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UNIQUENESS IN INVERSE SCATTERING PROBLEMS WITH
PHASELESS FAR-FIELD DATA AT A FIXED FREQUENCY\ast 

XIAOXU XU\dagger , BO ZHANG\ddagger , AND HAIWEN ZHANG\S 

Abstract. This paper is concerned with uniqueness in inverse acoustic scattering with phaseless
far-field data at a fixed frequency. The main difficulty of this problem is the so-called translation
invariance property of the modulus of the far-field pattern generated by one plane wave as the
incident field. Based on our previous work [J. Comput. Phys., 345 (2017), pp. 58--73], the translation
invariance property of the phaseless far-field pattern can be broken by using infinitely many sets
of superpositions of two plane waves as the incident fields at a fixed frequency. In this paper, we
prove that the obstacle and the index of refraction of an inhomogeneous medium can be uniquely
determined by the phaseless far-field patterns generated by infinitely many sets of superpositions of
two plane waves with different directions at a fixed frequency under the condition that the obstacle
is a priori known to be a sound-soft or nonabsorbing impedance obstacle and the index of refraction
n of the inhomogeneous medium is real-valued and satisfies that either n  - 1 \geq c1 or n  - 1 \leq  - c1
in the support of n - 1 for some positive constant c1. To the best of our knowledge, this is the first
uniqueness result in inverse scattering with phaseless far-field data. Our proofs are based essentially
on the limit of the normalized eigenvalues of the far-field operators, which is also established in this
paper by using a factorization of the far-field operators.
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1. Introduction. Inverse scattering by bounded obstacles and inhomogeneous
media has wide applications in many areas such as radar and sonar detection, geo-
physical prospection, medical imaging, and nondestructive testing (see, e.g. [11]).
The present paper is concerned with inverse scattering with phaseless far-field data
associated with incident plane waves.

To provide a precise description of the problem, assume that the obstacle D is an
open and bounded domain in \BbbR 3 with C2-boundary \partial D such that the exterior \BbbR 3 \setminus D
of D is connected. Consider the time-harmonic (e - i\omega t time-dependence) plane wave

ui = ui(x, d) := exp(ikd \cdot x),

which is incident on the obstacle D from the unbounded part \BbbR 3\setminus D, where d \in \BbbS 2 is
the incident direction with \BbbS 2 denoting the unit sphere in \BbbR 3, k = \omega /c > 0 is the wave
number, and \omega and c are the wave frequency and speed in the homogeneous medium
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1738 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

in \BbbR 3\setminus D. Denote by us the scattered field. Then the total field u := ui + us outside
an impenetrable obstacle D satisfies the exterior boundary value problem:

\Delta u+ k2u = 0 in \BbbR 3 \setminus D,(1.1a)

Bu = 0 on \partial D,(1.1b)

lim
r\rightarrow \infty 

r

\biggl( 
\partial us

\partial r
 - ikus

\biggr) 
= 0, r = | x| .(1.1c)

Here, (1.1a) is the well-known Helmholtz equation, and (1.1c) is the Sommerfeld
radiation condition, which ensures the uniqueness of the scattered field us. The
boundary condition B in (1.1b) depends on the physical property of the obstacle D:\Biggl\{ 

Bu = u for a sound-soft obstacle,

Bu = \partial u/\partial \nu + \eta u for an impedance obstacle,

where \nu is the unit outward normal to the boundary \partial D and \eta is the impedance
function satisfying that Im[\eta (x)] \geq 0 for all x \in \partial D. In this paper, we assume
that \eta \in C(\partial D), that is, \eta is continuous on \partial D. If Im[\eta (x)] > 0 for all x \in \partial D,
we say the impedance boundary condition is absorbing ; if Im[\eta (x)] = 0 for all x \in 
\partial D, we say the impedance boundary condition is nonabsorbing. When \eta = 0, the
impedance boundary condition becomes the Neumann boundary condition (sound-
hard obstacles), so the Neumann boundary condition is nonabsorbing.

The problem of scattering of a plane wave by an inhomogeneous medium is mod-
eled by the medium scattering problem:

\Delta u+ k2n(x)u = 0 in \BbbR 3,(1.2a)

lim
r\rightarrow \infty 

r

\biggl( 
\partial us

\partial r
 - ikus

\biggr) 
= 0, r = | x| ,(1.2b)

where u = ui+us is the total field, us is the scattered field, and n in the reduced wave
equation (1.2a) is the refractive index characterizing the inhomogeneous medium. In
this paper, we assume that m := n - 1 has compact support D and n \in L\infty (D) with
Re[n(x)] > 0 and Im[n(x)] \geq 0 for all x \in D. If Im[n(x)] > 0 for all x \in D, then the
medium is called absorbing ; if Im[n(x)] = 0 for all x \in D (so n is real-valued), then
the medium is called nonabsorbing.

The existence of a unique (variational) solution to problems (1.1a)--(1.1c) and
(1.2a)--(1.2b) has been proved in [11, 17, 18] (see Theorem 3.11 in [11] and Theo-
rem 1.1 in [17] for the exterior Dirichlet problem, Theorem 2.2 in [17] for the exterior
impedance problem, and Theorem 6.9 in [18] for the medium scattering problem
(1.2a)--(1.2b)). In particular, it is well known that the scattered field us has the
asymptotic behavior

us(x, d) =
eik| x| 

| x| 

\biggl\{ 
u\infty (\^x, d) +O

\biggl( 
1

| x| 

\biggr) \biggr\} 
, | x| \rightarrow \infty ,

uniformly for all observation directions \^x = x/| x| \in \BbbS 2, where u\infty (\^x, d) is the far-field
pattern of us which is an analytic function of \^x \in \BbbS 2 for each d \in \BbbS 2 and of d \in \BbbS 2 for
each \^x \in \BbbS 2 (see, e.g., [11]).

The inverse scattering problem is to determine the shape and location of the
obstacle D and its physical property or the index of refraction n of the medium from
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INVERSE SCATTERING WITH PHASELESS FAR-FIELD DATA 1739

the near-field (the scattered field us or the total field u) or the far-field pattern u\infty . In
many practical applications, the phase of the near-field or the far-field pattern cannot
be measured accurately compared with its modulus or intensity. Thus, it is often
desirable to recover the obstacle and the medium from the modulus or intensity of
the near-field or the far-field pattern (or the phaseless near-field data or the phaseless
far-field data). The inverse scattering problem with phaseless near-field data (| us| or
| u| on a measurement surface enclosing the obstacle or the medium) or phaseless far-
field pattern | u\infty | is called the inverse scattering problem with phaseless data, while
the inverse scattering problem with the near-field data (the scattered field us or the
total field u on a measurement surface enclosing the obstacle or the medium) or the
far-field pattern u\infty is called the inverse scattering problem with full data.

Over the past three decades, inverse scattering problems with full data have been
extensively studied mathematically and numerically (see, e.g., the monographs [11, 17]
and the references quoted there). The inverse scattering problem with phaseless near-
field data is also called the (near-field) phase retrieval problem in optics and other
physical and engineering sciences and has also been widely studied numerically over
the past decades (see, e.g., [6, 7]). For example, many reconstruction algorithms have
been developed to recover the obstacle or the refractive index of the medium from
the phaseless near-field data (or the phaseless total near-field data), corresponding to
plane wave incidence or point source incidence (see, e.g., [8, 9, 10, 25, 28, 29, 34, 36] and
the references quoted there). However, few results are available for the mathematical
study (such as uniqueness and stability) of the near-field phase retrieval problem. This
is mainly because Rellich's lemma (see [11, Lemma 2.12])---which not only ensures
uniqueness for scattering solutions but also establishes the one-to-one correspondence
between the scattered fields and their far-field patterns and plays an essential role
for the mathematical study of the inverse scattering problems with full data---does
not work anymore for inverse scattering with phaseless data. This fact makes the
phaseless inverse scattering problems much more difficult to study mathematically.
Recently, a uniqueness result was established in [19] for recovering a nonnegative,
smooth, compactly supported, real-valued potential from the phaseless near-field data
corresponding to all incident point sources placed on a spherical surface for an interval
of frequencies. This uniqueness result was extended in [20] to the case of recovering
the smooth wave speed in the three-dimensional Helmholtz equation. Reconstruction
procedures were introduced in [21, 32, 33] for inverse medium scattering problems
with phaseless near-field data. Recently in [30], the stability analysis was established
for a linearized near-field phase retrieval problem for weakly scattering objects known
as the contrast transfer function model in X-ray phase contrast imaging.

In contrast to the case with phaseless near-field data, inverse scattering with
phaseless far-field data is more challenging due to the translation invariance property
of the phaseless far-field pattern which was proved in [22] for sound-soft obstacles
and in [26] for sound-hard and impedance obstacles (see also [37]). For the shifted
obstacle D\ell := \{ x + \ell : x \in D\} or the refractive index of the shifted inhomogeneous
medium, n\ell (x) := n(x  - \ell ) with \ell \in \BbbR 3, the scattered field us\ell corresponding to the
incident plane wave ui(x, d) = eikx\cdot d is given as

us\ell (x, d) = eik\ell \cdot dus(x - \ell , d), x \in \BbbR 3 \setminus D\ell , d \in \BbbS 2,

in terms of the scattered field us corresponding to D or n. The corresponding far-field
pattern is

u\infty \ell (\^x, d) = eik\ell \cdot (d - \^x)u\infty (\^x, d), \^x, d \in \BbbS 2, \ell \in \BbbR 3,
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1740 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

where u\infty \ell is the far-field pattern for the obstacle D\ell or the refractive index n\ell . Thus
we have the translation invariance property

| u\infty \ell (\^x, d)| = | u\infty (\^x, d)| , \^x, d \in \BbbS 2, \ell \in \BbbR 3.(1.3)

This means that it is impossible to reconstruct the location of the obstacle D or the
inhomogeneous medium from the phaseless far-field pattern with one plane wave as
the incident field. However, several reconstruction algorithms have been developed to
reconstruct the shape of the obstacle from the phaseless far-field data with one plane
wave as the incident field (see [1, 14, 15, 16, 22, 24, 35]). For plane wave incidence no
uniqueness results are available for the general inverse obstacle scattering problems
with phaseless far-field data. By assuming a priori the obstacle to be a sound-soft
ball centered at the origin, uniqueness was established in determining the radius of
the ball from a single phaseless far-field datum in [27].

We remark that a continuation algorithm was proposed in [2] to reconstruct the
shape of a perfectly reflecting grating profile from the phaseless near-field data associ-
ated with incident plane waves, and a recursive linearization algorithm in frequencies
was introduced in [3] to recover the shape of multiscale sound-soft large rough surfaces
from phaseless measurements of the scattered field generated by tapered waves with
multiple frequencies. Note that the phaseless near-field data is also invariant under
translations in the nonperiodic direction of the periodic grating profile in the former
case and in the vertical direction of the unbounded rough surface in the latter case.

As discussed above, for plane wave incidence it is the translation invariance prop-
erty (1.3) which makes it impossible to recover the location of the scattering obstacle
from phaseless far-field data. Recently in [37], it was proved that the translation
invariance property of the phaseless far-field pattern can be broken if superpositions
of two plane waves rather than one plane wave are used as the incident fields with
an interval of frequencies. A recursive Newton-type iteration algorithm in frequencies
was also developed in [37] to recover both the location and the shape of the obstacle
simultaneously from multifrequency phaseless far-field data. This approach was fur-
ther extended to inverse scattering by locally rough surfaces with phaseless far-field
data in [38]. On the other hand, by means of the results in [37] it is also easy to see
that the translation invariance property of the phaseless far-field pattern can be bro-
ken by using infinitely many sets of superpositions of two plane waves with different
directions as the incident fields at a fixed frequency. Based on this, we have recently
developed a fast imaging algorithm in [39] to recover scattering obstacles by phaseless
(or intensity-only) far-field data at a fixed frequency.

Motivated by [37, 38, 39], we prove in this paper that the obstacle D and the
refractive index n can be uniquely determined by the phaseless far-field patterns
generated by infinitely many sets of superpositions of two plane waves with different
directions at a fixed frequency under the condition that D is a priori known to be
a sound-soft or a nonabsorbing impedance obstacle and n is a priori assumed to be
real-valued with the condition that either n - 1 \geq c1 or n - 1 \leq  - c1 for some constant
c1 > 0. As far as we know, this is the first uniqueness result in inverse scattering with
phaseless far-field data. Our proofs are based essentially on the limit of the normalized
eigenvalues of the far-field operators (Theorem 3.9), which is established in this paper
by using a factorization of the far-field operators. It should be pointed out that the
limit of the normalized eigenvalues of the far-field operators is established only for
sound-soft or nonabsorbing impedance obstacles and for nonabsorbing inhomogeneous
media. For the absorbing cases, however, the limit of the normalized eigenvalues of
the far-field operators is not yet known. On the other hand, it should be noted

D
ow

nl
oa

de
d 

06
/2

0/
18

 to
 1

24
.1

6.
14

8.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE SCATTERING WITH PHASELESS FAR-FIELD DATA 1741

that we currently do not know if it is possible to detect the property of the obstacle
or the inhomogeneous medium by other methods with the phaseless far-field data
since all the previous methods that can detect the property of the obstacle or the
inhomogeneous medium do not work for phaseless far-field data. In the near future,
we hope to extend the uniqueness results to the case without a priori knowing the
property of the obstacle and the inhomogeneous medium.

This paper is organized as follows. The main results are presented in section 2.
Spectral properties of the far-field operators are established in section 3. Section 4 is
devoted to the proof of the main results. Conclusions are given in section 5.

2. The main results. In this section, let the wave number k be arbitrarily fixed.
Following [37, 39], we make use of the following superposition of two plane waves as
the incident field:

ui = ui(x; d1, d2) = ui(x, d1) + ui(x, d2) = eikx\cdot d1 + eikx\cdot d2 ,

where d1, d2 \in \BbbS 2 are the incident directions. Then the scattered field us has the
asymptotic behavior

us(x; d1, d2) =
eik| x| 

| x| 

\biggl\{ 
u\infty (\^x; d1, d2) +O

\biggl( 
1

| x| 

\biggr) \biggr\} 
, | x| \rightarrow \infty ,

uniformly for all observation directions \^x \in \BbbS 2. From the linear superposition principle
it follows that

us(x; d1, d2) = us(x, d1) + us(x, d2)

and

u\infty (\^x; d1, d2) = u\infty (\^x, d1) + u\infty (\^x, d2),(2.1)

where us(x, dj) and u\infty (\^x, dj) are the scattered field and its far-field pattern corre-
sponding to the incident plane wave ui(x, dj), j = 1, 2.

Denote by usj and u\infty j the scattered field and its far-field pattern, respectively,
associated with the obstacle Dj (or the inhomogeneous medium with the refractive
index nj) and corresponding to the incident field ui, j = 1, 2. Then we have the
following main results on uniqueness in inverse scattering with phaseless far-field data.

Theorem 2.1. (i) Assume that D1 and D2 are two sound-soft obstacles. If the
corresponding far-field patterns satisfy that

| u\infty 1 (\^x; d1, d2)| = | u\infty 2 (\^x; d1, d2)| \forall \^x, d1, d2 \in \BbbS 2,(2.2)

then D1 = D2.
(ii) Assume that D1 and D2 are two nonabsorbing impedance obstacles (i.e.,

Im(\eta j) = 0, j = 1, 2) with the impedance coefficient \eta j \in C(\partial Dj), j = 1, 2. If
the corresponding far-field patterns satisfy (2.2), then D1 = D2 and \eta 1 = \eta 2.

(iii) Assume that n1, n2 \in L\infty (\BbbR 3) are the refractive indices of two nonabsorbing
inhomogeneous media (i.e., Im(nj) = 0 in Dj, j = 1, 2) with nj  - 1 supported in Dj,
j = 1, 2. Assume further that there is a constant c1 > 0 such that either nj - 1 \geq c1 in
Dj (j = 1, 2) or nj  - 1 \leq  - c1 in Dj (j = 1, 2). If the corresponding far-field patterns
satisfy (2.2), then n1 = n2.

We need much less phaseless far-field data to determine sound-soft or nonabsorb-
ing impedance obstacles, as seen from the following theorem.
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1742 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

Theorem 2.2. (i) Assume that D1 and D2 are two sound-soft obstacles. If the
corresponding far-field patterns satisfy that

| u\infty 1 (\^x, d)| = | u\infty 2 (\^x, d)| \forall \^x, d \in \BbbS 2(2.3)

and

| u\infty 1 (\^x; d, d0)| = | u\infty 2 (\^x; d, d0)| \forall \^x, d \in \BbbS 2(2.4)

for an arbitrarily fixed d0 \in \BbbS 2, then D1 = D2.
(ii) Assume that D1 and D2 are two nonabsorbing impedance obstacles (i.e.,

Im(\eta j) = 0, j = 1, 2) with the impedance coefficient \eta j \in C(\partial Dj), j = 1, 2. If the
corresponding far-field patterns satisfy (2.3) and (2.4), then D1 = D2 and \eta 1 = \eta 2.

Remark 2.3. (i) Theorem 2.2 remains true for the two-dimensional case, and the
proof is the same.

(ii) Theorem 2.1(ii) also holds in two dimensions if the assumption n1, n2 \in 
L\infty (\BbbR 3) is replaced by the condition that nj is piecewise in W 1,p(Dj) with p > 2,
j = 1, 2. In this case, the proof is similar except that we need Bukhgeim's result in [5]
(see also the theorem in section 4.1 in [4]) instead of [18, Theorem 6.26] in the proof.

3. Spectrum of the far-field operators. Our proofs of the main results, Theo-
rems 2.1 and 2.2, depend essentially on the spectral properties of the far-field operator
F : L2(\BbbS 2) \rightarrow L2(\BbbS 2) defined by

(Fg)(\^x) :=

\int 
\BbbS 2
u\infty (\^x, d)g(d)ds(d), \^x \in \BbbS 2.(3.1)

Since the kernel u\infty (\^x, d) is analytic in \^x \in \BbbS 2 and in d \in \BbbS 2, respectively, the far-
field operator F is compact and hence has at most a countable number of eigenvalues
with the only possible accumulation point being 0. Further, the multiplicity of each
eigenvalue is finite since the dimension of the null space of \lambda I  - F for each nonzero
eigenvalue \lambda is finite. We need more spectral properties of the far-field operators.

3.1. A countably infinite number of eigenvalues of far-field operators.
In this subsection, we will show that F has a countably infinite number of nonzero
eigenvalues for the cases considered in this paper. To this end, we introduce the
adjoint operator F \ast : L2(\BbbS 2) \rightarrow L2(\BbbS 2) defined by

(Fg, h) = (g, F \ast h) \forall g, h \in L2(\BbbS 2),

where (\cdot , \cdot ) is the inner product of L2(\BbbS 2). The following lemma shows that F is
normal for the cases considered in this paper, which was proved in [17] for a sound-
soft or sound-hard obstacle (see [17, Theorem 1.8]) and an impedance obstacle with
real-valued impedance coefficient \eta (see [17, Theorem 2.5(e)]) and in [18] for an inho-
mogeneous medium with real-valued index of refraction n \in L\infty (\BbbR 3) satisfying that
n - 1 has a compact support (see [18, Theorem 6.16]).

Lemma 3.1. For a sound-soft obstacle or an impedance obstacle with real-valued
impedance function \eta \in L\infty (\partial D) and for an inhomogeneous medium with real-valued
index of refraction n \in L\infty (\BbbR 3) satisfying that n - 1 has a compact support, we have

F  - F \ast  - ik

2\pi 
F \ast F = 0,(3.2)

so F is normal.
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INVERSE SCATTERING WITH PHASELESS FAR-FIELD DATA 1743

Remark 3.2. Define the scattering operator \scrS : L2(\BbbS 2) \rightarrow L2(\BbbS 2) by

\scrS := I +
ik

2\pi 
F.

Then

\scrS \ast \scrS =

\biggl( 
I  - ik

2\pi 
F \ast 

\biggr) \biggl( 
I +

ik

2\pi 
F

\biggr) 
= I.

Hence \scrS is unitary. From the fact that the eigenvalues of a unitary operator lie on
the unit circle in the complex plane, we know that every nonzero eigenvalue of F lies
on the circle \biggl\{ 

z \in \BbbC :

\bigm| \bigm| \bigm| \bigm| z  - 2\pi i

k

\bigm| \bigm| \bigm| \bigm| = 2\pi 

k

\biggr\} 
(3.3)

in the upper-half complex plane. We later show (Theorem 3.9) that the eigenvalues
tend to zero from the left half of this circle (or the normalized nonzero eigenvalues
tend to  - 1) for both sound-soft obstacles and real-valued indices of refraction n with
n - 1 \leq  - c1 < 0 in D and from the right half of this circle (or the normalized nonzero
eigenvalues tend to 1) for impedance obstacles with real-valued impedance coefficients
\eta and real-valued indices of refraction n with n - 1 \geq c1 > 0 in D. Our proof is based
essentially on a factorization of the far-field operator in which the middle operator
can be decomposed into the sum of a coercive operator and a compact part.

To obtain a factorization of the far-field operator we introduce the boundary inte-
gral operators S,K,K \prime : H - 1/2(\partial D) \rightarrow H1/2(\partial D) and T : H1/2(\partial D) \rightarrow H - 1/2(\partial D)
defined by

(S\varphi )(x) :=

\int 
\partial D

\Phi k(x, y)\varphi (y)ds(y), x \in \partial D,

(K\varphi )(x) :=

\int 
\partial D

\partial \Phi k(x, y)

\partial \nu (y)
\varphi (y)ds(y), x \in \partial D,

(K \prime \varphi )(x) :=
\partial 

\partial \nu 

\int 
\partial D

\Phi k(x, y)\varphi (y)ds(y), x \in \partial D,

(T\psi )(x) :=
\partial 

\partial \nu 

\int 
\partial D

\partial \Phi k(x, y)

\partial \nu (y)
\psi (y)ds(y), x \in \partial D,

and the volume integral operator Sm : L2(D) \rightarrow L2(D) defined by

(Sm\phi )(x) :=
\phi (x)

m(x)
 - k2

\int 
D

\Phi k(x, y)\phi (y)dy, x \in D,

where m(x) = n(x) - 1 \not = 0 for all x \in D, \nu (y) denotes the exterior unit normal vector
at y \in \partial D, and \Phi k stands for the fundamental solution of the Helmholtz equation in
three dimensions given by

\Phi k(x, y) =
exp(ik| x - y| )

4\pi | x - y| 
, x, y \in \BbbR 3, x \not = y.

The integral operators S,K,K \prime : H - 1/2(\partial D) \rightarrow H1/2(\partial D), T : H1/2(\partial D) \rightarrow H - 1/2(\partial D),
and Sm : L2(D) \rightarrow L2(D) are bounded operators (see [11, 17, 31]).

The following factorization lemma is fundamental in the proof of the main result,
Theorem 2.1.
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Lemma 3.3. (a) For a sound-soft obstacle, we have the factorization

F =  - 4\pi GS\ast G\ast ,(3.4)

where G : H1/2(\partial D) \rightarrow L2(\BbbS 2) is the data-to-pattern operator which maps the Dirich-
let boundary value of the radiating solution v to the Helmholtz equation (1.1a) onto
the far-field pattern v\infty and is compact, one-to-one with dense range in L2(\BbbS 2).

(b) For an impedance obstacle with boundary condition \partial u/\partial \nu + \eta u = 0 on \partial D
with \eta \in L\infty (\partial D) and Im(\eta ) \geq 0, we have

F =  - 4\pi GimpT
\ast 
impG

\ast 
imp,(3.5)

where Gimp : H - 1/2(\partial D) \rightarrow L2(\BbbS 2) is the data-to-pattern operator which maps the
impedance boundary value of the radiating solution v to the Helmholtz equation (1.1a)
onto the far-field pattern v\infty and is compact, one-to-one with dense range in L2(\BbbS 2),
and Timp : H1/2(\partial D) \rightarrow H - 1/2(\partial D) is given by

Timp = T + iIm(\eta )I +K \prime \=\eta + \eta K + \eta S\=\eta .

(c) For an inhomogeneous medium with real-valued index of refraction n \in L\infty (D)
and m = n - 1 > 0 (or m = n - 1 < 0) in D, we have

F = 4\pi k2GmS
\ast 
mG

\ast 
m,(3.6)

where Gm : L2(D) \rightarrow L2(\BbbS 2) is the data-to-pattern operator defined by Gmf = v\infty ,
with v\infty being the far-field pattern of the radiating solution v of

\Delta v + k2nv =  - mf in \BbbR 3.

The data-to-pattern operator Gm is injective.

Proof. (a) was proved in [17] as Theorem 1.15 (see also [11, Theorem 3.29]), (b)
was shown in [17] as Theorem 2.6, and (c) was proved in [18] as Theorem 6.28 (see
also [11, Theorem 10.12]).

To proceed further we need to collect some properties of the middle operators in
the factorization of the far-field operator in Lemma 3.3.

Lemma 3.4. Let Si, Ti be defined similarly as S, T , respectively, with k = i, and
let S0 : L2(D) \rightarrow L2(D) be given by

(S0\varphi )(x) :=
\varphi (x)

m(x)
, x \in D.

Then the following statements are true:
(1) Si is self-adjoint with respect to L2(\partial D) and coercive.
(2) S  - Si : H

 - 1/2(\partial D) \rightarrow H1/2(\partial D) is compact.
(3)  - Ti is self-adjoint with respect to L2(\partial D) and coercive.
(4) T  - Ti is compact from H1/2(\partial D) to H - 1/2(\partial D).
(5) T  - Ti +K \prime \=\eta + \eta K + \eta S\=\eta : H1/2(\partial D) \rightarrow H - 1/2(\partial D) is compact.
(6) S0 is coercive for the case m(x) = n(x) - 1 \geq c1 in D ( - S0 is coercive for the

case m(x) = n(x) - 1 \leq  - c1 in D) for some constant c1 > 0.
(7) Sm  - S0 : L2(D) \rightarrow L2(D) is compact.
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Proof. Statements (1) and (2) are proved in [11, 17] (see Lemma 5.37 in [11] or
Lemma 1.14(c) and (d) in [17]).

Statements (3) and (4) are proved in [17] (see Theorem 1.26(e) and (f) in [17],
where different notations N,Ni are used for T, Ti, respectively).

Statement (5) follows easily from (4) and the fact that S,K,K \prime are compact from
H1/2(\partial D) to H - 1/2(\partial D).

Statements (6) and (7) are shown in [11, 18] for the case m = n - 1 > 0 in D (see
Theorem 10.14 in [11] or Theorem 6.30 in [18]). The case m = n - 1 < 0 in D can be
shown similarly.

By Lemma 3.1 the far-field operator F is normal for the cases considered in this
paper, so F has a countably infinite number of eigenvalues. However, we need to
prove that F has a countably infinite number of nonzero eigenvalues. To this end, we
have to show that F has finite-dimensional null space.

Lemma 3.5. For a sound-soft obstacle or an impedance obstacle with real-valued
impedance function \eta \in L\infty (\partial D) and for an inhomogeneous medium with real-valued
index of refraction n \in L\infty (\BbbR 3) satisfying that n = 1 in \BbbR 3 \setminus D and n > 1 (or n < 1)
in D, the dimension of the null space of F is finite.

Proof. For the inhomogeneous medium case, the result was proved in [11] (see
Theorem 8.16 in [11]).

We only give a proof for the impedance obstacle case since the proof for a sound-
soft obstacle is similar. Our proof follows an idea similar to that in the proof of
Lemma 2 in [23].

Note first that if Fg = 0 for g \in L2(\BbbS 2), then the Herglotz wave function vg
defined by

vg(x) =

\int 
\BbbS 2
eikx\cdot dg(d)ds(d), x \in \BbbR 3,

is an eigenfunction of the negative impedance-Laplacian in D corresponding to the
eigenvalue k2. Thus, and by the one-to-one correspondence between Herglotz wave
functions and their kernels g (see [11, Theorem 3.19]), the finiteness of the dimension
of the null space of F follows from that of the eigenspace of the negative impedance-
Laplacian in D associated with the eigenvalue k2.

We claim that the dimension of the eigenspace of the negative impedance-Laplacian
in D associated with the eigenvalue k2 is equal to the dimension of the kernel space
of T +K \prime \eta + \eta K + \eta S\eta . Now, by Lemma 3.4 we know that

T +K \prime \eta + \eta K + \eta S\eta = Ti + (T  - Ti) +K \prime \eta + \eta K + \eta S\eta 

is a Fredholm-type operator, so the dimension of the kernel space of T+K \prime \eta +\eta K+\eta S\eta 
is finite. Consequently, the dimension of the null space of F is finite.

In fact, if u is an eigenfunction of the negative impedance-Laplacian in D corre-
sponding to the eigenvalue k2, then from the Green's representation formula it follows
that

u(x) =

\int 
\partial D

\biggl\{ 
\partial u

\partial \nu 
(y)\Phi k(x, y) - u(y)

\partial \Phi k(x, y)

\partial \nu (y)

\biggr\} 
ds(y)

=  - 
\int 
\partial D

\biggl( 
\eta (y)\Phi k(x, y) +

\partial \Phi k(x, y)

\partial \nu (y)

\biggr) 
u(y)ds(y), x \in D.
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By the jump relations of the single- and double-layer potentials, we get

2u = u - 2

\int 
\partial D

\biggl( 
\partial \Phi k(x, y)

\partial \nu (y)
+ \eta (y)\Phi k(x, y)

\biggr) 
u(y)ds(y), x \in \partial D,

2
\partial u

\partial \nu 
=  - \eta u - 2

\partial 

\partial \nu 

\int 
\partial D

\biggl( 
\partial \Phi k(x, y)

\partial \nu (y)
+ \eta (y)\Phi k(x, y)

\biggr) 
u(y)ds(y), x \in \partial D.

Therefore, we have

0 = 2

\biggl( 
\partial u

\partial \nu 
+ \eta u

\biggr) 
=  - 2 (T +K \prime \eta + \eta K + \eta S\eta )u,

that is, u is an element in the kernel space of T +K \prime \eta + \eta K + \eta S\eta . Conversely, let
(T + K \prime \eta + \eta K + \eta S\eta )\varphi = 0 for \varphi \in H1/2(\partial D). Define the combined double- and
single-layer potentials:

u(x) :=

\int 
\partial D

\biggl( 
\partial \Phi k(x, y)

\partial \nu (y)
+ \eta (y)\Phi k(x, y)

\biggr) 
\varphi (y)ds(y), x \in \BbbR 3 \setminus \partial D.

By the jump relations of the layer potentials, it is easy to show that u is an eigen-
function of the negative impedance-Laplacian in D corresponding to the eigenvalue
k2. This means that the required claim is correct. The proof is thus complete.

Combining Lemmas 3.1 and 3.5, we can establish the following theorem.

Theorem 3.6. For a sound-soft obstacle or an impedance obstacle with real-
valued impedance function \eta \in L\infty (\partial D) and for an inhomogeneous medium with
real-valued index of refraction n \in L\infty (\BbbR 3) satisfying that n = 1 in \BbbR 3 \setminus D and
n > 1 (or n < 1) in D, the far-field operator F has a countably infinite number of
eigenvalues accumulating only at 0, and the multiplicity of each eigenvalue is finite.
Furthermore, the eigenfunctions form an orthonormal basis of L2(\BbbS 2).

Proof. From Lemma 3.1 and the spectral theorem for normal operators, we know
that F has a countably infinite number of eigenvalues \{ \lambda n\} \infty n=1 with the corresponding
eigenfunctions \{ gn\} \infty n=1 forming an orthonormal basis of L2(\BbbS 2). We now prove that
the multiplicity of each eigenvalue is finite. Suppose, to the contrary, that the mul-
tiplicity of \lambda n is infinite for some n \in \BbbZ , that is, dim[Ker(\lambda nI  - F )] = \infty . Then the
compactness of F implies that \lambda n = 0. But this is impossible by Lemma 3.5. From
the compactness of the far-field operator F again, the unique accumulation point of
the eigenvalues \{ \lambda n\} \infty n=1 is 0. The proof is thus complete.

3.2. Limits of the normalized eigenvalues. Eckmann and Pillet [13] first
established the limit of the normalized eigenvalues of the far-field operators for a
piecewise smooth sound-soft obstacle in \BbbR 2 whether or not k2 is an interior Dirichlet
eigenvalue of the obstacle, in the context of quantum billiards, by using a variational
principle. Similar results are given in the monograph [17] for sound-soft or sound-
hard obstacles in \BbbR 3 in order to characterize the obstacle by using the eigensystem of
the far-field operator when k2 is not an eigenvalue of the underlying boundary value
problem in the obstacle (see the proof of Theorem 1.23 of [17]). Similar results are
also presented in [18] for inhomogeneous media with real-valued indices of refraction
in \BbbR 3 in the case when k2 is not an eigenvalue of the underlying interior transmission
problem in the support of the contrast of the inhomogeneous medium (see Lemma 6.34
of [18]). In this subsection, we extend these results to both the case of sound-soft or
impedance obstacles with real-valued impedance coefficients and the case with an
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inhomogeneous medium with real-valued index of refraction regardless of whether or
not k2 is an eigenvalue of the underlying boundary value problem in the obstacle or
the underlying interior transmission problem in the support of the contrast of the
inhomogeneous medium. To this end, we give the following general result on the
property of the eigenvalues of a linear compact normal operator having a special
factorization form.

Theorem 3.7. Let H and X be Hilbert spaces with inner products (\cdot , \cdot ), let X\ast be
the dual space of X, and assume that F : H \rightarrow H is a linear compact normal operator
satisfying

F = GM\ast G\ast ,

where G : X \rightarrow H and M : X\ast \rightarrow X are bounded linear operators and G\ast : H \rightarrow X\ast 

is the adjoint of G defined by

\langle G\ast g, \varphi \rangle = (g,G\varphi ) \forall \varphi \in X, g \in H

in terms of the sesquilinear duality pairing of X\ast and X. Assume further that G\ast 

has a finite-dimensional null space and M = M0 + C for some compact operator C
and some self-adjoint operator M0 which is coercive on G\ast (H) in the sense that there
exists c0 > 0 such that

\langle \phi ,M0\phi \rangle \geq c0\| \phi \| 2 \forall \phi \in G\ast (H).

Then F has at most only a finite number of eigenvalues whose real parts are negative.

Proof. Suppose, to the contrary, that F has a countably infinite number of eigen-
values whose real parts are negative. By the spectral theorem for compact normal
operators, there exists an infinite number of orthonormal eigenelements gn \in H with
corresponding eigenvalues \lambda n, n \in \BbbN . Then we can choose a subsequence of \{ gn\} \infty n=1,
which we denote by \{ gn\} \infty n=1 again, such that Re(\lambda n) < 0 for all n. We may assume
without loss of generality that G\ast (gn) \not = 0 since the dimension of the null space of G\ast 

is finite. Define fn := G\ast gn \in X\ast . Then

Re(Fgn, gn) = Re(GM\ast G\ast gn, gn) = Re\langle G\ast gn,MG\ast gn\rangle 
= Re\langle fn,Mfn\rangle = Re\langle fn,M0fn\rangle +Re\langle fn, Cfn\rangle .

Thus, and since Re(Fgn, gn) = Re(\lambda n) < 0, we obtain that

c0\| fn\| 2 \leq Re\langle fn,M0fn\rangle <  - Re\langle fn, Cfn\rangle \leq | \langle fn, Cfn\rangle | \leq \| fn\| \| Cfn\| .

Since fn = G\ast gn \not = 0, it follows that

c0\| fn\| < \| Cfn\| \forall n \in \BbbN .

Noting that (Fgn, gj) = \lambda n\delta nj , we have

Re(F (cngn + cjgj), cngn + cjgj)

= | cn| 2Re(Fgn, gn) + | cj | 2Re(Fgj , gj) < 0,

where n \not = j and cn, cj \in \BbbC are arbitrary constants satisfying that | cn| + | cj | \not = 0.
Again, since the dimension of the null space of G\ast is finite, for fn1 := f1 = G\ast g1 we
can choose some element from \{ gn\} \infty n=2, which we denote by gn2 , such that

cn1
fn1

+ cn2
fn2

= cn1
G\ast g1 + cn2

G\ast gn2
\not = 0
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for any constants cn1
, cn2

\in \BbbC with | cn1
| + | cn2

| \not = 0; that is, fn1
and fn2

are linearly
independent. Noting that Re(F (cn1

gn1
+ cn2

gn2
), cn1

gn1
+ cn2

gn2
) < 0, and by the

same argument as above, it follows that

c0\| cn1
fn1

+ cn2
fn2

\| < \| C(cn1
fn1

+ cn2
fn2

)\| .

Repeating the above process, we can choose gnj , j = 1, . . . , N , such that

N\sum 
j=1

cnj
fnj

\not = 0, c0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 
j=1

cnj
fnj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| <
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| C

N\sum 
j=1

cnj
fnj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
for any N < \infty and arbitrary constants cnj \in \BbbC , j = 1, . . . , N , with

\sum N
j=1 | cnj

| \not = 0.

Note that \{ fnj\} Nj=1 = \{ G\ast gnj\} Nj=1 are linearly independent. Then, by the Gram--
Schmidt orthonormalization process (see [12, p. 110]), there exists an orthonormal
system \{ enj

\} \infty j=1 \subset X\ast such that

span\{ fn1 , . . . , fnj\} = span\{ en1 , . . . , enj\} \forall j \in \BbbN 

and

c0 = c0\| enj
\| < \| Cenj

\| .

Since enj is weakly convergent to zero in X\ast as j \rightarrow \infty (see [12, p. 112]), and by the
compactness of C, we have

c0 = c0\| enj
\| < \| Cenj

\| \rightarrow 0.

This is a contradiction. The proof is thus complete.

Making use of Theorem 3.7, in conjunction with Lemmas 3.3 and 3.4 and Theo-
rem 3.6, we can prove the following lemma.

Lemma 3.8. Suppose \{ (\lambda n, gn)\} \infty n=1 is the eigensystem of the far-field operator F
such that \{ gn\} \infty n=1 forms an orthonormal basis of L2(\BbbS 2). Then we have the following:

(a) In the sound-soft case, there exist only finitely many eigenvalues \lambda n satisfying
that Re(\lambda n) > 0.

(b) In the nonabsorbing impedance case, there exist only finitely many eigenvalues
\lambda n satisfying that Re(\lambda n) < 0.

(c) In the nonabsorbing medium case, there exist only finitely many eigenvalues
\lambda n satisfying that

Re(\lambda n)

\biggl\{ 
> 0 if m \leq  - c1 in D,
< 0 if m \geq c1 in D

for some constant c1 > 0.

Proof. We only prove (c). The proofs of (a) and (b) are similar.
We now apply Theorem 3.7 to prove (c). To do this, let H = L2(\BbbS 2), X =

L2(D), G = Gm, M = 4\pi k2Sm with M0 = 4\pi k2S0, and C = 4\pi k2(Sm  - S0). Then
F = GM\ast G\ast . Now, by Lemma 3.4(6) and (7) and Lemma 3.3(c) it is known that
M satisfies the assumption in Theorem 3.7 for the case m(x) \geq c1 in D. Further,
by Theorem 6.30(c), Sm or, equivalently, M is an isomorphism from L2(D) onto
itself. This, together with the fact that the far-field operator F is compact and
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normal (by Lemma 3.1) and has finite-dimensional null space (by Lemma 3.5) and G is
injective, implies that G\ast has finite-dimensional null space. Thus all the assumptions
in Theorem 3.7 are satisfied, and so, by Theorem 3.7, we have that the far-field
operator F has at most only a finite number of eigenvalues \lambda n with Re(\lambda n) < 0.

For the case when m(x) \leq  - c1 in D,  - F = G( - M)\ast G\ast and  - M =  - 4\pi k2Sm

with  - M0 =  - 4\pi k2S0 being coercive and  - C =  - 4\pi k2(Sm  - S0) being compact.
Thus, by Theorem 3.7,  - F has at most only a finite number of eigenvalues  - \lambda n with
 - Re(\lambda n) < 0, or, equivalently, F has at most only a finite number of eigenvalues \lambda n
with Re(\lambda n) > 0. The proof is thus complete.

We are now in a position to state and prove the main theorem of this section.

Theorem 3.9. Let \{ \lambda n\} \infty n=1 be the eigenvalues of the far-field operator F . Then

lim
n\rightarrow \infty 

\lambda n
| \lambda n| 

=

\left\{    - 1 for a sound-soft obstacle,
1 for a nonabsorbing impedance obstacle,
sign(m) for a nonabsorbing medium with | m| \geq c1 > 0 in D.

Proof. By Remark 3.2 and Theorem 3.6 we know that the possible accumulations
of the normalized nonzero eigenvalues of F can only be \pm 1. Theorem 3.9 then follows
easily from Theorem 3.6 and Lemma 3.8. The proof is complete.

4. Proofs of the main results. In this section we prove our main results,
Theorems 2.1 and 2.2.

Proof of Theorem 2.1. From (2.1) it is easy to see that (2.2) is equivalent to the
equation

| u\infty 1 (\^x, d1) + u\infty 1 (\^x, d2)| = | u\infty 2 (\^x, d1) + u\infty 2 (\^x, d2)| \forall \^x, d1, d2 \in \BbbS 2.(4.1)

This implies that

2Re\{ u\infty 1 (\^x, d1)u\infty 1 (\^x, d2)\} = 2Re\{ u\infty 2 (\^x, d1)u\infty 2 (\^x, d2)\} .(4.2)

Define rj(\^x, d) := | u\infty j (\^x, d)| , j = 1, 2. Then, by (4.1) with d1 = d2 =: d, we have

r1(\^x, d) = r2(\^x, d) =: r(\^x, d) \forall \^x, d \in \BbbS 2,(4.3)

and so

u\infty j (\^x, d) = r(\^x, d)ei\theta j(\^x,d) \forall \^x, d \in \BbbS 2, j = 1, 2,

where \theta j(\^x, d), j = 1, 2, are real-valued functions of both variables. For the case
r(\^x, d) \equiv 0, we have u\infty 1 (\^x, d) \equiv u\infty 2 (\^x, d) \equiv 0 for all \^x, d \in \BbbS 2.

We now consider the case r(\^x, d) \not \equiv 0 for \^x, d \in \BbbS 2. Define

U := \{ (\^x, d) \in \BbbS 2 \times \BbbS 2| r(\^x, d) \not = 0\} .

Then, by the continuity of r(\^x, d) in (\^x, d) \in \BbbS 2 \times \BbbS 2, it follows that U is an open
domain of \BbbS 2 \times \BbbS 2. Further, since u\infty j (\^x, d), j = 1, 2, are analytic functions of \^x \in \BbbS 2
and d \in \BbbS 2, respectively, we may choose two open and connected sets U1, U2 \subset \BbbS 2
small enough so that U1 \times U2 \subset U and \theta j(\^x, d), j = 1, 2, are analytic with respect to
\^x \in U1 and d \in U2, respectively.

Now, by (4.2) and the definition of U we have

cos[\theta 1(\^x, d1) - \theta 1(\^x, d2)] = cos[\theta 2(\^x, d1) - \theta 2(\^x, d2)](4.4)
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for all (\^x, dj) \in U1 \times U2, j = 1, 2. By (4.4) and the fact that \theta j(\^x, d), j = 1, 2, are
real-valued analytic functions of \^x \in U1 and d \in U2, respectively, we obtain that there
holds either

\theta 1(\^x, d1) - \theta 1(\^x, d2) = \theta 2(\^x, d1) - \theta 2(\^x, d2) \forall (\^x, dj) \in U1 \times U2(4.5)

or

\theta 1(\^x, d1) - \theta 1(\^x, d2) =  - [\theta 2(\^x, d1) - \theta 2(\^x, d2)] \forall (\^x, dj) \in U1 \times U2,(4.6)

where j = 1, 2.
For the case when (4.5) holds, we have

\theta 1(\^x, d1) - \theta 2(\^x, d1) = \theta 1(\^x, d2) - \theta 2(\^x, d2) \forall (\^x, dj) \in U1 \times U2, j = 1, 2.

Fix d2 \in U2 and define

\alpha (\^x) := \theta 1(\^x, d2) - \theta 2(\^x, d2) \forall \^x \in U1.

Then by (4.5) we have

u\infty 1 (\^x, d) = r(\^x, d)ei\theta 1(\^x,d) = r(\^x, d)ei\alpha (\^x)+i\theta 2(\^x,d) = ei\alpha (\^x)u\infty 2 (\^x, d)

for all (\^x, d) \in U1\times U2, where we use d to replace d1. By the analyticity of u\infty 1 (\^x, d) - 
ei\alpha (\^x)u\infty 2 (\^x, d) in d \in \BbbS 2, we get

u\infty 1 (\^x, d) = ei\alpha (\^x)u\infty 2 (\^x, d) \forall \^x \in U1, d \in \BbbS 2.(4.7)

Changing the variables \^x\rightarrow  - d and d\rightarrow  - \^x in (4.7) gives

u\infty 1 ( - d, - \^x) = ei\alpha ( - d)u\infty 2 ( - d, - \^x) \forall  - d \in U1, \^x \in \BbbS 2.

The reciprocity relation u\infty j (\^x, d) = u\infty j ( - d, - \^x) for all \^x, d \in \BbbS 2 (j = 1, 2) leads to
the result

ei\alpha (\^x)u\infty 2 (\^x, d) = ei\alpha ( - d)u\infty 2 (\^x, d) \forall \^x, - d \in U1.(4.8)

Since r(\^x, d) \not \equiv 0 for \^x, d \in \BbbS 2, it follows from (4.8), the analyticity of \alpha (\^x) in \^x \in 
U1, and the analyticity of u\infty j (\^x, d) (j = 1, 2) with respect to \^x \in \BbbS 2 and d \in \BbbS 2,
respectively, that

exp[i\alpha (\^x)] = exp[i\alpha ( - d)] \forall \^x, - d \in U1.

For a fixed  - \widetilde d \in U1 take d = \widetilde d in the above formula to give that exp[i\alpha (\^x)] = exp(i\alpha )

for all \^x \in U1, where \alpha := \alpha ( - \widetilde d) is a real constant. Substituting this formula into
(4.7) gives

u\infty 1 (\^x, d) = ei\alpha u\infty 2 (\^x, d) \forall \^x \in U1, d \in \BbbS 2.

By the analyticity of u\infty j (\^x, d) (j = 1, 2) with respect to \^x \in \BbbS 2 it follows that

u\infty 1 (\^x, d) = ei\alpha u\infty 2 (\^x, d) \forall \^x, d \in \BbbS 2.(4.9)

For the case when (4.6) holds, an argument similar to that above gives the result

u\infty 1 (\^x, d) = ei\beta u\infty 2 (\^x, d) \forall \^x, d \in \BbbS 2,(4.10)
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where \beta is a real constant.
We now prove that (4.10) does not hold. In fact, suppose \{ (\lambda n, gn)\} \infty n=1 is the

eigensystem of the far-field operator F1 corresponding to the obstacle D1 or the re-
fraction of index n1. Then by (4.10) we have

(F2gn)(\^x) =

\int 
\BbbS 2
u\infty 2 (\^x, d)gn(d)ds(d) =

\int 
\BbbS 2
ei\beta u\infty 1 (\^x, d)gn(d)ds(d)

= ei\beta (F1gn)(\^x) = ei\beta \lambda ngn(\^x).

Thus, \{ (ei\beta \lambda n, gn)\} \infty n=1 is the eigensystem of the far-field operator F2 corresponding
to the obstacle D2 or the refraction of index n2. Theorem 3.9 implies that

lim
n\rightarrow \infty 

\lambda n
| \lambda n| 

=

\left\{    - 1 if D1 is a sound-soft obstacle,
1 if D1 is a nonabsorbing impedance obstacle,
sign(m1) for real-valued n1 with | m1| \geq c1 in D1,

(4.11)

lim
n\rightarrow \infty 

ei\beta \lambda n

| ei\beta \lambda n| 
=

\left\{    - 1 if D2 is a sound-soft obstacle,
1 if D2 is a nonabsorbing impedance obstacle,
sign(m2) for real-valued n2 with | m2| \geq c1 in D2,

(4.12)

where mj = nj  - 1 in Dj , j = 1, 2. Note that D1 and D2 are both either sound-
soft obstacles or nonabsorbing impedance obstacles. Note further that n1 and n2
are both real-valued and satisfy that either mj = nj  - 1 \geq c1 in Dj (j = 1, 2)
or mj = nj  - 1 \leq  - c1 in Dj (j = 1, 2), so the sign of m1 in D1 is the same as
that of m2 in D2. Therefore, from (4.11) and (4.12) it follows that ei\beta = 1. Hence
\{ \lambda n\} \infty n=1 are the eigenvalues of the far-field operator F2. Recall that \{ \lambda n\} \infty n=1 are the
eigenvalues of the far-field operator F1. By Remark 3.2, both nonzero elements of
\{ \lambda n\} \infty n=1 and \{ \lambda n\} \infty n=1 lie on the circle (3.3) in the upper-half complex plane, which
is a contradiction. This means that (4.10) does not hold.

We now consider (4.9). Let \{ (\lambda n, gn)\} \infty n=1 be the eigensystem of the far-field
operator F1 corresponding to the obstacle D1 or the refraction of index n1. Then it
follows from (4.9) that

(F2gn)(\^x) =

\int 
\BbbS 2
u\infty 2 (\^x, d)gn(d)ds(d) =

\int 
\BbbS 2
e - i\alpha u\infty 1 (\^x, d)gn(d)ds(d)

= e - i\alpha (F1gn)(\^x) = e - i\alpha \lambda ngn(\^x).

Thus, \{ (e - i\alpha \lambda n, gn)\} \infty n=1 is the eigensystem of the far-field operator F2 corresponding
to the obstacle D2 or the refraction of index n2. By Theorem 3.9, we have

lim
n\rightarrow \infty 

\lambda n
| \lambda n| 

=

\left\{    - 1 if D1 is a sound-soft obstacle,
1 if D1 is a nonabsorbing impedance obstacle,
sign(m1) for real-valued n1 with | m1| \geq c1 in D1,

lim
n\rightarrow \infty 

e - i\alpha \lambda n
| e - i\alpha \lambda n| 

=

\left\{    - 1 if D2 is a sound-soft obstacle,
1 if D2 is a nonabsorbing impedance obstacle,
sign(m2) for real-valued n2 with | m2| \geq c1 in D2.

Similarly as above, we obtain that e - i\alpha = 1. Hence

u\infty 1 (\^x, d) = u\infty 2 (\^x, d) \forall \^x, d \in \BbbS 2.(4.13)

For two sound-soft or nonabsorbing impedance obstacles D1 and D2, by (4.13)
and [11, Theorem 5.6] we have D1 = D2 and \eta 1 = \eta 2. For two indices of refraction n1
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and n2 satisfying the assumptions in Theorem 2.1, by (4.13) and [18, Theorem 6.26]
we have n1 = n2. Theorem 2.1 is thus proved.

Proof of Theorem 2.2. By (2.3) and (2.4) we know that (4.1) and (4.2) still hold
with d1 = d and d2 = d0. Further, by (2.3), equation (4.3) holds. Then the remaining
part of the proof of Theorem 2.1 works by letting d1 = d and d2 = d0 and noting that
(\^x, d0) \in U for all \^x in a small open domain of \BbbS 2 (since, otherwise, u\infty j (\^x, d0) \equiv 0 for

all \^x \in \BbbS 2, and so, by Rellich's lemma, usj(x, d0) \equiv 0 for all x \in \BbbR 3 \setminus Dj , leading to

the contradiction that ui(x, d0) \equiv 0 or \partial ui(x, d0)/\partial \nu + \eta ui(x, d0) \equiv 0 for all x \in \partial Dj ,
j = 1, 2). The proof is complete.

5. Conclusion. In this paper, we established uniqueness in inverse acoustic scat-
tering with phaseless far-field patterns associated with infinitely many sets of superpo-
sitions of two plane waves with different directions at a fixed frequency for sound-soft
or nonabsorbing impedance obstacles and for a nonabsorbing inhomogeneous medium
with the real-valued index of refraction n satisfying that either n(x)  - 1 \geq c1 or
n(x) - 1 \leq  - c1 in the support D for some constant c1 > 0. To the best of our knowl-
edge, this is the first uniqueness result in inverse scattering with phaseless far-field
data. As an ongoing project, we are currently trying to remove the nonabsorbing
condition on the boundary impedance function \eta and the index of refraction n and
to extend the results to the case of electromagnetic waves.
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