ User’s Journal
– ASME
– Xcell Journal

 Have designed Embedded Systems for over 20 years
 President of Micriµm

– Provider of Embedded Software Solutions

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IPart I

Foreground/Background Systems
µC/OS-II, The Real-Time Kernels

Task Management

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Background

Foreground #1

Foreground #2

Time

Task #1 Task #2 Task #3

Infinite loop

ISR #1 ISR #1

ISR #2

Products without Kernels
(Foreground/Background Systems)
Products without Kernels
(Foreground/Background Systems)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

/* Background */
void main (void)
{
Initialization;
FOREVER {
Read analog inputs;
Read discrete inputs;
Perform monitoring functions;
Perform control functions;
Update analog outputs;
Update discrete outputs;
Scan keyboard;
Handle user interface;
Update display;
Handle communication requests;
Other...

}
}

/* Foreground */
ISR (void)
{

Handle asynchronous event;
}

Foreground/BackgroundForeground/Background

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Used in low cost Embedded Applications
 Memory requirements only depends on your

application
 Single stack area for:

– Function nesting
– Local variables
– ISR nesting

 Minimal interrupt latency
 Low Cost

– No royalties to pay to vendors

Foreground/Background
Advantages
Foreground/Background
Advantages

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Background response time is the background
execution time
– Non-deterministic

 Affected by if, for, while ...

– May not be responsive enough
– Changes as you change your code

Foreground/Background
Disadvantages
Foreground/Background
Disadvantages

Task #1 Task #2 Task #3

Infinite loop

ISR

Task #4

Poll to see if ISR occurred
Affected by if, for, while

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 All ‘tasks’ have the same priority!
– Code executes in sequence
– If an important event occurs it’s handled at the same priority as

everything else!
– You may need to execute the same code often to avoid missing an

event.

 You have to implement all services:
– Time delays and timeouts
– Timers
– Message passing
– Resource management

 Code is harder to maintain and can become messy!

Foreground/Background
Disadvantages
Foreground/Background
Disadvantages

Task #1 Task #2 Task #3

Infinite loop

Task #4

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IPart I

Foreground/Background Systems

µC/OS-II, The Real-Time Kernels
Task Management

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Software that manages the time of a
microprocessor or microcontroller.
– Ensures that the most important code runs first!

 Allows Multitasking:
– Do more than one thing at the same time.
– Application is broken down into multiple tasks each

handling one aspect of your application
– It’s like having multiple CPUs!

 Provides valuable services to your application:
– Time delays
– Resource sharing
– Intertask communication and synchronization

What is µC/OS-II?What is µC/OS-II?

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Why use µC/OS-II? Why use µC/OS-II?

µC/OS-II

Net File System

User Interface

I/Os

 To help manage your firmware:
– GUI (User Interface)
– File System
– Protocol Stack
– Application
– I/Os

Application

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 To be more responsive to real-time events
 To prioritize the work to be done by the CPU
 To simplify system expansion

– Adding low-priority tasks generally does not
change the responsiveness to higher priority tasks!

 To reduce development time
 To easily split the application between

programmers
– Can simplify debugging

 To get useful services from the kernel
– Services that you would want to provide to your

application code

Why use µC/OS-II?Why use µC/OS-II?

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

High Priority Task

Low Priority Task

Task

Task

Task

Task

Task

Task

Event Event

Each Task

Infinite Loop

Importance

Designing with µC/OS-II
(Splitting an application into Tasks)
Designing with µC/OS-II
(Splitting an application into Tasks)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

ISR

Low Priority Task (LPT)

High Priority Task (HPT)

ISR

ISR make High Priority Task Ready

µC/OS-II is a Preemptive KernelµC/OS-II is a Preemptive Kernel

Interrupt Occurs
Vector to ISR

ISR
Completes

(Switch to HP Task)

HP Task Completes
(Switch back to LP Task)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II and the Cortex-M3
Source Files
µC/OS-II and the Cortex-M3
Source Files

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IPart I

Foreground/Background Systems
µC/OS-II, The Real-Time Kernels

Task Management

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 A task is a simple program that thinks it has
the CPU all to itself.

 Each Task has:
– Its own stack space
– A priority based on its importance

 A task contains YOUR application code!

What are Tasks?What are Tasks?

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 A task is an infinite loop:

void Task(void *p_arg)
{

Do something with ‘argument’ p_arg;
Task initialization;
for (;;) {

/* Processing (Your Code) */
Wait for event; /* Time to expire ... */

/* Signal from ISR ... */
/* Signal from task ... */

/* Processing (Your Code) */
}

}

 A task can be in one of 5 states…

What are Tasks?What are Tasks?

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Dormant

Ready

Waiting
For

Event
Running ISR

Event Occurs
Or

Timeout

Wait
For

Event

Context
Switch

Create
Task

Delete
Task

Resident in ROM
(Non-active)

Waiting
For

Execution

Wait for time to expire
Wait for a message
Wait for a signal

Task StatesTask States

Task
Interrupted

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 To make them ready for multitasking!
 The kernel needs to have information

about your task:
– Its starting address
– Its top-of-stack (TOS)
– Its priority
– Arguments passed to the task

Tasks needs to be ‘Created’Tasks needs to be ‘Created’

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 You create a task by calling a service
provided by the kernel:

INT8U OSTaskCreate(void (*p_task)(void *p_arg),
void *p_arg,
void *p_stk,
INT8U prio);

 You can create a task:
– before you start multitasking (at init-time) or,
– during (at run-time).

‘Creating’ a Task‘Creating’ a Task

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Stacks can be checked at run-time to see if
you allocated sufficient RAM

 Allows you to know the ‘worst case’ stack
growth of your task(s)

 Stack is cleared when task is created
– Optional

Stack CheckingStack Checking

0x00
0x00
0x00
0x00

BOS

TOS

Used

Free

Stack
Size

Stack
Growth

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Tasks can be deleted (return to the
‘dormant’ state) at run-time
– Task can no longer be scheduled

 Code is NOT actually deleted
 Can be used to ‘abort’ (or ‘kill’) a task
 TCB freed and task stack could be reused.

Deleting a TaskDeleting a Task

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II
Task APIs
µC/OS-II
Task APIs

INT8U OSTaskChangePrio (INT8U oldprio,
INT8U newprio);

INT8U OSTaskCreate (void (*task)(void *p_arg),
void *p_arg,
OS_STK *ptos,
INT8U prio);

INT8U OSTaskCreateExt (void (*task)(void *p_arg),
void *p_arg,
OS_STK *ptos,
INT8U prio,
INT16U id,
OS_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt);

INT8U OSTaskDel (INT8U prio);

INT8U OSTaskDelReq (INT8U prio);

INT8U OSTaskNameGet (INT8U prio,
INT8U *pname,
INT8U *perr);

void OSTaskNameSet (INT8U prio,
INT8U *pname,
INT8U *perr);

INT8U OSTaskResume (INT8U prio);

INT8U OSTaskSuspend (INT8U prio);

INT8U OSTaskStkChk (INT8U prio,

INT8U OSTaskQuery (INT8U prio,

INT32U OSTaskRegGet (INT8U prio,
INT8U id,
INT8U *perr);

void OSTaskRegSet (INT8U prio,
INT8U id,
INT32U value,
INT8U *perr);

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIPart II

Task Scheduling
Context Switching

Servicing Interrupts
Time delays and Timeouts

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

What is Scheduling?What is Scheduling?

 Deciding whether there is a more important
task to run.

 Occurs:
– When a task decides to wait for time to expire
– When a task sends a message or a signal to another

task
– When an ISR sends a message or a signal to a task

 Occurs at the end of all nested ISRs

 Outcome:
– Context Switch if a more important task has been

made ready-to-run or returns to the caller or the
interrupted task

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

62 61 60 59 58 57 5663

54 53 52 51 50 49 4855

46 45 44 43 42 41 4047

38 37 36 35 34 33 3239

30 29 28 27 26 25 2431

22 21 20 19 18 17 1623

14 13 12 11 10 9 815

6 5 4 3 2 1 07

6 5 4 3 2 1 07

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[0]

OSRdyGrp

OSRdyTbl[]

Lowest Priority Task
(Idle Task)

Task Priority #

Y

X

The µC/OS-II Ready ListThe µC/OS-II Ready List

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

0 0 0 0 0 0 01

0 0 0 0 0 0 10

0 1 0 0 0 0 00

0 1 0 0 1 0 00

0 0 0 0 0 0 00

0 1 0 0 0 0 00

1 1 1 1 0 0 00

0 0 0 0 0 0 00

1 1 1 0 1 1 01

OSRdyGrp

OSRdyTbl[]0xF6

0x78

Task Priority

0 0 0 1 0 1 10

Lookup
Table

Y = 1 Lookup
Table

X = 3

Y = 1 X = 3

11

Finding the
Highest Priority Task Ready
Finding the
Highest Priority Task Ready

Bit Position
#11

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Priority Resolution TablePriority Resolution Table

/**
* PRIORITY RESOLUTION TABLE
*
* Note(s): 1) Index into table is bit pattern to resolve
* highest priority.
* 2) Indexed value corresponds to highest priority
* bit position (i.e. 0..7)
**/
INT8U const OSUnMapTbl[] = {

0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x00-0x0F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x10-0x1F
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x20-0x2F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x30-0x3F
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x40-0x4F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x50-0x5F
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x60-0x6F

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x70-0x7F
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x80-0x8F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0x90-0x9F
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xA0-0xAF
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xB0-0xBF
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xC0-0xCF
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xD0-0xDF
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, // 0xE0-0xEF

4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 // 0xF0-0xFF
};

(Step #2)
X = @ [0x78]
(i.e. 0x78 = OSRdyTbl[1])

(Step #1)
Y = @ [0xF6]
(i.e. 0xF6 = OSRdyGrp)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

0 0 0 0 0 0 01

0 0 0 0 0 0 10

0 1 0 0 0 0 00

0 1 0 0 1 0 00

0 0 0 0 0 0 00

0 1 0 0 0 0 00

1 1 1 1 0 0 00

0 0 0 0 0 0 101 1 1 0 1 1 11

OSRdyGrp OSRdyTbl[]

void TaskAtPrio0 (void *p_arg)
{

while (TRUE) {
.
OSTimeDlyHMSM(0, 0, 1, 0);
.
.

}
}

Task at Priority 0 runs

Task needs to suspend for 1 second

0

µC/OS-II clears the Ready bit

Scheduling
(Delaying a Task)
Scheduling
(Delaying a Task)

0

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

SchedulingScheduling

0 0 0 0 0 0 01

0 0 0 0 0 0 10

0 1 0 0 0 0 00

0 1 0 0 1 0 00

0 0 0 0 0 0 00

0 1 0 0 0 0 00

1 1 1 1 0 0 00

0 0 0 0 0 0 001 1 1 0 1 1 01

OSRdyGrp OSRdyTbl[] OSTCBPrioTbl[] Old TCB

New TCB

11

[0]

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[60]

[61]

[62]

[63]

(1)
Find

Highest Priority Task
Ready (2)

Index to Find TCB

HPT Ready
(Bit 11)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIPart II

Task Scheduling

Context Switching
Servicing Interrupts

Time delays and Timeouts

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Context Switch
(or Task Switch)
Context Switch
(or Task Switch)

 Once the µC/OS-II finds a NEW ‘High-Priority-
Task’, µC/OS-II performs a Context Switch.

 The context is the ‘volatile’ state of a CPU
– Generally the CPU registers

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Context Switch
(or Task Switch)
Context Switch
(or Task Switch)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIPart II

Task Scheduling
Context Switching

Servicing Interrupts
Time delays and Timeouts

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Interrupts are always more important than
tasks!

 Interrupts are always recognized
– Except when they are disabled by µC/OS-II or your

application
– Your application can disable interrupts for as much

time as µC/OS-II does without affecting latency
 You should keep ISRs (Interrupt Service Routines) as

short as possible.
– Acknowledge the device
– Signal a task to process the device

InterruptsInterrupts

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Servicing InterruptsServicing Interrupts

ISR

Save
Task’s

Context

End of ISR,
Task Resumed

Interrupted
Task

Interrupts

Interrupt Response
Task Response

Task Response

New
HPT
Task

End of ISR,
Context Switch

Kernel Disables Interrupts

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 µC/OS-II requires a periodic interrupt source
– Through a hardware timer

 Between 10 and 1000 ticks/sec. (Hz)

– Could be the power line frequency
 50 or 60 Hz

– Called a ‘Clock Tick’ or ‘System Tick’
– Higher the rate, the more the overhead!

 The tick ISR calls a service provided by
µC/OS-II to signal a ‘tick’

The Clock Tick ISRThe Clock Tick ISR

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 To allow tasks to suspend execution for a certain
amount of time
– In integral number of ‘ticks’

 OSTimeDly(ticks)

– In Hours, Minutes, Seconds and Milliseconds
 OSTimeDlyHMSM(hr, min, sec, ms)

 To provide timeouts for other services (more on this later)

– Avoids waiting forever for events to occur
– Eliminates deadlocks

Why keep track of Clock Ticks?Why keep track of Clock Ticks?

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIPart II

Task Scheduling
Context Switching

Servicing Interrupts

Time delays and Timeouts

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 µC/OS-II allows for a task to be delayed:
– OSTimeDly(ticks)
– OSTimeDlyHMSM(hr, min, sec, ms)

– Always forces a context switch
– Suspended task uses little or no CPU time

 If the tick rate is 100 Hz (10 mS), a keyboard
scan every 100 mS requires 10 ticks:

µC/OS-II Time DelaysµC/OS-II Time Delays

void Keyboard_Scan_Task (void *p_arg)
{

for (;;) {
OSTimeDly(10); /* Every 100 mS */
Scan keyboard;

}
}

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Pending on events allow for timeouts
– To prevent waiting forever for events

 To avoid deadlocks
 Example:

– Read ‘slow’ ADC
– Timeout indicates that conversion didn’t occur

within the expected time.

µC/OS-II TimeoutsµC/OS-II Timeouts

void ADCTask (void *p_arg)
{

void *p_msg;
OS_ERR err;

for (;;) {
Start ADC;
p_msg = OSMboxPend(.., .., 10, &err);
if (err == OS_NO_ERR) {

Read ADC and Scale;
} else {

/* Problem with ADC converter! */
}

}
}

Timeout of 10 ticks.

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II
Time and Timer APIs
µC/OS-II
Time and Timer APIs

void OSTimeDly (INT16U ticks);
INT8U OSTimeDlyHMSM (INT8U hours,

INT8U minutes,
INT8U seconds,
INT16U milli);

INT8U OSTimeDlyResume (INT8U prio);
INT32U OSTimeGet (void);
void OSTimeSet (INT32U ticks);

OS_TMR *OSTmrCreate (INT32U dly,
INT32U period,
INT8U opt,
OS_TMR_CALLBACK callback,
void *callback_arg,
INT8U *pname,
INT8U *perr);

BOOLEAN OSTmrDel (OS_TMR *ptmr,
INT8U *perr);

INT8U OSTmrNameGet (OS_TMR *ptmr,
INT8U *pdest,
INT8U *perr);

INT32U OSTmrRemainGet (OS_TMR *ptmr,
INT8U *perr);

INT8U OSTmrStateGet (OS_TMR *ptmr,
INT8U *perr);

BOOLEAN OSTmrStart (OS_TMR *ptmr,
INT8U *perr);

BOOLEAN OSTmrStop (OS_TMR *ptmr,
INT8U opt,
void *callback_arg,
INT8U *perr);

Time Delays Timers

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIIPart III

Resource Sharing and Mutual Exclusion
Task Synchronization
Task Communication

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 YOU MUST ensure that access to common
resources is protected!
– µC/OS-II only gives you mechanisms

 You protect access to common resources by:
– Disabling/Enabling interrupts
– Lock/Unlock
– MUTEX (Mutual Exclusion Semaphores)

Resource SharingResource Sharing

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 When access to resource is done quickly
– Must be less than µC/OS-II’s interrupt disable time!
– Be careful with Floating-point!

 Disable/Enable interrupts is the fastest way!

rpm = 60.0 / time;
CPU_CRITICAL_ENTER();
Global RPM = rpm;
CPU_CRITICAL_EXIT();

Resource Sharing
(Disable and Enable Interrupts)
Resource Sharing
(Disable and Enable Interrupts)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 ‘Lock’ prevents the scheduler from changing tasks
– Interrupts are still enabled
– Can be used to access non-reentrant functions
– Can be used to reduce priority inversion
– Same effect as making the current task the Highest

Priority Task
– Don’t Lock for too long

 Defeats the purpose of having µC/OS-II.

 ‘Unlock’ invokes the scheduler to see if a High-
Priority Task has been made ready while locked

OSSchedLock();
Code with scheduler disabled;
OSSchedUnlock();

Resource Sharing
(Lock/Unlock the Scheduler)
Resource Sharing
(Lock/Unlock the Scheduler)

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Used when time to access a resource is longer
than µC/OS-II’s interrupt disable time!

 Mutexes are binary semaphores and are used
to access a shared resource

 Mutexes reduce unbounded ‘priority inversions’

Mutual Exclusion
Mutexes
Mutual Exclusion
Mutexes

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

ClockTask(void)
{

while (TRUE) {
OSTimeDlyHMSM(0, 0, 1, 0);
OSMutexPend(&ClkMutex, 0);
Update clock;
OSMutexPost(&ClkMutex);

}
}

Using a Mutex
(Time-of-Day Clock)
Using a Mutex
(Time-of-Day Clock)

Clock
Task

LPT

Seconds
Minutes
Hours
Days
DOW
Month
Year

Clock
Variables

App.
Task

HPT

Your
Task

Get Time Of Day

Update Clock

ClkMutex

AppTask(void)
{

while (TRUE) {
OSMutexPend(&ClkMutex, 0);
Get Time Of Day;
OSMutexPost(&ClkMutex);
:

}
}

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II’s Mutexes
Priority Ceiling
µC/OS-II’s Mutexes
Priority Ceiling

Low Priority Task (LPT)

Medium Priority Task (MPT)

High Priority Task (HPT)

Task Gets
Mutex

High Priority Task
Preempts Low One

µC/OS-II raises
LPT’s Priority

LPT is done with
Mutex

HPT is done

MPT is done

HPT Needs
Mutex

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II
Resource Sharing APIs
µC/OS-II
Resource Sharing APIs

BOOLEAN OSMutexAccept (OS_EVENT *pevent,
INT8U *perr);

OS_EVENT *OSMutexCreate (INT8U prio,
INT8U *perr);

OS_EVENT *OSMutexDel (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

void OSMutexPend (OS_EVENT *pevent,
INT16U timeout,
INT8U *perr);

INT8U OSMutexPost (OS_EVENT *pevent);
INT8U OSMutexQuery (OS_EVENT *pevent,

OS_MUTEX_DATA *p_mutex_data);

Mutual Exclusion Semaphores Scheduler Lock/Unlock

void OSSchedLock (void);
void OSSchedUnlock (void);

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIIPart III

Resource Sharing and Mutual Exclusion

Task Synchronization
Task Communication

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Read_Analog_Input_Channel_Cnts(channel#, *adc_counts)
{

Select the desired analog input channel
Wait for MUX output to stabilize
Start the ADC Conversion
Wait for signal from ADC ISR (with timeout)
if (timed out)

Return error code to caller
else

Read ADC counts
Return ADC counts to caller

}

Semaphores to signal tasks
(Analog-Digital Conversion)
Semaphores to signal tasks
(Analog-Digital Conversion)

ADC_ISR(void)
{

Signal Event
Clear EOC interrupt

}

ISR

AI
DriverMUX

ADC

Analog Inputs

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Synchronization of tasks with the occurrence
of multiple events

 Events are grouped
– 8, 16 or 32 bits per group (compile-time configurable)

 Types of synchronization:
– Disjunctive (OR): Any event occurred
– Conjunctive (AND): All events occurred

 Task(s) or ISR(s) can either Set or Clear event
flags

 Only tasks can Wait for events

Event FlagsEvent Flags

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Event FlagsEvent Flags

ISRs TASKs

OR

AND

TASKs

TASKs

Events
(8, 16 or 32 bits)

Wait

Wait

Set or Clear

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II
Task Synchronization APIs
µC/OS-II
Task Synchronization APIs

OS_FLAGS OSFlagAccept (OS_FLAG_GRP *pgrp,
OS_FLAGS flags,
INT8U wait_type,
INT8U *perr);

OS_FLAG_GRP *OSFlagCreate (OS_FLAGS flags,
INT8U *perr);

OS_FLAG_GRP *OSFlagDel (OS_FLAG_GRP *pgrp,
INT8U opt,
INT8U *perr);

INT8U OSFlagNameGet (OS_FLAG_GRP *pgrp,
INT8U *pname,
INT8U *perr);

void OSFlagNameSet (OS_FLAG_GRP *pgrp,
INT8U *pname,
INT8U *perr);

OS_FLAGS OSFlagPend (OS_FLAG_GRP *pgrp,
OS_FLAGS flags,
INT8U wait_type,
INT16U timeout,
INT8U *perr);

OS_FLAGS OSFlagPendGetFlagsRdy (void);
OS_FLAGS OSFlagPost (OS_FLAG_GRP *pgrp,

OS_FLAGS flags,
INT8U opt,
INT8U *perr);

OS_FLAGS OSFlagQuery (OS_FLAG_GRP *pgrp,
INT8U *perr);

INT16U OSSemAccept (OS_EVENT *pevent);
OS_EVENT *OSSemCreate (INT16U cnt);
OS_EVENT *OSSemDel (OS_EVENT *pevent,

INT8U opt,
INT8U *perr);

void OSSemPend (OS_EVENT *pevent,
INT16U timeout,
INT8U *perr);

INT8U OSSemPendAbort (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

INT8U OSSemPost (OS_EVENT *pevent);
INT8U OSSemQuery (OS_EVENT *pevent,
void OSSemSet (OS_EVENT *pevent,

INT16U cnt,
INT8U *perr);

Counting SemaphoresEvent Flags

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IIIPart III

Resource Sharing and Mutual Exclusion
Task Synchronization

Task Communication

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

 Message passing
– Message is a pointer
– Pointer can point to a variable or a data structure

 FIFO (First-In-First-Out) type queue
– Size of each queue can be specified to the kernel

 LIFO (Last-In-First-Out) also possible
 Tasks or ISR can ‘send’ messages
 Only tasks can ‘receive’ a message

– Highest-priority task waiting on queue will get the
message

 Receiving task can timeout if no message
is received within a certain amount of time

Message QueuesMessage Queues

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

RPMTask()
{

while (1)
Wait for message from ISR (with timeout);
if (timed out)

RPM = 0;
else

RPM = 60 * Fin / counts;
Compute average RPM;
Check for overspeed/underspeed;
Keep track of peak RPM;
etc.

}

Message Mailbox
(RPM Measurement)
Message Mailbox
(RPM Measurement)

ISR RPM
Task

Counts=Fin * t

16-Bit
TimerFin

Delta
Counts

Previous
Counts

RPM_ISR()
{

Read Timer;
DeltaCounts = Counts

– PreviousCounts;
PreviousCounts = Counts
Post DeltaCounts;

}

RPM

Avg. RPM

Under Speed

Over Speed

Max. RPM

Delta
Counts

Message
Queue

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II
Task Communication APIs
µC/OS-II
Task Communication APIs

void *OSMboxAccept (OS_EVENT *pevent);
OS_EVENT *OSMboxCreate (void *pmsg);
OS_EVENT *OSMboxDel (OS_EVENT *pevent,

INT8U opt,
INT8U *perr);

void *OSMboxPend (OS_EVENT *pevent,
INT16U timeout,
INT8U *perr);

INT8U OSMboxPendAbort (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

INT8U OSMboxPost (OS_EVENT *pevent,
void *pmsg);

INT8U OSMboxPostOpt (OS_EVENT *pevent,
void *pmsg,
INT8U opt);

INT8U OSMboxQuery (OS_EVENT *pevent,
OS_MBOX_DATA *p_mbox_data);

void *OSQAccept (OS_EVENT *pevent,
INT8U *perr);

OS_EVENT *OSQCreate (void **start,
INT16U size);

OS_EVENT *OSQDel (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

INT8U OSQFlush (OS_EVENT *pevent);
void *OSQPend (OS_EVENT *pevent,

INT16U timeout,
INT8U *perr);

INT8U OSQPendAbort (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

INT8U OSQPost (OS_EVENT *pevent,
void *pmsg);

INT8U OSQPostFront (OS_EVENT *pevent,
void *pmsg);

INT8U OSQPostOpt (OS_EVENT *pevent,
void *pmsg,
INT8U opt);

INT8U OSQQuery (OS_EVENT *pevent,
OS_Q_DATA *p_q_data);

Message QueuesMessage Mailboxes

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IVPart IV

Configuration and Initialization
Debugging with Kernels

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

µC/OS-II ConfigurationµC/OS-II Configuration

 Allows you to specify which services are
available
– Done through #defines in application specific file:
OS_CFG.H

 Memory footprint depends on configuration
– On ARM, 6K to 24K of code space
– RAM depends on kernel objects used

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

void main (void)
{

/* User initialization */

OSInit(); /* Kernel Initialization */

/* Install interrupt vectors */

/* Create at least 1 task (Start Task) */
/* Additional User code */

OSStart(); /* Start multitasking */
}

InitializationInitialization

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

InitializationInitialization

 µC/OS-II creates 1 to 3 internal tasks:
– OS_TaskIdle()

 Runs when no other task runs
 Always the lowest priority task
 Cannot be deleted

– OS_TaskStat()
 Computes run-time statistics

– CPU Usage
– Check stack usage of other tasks

– OS_TmrTask()
 If you enabled the ‘timer’ services

 Initializes other data structures

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Part IVPart IV

Configuration and Initialization

Debugging with Kernels

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Debugging
IAR’s µC/OS-II Kernel Awareness

Debugging
IAR’s µC/OS-II Kernel Awareness

 Free with IAR’s EWARM
 Static Tool
 Shows value of kernel

structures:
– Task list
– Kernel objects

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Debugging
µC/Probe, Run-Time Data Monitor
Debugging
µC/Probe, Run-Time Data Monitor

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

Debugging
Other Techniques
Debugging
Other Techniques

 Use a DAC (Digital to Analog Converter)
– Output a value based on which task or ISR is running

 Shows execution profile of each task/ISR running (oscilloscope)
 Can be used to measure task execution time

 Use output ports for time measurements
 Use TRACE tools

– Some processors allow you to capture execution traces
– Some debugger captures and display run-time history

© 2008, Micriµm, All Rights Reserved© 2008, Micriµm, All Rights Reserved µC/OS-II and the ARM7 / ARM9µC/OS-II and the ARM7 / ARM9

ReferencesReferences

“A Practitioner’s Handbook for Real-Time
Analysis: Guide to RMA for Real-Time
Systems”

Mark H. Klein, Kluwer Academic Publishers
ISBN 0-7923-9361-9

“µC/OS-II, The Real-Time Kernel,
2nd Edition”

Jean J. Labrosse, CMP Books
ISBN 1-57820-103-9

“Embedded Systems Building Blocks,
Complete and Ready-to-Use Modules in C”
Jean J. Labrosse, CMP Books
ISBN 0-97930-604-1

Chinese Korean

Chinese Korean

