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Uniqueness and Direct Imaging Method for Inverse Scattering by Locally Rough
Surfaces with Phaseless Near-Field Data\ast 

Xiaoxu Xu\dagger , Bo Zhang\ddagger , and Haiwen Zhang\S 

Abstract. This paper is concerned with inverse scattering of plane waves by a locally perturbed infinite plane
(which is called a locally rough surface) with the modulus of the total-field data (also called the
phaseless near-field data) at a fixed frequency in two dimensions. We consider the case where a
Dirichlet boundary condition is imposed on the locally rough surface. This problem models inverse
scattering of plane acoustic waves by a one-dimensional sound-soft, locally rough surface; it also
models inverse scattering of plane electromagnetic waves by a locally perturbed, perfectly reflecting,
infinite plane in the transverse electric polarization case. We prove that the locally rough surface
is uniquely determined by the phaseless near-field data generated by a countably infinite number of
plane waves and measured on an open domain above the locally rough surface. Further, a direct
imaging method is proposed to reconstruct the locally rough surface from the phaseless near-field
data generated by plane waves and measured on the upper part of the circle with a sufficiently
large radius. Theoretical analysis of the imaging algorithm is derived by making use of properties
of the scattering solution and results from the theory of oscillatory integrals (especially the method
of stationary phase). Moreover, as a by-product of the theoretical analysis, a similar direct imaging
method with full far-field data is also proposed to reconstruct the locally rough surface. Finally,
numerical experiments are carried out to demonstrate that the imaging algorithms with phaseless
near-field data and full far-field data are fast, accurate, and very robust with respect to noise in the
data.

Key words. inverse scattering, locally rough surface, Dirichlet boundary condition, phaseless near-field data,
full far-field data
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1. Introduction. Acoustic and electromagnetic scattering by a locally perturbed infinite
plane (called a locally rough surface in this paper) occurs in many applications such as radar,
remote sensing, geophysics, medical imaging, and nondestructive testing (see, e.g., [3, 5, 8, 10,
13, 19]).
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120 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

In this paper, we are restricted to the two-dimensional case by assuming that the local
perturbation is invariant in the x3 direction. Assume further that the incident wave is time-
harmonic (e - i\omega t time dependence), so that the total wave field u satisfies the Helmholtz
equation

\Delta u+ k2u = 0 in D+.(1.1)

Here, k = \omega /c > 0 is the wave number, \omega and c are the frequency and speed of the wave in D+,
respectively, and D+ := \{ (x1, x2) | x2 > h(x1), x1 \in \BbbR \} represents a homogeneous medium
above the locally rough surface denoted by \Gamma := \partial D+ = \{ (x1, x2) | x2 = h(x1), x1 \in \BbbR \} with
h \in C2(\BbbR ) having a compact support in \BbbR . In this paper, the incident field ui is assumed to
be the plane wave

ui(x, d) := eikx\cdot d,(1.2)

where d = (cos \theta d, sin \theta d) \in \BbbS 1 - is the incident direction with \pi < \theta d < 2\pi and \BbbS 1 - := \{ x =
(x1, x2) | | x| = 1, x2 < 0\} is the lower part of the unit circle \BbbS 1 = \{ x \in \BbbR 2 | | x| = 1\} . This
paper considers the case where a Dirichlet boundary condition is imposed on the locally rough
surface. Thus, the total field u(x, d) = ui(x, d) + ur(x, d) + us(x, d) vanishes on the surface \Gamma ,

u(x, d) = ui(x, d) + ur(x, d) + us(x, d) = 0 on \Gamma ,(1.3)

where ur is the reflected wave by the infinite plane x2 = 0,

ur(x, d) :=  - eikx\cdot d\prime (1.4)

with d\prime = (cos \theta d, - sin \theta d) and us is the unknown scattered wave to be determined which is
required to satisfy the Sommerfeld radiation condition

lim
r\rightarrow \infty 

r
1
2

\biggl( 
\partial us

\partial r
 - ikus

\biggr) 
= 0, r = | x| , x \in D+.(1.5)

This problem models electromagnetic scattering by a locally perturbed, perfectly conducting,
infinite plane in the transverse electric polarization case; it also models acoustic scattering by
a one-dimensional sound-soft, locally rough surface. See Figure 1.1 for the geometry of the
scattering problem.

The well-posedness of the scattering problem (1.1)--(1.5) has been studied by using the
variational method with a Dirichlet-to-Neumann map in [5] or the integral equation method

Γ

x
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x
1 u
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u

s
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Figure 1.1. The scattering problem from a locally rough surface.D
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 121

in [50, 54]. In particular, it was proved in [50, 54] that us has the asymptotic behavior at
infinity

us(x, d) =
eik| x| \sqrt{} 
| x| 

\biggl( 
u\infty (\^x, d) +O

\Bigl( 1

| x| 

\Bigr) \biggr) 
, | x| \rightarrow \infty ,(1.6)

uniformly for all observation directions \^x := x/| x| \in \BbbS 1+ with \BbbS 1+ := \{ x = (x1, x2) | | x| =
1, x2 > 0\} the upper part of the unit circle \BbbS 1, where u\infty (\^x, d) is called the far-field pattern
of the scattered field us, depending on the observation direction \^x \in \BbbS 1+ and the incident
direction d \in \BbbS 1 - .

Many numerical algorithms have been proposed for the inverse problem of reconstructing
the rough surfaces from the phased near-field or far-field data (see, e.g., [5, 8, 12, 17, 19,
20, 21, 31, 36, 37, 48, 54] and the references quoted there). For the case when the local
perturbation is below the infinite plane which is called the inverse cavity problem, see [3, 35]
and the references quoted there.

In diffractive optics and radar imaging, it is much harder to obtain data with accurate
phase information compared with only measuring the intensity (or the modulus) of the data
[4, 6, 13, 15, 30, 41, 46]. Thus it is often desirable to study inverse scattering problems with
phaseless data. Inverse scattering with phaseless near-field data has been extensively studied
numerically over the past decades (see, e.g., [4, 7, 14, 15, 16, 42, 46, 49] and the references
quoted there). Recently, mathematical issues including uniqueness and stability have also been
studied for inverse scattering with phaseless near-field data (see, e.g., [26, 27, 28, 29, 41, 43, 44]
and the references quoted there).

In contrast to the case with phaseless near-field data, inverse scattering with phaseless
far-field data is much less studied both mathematically and numerically due to the translation
invariance property of the phaseless far-field data, that is, the modulus of the far-field pattern
is invariant under translations of the obstacle for plane wave incidence [30, 38, 55]. The
translation invariance property makes it impossible to reconstruct the location of the obstacle
or the inhomogeneous medium from the phaseless far-field pattern with one plane wave as
the incident field. Nevertheless, several reconstruction algorithms have been developed to
reconstruct the shape of the obstacle from the phaseless far-field data with one plane wave
as the incident field (see [1, 22, 23, 24, 30, 32, 33, 47]). Uniqueness has also been established
in recovering the shape of the obstacle from the phaseless far-field data with one plane wave
as the incident field [39, 40]. Recently, progress has been made on the mathematical and
numerical study of inverse scattering with phaseless far-field data. For example, it was first
proved in [55] that the translation invariance property of the phaseless far-field pattern can
be broken by using superpositions of two plane waves as the incident fields for all wave
numbers in a finite interval. And a recursive Newton-type iteration algorithm in frequencies
was further developed in [55] to numerically reconstruct both the location and the shape of
the obstacle simultaneously from multifrequency phaseless far-field data. This method was
further extended in [56] to reconstruct the locally rough surface from multifrequency phaseless
far-field or near-field data. Furthermore, a direct imaging algorithm was recently developed
in [57] to reconstruct the obstacle from the phaseless far-field data generated by infinitely
many sets of superpositions of two plane waves as the incident fields at a fixed frequency.D
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122 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

And uniqueness results have also been established rigorously in [51] for inverse obstacle and
medium scattering from the phaseless far-field patterns generated by infinitely many sets of
superpositions of two plane waves with different directions at a fixed frequency under certain
a priori conditions on the obstacle and the inhomogeneous medium. The a priori assumption
on the obstacle and the inhomogeneous medium in [51] was removed in [52] by adding a known
reference ball into the scattering model. It should be noted that the reference-ball technique
was first introduced to inverse scattering problems in a different but related context in [34]
and then used in [58] to prove uniqueness results for inverse scattering with phaseless far-field
data generated by superpositions of a plane wave and a point source as the incident fields
at a fixed frequency; moreover, it was recently applied to inverse source scattering problems
with phaseless data in [59]. Note further that by adding one point scatterer into the scattering
model stability estimates have been obtained in [25] for inverse obstacle and medium scattering
with phaseless far-field data associated with one plane wave as the incident field under certain
conditions on the obstacle and inhomogeneous medium if the point scatterer is placed far away
from the scatterer. In addition, direct imaging algorithms are proposed in [25] to reconstruct
the scattering obstacle from the phaseless far-field data associated with one plane wave as the
incident field.

In this paper, we consider uniqueness and the fast imaging algorithm for inverse scattering
by locally rough surfaces from phaseless near-field data corresponding to incident plane waves
at a fixed frequency. First, we prove that the locally rough surface is uniquely determined
by the phaseless near-field data generated by a countably infinite number of incident plane
waves and measured on an open domain above the locally rough surface, following the ideas
in [43, 54]. Then we develop a direct imaging algorithm for the inverse scattering problem with
phaseless near-field data generated by incident plane waves and measured on the upper part
of the circle containing the local perturbation part of the infinite plane, based on the imaging
function IPhaseless(z) with z \in \BbbR 2 (see the formula (3.1) below). The theoretical analysis of the
imaging function IPhaseless(z) is given by making use of properties of the scattering solution
and results from the theory of oscillatory integrals (especially the method of stationary phase).
From the theoretical analysis result, it is expected that if the radius of the measurement circle
is sufficiently large, IPhaseless(z) will take a large value when z is on the boundary \Gamma and decay
as z moves away from \Gamma . Based on this, a direct imaging algorithm is proposed to recover
the locally rough surface from the phaseless near-field data. Further, numerical experiments
are also carried out to demonstrate that our imaging algorithm provides an accurate, fast,
and stable reconstruction of the locally rough surface. Moreover, as a by-product of the
theoretical analysis, a similar direct imaging algorithm with full far-field data is also proposed
to reconstruct the locally rough surfaces with convincing numerical experiments illustrating
the effectiveness of the imaging algorithm. It should be pointed out that a direct imaging
method was recently proposed in [14, 15] for reconstructing extended obstacles with acoustic
and electromagnetic phaseless near-field data, based on the reverse time migration technique

The rest of the paper is organized as follows. The uniqueness result is proved in section 2
for an inverse scattering problem with phaseless near-field data. In section 3, the direct
imaging method with phaseless near-field data is proposed, and its theoretical analysis is
given. As a by-product, the direct imaging method with full far-field data is also presented in
section 3. Numerical experiments are carried out in section 4 to illustrate the effectiveness ofD
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Figure 2.1. Inverse scattering with phaseless near-field data measured on the domain \Omega .

the imaging method. Conclusions are given in section 5. In Appendix A, we use the method
of stationary phase to prove Lemma 3.8 in section 3, which plays an important role in the
theoretical analysis of the direct imaging method.

2. Uniqueness for an inverse problem. In this section, we establish a uniqueness result
for an inverse scattering problem with phaseless near-field data, motivated by [43]. First,
we introduce some notation which will be used throughout this paper. Define BR := \{ x =
(x1, x2) | | x| < R\} to be a disk centered at the origin and with radius R > 0 large enough so
that the local perturbation \Gamma p := \{ (x1, h(x1)) | x1 \in supp(h)\} \subset BR. Define \BbbR 2

\pm := \{ (x1, x2) \in 
\BbbR 2 | x2 \gtrless 0\} , \partial B+

R := \partial BR \cap D+. For any x, z \in \BbbR 2 and d \in \BbbS 1, set x := (x1, x2), z :=
(z1, z2), d := (d1, d2) and let x\prime := (x1, - x2) be the reflection of x with respect to the x1-axis.
Further, let \^x = x/| x| = (\^x1, \^x2) = (cos \theta \^x, sin \theta \^x), \^z = z/| z| = (\^z1, \^z2) = (cos \theta \^z, sin \theta \^z) and
d = (cos \theta d, sin \theta d) with \theta \^x, \theta \^z, \theta d \in [0, 2\pi ]. Note also that if x \not = 0, then \^x1 = x1/| x| and
\^x2 = x2/| x| . Throughout this paper, the positive constants C, C1, and C2 may be different
at different places.

Assume that \Gamma 1,\Gamma 2 are two locally rough surfaces, where \Gamma j := \{ (x1, x2) | x2 =
hj(x1), x1 \in \BbbR \} with hj \in C2(\BbbR ) having a compact support in \BbbR , j = 1, 2. Further, de-
note by \Gamma p,j := \{ (x1, hj(x1)) | x1 \in supp(hj)\} the local perturbation of \Gamma j and by D+,j the
domain above \Gamma j , j = 1, 2. For j = 1, 2 suppose that the total field is given by uj = ur+ur+usj ,
where usj(\^x, d) is the scattered field corresponding to the locally rough surface \Gamma j with its far-
field pattern u\infty j (\^x, d). Moreover, let R > 0 be large enough such that the local perturbation
\Gamma p,j \subset BR (j = 1, 2) and let \Omega be a bounded open domain above the locally rough surfaces
\Gamma 1 and \Gamma 2. See Figure 2.1 for the geometry of the inverse scattering problem.

We need the following result on the property of the scattered field, which is also useful in
the numerical algorithm in section 3.

Lemma 2.1. Let x \in D+, d \in \BbbS 1 - . Then for any x \in D+ with | x| large enough and
d \in \BbbS 1 - the scattering solution us(x, d) of the scattering problem (1.1)--(1.5) has the asymptotic
behavior

us(x, d) =
eik| x| 

| x| 1/2
u\infty (\^x, d) + usRes(x, d)(2.1)

withD
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124 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

\| u\infty (\cdot , d)\| C1(\BbbS 1+) \leq C,(2.2)

| usRes(x, d)| \leq 
C

| x| 3/2
,(2.3)

where C > 0 is a constant independent of x and d.

Proof. The statement of this lemma follows easily from the well-posedness of the scat-
tering problem (1.1)--(1.5) and the asymptotic behavior (1.6) of the scattered field us

(see, e.g., [54]).

We also need the following uniqueness result for the inverse scattering problem with full
far-field data which is given in [54].

Theorem 2.2 (Theorem 4.1 in [54]). Assume that \Gamma 1 and \Gamma 2 are two locally rough surfaces
and u\infty 1 (\^x, d) and u\infty 2 (\^x, d) are the far-field patterns corresponding to \Gamma 1 and \Gamma 2, respectively.
If u\infty 1 (\^x, dn) = u\infty 2 (\^x, dn) for all \^x \in \BbbS 1+ and the distinct directions dn \in \BbbS 1 - with n \in \BbbN and a
fixed wave number k, then \Gamma 1 = \Gamma 2.

We are now ready to state and prove the main theorem of this section.

Theorem 2.3. Assume that \Gamma 1 and \Gamma 2 are two locally rough surfaces and u1(\^x, d) and
u2(\^x, d) are the total field corresponding to \Gamma 1 and \Gamma 2, respectively. Let \Omega be a bounded open
domain above \Gamma 1 and \Gamma 2. If | u1(x, dn)| = | u2(x, dn)| for all x \in \Omega and the distinct directions
dn \in \BbbS 1 - with n \in \BbbN and a fixed wave number k, then \Gamma 1 = \Gamma 2.

Proof. Fix d = dn for an arbitrary n \in \BbbN and set d = (d1, d2). Since | u1(x, d)| = | u2(x, d)| 
for all x \in \Omega , it follows from the analyticity of | ul(x, d)| 2, l = 1, 2, with respect to x \in \BbbR 2

+\setminus BR

that

| u1(x, d)| = | u2(x, d)| for x \in \BbbR 2
+\setminus BR.(2.4)

Noting that ul = ui + ur + usl , l = 1, 2, we have

| ul| 2 = | ui + ur + usl | 2 = | ui + ur| 2 + | usl | 2 + 2Re(uiusl ) + 2Re(urusl ).(2.5)

Now, by Lemma 2.1 we know that for x \in D+,l,

usl (x, d) =
eik| x| 

| x| 1/2
u\infty l (\^x, d) + usl,Res(x, d), l = 1, 2,(2.6)

with

| usl,Res(x, d)| \leq C| x|  - 3/2, | usl (x, d)| \leq C| x|  - 1/2(2.7)

for | x| large enough.
Write

u\infty l (\^x, d) = rl(\^x, d)e
i\theta l(\^x,d), l = 1, 2,(2.8)D
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 125

where rl(\^x, d), \theta l(\^x, d) are real-valued functions with rl \geq 0 and \theta l \in [0, 2\pi ]. Then, by inserting
(2.6) and (2.8) into (2.5) we obtain that for l = 1, 2,

| ul(x, d)| 2 = | ui(x, d) + ur(x, d)| 2 + | usl (x, d)| 2 + 2Re
\Bigl( 
ui(x, d)usl,Res(x, d)

\Bigr) 
+ 2Re

\Biggl( 
ui(x, d)

e - ik| x| 

| x| 1/2
rl(\^x, d)e

 - i\theta l(\^x,d)

\Biggr) 
+ 2Re

\Bigl( 
ur(x, d)usl,Res(x, d)

\Bigr) 
+ 2Re

\Biggl( 
ur(x, d)

e - ik| x| 

| x| 1/2
rl(\^x, d)e

 - i\theta l(\^x,d)

\Biggr) 
.

This yields

| x| 1/2

2

\bigl( 
| ul(x, d)| 2  - | ui(x, d) + ur(x, d)| 2

\bigr) 
= Re

\Bigl( 
ui(x, d)rl(\^x, d)e

 - i(k| x| +\theta l(\^x,d))
\Bigr) 

+ Re
\Bigl( 
ur(x, d)rl(\^x, d)e

 - i(k| x| +\theta l(\^x,d))
\Bigr) 
+ vl(x, d),(2.9)

where vl is given by

vl(x, d) = | x| 1/2
\biggl[ 
1

2
| usl (x, d)| 2 +Re

\Bigl( 
ui(x, d)usl,Res(x, d)

\Bigr) 
+Re

\Bigl( 
ur(x, d)usl,Res(x, d)

\Bigr) \biggr] 
.

Further, by (2.7) we see that for l = 1, 2,

| vl(x, d)| \leq 
C

| x| 1/2
as | x| \rightarrow +\infty .(2.10)

Substituting (1.2) and (1.4) into (2.9) gives that for x \in \BbbR 2
+\setminus BR,

| x| 1/2

4
(| ul(x, d)| 2  - | ui(x, d) + ur(x, d)| 2)

=
1

2
rl(\^x, d)

\bigl[ 
cos(kx \cdot d - k| x|  - \theta l(\^x, d)) - cos(kx \cdot d\prime  - k| x|  - \theta l(\^x, d))

\bigr] 
+

1

2
vl(x, d)

= rl(\^x, d) sin(k\^x2d2| x| ) sin(\theta l(\^x, d) + | x| (k  - k\^x1d1)) +
1

2
vl(x, d), l = 1, 2.(2.11)

Thus, and by (2.4) we have that for x \in \BbbR 2
+\setminus BR,

r1(\^x, d) sin(k\^x2d2| x| ) sin[\theta 1(\^x, d) + | x| (k  - k\^x1d1)] +
1

2
v1(x, d)

= r2(\^x, d) sin(k\^x2d2| x| ) sin[\theta 2(\^x, d) + | x| (k  - k\^x1d1)] +
1

2
v2(x, d).(2.12)

Arbitrarily fix \^x = (\^x1, \^x2) \in \BbbS 1+ and set \alpha = k\^x2d2 and \beta = k(1 - \^x1d1). Equation (2.12)
then becomes

r1(\^x, d) sin(\alpha | x| ) sin[\theta 1(\^x, d) + \beta | x| ] + 1

2
v1(x, d)

= r2(\^x, d) sin(\alpha | x| ) sin[\theta 2(\^x, d) + \beta | x| ] + 1

2
v2(x, d).(2.13)D
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Note that \alpha < 0, \beta > 0 since \^x = (\^x1, \^x2) \in \BbbS 1+ and d = (d1, d2) \in \BbbS 1 - . Then we can choose

\gamma 
(1)
0 , \gamma 

(2)
0 \in \BbbR such that

sin

\biggl( 
\alpha 

\beta 
\gamma 
(k)
0

\biggr) 
\not = 0, k = 1, 2,(2.14)

sin(\gamma 
(1)
0  - \gamma 

(2)
0 ) \not = 0.(2.15)

We now prove that

r1 sin(\theta 1 + \gamma 
(k)
0 ) = r2 sin(\theta 2 + \gamma 

(k)
0 ), k = 1, 2,(2.16)

where we write rl = rl(\^x, d), \theta l = \theta l(\^x, d), l = 1, 2, for simplicity. We distinguish between the
following two cases.

Case 1. \alpha /\beta is a rational number. In this case, it is easily seen that there exist pj \in \BbbN with

j = 1, 2, . . . such that (\alpha /\beta )pj \in \BbbN and limj\rightarrow +\infty pj = +\infty . For k = 1, 2 let x
(k)
j := (\gamma 

(k)
0 +

2\pi pj)\^x/\beta . Then it is easy to see that x
(k)
j \in \BbbR 2

+\setminus BR for large j and limj\rightarrow +\infty | x(k)j | = +\infty .

Thus, take x = x
(k)
j with large j in (2.13) to obtain that

r1 sin

\biggl( 
\alpha 

\beta 
\gamma 
(k)
0

\biggr) 
sin(\theta 1 + \gamma 

(k)
0 ) +

1

2
v1(x

(k)
j , d) = r2 sin

\biggl( 
\alpha 

\beta 
\gamma 
(k)
0

\biggr) 
sin(\theta 2 + \gamma 

(k)
0 ) +

1

2
v2(x

(k)
j , d).

The required equality (2.16) then follows by taking j \rightarrow +\infty in the above equation and using
(2.10) and (2.14).

Case 2. \alpha /\beta is an irrational number. In this case, by Kronecker's approximation theorem
(see, e.g., [2, Theorem 7.7]), we know that there exist pj \in \BbbN with j = 1, 2, . . . such that
(\alpha /\beta )pj = mj + aj with mj \in \BbbN , limj\rightarrow +\infty aj = 0, and limj\rightarrow +\infty pj = +\infty . For k = 1, 2 let

x
(k)
j be defined as in Case 1. Then, similarly as in Case 1, take x = x

(k)
j with large j in (2.13)

to deduce that

r1 sin

\biggl( 
\alpha 

\beta 
\gamma 
(k)
0 + 2\pi aj

\biggr) 
sin(\theta 1 + \gamma 

(k)
0 ) +

1

2
v1(x

(k)
j , d)

= r2 sin

\biggl( 
\alpha 

\beta 
\gamma 
(k)
0 + 2\pi aj

\biggr) 
sin(\theta 2 + \gamma 

(k)
0 ) +

1

2
v2(x

(k)
j , d).

Thus, (2.16) also follows by letting j \rightarrow +\infty in the above equation and using (2.10) and (2.14).
Finally, it follows from (2.16) and the arbitrariness of \^x, d that\left(  cos \gamma 

(1)
0 (\^x, dn) sin \gamma 

(1)
0 (\^x, dn)

cos \gamma 
(2)
0 (\^x, dn) sin \gamma 

(2)
0 (\^x, dn)

\right)  \Biggl( r1(\^x, dn) sin \theta 1(\^x, dn) - r2(\^x, dn) sin \theta 2(\^x, dn)

r1(\^x, dn) cos \theta 1(\^x, dn) - r2(\^x, dn) cos \theta 2(\^x, dn)

\Biggr) 
= 0

for all \^x \in \BbbS 1+ and dn \in \BbbS 1 - with n \in \BbbN . Condition (2.15) means that the determinant of
the square matrix on the left of the above matrix equation does not vanish, and so the above
matrix equation only has a trivial solution, that is,D
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Near-field Measurement

Figure 3.1. Inverse scattering with phaseless near-field data measured on the curve \partial B+
R .

r1(\^x, dn) sin \theta 1(\^x, dn) = r2(\^x, dn) sin \theta 2(\^x, dn),

r1(\^x, dn) cos \theta 1(\^x, dn) = r2(\^x, dn) cos \theta 2(\^x, dn)

for all \^x \in \BbbS 1+ and dn \in \BbbS 1 - with n \in \BbbN . This implies that u\infty 1 (\^x, dn) = u\infty 2 (\^x, dn) for all
\^x \in \BbbS 1+ and dn \in \BbbS 1 - with n \in \BbbN . The required result then follows from Theorem 2.2. The
proof is thus completed.

3. Direct imaging method for inverse problems. In this section, we consider the inverse
problem: Given the incident field ui = ui(x, d), reconstruct the locally rough surface \Gamma from
the phaseless near-field data | u(x, d)| for all x \in \partial B+

R , d \in \BbbS 1 - and with a fixed wave number
k. See Figure 3.1 for the geometry of the inverse scattering problem. Our purpose is to
develop a direct imaging method to solve this inverse problem numerically though no rigorous
uniqueness result is available yet for the inverse problem.

We consider the imaging function

IPhaseless(z)

:=

\int 
\partial B+

R

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS 1 - 

\Bigl[ \Bigl( 
| u(x, d)| 2  - 2 + e2ikx2d2

\Bigr) 
eik(x - z)\cdot d  - eik(x

\prime  - z\prime )\cdot d
\Bigr] 
ds(d)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

dx(3.1)

for z \in \BbbR 2. In what follows, we will study the behavior of the imaging function IPhaseless(z)
for z near and away from the rough surface \Gamma . To this end, we will prove that if the radius R is
sufficiently large, then IPhaseless(z) \approx F (R, z) for z in a bounded domain containing the local
perturbation of the locally rough surface, where F (R, z) is defined by (3.35) (see Theorem
3.9). From this, Theorem 3.10, and the discussions in [37, section 3], it is expected that if R is
large enough, then the imaging function IPhaseless(z) will take a large value when z \in \Gamma and
decay as z moves away from \Gamma (more detailed discussions can be found following the proof of
Theorem 3.10).

Define

U(x, z) := U1(x, z) + U2(x, z) + U3(x, z),(3.2)

W (x, z) :=W1(x, z) +W2(x, z) +W3(x, z) +W4(x, z),(3.3)D
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128 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

where

U1(x, z) =

\int 
\BbbS 1 - 
us(x, d)e - ikz\cdot dds(d),(3.4)

U2(x, z) =  - 
\int 
\BbbS 1 - 
eik(x\cdot d

\prime  - z\cdot d)ds(d),(3.5)

U3(x, z) =  - 
\int 
\BbbS 1 - 
eik(x\cdot d

\prime  - z\prime \cdot d)ds(d),(3.6)

and

W1(x, z) =

\int 
\BbbS 1 - 

\bigl[ 
ui(x, d)

\bigr] 2
us(x, d)e - ikz\cdot dds(d),

W2(x, z) =

\int 
\BbbS 1 - 
ui(x, d)ur(x, d)us(x, d)e - ikz\cdot dds(d),

W3(x, z) =

\int 
\BbbS 1 - 
ui(x, d)ur(x, d)us(x, d)e - ikz\cdot dds(d),

W4(x, z) =

\int 
\BbbS 1 - 
ui(x, d)| us(x, d)| 2e - ikz\cdot dds(d).

Since u = ui + ur + us and | ui| = | ur| = 1, by a direct calculation (3.1) becomes

IPhaseless(z) =

\int 
\partial B+

R

| U(x, z) +W (x, z)| 2dx.(3.7)

We need the following result for oscillatory integrals proved in [14].

Lemma 3.1 (Lemma 3.9 in [14]). For any  - \infty < a < b <\infty let u \in C2[a, b] be real-valued
and satisfy that | u\prime (t)| \geq 1 for all t \in (a, b). Assume that a = x0 < x1 < \cdot \cdot \cdot < xN = b is a
division of (a, b) such that u\prime is monotone in each interval (xi - 1, xi), i = 1, . . . , N . Then for
any function \phi defined on (a, b) with integrable derivative and for any \lambda > 0,\bigm| \bigm| \bigm| \bigm| \int b

a
ei\lambda u(t)\phi (t)dt

\bigm| \bigm| \bigm| \bigm| \leq (2N + 2)\lambda  - 1

\biggl[ 
| \phi (b)| +

\int b

a
| \phi \prime (t)| dt

\biggr] 
.

With the aid of Lemma 3.1, we can obtain the following lemma.

Lemma 3.2. Let x \in \BbbR 2
+, d \in \BbbS 1 - . For \^x = x/| x| \in \BbbS 1+ assume that f(\^x, \cdot ), g(\^x, \cdot ) \in C1(\BbbS 1 - )

and define

F (x) :=

\int 
\BbbS 1 - 
eikx\cdot df(\^x, d)ds(d), G(x) :=

\int 
\BbbS 1 - 
eikx\cdot d

\prime 
g(\^x, d)ds(d).

Then for all x \in \BbbR 2
+ with | x| large enough we have

| F (x)| \leq C\| f(\^x, \cdot )\| 
C1(\BbbS 1 - )

| x|  - 1/2,(3.8)

| G(x)| \leq C\| g(\^x, \cdot )\| 
C1(\BbbS 1 - )

| x|  - 1/2,(3.9)

where C > 0 is a constant independent of x.D
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 129

Proof. We prove only (3.8). The proof of (3.9) is similar.
Let \delta > 0 be small enough such that sin \delta \geq \delta /2 and let | x| be large enough. Let

x = | x| \^x = | x| (cos \theta \^x, sin \theta \^x), d = (cos \theta d, sin \theta d) with \theta \^x \in [0, \pi ], \theta d \in [\pi , 2\pi ], and define\widetilde f(\theta \^x, \theta d) := f(\^x, d) for \theta \^x \in [0, \pi ] and \theta d \in [\pi , 2\pi ]. Then it follows that

C1\| f(\^x, \cdot )\| C1(\BbbS 1 - )
\leq \| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ] \leq C2\| f(\^x, \cdot )\| C1(\BbbS 1 - )

(3.10)

and

F (x) =

\int 2\pi 

\pi 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \~f(\theta \^x, \theta d)d\theta d.(3.11)

We distinguish between the following two cases.
Case 1. \theta \^x \in [0, \delta ] \cup [\pi  - \delta , \pi ]. In this case, we rewrite (3.11) as

F (x) =

\int 2\pi  - 2\delta 

\pi +2\delta 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \widetilde f(\theta \^x, \theta d)d\theta d + \int \pi +2\delta 

\pi 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \widetilde f(\theta \^x, \theta d)d\theta d

+

\int 2\pi 

2\pi  - \delta 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \widetilde f(\theta \^x, \theta d)d\theta d

:= I1 + II1 + III1.(3.12)

Set u(\theta d) = 2 cos(\theta d - \theta \^x)/\delta . Then u\prime (\theta d) =  - 2 sin(\theta d - \theta \^x)/\delta , and so, for \theta \^x \in [0, \delta ]\cup [\pi  - \delta , \pi ]
and \theta d \in [\pi + 2\delta , 2\pi  - 2\delta ], we have

| u\prime (\theta d)| = 2| sin(\theta d  - \theta \^x)| /\delta \geq 2| sin \delta | /\delta \geq 2

\delta 

\delta 

2
= 1

and u\prime (\theta d) is monotone in [\pi + 2\delta , 2\pi  - 2\delta ]. Thus, by Lemma 3.1 it follows that

| I1| =
\bigm| \bigm| \bigm| \bigm| \int 2\pi  - 2\delta 

\pi +2\delta 
ei

\delta k| x| 
2

u(\theta d) \widetilde f(\theta \^x, \theta d)d\theta d\bigm| \bigm| \bigm| \bigm| \leq C
\| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ]

\delta | x| 
.(3.13)

It is easy to obtain that

| II1| + | III1| \leq C\delta \| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ].(3.14)

Combining (3.10), (3.12), (3.13), and (3.14) gives

| F (x)| \leq C

\biggl( 
1

\delta | x| 
+ \delta 

\biggr) 
\| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ] \leq C

\biggl( 
1

\delta | x| 
+ \delta 

\biggr) 
\| f(\^x, \cdot )\| 

C1(\BbbS 1 - )
.

From this (3.8) follows immediately on taking \delta = | x|  - 1/2.
Case 2. \theta \^x \in [\delta , \pi  - \delta ]. In this case, we rewrite (3.11) as

F (x) =

\int \theta \^x - \delta 

0
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \widetilde f(\theta \^x, \theta d)d\theta d + \int \pi 

\theta \^x+\delta 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \widetilde f(\theta \^x, \theta d)d\theta d

+

\int \theta \^x+\delta 

\theta \^x - \delta 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^x) \widetilde f(\theta \^x, \theta d)d\theta d

:= I2 + II2 + III2.D
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Similarly as in the estimation of I1, it is deduced that

| I2| + | II2| \leq 
C

\delta | x| 
\| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ].

Now, it is straightforward to see that

| III2| \leq C\delta \| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ].

Then we arrive at

| F (x)| \leq C

\biggl( 
1

\delta | x| 
+ \delta 

\biggr) 
\| \widetilde f(\theta \^x, \cdot )\| C1[\pi ,2\pi ] \leq C

\biggl( 
1

\delta | x| 
+ \delta 

\biggr) 
\| f(\^x, \cdot )\| 

C1(\BbbS 1 - )
.

Taking \delta = | x|  - 1/2 in the above inequality gives (3.8). The proof is thus completed.

We also need the following reciprocity relation of the far-field pattern.

Lemma 3.3. For \^x \in \BbbS 1+, d \in \BbbS 1 - let u\infty (\^x, d) denote the far-field pattern of the scattering
solution to the problem (1.1)--(1.5). Then u\infty (\^x, d) = u\infty ( - d, - \^x) for all \^x \in \BbbS 1+, d \in \BbbS 1 - .

Proof. The reciprocity relation of the far-field pattern has been proved in [18] for the
case of bounded obstacles (see Theorem 3.15 in [18]). For the case of locally rough surfaces,
the result can be proved similarly with minor modifications in conjunction with the integral
equation method in [54].

We are now in a position to study the properties of Ui (i = 1, 2, 3) and Wi (i = 1, 2, 3, 4).

Lemma 3.4. For arbitrarily fixed z \in \BbbR 2 and for all x \in \BbbR 2
+ with | x| large enough, we have

| U1(x, z)| \leq C| x|  - 1/2,(3.15)

| Ui(x, z)| \leq C(1 + | z| )| x|  - 1/2, i = 2, 3,(3.16)

| Wj(x, z)| \leq C| x|  - 1/2, j = 2, 3,(3.17)

where C > 0 is a constant independent of x and z.

Proof. First, the estimates (3.15) and (3.17) follow easily from Lemma 2.1.
We now prove the estimate of Ui(x, z), i = 2, 3, in (3.16). To this end, define fz(d) :=

 - e - ikz\cdot d. Then

U2(x, z) =

\int 
\BbbS 1 - 
eikx\cdot d

\prime 
fz(d)ds(d).

Apply Lemma 3.2 to obtain that

| U2(x, z)| \leq C\| fz(\cdot )\| C1(\BbbS 1 - )
| x|  - 1/2 \leq C(1 + | z| )| x|  - 1/2

for x \in \BbbR 2
+ with | x| large enough. The estimate for U3(x, z) can be obtained similarly. The

proof is thus complete.D
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Lemma 3.5. For arbitrarily fixed z \in \BbbR 2 and for all x \in \BbbR 2
+ with | x| large enough, we have

| W1(x, z)| \leq C(1 + | z| )| x|  - 1,(3.18)

| W4(x, z)| \leq C| x|  - 1.(3.19)

Here, C > 0 is a constant independent of x and z.

Proof. We first consider W1(x, z). From Lemma 2.1 it follows that for x \in \BbbR 2
+ with | x| 

large enough,

W1(x, z) =
e - ik| x| 

| x| 1/2

\int 
\BbbS 1 - 
e2ikx\cdot du\infty (\^x, d)e - ikz\cdot dds(d) +W1,Res(x, z),(3.20)

where

W1,Res(x, z) :=

\int 
\BbbS 1 - 
e2ikx\cdot duRes(x, d)e

 - ikz\cdot dds(d)

with

| W1,Res(x, z)| \leq C| x|  - 3/2.(3.21)

Now define

F (x) :=

\int 
\BbbS 1 - 
e2ikx\cdot dfz(\^x, d)ds(d)

with

fz(\^x, d) := u\infty (\^x, d)e - ikz\cdot d, \^x \in \BbbS 1+, d \in \BbbS 1 - .

Then, by Lemmas 2.1, 3.2, and 3.3 we deduce that for x \in \BbbR 2
+ with | x| large enough,

| F (x)| \leq C\| fz(\^x, \cdot )\| C1(\BbbS 1 - )
| x|  - 1/2

\leq C(1 + | z| )\| u\infty (\^x, \cdot )\| 
C1(\BbbS 1 - )

| x|  - 1/2 \leq C(1 + | z| )| x|  - 
1
2 .(3.22)

Thus, (3.18) follows immediately from (3.20), (3.21), and (3.22).
We now consider W4(x, z). By Lemma 2.1 we know that | us(x, d)| 2 \leq C/| x| for x \in \BbbR 2

+

with | x| large enough and d \in \BbbS 1 - . Thus, (3.19) follows from the definition of W4(x, z).

Lemma 3.6. For arbitrarily fixed z \in \BbbR 2 and for R > 0 large enough we have\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

U(x, z)Wj(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C
\bigl( 
1 + | z| 

\bigr) 2
R - 1/2,\int 

\partial B+
R

| Wj(x, z)| 2dx \leq C(1 + | z| )2R - 1

for j = 1, 4. Here, C > 0 is a constant independent of R and z.D
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Proof. From Lemmas 3.4 and 3.5 it follows that for j = 1, 4 and R > 0 large enough,\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

U(x, z)Wj(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C

\int 
\partial B+

R

1 + | z| 
R1/2

\cdot 1 + | z| 
R

dx \leq C
(1 + | z| )2

R1/2
,\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\partial B+

R

| Wj(x, z)| 2dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C

\int 
\partial B+

R

\biggl( 
1 + | z| 
R

\biggr) 2

dx \leq C
(1 + | z| )2

R
.

The proof is thus complete.

Lemma 3.7. For arbitrarily fixed z \in \BbbR 2 and for R > 0 large enough we have

3\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Ui(x, z)Wj(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| +
4\sum 

i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Wi(x, z)Wj(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C
(1 + | z| )2

R1/3

for j = 2, 3, where C > 0 is a constant independent of R and z.

Proof. From Lemma 2.1 it is easy to derive that for x \in \BbbR 2
+ with | x| large enough,

W2(x, z) =  - e
 - ik| x| 

| x| 1/2

\int 
\BbbS 1 - 
e2ik| x| \^x1\cdot d1u\infty (\^x, d)e - ikz\cdot dds(d) +W2,Res(x, z),(3.23)

W3(x, z) =  - eik| x| 

| x| 1/2

\int 
\BbbS 1 - 
e2ik| x| \^x2\cdot d2u\infty (\^x, d)e - ikz\cdot dds(d) +W3,Res(x, z),(3.24)

where

W2,Res(x, z) :=

\int 
\BbbS 1 - 
e2ik| x| \^x1\cdot d1usRes(x, d)e

 - ikz\cdot dds(d),

W3,Res(x, z) :=

\int 
\BbbS 1 - 
e2ik| x| \^x2\cdot d2usRes(x, d)e

 - ikz\cdot dds(d)

with

| Wj,Res(x, z)| \leq C| x|  - 3/2, j = 2, 3.(3.25)

By Lemmas 3.4 and 3.5 we obtain that

3\sum 
i=1

| Ui(x, z)| +
4\sum 

i=1

| Wi(x, z)| \leq 
C(1 + | z| )

| x| 1/2
, | x| \rightarrow +\infty .(3.26)

Now, let x = | x| \^x = | x| (cos \theta \^x, sin \theta \^x), d = (cos \theta d, sin \theta d) with \theta \^x \in [0, \pi ], \theta d \in [\pi , 2\pi ], and
define \widetilde fz(\theta \^x, \theta d) := u\infty (\^x, d)e - ikz\cdot d, \widetilde gz(\theta \^x, \theta d) := u\infty (\^x, d)e - ikz\cdot d for \theta \^x \in [0, \pi ] and \theta d \in 
[\pi , 2\pi ]. Then it follows from (3.23), (3.24), (3.25), and (3.26) thatD
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 133

3\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Ui(x, z)W2(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| +
4\sum 

i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Wi(x, z)W2(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C(1 + | z| )

\Biggl( \int 
\BbbS 1+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS 1 - 
e2ikR\^x1\cdot d1u\infty (\^x, d)e - ikz\cdot dds(d)

\bigm| \bigm| \bigm| \bigm| \bigm| ds(\^x) + C

R

\Biggr) 

= C(1 + | z| )
\biggl( \int \pi 

0

\bigm| \bigm| \bigm| \bigm| \int 2\pi 

\pi 
e2ikR \mathrm{c}\mathrm{o}\mathrm{s} \theta \^x \mathrm{c}\mathrm{o}\mathrm{s} \theta d \widetilde fz(\theta \^x, \theta d)d\theta d\bigm| \bigm| \bigm| \bigm| d\theta \^x + C

R

\biggr) 
,(3.27)

3\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Ui(x, z)W3(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| +
4\sum 

i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Wi(x, z)W3(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C(1 + | z| )

\Biggl( \int 
\BbbS 1+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS 1 - 
e2ikR\^x2\cdot d2u\infty (\^x, d)e - ikz\cdot dds(d)

\bigm| \bigm| \bigm| \bigm| \bigm| ds(\^x) + C

R

\Biggr) 

= C(1 + | z| )
\biggl( \int \pi 

0

\bigm| \bigm| \bigm| \bigm| \int 2\pi 

\pi 
e2ikR \mathrm{s}\mathrm{i}\mathrm{n} \theta \^x \mathrm{s}\mathrm{i}\mathrm{n} \theta d\widetilde gz(\theta \^x, \theta d)d\theta d\bigm| \bigm| \bigm| \bigm| d\theta \^x + C

R

\biggr) 
.(3.28)

Let \varepsilon > 0 be small enough such that sin \varepsilon \geq \varepsilon /2 and let R be large enough. Define

\widetilde wz(R, \theta \^x) :=

\int 2\pi 

\pi 
e2ikR \mathrm{c}\mathrm{o}\mathrm{s} \theta \^x \mathrm{c}\mathrm{o}\mathrm{s} \theta d \widetilde fz(\theta \^x, \theta d)d\theta d

for \theta \^x \in [0, \pi ]. Then, by Lemma 2.1 we have\int \pi 

0
| \widetilde wz(R, \theta \^x)| d\theta \^x

=

\int 
[0,\pi 

2
 - \varepsilon ]\cup [\pi /2+\varepsilon ,\pi ]

| \widetilde wz(R, \theta \^x)| d\theta \^x +
\int 
[\pi /2 - \varepsilon ,\pi /2+\varepsilon ]

| \widetilde wz(R, \theta \^x)| d\theta \^x

\leq C\varepsilon +

\int 
[0,\pi /2 - \varepsilon ]\cup [\pi /2+\varepsilon ,\pi ]

| \widetilde wz(R, \theta \^x)| d\theta \^x

\leq C\varepsilon +

\int 
[0,\pi /2 - \varepsilon ]\cup [\pi /2+\varepsilon ,\pi ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi +\varepsilon ,2\pi  - \varepsilon ]

e2ikR \mathrm{c}\mathrm{o}\mathrm{s} \theta \^x \mathrm{c}\mathrm{o}\mathrm{s} \theta d \widetilde fz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| d\theta \^x

+

\int 
[0,\pi /2 - \varepsilon ]\cup [\pi /2+\varepsilon ,\pi ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi ,\pi +\varepsilon ]\cup [2\pi  - \varepsilon ,2\pi ]

e2ikR \mathrm{c}\mathrm{o}\mathrm{s} \theta \^x \mathrm{c}\mathrm{o}\mathrm{s} \theta d \widetilde fz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| d\theta \^x

\leq C\varepsilon +

\int 
[0,\pi /2 - \varepsilon ]\cup [\pi /2+\varepsilon ,\pi ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi +\varepsilon ,2\pi  - \varepsilon ]

e2ikR \mathrm{c}\mathrm{o}\mathrm{s} \theta \^x \mathrm{c}\mathrm{o}\mathrm{s} \theta d \widetilde fz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| d\theta \^x.(3.29)

Let u\theta \^x(\theta d) = 4\varepsilon  - 2 cos \theta \^x cos \theta d. Then it is easy to see that u\prime \theta \^x(\theta d) =  - 4\varepsilon  - 2 cos \theta \^x sin \theta d, and
so we obtain that for \theta \^x \in [0, \pi /2 - \varepsilon ] \cup [\pi /2 + \varepsilon , \pi ] and \theta d \in [\pi + \varepsilon , 2\pi  - \varepsilon ],

| u\prime \theta \^x(\theta d)| =
4

\varepsilon 2
| cos \theta \^x| | sin \theta d| =

4

\varepsilon 2
| sin(\theta \^x  - \pi /2)| | sin \theta d| \geq 

4

\varepsilon 2
sin2 \varepsilon \geq 4

\varepsilon 2

\Bigl( \varepsilon 
2

\Bigr) 2
= 1

and u\prime \prime \theta \^x(\theta d) =  - 4\varepsilon  - 2 cos \theta \^x cos \theta d is monotone for \theta d \in [\pi + \varepsilon , 2\pi  - \varepsilon ]. Thus we can apply
Lemmas 2.1, 3.1, and 3.3 to obtain that for \theta \^x \in [0, \pi /2 - \varepsilon ] \cup [\pi /2 + \varepsilon , \pi ]D
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134 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi +\varepsilon ,2\pi  - \varepsilon ]

e2ikR \mathrm{c}\mathrm{o}\mathrm{s} \theta \^x \mathrm{c}\mathrm{o}\mathrm{s} \theta d \widetilde fz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi +\varepsilon ,2\pi  - \varepsilon ]

e(ikR\varepsilon 2/2)u\theta \^x
(\theta d) \widetilde fz(\theta \^x, \theta d)d\theta d

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C

R\varepsilon 2
\| \widetilde fz(\theta \^x, \cdot )\| C1[\pi +\varepsilon ,2\pi  - \varepsilon ]

\leq 
C(1 + | z| )\| u\infty (\^x, \cdot )\| 

C1(\BbbS 1 - )

R\varepsilon 2
\leq C(1 + | z| )

R\varepsilon 2
.(3.30)

Combining (3.29) and (3.30) and then taking \varepsilon = R - 1/3 give

\int \pi 

0
| \widetilde wz(R, \theta \^x)| d\theta \^x \leq C\varepsilon +

C(1 + | z| )
R\varepsilon 2

\leq C
1 + | z| 
R1/3

.(3.31)

Now, define

\widetilde vz(R, \theta \^x) := \int 2\pi 

\pi 
e2ikR \mathrm{s}\mathrm{i}\mathrm{n} \theta \^x \mathrm{s}\mathrm{i}\mathrm{n} \theta d\widetilde gz(\theta \^x, \theta d)d\theta d.

Then it follows from Lemma 2.1 that\int \pi 

0
| \widetilde vz(R, \theta \^x)| d\theta \^x =

\int 
[\varepsilon ,\pi  - \varepsilon ]

| \widetilde vz(R, \theta \^x)| d\theta \^x + \int 
[0,\varepsilon ]\cup [\pi  - \varepsilon ,\pi ]

| \widetilde vz(R, \theta \^x)| d\theta \^x
\leq C\varepsilon +

\int 
[\varepsilon ,\pi  - \varepsilon ]

| \widetilde vz(R, \theta \^x)| d\theta \^x
\leq C\varepsilon +

\int 
[\varepsilon ,\pi  - \varepsilon ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi ,3\pi /2 - \varepsilon ]\cup [3\pi /2+\varepsilon ,2\pi ]

e2ikR \mathrm{s}\mathrm{i}\mathrm{n} \theta \^x \mathrm{s}\mathrm{i}\mathrm{n} \theta d\widetilde gz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| d\theta \^x

+

\int 
[\varepsilon ,\pi  - \varepsilon ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[3\pi /2 - \varepsilon ,3\pi /2+\varepsilon ]

e2ikR \mathrm{s}\mathrm{i}\mathrm{n} \theta \^x \mathrm{s}\mathrm{i}\mathrm{n} \theta d\widetilde gz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| d\theta \^x

\leq C\varepsilon +

\int 
[\varepsilon ,\pi  - \varepsilon ]

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi ,3\pi /2 - \varepsilon ]\cup [3\pi /2+\varepsilon ,2\pi ]

e2ikR \mathrm{s}\mathrm{i}\mathrm{n} \theta \^x \mathrm{s}\mathrm{i}\mathrm{n} \theta \theta d\widetilde gz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| d\theta \^x.(3.32)

Let v\theta \^x(\theta d) = 4\varepsilon  - 2 sin \theta \^x sin \theta d. It is easy to see that v\prime \theta \^x(\theta d) = 4\varepsilon  - 2 sin \theta \^x cos \theta d, and thus we
have that for \theta \^x \in [\varepsilon , \pi  - \varepsilon ] and \theta d \in [\pi , 3\pi /2 - \varepsilon ] \cup [3\pi /2 + \varepsilon , 2\pi ],

| v\prime \theta \^x(\theta d)| =
4

\varepsilon 2
| sin \theta \^x| | cos \theta d| =

4

\varepsilon 2
| sin \theta \^x| | sin(\theta d  - 3\pi /2)| \geq 4

\varepsilon 2
sin \varepsilon sin \varepsilon \geq 4

\varepsilon 2

\Bigl( \varepsilon 
2

\Bigr) 2
= 1

and v\prime \prime \theta \^x(\theta d) =  - 4\varepsilon  - 2 sin \theta \^x sin \theta d is monotone for \theta d \in [\pi , 3\pi /2 - \varepsilon ] and for \theta d \in [3\pi /2+ \varepsilon , 2\pi ].D
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 135

Then, by Lemmas 2.1, 3.1, and 3.3 we find that for \theta \^x \in [\varepsilon , \pi  - \varepsilon ],\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi ,3\pi /2 - \varepsilon ]\cup [3\pi /2+\varepsilon ,2\pi ]

e2ikR \mathrm{s}\mathrm{i}\mathrm{n} \theta \^x \mathrm{s}\mathrm{i}\mathrm{n} \theta d\widetilde gz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[\pi ,3\pi /2 - \varepsilon ]\cup [3\pi /2+\varepsilon ,2\pi ]

e(ikR\varepsilon 2/2)v\theta \^x (\theta d)\widetilde gz(\theta \^x, \theta d)d\theta d
\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq C

R\varepsilon 2
\| \widetilde gz(\theta \^x, \cdot )\| C1([\pi ,3\pi /2 - \varepsilon ]\cup [3\pi /2+\varepsilon ,2\pi ])

\leq C(1 + | z| )
R\varepsilon 2

\| u\infty (\^x, \cdot )\| 
C1(S1

 - )
\leq C(1 + | z| )

R\varepsilon 2
.(3.33)

Combining (3.32) and (3.33) and taking \varepsilon = R - 1/3 yield\int \pi 

0
| \widetilde vz(R, \theta \^x)| d\theta \^x \leq C\varepsilon +

C(1 + | z| )
R\varepsilon 2

\leq C
1 + | z| 
R1/3

.(3.34)

Finally, combining (3.27), (3.28), (3.31), and (3.34) gives

3\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Ui(x, z)Wj(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| +
4\sum 

i=1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

Wi(x, z)Wj(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C(1 + | z| )

\biggl( 
C
1 + | z| 
R1/3

+
C

R

\biggr) 
\leq C

(1 + | z| )2

R1/3
, j = 2, 3.

The proof is thus completed.

For z \in \BbbR 2 define the function

F (R, z) :=

\int 
\partial B+

R

| U(x, z)| 2 dx,(3.35)

where U(x, z) is given in (3.2). The following lemma gives the properties of F (R, z) for
sufficiently large R. The proof of this lemma is mainly based on the method of stationary
phase and will be presented in Appendix A.

Lemma 3.8. For z \in \BbbR 2 and R > 0 we have F (R, z) = F0(z) + F0,Res(R, z), where

(3.36) F0(z) :=

\int 
\BbbS 1+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS 1 - 
u\infty (\^x, d)e - ikz\cdot dds(d) - 

\biggl( 
2\pi 

k

\biggr) 1/2

e - 
\pi 
4
i
\Bigl( 
e - ik\^x\cdot z\prime + e - ik\^x\cdot z

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2

ds(\^x)

which is independent on R, and F0,Res(R, z) satisfies the estimate

| F0,Res(R, z)| \leq C
(1 + | z| )4

R1/4
(3.37)

for sufficiently large R. Here, C > 0 is a constant independent of R and z.D
ow

nl
oa

de
d 

02
/1

2/
19

 to
 1

24
.1

6.
14

8.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

136 XIAOXU XU, BO ZHANG, AND HAIWEN ZHANG

From (3.7) it follows that

IPhaseless(z) =

\int 
\partial B+

R

| U(x, z)| 2dx+ 2Re

\int 
\partial B+

R

U(x, z)W (x, z)dx+

\int 
\partial B+

R

| W (x, z)| 2dx.

Define

FRes(R, z) := 2Re

\int 
\partial B+

R

U(x, z)W (x, z)dx+

\int 
\partial B+

R

| W (x, z)| 2dx.

Then, by Lemmas 3.6, 3.7, and 3.8 we obtain the main theorem of this section.

Theorem 3.9. For z \in \BbbR 2 and R > 0 we have

IPhaseless(z) = F (R, z) + FRes(R, z),(3.38)

where F (R, z) is defined in (3.35) and FRes(R, z) satisfies the estimate

| FRes(R, z)| \leq C
(1 + | z| )2

R1/3
(3.39)

for R large enough and C > 0 independent of R and z. Further, F (R, z) = F0(z)+F0,Res(R, z),
where F0(z) is defined in (3.36) and F0,Res(R, z) satisfies the estimate (3.37).

With the help of the above analysis, we now study properties of the imaging function
IPhaseless(z), z \in \BbbR 2. Let K be a bounded domain which contains the local perturbation
\Gamma p of the locally rough surface \Gamma . From Theorem 3.9 it is easy to see that if R is large
enough, then IPhaseless(z) \approx F (R, z) for z \in K with F (R, z) given by (3.35). Thus the
imaging function IPhaseless(z) is approximately equal to the function F (R, z) for z \in K.
Therefore, in what follows, we investigate the properties of the function F (R, z). We will
make use of the theory of scattering by unbounded rough surfaces. To this end, for b \in \BbbR 
let U+

b = \{ x = (x1, x2) \in \BbbR 2| x2 > b\} and \Gamma b = \{ x = (x1, x2) \in \BbbR 2| x2 = b\} . Further, let
BC(\Gamma ) denote the Banach space of functions which are bounded and continuous on \Gamma with
the norm \| \psi \| \infty ,\Gamma := supx\in \Gamma | \psi (x)| for \psi \in BC(\Gamma ). Then the problem of scattering by an
unbounded, sound-soft, rough surface can be formulated as the following Dirichlet boundary
value problem (see [10, 11, 53]).

Dirichlet problem (DP). Given g \in BC(\Gamma ), determine u \in C2(D+) \cap C(D+) such that
(i) u satisfies the Helmholtz equation (1.1);
(ii) u = g on \Gamma ;
(iii) for some a \in \BbbR ,

sup
x\in D+

xa2| u(x)| <\infty ;(3.40)

(iv) u satisfies the upward propagating radiation condition (UPRC): for some b > h+ :=
supx1\in \BbbR h(x1) and \phi \in L\infty (\Gamma b),

u(x) = 2

\int 
\Gamma b

\partial \Phi k(x, y)

\partial y2
\phi (y)ds(y), x \in U+

b ,(3.41)

where \Phi k(x, y) := (i/4)H
(1)
0 (k| x  - y| ), x, y \in \BbbR 2, x \not = y, is the free-space Green's

function for the Helmholtz equation \Delta u+ k2u = 0 in \BbbR 2.D
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 137

The well-posedness of the problem (DP) has been established in [10, 11, 53], using the
integral equation method. The following theorem tells us that for arbitrarily fixed z \in \BbbR 2 the
function U(x, z) given by (3.2) is the unique solution to the Dirichlet problem (DP) with the
boundary data involving the Bessel function of order 0.

Theorem 3.10. For arbitrarily fixed z \in \BbbR 2, U(x, z) given by (3.2) satisfies the Dirichlet
problem (DP) with the boundary data

g(x) = gz(x) :=  - 2\pi J0(k| x - z| ), x \in \Gamma ,(3.42)

where J0 is the Bessel function of order 0.

Proof. Arbitrarily fix d \in \BbbS 1 - and define \widetilde us(x, d) := us(x, d)  - eikx\cdot d
\prime 
with x \in D+. From

the well-posedness of the scattering problem (1.1)--(1.5), it is easily seen that \widetilde us(x, d) satisfies
the Helmholtz equation (1.1) and the condition (3.40). Since us(x, d) satisfies the Sommer-
feld radiation condition (1.5), it follows from [9, Theorem 2.9] that us(x, d) also satisfies the
UPRC condition (3.41). Further, by [9, Remark 2.15] we know that eikx\cdot d

\prime 
satisfies the UPRC

condition (3.41). As a result, \widetilde us(x, d) satisfies the UPRC condition (3.41), and thus we apply
the boundary condition (1.3) to deduce that \widetilde us(x, d) is the solution to the Dirichlet problem
(DP) with the boundary data g(x) =  - ui(x, d) =  - eikx\cdot d. Furthermore, by the definition of
U(x, z) we see that

U(x, z) =

\int 
\BbbS 1 - 

\Bigl[ \widetilde us(x, d)e - ikz\cdot d  - eik(x\cdot d
\prime  - z\prime \cdot d)

\Bigr] 
ds(d).

Then, by the Funk--Hecke formula (see, e.g., [57, Lemma 2.1]) it is derived that U(x, z) =
 - 2\pi J0(k| x - z| ), x \in \Gamma , and so, U(x, z) satisfies the Dirichlet problem (DP) with the boundary
data given by (3.42). The theorem is thus proved.

Properties of solutions to the Dirichlet problem (DP) with the boundary data g(x) =
aJ0(k| x  - z| ), x \in \Gamma , for any a \in \BbbR have been investigated in the case when \Gamma is a globally
rough surface (see [37, section 3]). From the discussions in [37, section 3], it is expected that
for any x in the compact subset of D+ the function U(x, z) given in (3.2) will take a large
value when z \in \Gamma and decay as z moves away from \Gamma . As a result, it is expected that for
any fixed R > 0 the function F (R, z) defined in (3.35) will take a large value when z \in \Gamma 
and decay as z moves away from \Gamma . Thus, by Theorem 3.9 we know that for any bounded
sampling region K the imaging function IPhaseless(z) will have similar properties as F (R, z)
with z \in K if R is large enough, as seen in the numerical experiments presented in the next
section.

Remark 3.11. In the numerical experiments, we measure the phaseless total-field data

| u(x(i), d(j))| , i = 1, 2, . . . ,M, j = 1, 2, . . . , N , where x(i) = (x
(i)
1 , x

(i)
2 ) and d(j) = (d

(j)
1 , d

(j)
2 )

are uniformly distributed points on \partial B+
R and \BbbS 1 - , respectively. Accordingly, the imaging

function IPhaseless(z) is approximated asD
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IPhaseless(z)

\approx \pi 3R

MN2

M\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 
j=1

\biggl[ \biggl( \bigm| \bigm| \bigm| u(x(i), d(j))\bigm| \bigm| \bigm| 2  - 2 + e2ikx
(i)
2 d

(j)
2

\biggr) 
eik(x

(i) - z)\cdot d(j)  - e
ik
\Bigl( 
x(i)\prime  - z\prime 

\Bigr) 
\cdot d(j)
\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

2

,

(3.43)

where x(i)
\prime 
:= (x

(i)
1 , - x(i)2 ).

The direct imaging algorithm for our inverse problem can be given in the following algo-
rithm.

Algorithm 3.1. Let K be the sampling region which contains the local perturbation \Gamma p of
the locally rough surface \Gamma .

(1) Choose \scrT m to be a mesh of K and take R to be a large number.
(2) Collect the phaseless total-field data

\bigm| \bigm| u(x(i), d(j))\bigm| \bigm| , i = 1, 2, . . . ,M, j = 1, 2, . . . , N ,

with x(i) \in \partial B+
R and d(j) \in \BbbS 1 - , generated by the incident plane waves ui(x, d(j)) =

eikx\cdot d
(j)
, j = 1, 2, . . . , N .

(3) For all sampling points z \in \scrT m, compute the imaging function IPhaseless(z) given in
(3.43).

(4) Locate all those sampling points z \in \scrT m such that IPhaseless(z) takes a large value,
which represent the part of the locally rough surface \Gamma in the sampling region K.

Remark 3.12. Let K be the bounded sampling domain as above. From Lemma 3.8 it is
seen that if R is large enough, then F (R, z) \approx F0(z) for z \in K, and so by the properties of
F (R, z) as discussed above we know that the function F0(z) defined in (3.36) will be expected
to take a large value when z \in \Gamma and decay as z moves away from \Gamma . Based on this, we define
IFull(z) := F0(z) for z \in \BbbR 2 to be the imaging function with the full far-field data u\infty (\^x, d)
with \^x \in \BbbS 1+ and d \in \BbbS 1 - . In the numerical experiments presented in the next section,
we will show the imaging results of IFull(z) to compare with those of the imaging function
IPhaseless(z). Therefore, we will take the full far-field measurement data u\infty (\^x(i), d(j)), i =
1, 2, . . . , L, j = 1, 2, . . . , N , where \^x(i) and d(j) are uniformly distributed points on \BbbS 1+ and
\BbbS 1 - , respectively. Accordingly, the imaging function IFull(z) is approximated as

IFull(z)

\approx \pi 

L

L\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \pi N
\left(  N\sum 

j=1

u\infty (\^x(i), d(j))e - ikz\cdot d(j)

\right)   - 
\biggl( 
2\pi 

k

\biggr) 1/2

e - \pi i/4
\Bigl( 
e - ik\^x(i)\cdot z\prime + e - ik\^x(i)\cdot z

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

The direct imaging algorithm based on the imaging function IFull(z) can be given similarly
as in Algorithm 3.1.

Remark 3.13. From (3.1) and (3.43) it is seen that the imaging function IPhaseless(z) of our
direct imaging method uses integrals (or sums in the numerical approximation) with respect
to the measurement data, which may serve as an excellent filter for white noise. Therefore,
our direct imaging method based on the imaging function IPhaseless(z) should be very robust
with respect to white noise in the data. This is indeed confirmed by the numerical experiments
presented in the next section.D
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4. Numerical experiments. In this section, we present several numerical experiments to
demonstrate the effectiveness of our imaging algorithm with the phaseless total-field data.
Though the locally rough surface is assumed to be smooth in the above sections, we will also
consider the reconstructed results for the case when the locally rough surface is piecewise
smooth. In addition, in each example, we will also present imaging results of the imaging
algorithm with full far-field data to compare the reconstruction results using both the phaseless
near-field measurement data and the full far-field measurement data. To generate the synthetic
data, we use the integral equation method proposed in [54] to solve the forward scattering
problem (1.1)--(1.5). Further, the noisy phaseless near-field data | u\delta (x, d)| , x \in \partial B+

R , d \in \BbbS 1 - ,
and the noisy full far-field data u\infty \delta (\^x, d), \^x \in \BbbS 1+, d \in \BbbS 1 - , are simulated by

| u\delta (x, d)| = | u(x, d)| (1 + \delta \zeta 1) ,

u\infty \delta (\^x, d) = u\infty (\^x, d) + \delta (\zeta 2 + i\zeta 3) | u\infty (\^x, d)| ,

where \delta is the noise ratio and \zeta 1, \zeta 2, \zeta 3 are the normally distributed random numbers in
[ - 1, 1]. The numerical examples below illustrate that our direct imaging algorithm is also
very robust with respect to white noise in the data, which is consistent with our discussions
in Remark 3.13.

In all the figures presented, we use a solid line to represent the actual curves.

Example 1. We first investigate the effect of the noise ratio \delta on the imaging results. The
locally rough surface is given by

h(x1) = 0.1\phi 

\biggl( 
x1 + 0.2

0.3

\biggr) 
 - 0.08\phi 

\biggl( 
x1  - 0.3

0.2

\biggr) 
,

where

\phi (x) :=
5\sum 

j=0

( - 1)j
\biggl( 

5
j

\biggr) \bigl( 
x+ 5

2  - j
\bigr) 4
+

4!
with x4+ :=

\biggl\{ 
x4, x \geq 0,
0, x < 0,

is the cubic spline function. The wave number is set to be k = 40. We first consider the
inverse problem with phaseless near-field data. We choose the radius of the measurement
circle \partial B+

R to be R = 4 and the number of both the measurement points and the incident
directions to be the same with M = N = 200. Figure 4.1 presents the imaging results of
IPhaseless(z) from the measured phaseless near-field data without noise, with 10\% noise, with
20\% noise, and with 40\% noise, respectively. Next, we consider the inverse problem with full
far-field data. We choose the number of both the measured observation directions and the
measured incident directions to be the same as well with L = N = 100. Figure 4.2 presents
the imaging results of IFull(z) from the measured full far-field data without noise, with 10\%
noise, with 20\% noise, and with 40\% noise, respectively. As shown by Figures 4.1 and 4.2,
the imaging results given by the imaging function IPhaseless(z) with phaseless near-field data
are good though the imaging results of the imaging function IFull(z) with full far-field data
are better than those of the imaging function IPhaseless(z) with phaseless near-field data.D
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(a) No noise, k=40, R=4 (b) 10\% noise, k=40, R=4

(c) 20\% noise, k=40, R=4 (d) 40\% noise, k=40, R=4

Figure 4.1. Imaging results of IPhaseless(z) with measured phaseless near-field data, where the solid line
represents the actual curve. The number of both the measured points and the incident directions is chosen to
be the same with M = N = 200.

(a) No noise, k=40 (b) 10\% noise, k=40

(c) 20\% noise, k=40 (d) 40\% noise, k=40

Figure 4.2. Imaging results of IFull(z) with measured full far-field data, where the solid line represents the
actual curve. The number of both the measured points and the incident directions is chosen to be the same with
L = N = 100.D
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INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 141

(a) 20\% noise, k=80, R=1.2 (b) 20\% noise, k=80, R=1.6

(c) 20\% noise, k=80, R=2 (d) 20\% noise, k=80

Figure 4.3. (a)--(c) Imaging results of IPhaseless(z) with the measured phaseless near-field data, where the
number of the measurement points and the incident directions is chosen to be the same with M = N = 200.
(d) Imaging result of IFull(z) with the measured full far-field data, where the number of the measurement points
and the incident directions is chosen to be the same with L = N = 100. The solid line represents the actual
curve.

Example 2. We now consider the case when the local perturbation part of the boundary
\Gamma is piecewise linear (the solid line in Figure 4.3). We choose the wave number to be k = 80
and the noise ratio to be \delta = 20\%. First consider the inverse problem with phaseless near-field
data. For this case, we investigate the effect of the radius R of the measurement circle \partial B+

R on
the imaging results. We choose the number of both the measurement points and the incident
directions to be the same with M = N = 200. Figures 4.3(a)--4.3(c) present the imaging
results of IPhaseless(z) with the measurement phaseless near-field data with the radius of the
measurement circle \partial B+

R to be R = 1.2, 1.6, 2, respectively. From Figures 4.3(a)--4.3(c) it is
seen that the reconstruction result is getting better with the radius of the measurement circle
getting larger.

Second, we consider the inverse problem for full far-field data. We choose the numbers of
measured directions and incident directions to be L = N = 100. Figure 4.3(d) presents the
imaging results of IFull from the measured full far-field data.

Example 3. We now consider the case of a multiscale surface profile given by

h(x1) =

\Biggl\{ 
0.3 exp

\bigl[ 
16/(25x21  - 16)

\bigr] 
[0.5 + 0.1 sin(16\pi x1)] sin(\pi x1), | x1| < 4/5,

0, | x1| \geq 4/5.
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(a) 20\% noise, k=40,
R=4

(b) 20\% noise, k=80,
R=4

(c) 20\% noise, k=120,
R=4

Figure 4.4. The imaging results of IPhaseless(z) with the measurement phaseless near-field data. The
number of the measurement points and the incident directions is chosen to be the same with M = N = 400.
The solid line represents the actual curve.

(a) 20\% noise, k=40 (b) 20\% noise, k=80 (c) 20\% noise, k=120

Figure 4.5. The imaging results of IFull(z) with the measurement full far-field data, where the number of
the measurement points and the incident directions is the same with L = N = 100. The solid line represents
the actual curve.

This profile consists of a macroscale represented by 0.15 exp[16/(25x21  - 16)] sin(\pi x1) and a
microscale represented by 0.03 exp[16/(25x21  - 16)] sin(16\pi x1) sin(\pi x1). We will investigate
the effect of the wave number k on the imaging results. The noise ratio is chosen to be
\delta = 20\%. We first consider the inverse problem with phaseless near-field data. The radius
of the measurement circle \partial B+

R is chosen to be R = 4 and the number of the measurement
points and the incident directions is set to be M = N = 400. Figure 4.4 presents the imaging
results of IPhaseless(z) with the measured phaseless near-field data with the wave number
k = 40, 80, 120, respectively. Second, we consider the inverse problem with full far-field
data. We choose the number of the measurement directions and the incident directions to be
L = N = 100. Figure 4.5 shows the imaging results of IFull(z) with the measurement full
far-field data with the wave number k = 40, 80, 120, respectively.

5. Conclusion. In this paper, we considered the inverse scattering problem by locally
rough surfaces with phaseless near-field data. We have proved that the locally rough surface
is uniquely determined by the phaseless near-field data, generated by a countably infinite
number of incident plane waves and measured on an open domain above the locally rough
surface. A direct imaging method has also been proposed to reconstruct the locally rough
surface from phaseless near-field data generated by incident plane waves and measured on
the upper part of a sufficiently large circle. The theoretical analysis of the imaging method
has been given based on the method of stationary phase and the property of the scatteringD
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solution. As a by-product of the theoretical analysis, a similar direct imaging method with full
far-field data has also been given to reconstruct the locally rough surface and to compare with
the imaging method with phaseless near-field data. As an ongoing project, we are currently
trying to extend the results to the case of incident point sources. In the near future, we hope
to consider the more challenging case of electromagnetic waves.

Appendix A. The method of stationary phase and proof of Lemma 3.8. In [45], the
author developed an error theory for the method of stationary phase for integrals of the form

I(\gamma ) =

\int b

a
ei\gamma p(t)q(t)dt,(A.1)

where a, b \in \BbbR , \gamma is a large real parameter, the function p(t) is real, and q(t) is either real
or complex. In what follows, we will briefly present some useful results in [45] and use these
results to prove Lemma 3.8. For a comprehensive discussion of the method of stationary
phase, the reader is referred to [45].

A.1. Error theory for the method of stationary phase. We first present an error theory
for the method of stationary phase given in [45]. Let a, b \in \BbbR , let p(t) be a real function, and
let q(t) be either a real or a complex function. Assume that a, b, p(t), q(t) are independent of
the positive parameter \gamma . They have the following properties:

(i) In (a, b), p(m+1) and q(m)(t) are continuous, m being a nonnegative integer, and
p\prime (t) > 0.

(ii) As t\rightarrow a from the right,

p(t) \thicksim p(a) +

\infty \sum 
s=0

ps(t - a)s+\mu , q(t) \thicksim 
\infty \sum 
s=0

qs(t - a)s+\lambda  - 1,(A.2)

where the coefficients p0 and q0 are nonzero, and \mu and \lambda are constants satisfying that

\mu > 0, (m+ 1)\mu + 1 > Re(\lambda ) > 0.

Moreover, the first of these expansions is differentiable m+1 times and the second m
times.

(iii) p(b) \equiv limt\rightarrow b - \{ p(t)\} is finite, and each of the functions

Ps(t) \equiv 
\biggl\{ 

1

p\prime (t)

d

dt

\biggr\} s q(t)

p\prime (t)
, s = 0, 1, . . . ,m,(A.3)

tends to a finite limit as t \rightarrow b - . In particular, (A.3) is satisfied if p(m+1)(t) and
q(m)(t) are continuous at b and p\prime (b) \not = 0.

In consequence of condition (i) there is a one-to-one relationship between t and the variable
v, defined by

v = p(t) - p(a).(A.4)

In terms of this variable the integral (A.1) transforms into\int b

a
ei\gamma p(t)q(t)dt = ei\gamma p(a)

\int p(b) - p(a)

0
ei\gamma vf(v)dv,
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in which

f(v) = q(t)/p\prime (t) = P0(t).(A.5)

Again, condition (i) shows that f(v) and its first m derivatives are continuous when 0 < v <
p(b) - p(a). For small v, f(v) can be expanded in asymptotic series of the form

f(v) \thicksim 
\infty \sum 
s=0

asv
(s+\lambda  - \mu )/\mu .(A.6)

The coefficients as depend on ps and qs and may be found by standard procedures of reverting
series. In particular,

a0 =
q0

\mu p
\lambda /\mu 
0

, a1 =

\biggl\{ 
q1
\mu 

 - (\lambda + 1)p1q0
\mu 2p0

\biggr\} 
1

p
(\lambda +1)/\mu 
0

.(A.7)

The following theorem gives an asymptotic expansion of the integral (A.1) with an error
bound (see Theorem 1 and estimates (6.3) and (6.7) in [45]).

Theorem A.1 (Theorem 1 and estimates (6.3) and (6.7) in [45]). Assume the conditions
and notation of this section, and let n be a nonnegative integer satisfying

m\mu  - \lambda \leq n < (m+ 1)\mu  - \lambda + 1 (\lambda real)(A.8)

or

m\mu  - Re(\lambda ) < n < (m+ 1)\mu  - Re(\lambda ) + 1 (\lambda complex).(A.9)

If p(b) <\infty , then we have

\int b

a
ei\gamma p(t)q(t)dt = ei\gamma p(a)

n - \nu \sum 
s=0

exp

\biggl\{ 
(s+ \lambda )\pi i

2\mu 

\biggr\} 
\Gamma 

\biggl( 
s+ \lambda 

\mu 

\biggr) 
as

\gamma (s+\lambda )/\mu 

 - ei\gamma p(b)
m - 1\sum 
s=0

Ps(b)

\biggl( 
i

\gamma 

\biggr) s+1

+ \delta m,n(\gamma ) - \varepsilon m,n(\gamma ).(A.10)

Here, \nu = 0 when n = m\mu  - \lambda , and \nu = 1 in all other cases. As usual, empty sums are
understood to be zero. Further, the error terms \delta m,n and \varepsilon m,n satisfy

| \delta m,n(\gamma )| \leq [| Qm+1,n(a)| + | Qm+1,n(b)| + Va,b\{ Qm+1,n(t)\} ] \gamma  - m - 1(A.11)

provided that the right-hand side is finite, and

| \varepsilon m,n(\gamma )| \leq 
2

\gamma m+1

n - 1\sum 
s=0

\Gamma \{ (s+ \lambda )/\mu \} 
| \Gamma \{ (s+ \lambda  - m\mu )/\mu \} | 

| as| 
\{ p(b) - p(a)\} (m\mu +\mu  - s - \lambda )/\mu 

.(A.12)

D
ow

nl
oa

de
d 

02
/1

2/
19

 to
 1

24
.1

6.
14

8.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE SCATTERING BY LOCALLY ROUGH SURFACES 145

Here, Qm+1,n is given by

Qm+1,n(t)

= Pm(t) - 
n - 1\sum 
s=0

\Gamma \{ (s+ \lambda )/\mu \} 
\Gamma \{ [s+ \lambda + \mu  - (m+ 1)\mu ]/\mu \} 

as

\{ p(t) - p(a)\} [(m+1)\mu  - s - \lambda ]/\mu 
,(A.13)

and Va,b\{ Qm+1,n(t)\} denotes the total variation of the function Qm+1,n(t) which is given by

Va,b\{ Qm+1,n(t)\} =

\int b

a
| Q\prime 

m+1,n(t)| dt.

A.2. Proof of Lemma 3.8. In this section, we prove Lemma 3.8, employing Theorem A.1.
To do this, we need to estimate the function Ui, i = 1, 2, 3, defined in (3.4)--(3.6).

Lemma A.2. Let x \in D+ and z \in \BbbR 2. Then we have

U1(x, z) =
eik| x| 

| x| 1/2

\int 
\BbbS 1 - 
u\infty (\^x, d)e - ikz\cdot dds(d) + U1,Res(x, z)(A.14)

with

| U1,Res(x, z)| \leq 
C

| x| 3/2
as | x| \rightarrow +\infty ,(A.15)

where C > 0 is a constant independent of x and z.

Proof. Multiply (2.1) by e - ikz\cdot d and integrate with respect to d over \BbbS 1 - to obtain (A.14)
with U1,Res being given by

U1,Res(x, z) :=

\int 
\BbbS 1 - 
usRes(x, d)e

 - ikz\cdot dds(d).

The inequality (A.15) then follows from (2.3). The lemma is thus proved.

Lemma A.3. Let x \in \BbbR 2
+ and z \in \BbbR 2. Write \^x = x/| x| = (cos \theta \^x, sin \theta \^x) with \theta \^x \in (0, \pi ).

Then we have that for \theta \^x \in (0, \pi ),

U2(x, z) =  - eik| x| 

| x| 1/2
e - 

\pi 
4
i

\biggl( 
2\pi 

k

\biggr) 1/2

e - ik\^x\cdot z\prime + U2,Res(x, z),(A.16)

U3(x, z) =  - eik| x| 

| x| 1/2
e - 

\pi 
4
i

\biggl( 
2\pi 

k

\biggr) 1/2

e - ik\^x\cdot z + U3,Res(x, z),(A.17)

where

| Uj,Res(x, z)| \leq C

\Biggl( 
| z| + 1

| sin \theta \^x
2 | 

+
1

| sin \pi  - \theta \^x
2 | 

+
1

| sin \theta \^x| 
+

\int \theta \^x

0

(1 + | z| )3t2

sin2 t
dt

+

\int \pi  - \theta \^x

0

(1 + | z| )3t2

sin2 t
dt

\Biggr) 
1

| x| 
, j = 2, 3,(A.18)

for large | x| . Here, C > 0 is a constant independent of x and z.D
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Proof. We only consider the case for U2(x, z). The case for U3(x, z) can be proved similarly.
For d \in \BbbS 1 - and z \in \BbbR 2, let \theta d, \theta \^z be the real numbers as defined at the end of section 1.

Then we have

U2(x, z) =  - 
\int 
\BbbS 1 - 
eik(x\cdot d

\prime  - z\cdot d)ds(d) =  - 
\int 2\pi 

\pi 
eik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d+\theta \^x)e - ik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^z)d\theta d.

A straightforward calculation gives

 - U2(x, z) =

\int 2\pi  - \theta \^x

\pi 
e - ik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d+\theta \^x)eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^z)d\theta d

+

\int 2\pi 

2\pi  - \theta \^x

e - ik| x| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d+\theta \^x)eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta d - \theta \^z)d\theta d

=

\int \pi  - \theta \^x

0
e - ik| x| \mathrm{c}\mathrm{o}\mathrm{s} teik| z| \mathrm{c}\mathrm{o}\mathrm{s}(t+\theta \^x+\theta \^z)dt+

\int \theta \^x

0
e - ik| x| \mathrm{c}\mathrm{o}\mathrm{s} teik| z| \mathrm{c}\mathrm{o}\mathrm{s}(t - \theta \^x - \theta \^z)dt

:= I1(x, z) + I2(x, z).(A.19)

We first estimate I1(x, z). Let \gamma = | x| , a = 0, b = \pi  - \theta \^x, p(t) =  - k cos t, and q(t) =
eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(t+\theta \^x+\theta \^z). Then it is easy to verify that a, b, p(t), q(t) satisfy the assumptions in section
A.1. In particular, p(t), q(t) satisfy assumption (A.2) with \mu = 2, \lambda = 1, p0 = k/2, and
q0 = eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta \^x+\theta \^z), and the function P0 defined in (A.3) is given by

P0(t) = q(t)/p\prime (t) = eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(t+\theta \^x+\theta \^z)/(k sin t).(A.20)

Let the relationship between t and v be given by (A.4) and let f(v) be the function defined in
(A.5). Then f(v) has the form (A.6). In particular, it follows from (A.7) that the coefficient

a0 = q0/(\mu p
\lambda /\mu 
0 ) = eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta \^x+\theta \^z)/(2k)1/2.

Choose m = 0, n = 1. Then m,n satisfy the condition (A.8). Thus it follows from (A.10)
that

I1(x, z) =

\int b

a
ei| x| p(t)q(t)dt = ei| x| p(0)exp

\biggl\{ 
\lambda \pi i

2\mu 

\biggr\} 
\Gamma 

\biggl( 
\lambda 

\mu 

\biggr) 
a0

| x| \lambda /\mu 
+ \delta 0,1(| x| ) - \varepsilon 0,1(| x| )

=
e - ik| x| 

| x| 1/2
e\pi i/4

\Bigl( \pi 
2k

\Bigr) 1/2
eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta \^x+\theta \^z) + \delta 0,1(| x| ) - \varepsilon 0,1(| x| )

=
e - ik| x| 

| x| 1/2
e\pi i/4

\Bigl( \pi 
2k

\Bigr) 1/2
eik\^x\cdot z

\prime 
+ \delta 0,1(| x| ) - \varepsilon 0,1(| x| ).(A.21)

Further, by (A.13) and (A.20) we have

Q1,1(t) = P0(t) - 
a0

(p(t) - p(a))1/2

=
1

k sin t

\biggl( 
eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(t+\theta \^x+\theta \^z)  - eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta \^x+\theta \^z) cos

t

2

\biggr) 
for t \in (0, \pi  - \theta \^x). It is easy to see that

| Q1,1(0)| \leq | z| , | Q1,1(\pi  - \theta \^x)| \leq 
2

k| sin(\pi  - \theta \^x)| 
=

2

k| sin \theta \^x| 
(A.22)
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and

Q\prime 
1,1(t) =

\bigl( 
1
2 sin

t
2 sin t+ cos t

2 cos t
\bigr) 
eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(\theta \^x+\theta \^z)

k sin2 t

 - (ik| z| sin(t+ \theta \^x + \theta \^z) sin t+ cos t) eik| z| \mathrm{c}\mathrm{o}\mathrm{s}(t+\theta \^x+\theta \^z)

k sin2 t
:=

h(t)

k sin2 t
.

By a straightforward calculation, it is derived that

h(0) = h\prime (0) = 0 | h\prime \prime (t)| \leq C(1 + | z| )3, t \in \BbbR .

Then, by the Taylor expansion we obtain that for t \in (0, \pi  - \theta \^x),

| Q\prime 
1,1(t)| \leq C

(1 + | z| )3t2

sin2 t
.(A.23)

Combining (A.11), (A.22), and (A.23) gives

| \delta 0,1(| x| )| \leq [| Q1,1(0)| + | Q1,1(\pi  - \theta \^x)| + V0,\pi  - \theta \^x\{ Q1,1(t)\} ] | x|  - 1

\leq C

\biggl( 
| z| + 1

| sin \theta \^x| 
+

\int \pi  - \theta \^x

0

(1 + | z| )3t2

sin2 t
dt

\biggr) 
1

| x| 
.(A.24)

Further, it follows from (A.12) that

| \varepsilon 0,1| \leq 
2

| x| 
| a0| 

(p(b) - p(a))1/2
=

1

k| x| 
1\bigm| \bigm| \bigm| sin \pi  - \theta \^x

2

\bigm| \bigm| \bigm| .(A.25)

Let I1,Res(x, z) := \delta 0,1(| x| ) - \varepsilon 0,1(| x| ). Then combining (A.21), (A.24), and (A.25) yields

I1(x, z) =
e - ik| x| 

| x| 1/2
e\pi i/4

\Bigl( \pi 
2k

\Bigr) 1/2
eik\^x\cdot z

\prime 
+ I1,Res(x, z)(A.26)

with

| I1,Res(x, z)| \leq C

\Biggl( 
| z| + 1

| sin \pi  - \theta \^x
2 | 

+
1

| sin \theta \^x| 
+

\int \pi  - \theta \^x

0

(1 + | z| )3t2

sin2 t
dt

\Biggr) 
1

| x| 
.(A.27)

Similarly, for I2(x, z) we have

I2(x, z) =
e - ik| x| 

| x| 1/2
e\pi i/4

\Bigl( \pi 
2k

\Bigr) 1/2
eik\^x\cdot z

\prime 
+ I2,Res(x, z),(A.28)

where

| I2,Res(x, z)| \leq C

\Biggl( 
| z| + 1

| sin \theta \^x
2 | 

+
1

| sin \theta \^x| 
+

\int \theta \^x

0

(1 + | z| )3t2

sin2 t
dt

\Biggr) 
1

| x| 
.(A.29)

Now, let U2,Res(x, z) :=  - (I1,Res(x, z)+I2,Res(x, z)). Then (A.16) with the estimate (A.18)
follows from (A.19), (A.26), (A.27), (A.28), and (A.29). The proof is thus complete.D
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Lemma A.4. Let z \in \BbbR 2 and let Uj,Res(x, z), j = 2, 3, be the functions defined in Lemma
A.3. Assume that \delta > 0 is small enough and R > 0 is large enough. Then, for any x =
R(cos \theta \^x, sin \theta \^x) with \theta \^x \in [\delta , \pi  - \delta ] we have

| Uj,Res(x, z)| \leq C
(1 + | z| )3

R\delta 
, j = 2, 3,(A.30)

where C > 0 is a constant independent of x and z.

Proof. For \theta \^x \in [\delta , \pi  - \delta ] with \delta small enough we have

1\bigm| \bigm| \bigm| sin \theta \^x
2

\bigm| \bigm| \bigm| + 1\bigm| \bigm| \bigm| sin \pi  - \theta \^x
2

\bigm| \bigm| \bigm| + 1

| sin \theta \^x| 
\leq C

\delta 

and \int \theta \^x

0

(1 + | z| )3t2

sin2 t
dt+

\int \pi  - \theta \^x

0

(1 + | z| )3t2

sin2 t
dt

\leq 2

\int \pi  - \delta 

0

(1 + | z| )3t2

sin2 t
dt \leq C(1 + | z| )3

\Biggl( 
1 +

\int \pi  - \delta 

\pi /2

1

sin2 t
dt

\Biggr) 

= C(1 + | z| )3
\Biggl( 
1 +

\int \pi /2

\delta 

1

sin2 t
dt

\Biggr) 
\leq C

(1 + | z| )3

\delta 
.

This, together with Lemma A.3, implies the inequality (A.30). The proof is thus
complete.

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. For arbitrarily fixed z \in \BbbR 2, let \delta = R - 1/4 with R > 0 large enough.
Define \partial B+

R,\delta := \{ x = R(cos \theta \^x, sin \theta \^x) | \theta \^x \in (0, \delta ) \cup (\pi  - \delta , \pi )\} and define

U0(x, z) :=
eik| x| 

| x| 1/2

\Biggl[ \int 
\BbbS 1 - 
u\infty (\^x, d)e - ikz\cdot dds(d)

 - 
\biggl( 
2\pi 

k

\biggr) 1/2

e - \pi i/4(e - ik\^x\cdot z\prime + e - ik\^x\cdot z)

\Biggr] 
,(A.31)

URes(x, z) :=

3\sum 
j=1

Uj,Res(x, z),(A.32)

where Uj,Res(x, z), j = 1, 2, 3, are given in (A.14), (A.16), and (A.17), respectively. Then it
follows from Lemmas A.2 and A.3 that U(x, z) = U0(x, z)+URes(x, z). Now, by the definition
of U0(x, z) and U(x, z) and using Lemmas 2.1 and 3.4 we get

| U0(x, z)| \leq C
1

R1/2
, | U(x, z)| \leq C

1 + | z| 
R1/2

\forall x \in \partial B+
R ,(A.33)
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which yields

| URes(x, z)| \leq C
1 + | z| 
R1/2

\forall x \in \partial B+
R .(A.34)

On the other hand, by Lemmas A.2 and A.4 and on noting that \delta = R - 1/4 it follows that

| URes(x, z)| \leq C1

\biggl( 
1

R3/2
+

(1 + | z| )3

\delta R

\biggr) 
\leq C

(1 + | z| )3

R3/4
\forall x \in \partial B+

R\setminus \partial B
+
R,\delta .(A.35)

We now prove (3.37) for the function F0,Res(x, z) defined in Lemma 3.8. Since F (R, z) =
F0(z) + F0,Res(R, z), and by the definition of F (R, z), F0(z), and U0(x, z) (see (3.35), (3.36),
and (A.31)), we have\int 

\partial B+
R

| U(x, z)| 2dx

=

\int 
\BbbS 1+

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS 1 - 
u\infty (x, d)e - ikz\cdot dds(d) - 

\biggl( 
2\pi 

k

\biggr) 1/2

e - \pi i/4
\Bigl( 
e - ik\^x\cdot z\prime + e - ik\^x\cdot z

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2

ds(\^x)

+F0,Res(R, z) =

\int 
\partial B+

R

| U0(x, z)| 2dx+ F0,Res(R, z).

Thus we have

F0,Res(x, z) =

\int 
\partial B+

R

U0(x, z)URes(x, z)dx+

\int 
\partial B+

R

URes(x, z)U(x, z)dx.(A.36)

From (A.33), (A.34), and (A.35) it follows that\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

U0(x, z)URes(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R,\delta 

U0(x, z)URes(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R\setminus \partial B+
R,\delta 

U0(x, z)URes(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq CR\delta 

1

R1/2

1 + | z| 
R1/2

+ CR
1

R1/2

(1 + | z| )3

\delta R

= C

\biggl( 
(1 + | z| )\delta + (1 + | z| )3

\delta R1/2

\biggr) 
(A.37)

and \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R

URes(x, z)U(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R,\delta 

URes(x, y)U(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B+

R\setminus \partial B+
R,\delta 

URes(x, z)U(x, z)dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq CR\delta 

1 + | z| 
R1/2

1 + | z| 
R1/2

+ CR
(1 + | z| )3

\delta R

1 + | z| 
R1/2

= C

\biggl( 
(1 + | z| )2\delta + (1 + | z| )4

\delta R1/2

\biggr) 
.(A.38)
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Combining (A.36), (A.37), and (A.38) gives

| F0,Res(R, z)| \leq C

\biggl( 
(1 + | z| )2\delta + (1 + | z| )4

\delta R1/2

\biggr) 
.

This, combined with the fact that \delta = R - 1/4, yields (3.37). Lemma 3.8 is thus proved.
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